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work externalities, when consumers are heterogeneous in their expectations about future network

sizes. We consider the existence of naive consumers, as well as of sophisticated consumers hav-

ing fulfilled expectations. We find that the firm charges the sequential-diffusion pricing that

makes sophisticated consumers function as early adopters, unless consumers quickly become

bored with using the goods and/or unless the firm heavily discounts its future profits. We also

compare the profitability of three possible pricing strategies with different commitment powers:
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1 Introduction

Currently, there is a growing trend for various products to be connected to the Internet, which

is known as Internet of Things (IoT), and the connection of these products enables consumers to

benefit greatly from the other consumers who join the same network (so-called network externali-

ties). A typical example is a transition of home video games from offline to online playing. In the

past, people enjoyed playing offline video games with family or friends at home and, therefore, they

were not primarily concerned with the number of other users playing the game. Recently, however,

most games have been connected to the Internet, which allows players to enjoy such games with a

huge number of other players all over the world.1 These technological advancements have expanded

consumers’ effective network size, which is the size of network range where consumers actually care

about the other consumers. Thus, it is becoming more important to correctly predict how many

users are (or will be) playing the same game when making a purchasing decision. However, this

is not an easy task. In particular, there might be considerable heterogeneity among consumers

with respect to their predictive accuracies. How will such heterogeneity affect consumer behavior,

firm strategies, and the diffusion process of goods? The main purpose of this paper is to show the

optimal pricing and the diffusion process of durable goods that exhibit network externalities, when

consumers are heterogeneous with respect to their predictions about future network size.

We develop a simple infinite-period model in which a monopolistic firm produces a durable good

that exhibits network externalities. Consumers obtain utilities from the good for infinite periods

with discounting. At the same time, they become bored with the good from the continuous use

of it, that is, the good is assumed to be imperfectly durable and to depreciate. When consumers

decide whether to purchase the good, they must take into account not only the current network size

but also the future expansion of the network size. Katz and Shapiro (1985), the seminal work on

oligopoly pricing for goods with network externalities, assume fulfilled expectations of consumers

to capture this issue in a static one-period model, in which the actual network size is indeed equal

to the network size that consumers expected. In reality, however, not all consumers form rational

1For example, in 2016, League of Legends, a multiplayer online video game developed by Riot Games, had over
100 million monthly active players worldwide, which outnumber the population of Germany. The League of Legends
2017 World Championship attracted approximately 60 million unique viewers. See also the article in the Economist :
https://www.economist.com/business/2017/08/17/computer-game-tournaments-go-mainstream (accessed 7 Nov
2018).
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expectations. For example, some consumers may believe that the current network size will continue

as a constant over the future, whereas others, who possess greater information, can forecast the

future network size perfectly.

To consider such heterogeneity among consumers with respect to their beliefs about future

network sizes, our model consists of two types of consumers: sophisticated and naive consumers.

Sophisticated consumers have perfect foresight and, thus, can correctly anticipate how many con-

sumers will be participating in the network in future periods. Their expectations will be fulfilled, as

assumed in Katz and Shapiro (1985). On the other hand, naive consumers believe that the current

network size will continue as a constant in later periods and make their purchase decisions based on

such naive expectations. Note that, in this paper, consumers are homogeneous except with regard

to their expectations on future network sizes. Therefore, we can show how the heterogeneity of

such expectations affects the optimal pricing of a monopolistic provider and the diffusion of the

product.

Within the above framework of the model, this paper first considers the simple benchmark case

of fixed pricing, in which the monopoly firm offers its price at the initial period and commits to it

being fixed. We show that, unless the consumers become easily bored with the goods and/or the firm

heavily discounts its future profits, the firm embraces a sequential-diffusion strategy that induces

sophisticated consumers to purchase at the initial period and naive consumers to follow them and

purchase at the next period. Otherwise, it is optimal for the firm to adopt a simultaneous-diffusion

strategy, under which all consumers purchase at the initial period.

With the simultaneous-diffusion strategy, the firm can reap all profits at the initial period.

However, because the naive consumers believe, at the time of their purchase, that the current

market size, which is zero, will continue over the future periods, their willingness to pay for the good

would be low. Therefore, a large price discount is required to convince them to purchase along with

the sophisticated consumers at the initial period. On the other hand, with the sequential-diffusion

strategy, the firm can charge a higher price whereas the profit from the naive consumers will be

obtained at the second period. If the higher price is charged, naive consumers do not purchase the

good at the initial period. However, the sophisticated consumers rationally expect that if all the

sophisticated consumers purchase at the initial period, they will be able to profit from the larger

network size hereafter because the naive consumers will join the network at the next period. In
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sum, the advantages of the sequential-diffusion price would outweigh its disadvantages, unless the

consumers become easily bored with using the goods and/or the firm significantly discounts its

future profits. This result implies that whether the monopoly firm can exploit the sophisticated

consumers as early adopters crucially depend on the durability of the product, the discount rates

of the consumers and the firm, and the heterogeneity among consumers with respect to their

expectations on the future network path.

In addition, we show an interesting result that highlights the advantages of näıveté: in equi-

librium, sophisticated consumers never enjoy a greater surplus than do naive consumers. When

the simultaneous-diffusion strategy prevails in equilibrium, both sophisticated and naive consumers

derive the same surplus. However, when the sequential-diffusion strategy prevails, the surplus of

sophisticated consumers is strictly less than that of naive consumers. With the sequential-diffusion

price, sophisticated consumers can anticipate that naive consumers never join the network unless

all sophisticated consumers do so. Thus, sophisticated consumers have no other way than partic-

ipating in the network first to lead the subsequent entries of the naive consumers. As a result, at

the initial period, sophisticated consumers have to endure the small network externalities among

themselves and they become bored with the good to some extent before the network externalities

are maximized at the next period. Moreover, of special interest is when consumers become easily

bored. In this case, the equilibrium surplus of the sophisticated consumers converges to zero. In

other words, the firm can extract surplus from them perfectly.

From the viewpoint of the firm, the above discussion indicates that, with the sequential-diffusion

strategy, the firm can extract more surplus from sophisticated consumers. We demonstrate that,

as the ratio of sophisticated consumers increases, the firm charges a higher price and, thus, gains

greater profits. That is, the firm benefits from more consumers being sophisticated.

We extend the model in a way that the firm chooses different prices for every period, which

enables us to examine the optimal dynamic pricing and the resulting diffusion process. We consider

two pricing strategies with different degrees of price commitment: (i) responsive pricing, where the

firm adjusts the price at every period, and (ii) pre-announced pricing, where the firm commits

to the future price path at the initial period. In both cases, we derive a qualitatively similar

result regarding the optimality of sequential-diffusion pricing. Furthermore, we confirm that Coase

conjecture holds: committing to the future price path can raise the profits of the firm.
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Finally, we compare the profitability of the three different pricing strategies (fixed, responsive,

and pre-announced pricing) to answer the question of what the best commitment strategy is. Com-

mitting to the future price path (i.e., pre-announced pricing) is naturally the first-best strategy.

However, it would be difficult to make such a full commitment in reality. Therefore, the next

question concerns the second-best commitment strategy: Which is more profitable for the firm,

committing to a fixed price or not? We show that the answer depends on the rate at which con-

sumers become bored with the good, the discount factors for consumers and the firm, and the ratio

of the number of sophisticated consumers to that of naive consumers. Under the responsive pricing

(without price commitment), sophisticated consumers have a greater incentive to postpone their

purchase to the next period because doing so enables them to win a price discount and enjoy the

full network from their first period of use. Therefore, the firm has to charge a lower price at the

first period although it can charge a higher price at the second period to naive consumers who may

have the greater willingness to pay for the product. In contrast, by committing to a fixed price, the

firm can effectively extract a larger surplus from sophisticated consumers but may fail to do from

naive consumers. We find that it would be profitable to commit to a fixed price when consumers do

not heavily discount their future payoffs, the effective network size is large, and/or the proportion

of sophisticated consumers is large.

The rest of the paper is organized as follows. The next section provides an overview of the

related literature. Section 3 describes the model. Section 4 analyzes the optimal pricing and the

diffusion process when the monopoly firm can commit to a fixed price. Section 5 considers responsive

and pre-announced pricing strategies. Section 6 addresses the first- and second-best commitment

strategies. Section 7 provides a discussion on the implications for management. Section 8 concludes

the paper. Proofs are deferred to the Appendix.

2 Related Literature

The existence of strategic forward-looking consumers is empirically reported. Hendel and Nevo

(2013) estimate the fraction of forward-looking consumers, who can stockpile the goods. Li et al.

(2014) estimate that 5.2% to 19.2% of the population is strategic, using data from the air-travel

industry. The structural models utilized in these papers provide empirical evidence that both
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strategic and non-strategic consumers coexist.2

The strategic relationship between firms and strategic consumers has been studied using theo-

retical frameworks of Management Science and Operations Research (e.g., Anily and Hassin, 2013;

Besanko and Winston, 1990; Besbes and Lobel, 2015; Cachon and Feldman, 2015; Cachon and Swin-

ney, 2009; Glazer and Hassin, 1986, 1990; Jerath et al., 2010; Liu and Van Ryzin, 2008; Mersereau

and Zhang, 2012).3 Regarding the effect of strategic consumers on firms’ profits, mixed results are

obtained: Su (2007) and Cho et al. (2009) find that there is a positive effect, whereas Anderson and

Wilson (2003), Aviv and Pazgal (2008), and Levin et al. (2009) reveal negative aspects. However,

these papers do not examine network externalities. Our results contribute to the literature by

showing that a monopolist selling a durable network good can benefit from an increase in the ratio

of sophisticated consumers.

This paper is related to the vast economic literature on network externalities, pioneered by

Katz and Shapiro (1985). In their rational expectations equilibrium, the actual network size does

indeed equal the network size that all consumers expected. Because all consumers are assumed

to have identical expectations regarding the network size and identical valuations of the good, the

model can be reduced to a one-period static model. Some studies that incorporate heterogeneity

among consumers with respect to their valuations for the good show that the price of durable goods

with network externalities increases over time, contrary to Coase (1972), that is, introductory or

penetration pricing prevails in equilibrium4 (e.g., Bensaid and Lesne, 1996; Cabral et al., 1999;

Cabral, 2011; Fudenberg and Tirole, 2000).5 These papers assume that all consumers base their

purchase decisions on rational expectations.

On the other hand, there are some studies that incorporate consumers who lack the ability to

form forward-looking expectations, such that the utility of every consumer depends on the num-

ber of users at the moment of purchase, and is not affected by the future network size. (e.g.,

2Hendel and Nevo (2006) and Nair (2007) assume that all consumers are forward-looking, whereas Li et al. (2014)
do not assume the existence of strategic consumers a priori. Unlike in the present paper, those papers do not
incorporate network externalities among consumers.

3The revenue losses from ignoring strategic consumers are estimated to vary from 20% in Aviv and Pazgal (2008)
to 60% in Besanko and Winston (1990).

4Katz and Shapiro (1985, 1986) and Farrell and Saloner (1985) show that firms offer a low introductory price in
equilibrium. In these papers, however, the low price set at the initial period might be caused by competition among
firms that struggle to establish installed base customers in advance of their rival firms.

5Fudenberg and Tirole (2000) assume that consumers purchase the good only when they are young, to avoid
discussing Coasian dynamics. Bensaid and Lesne (1996) allow consumers to choose the timing of purchase in a
discrete time model.
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Arthur, 1989; Chen et al., 2009; Doganoglu, 2003; Makhdoumi et al., 2017; Mitchell and Skrzypacz,

2006).6 However, there has been little investigation of the dynamic pricing when consumers are

heterogeneous with respect to their expectations about the future network size of a durable good.

Radner et al. (2014) assume the existence of bounded rational consumers who do not pay attention

to the monopolist’s price announcement, that is, their decisions remain unchanged from the pre-

vious period. Miao (2010) considers two types of consumers: foresighted and myopic consumers.

Foresighted consumers maximize the discounted sum of their utilities, whereas myopic consumers

choose to optimize period-by-period. Unlike the myopic consumers of Miao (2010), we consider

naive consumers according to Cabral (2011), who defines the naive consumer as ‘one who assumes

that network size will remain at its current level, i.e. a consumer who fails to “solve” the model

and correctly predict the evolution of network size.’

This paper also relates to the recent literature on dynamic pricing with social learning, where

consumers who are ex ante unaware of the true valuation of the good will update their belief about

such an uncertain value based on the consumption history of early adopters. Most studies on social

learning assume that a firm can unilaterally choose how many and which consumers to sell the

good at every period (e.g., Aoyagi, 2010; Bhalla, 2013; Liu and Schiraldi, 2012; Parakhonyak and

Vikander, 2018; Zhou and Chen, 2018). Thus, they do not examine the forward-looking consumers’

strategic option to delay their purchases.

Some recent studies on social learning take such a consumers’ strategic delay into consideration,

where forward-looking consumers determine when to purchase the good (i.e., they can strategically

delay their purchasing decisions in anticipation of the product reviews of their peers). For example,

Papanastasiou and Savva (2017) show that, even though the social learning facilitates strategic

consumers to postpone their purchasing behaviors, its presence may improve the expected profit of

monopoly firm. Moreover, Aoyagi et al. (2016) consider a two-period model with the competition

between two differentiated firms. They show that the social learning imposes a downward pressure

on the price for period 1.

Ajorlou et al. (2016) studies the model of optimal dynamic pricing with social network, which is

similar to the model of social learning, where information about goods will be spread through word-

6Arthur (1989) considers an adoption process for technology, where agents sequentially come into the market
and choose which technology to adopt. However, optimal pricing is not investigated, that is, it is assumed that the
technologies are not sponsored or strategically manipulated by any profit-maximizing firm.
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of-mouth communications among consumers. As in the literature of social learning, even though

there do not exist network externalities, consumers form their beliefs about the product’s quality

from reviews or word-of-mouth communications by those who have already purchased. Therefore,

the presence of social learning or social network incentivizes the firm to increase the number of

early adopters, which is captured in our model by naive consumers’ learning of the network value

from sophisticated early adopters. However, also in these strands of literature, there is no paper

that examines the heterogeneity among consumers with respect to their expectations about future

product diffusion.

In sum, to our knowledge, no paper provides theoretical predictions on optimal pricing and the

diffusion process for durable goods with network externalities when there are naive consumers as

well as forward-looking rational consumers. The paper contributes the literature by providing a

first step towards analyzing such the issue.

3 The Model

We consider an infinite-period model in which a monopolistic firm sells a durable good that exhibits

positive network externalities. Consumers obtain utility from using the good, which increases with

the number of other consumers using the good. The firm sets the price in the initial period, t = 1,

and commits to it for the subsequent periods to maximize the present discounted value. We will

relax this assumption in Section 5 such that the firm can set different prices in each period. We

denote the discount factor for the firm by δF ∈ [0, 1). We assume a constant marginal cost of

producing the good, which is normalized to zero.

Each consumer derives benefits from using the good for each period, denoted by v(nt) with

v′ > 0, where nt ∈ {1, · · · , n} is the non-negative integer representing the number of consumers

who join the network at period t. Thus, v(1) indicates the stand-alone benefit from using the

good. Here, n represents the maximum effective network range in which the good exhibits network

externalities, which depends on the type of the product. In the aforementioned example of offline

games, n is considered to be small (at most 2 to 5 people including your close friends). But, in the

case of online games, n is considered to be so large (perhaps all of the players worldwide).7

7It should be noted that nt does not represent the actual total sales of the good at period t but represent the
number of consumers who join each of the effective network at period t.
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At the beginning of each period, consumers can observe the prior period’s network size (or the

total number of sales in each effective network) and then choose whether to purchase the good.

At the time of purchasing, each consumer forms an expectation about the continuation path of

future network sizes. In this respect, this paper considers two types of consumers: sophisticated

and naive consumers. We assume that the two types of consumers are identical except for their

expectations.8 We use nS and nN to denote the number of sophisticated and naive consumers,

respectively (n = nS + nN ). The proportions of nS and nN in each effective network are assumed

to be exogenously given and be common knowledge for all consumers and the firm.

Sophisticated consumers have perfect foresight and, thus, can correctly anticipate how many

consumers will be participating in the network for subsequent periods. That is, they can rationally

forecast the number of consumers at period t to be nt for all t ∈ T = {1, 2, · · · ,∞}. Let ueS(t)

and uS(t), respectively, be the expected and actual present discounted sum of utilities of the

sophisticated consumers, who purchase (and start using) the good at (from) period t. By definition,

the expected and the actual present discounted values of the sophisticated consumers are equal,

i.e., ueS(t) = uS(t). Then, we have:

ueS(t) = uS(t) =
∞
∑

k=t

[

{δC · (1− β)}k−t · v(nk)
]

,

where δC ∈ [0, 1) is the discount factor for consumers and β ∈ [0, 1) represents the depreciation

rate of the durable good, as in Bond and Samuelson (1984) and Suslow (1986).9 The depreciation

rate β can also be interpreted as the rate at which consumers become bored with the good. For

example, in the video game industry, players become bored with a game after continuous usage,

even if the game maintains a huge base of players.

In contrast, naive consumers do not (and cannot) anticipate the network sizes at any future

period and simply presume that the current network size will continue.10 Therefore, the naive

consumers decide whether to purchase the good based on the current network size that they perceive

8In this paper, consumers are homogeneous except with regard to their expectations on future network sizes. It
enables us to show how the heterogeneity of such expectations affects the optimal pricing and the diffusion of the
durable good with network externalities.

9Considering δC and β separately is important when analyzing the consumers’ decisions on whether to postpone
their purchases, as analyzed in Section 5.1.

10A naive consumer is defined as ‘one who assumes that network size will remain at its current level, i.e. a consumer
who fails to “solve” the model and correctly predict the evolution of network size.’ (Cabral, 2011: p.95)
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at the time of purchase. Let ueN (t) and uN (t), respectively, be the expected and actual present

discounted sum of utilities of the naive consumers, who purchase (and start using) the good at

(from) period t. These are given as follows.

ueN (t) =
∞
∑

k=t

[

{δC · (1− β)}k−t · v(nt−1 + 1)
]

uN (t) =

∞
∑

k=t

[

{δC · (1− β)}k−t · v(nk)
]

At the beginning of period t, each naive consumer recognizes the current network size to be

nt−1 and anticipates that it will be nt−1 +1 for the subsequent periods if he/she purchases at that

period. Because all naive consumers make the same purchase decision (i.e., nk ≥ nt−1 + 1 for all

k ≥ t), it always holds that ueN (t) ≤ uN (t), which means that they could eventually obtain a higher

value than their willingness to pay they expected ex ante. In other words, the naive consumers

underestimate the network value of the good compared with the sophisticated consumers.

Let by Vi(t) = ui(t) − p denote the indirect utility function and let V e
i (t) = uei (t) − p denote

the expected indirect utility function for i = {S,N}, where p is the price of the durable good

set by the firm. Henceforth, for simplicity, we define the consumers’ combined discount factor as

λC ≡ δC · (1− β) ∈ [0, 1).

4 Fixed Pricing

This section studies the benchmark case where the monopolist commits to a fixed price in the initial

period. First of all, we present the following three lemmas that characterize possible equilibrium

diffusion paths.

Lemma 1. In equilibrium, there will never be a situation of diffusion in which naive consumers

purchase the goods before the sophisticated consumers do.

Proof. Suppose that the firm offers a price such that naive consumers are willing to purchase. Under

that price, sophisticated consumers would form a higher present discounted value than would naive

consumers because they can anticipate that all naive consumers will purchase the good. Thus,

sophisticated consumers will purchase the good first and they never purchase the good after naive
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consumers.

Lemma 2. In equilibrium, there will never be a situation of diffusion in which only the sophisticated

consumers purchase and no naive consumer purchases.

Proof. Suppose that there exists a price such that only sophisticated consumers would purchase.

Note that this price needs to satisfy p ≤
∑∞

k=t

[

λk−t
C · v(nS)

]

. At the next period, naive con-

sumers will observe that all sophisticated consumers have purchased the good. Here, the ex-

pected present discounted value of naive consumers is computed as
∑∞

k=t

[

λk−t
C · v(nS + 1)

]

, which

is strictly greater than the price offered by the firm. Therefore, the naive consumers will follow the

sophisticated consumers after a delay of one period.

Lemma 3. In equilibrium, when naive consumers purchase later than the sophisticated consumers

do, their purchase cannot be delayed by more than one period.

Proof. Suppose that sophisticated consumers purchase the good at period 1. If no naive consumers

purchased at period 2, it might also be unprofitable for them to purchase at period 3 and later

periods.

From Lemmas 1, 2, and 3, in our model, the firm’s optimal pricing strategy is one of the following

two strategies. The first one is a simultaneous-diffusion strategy, in which the firm sets a price such

that both sophisticated and naive consumers simultaneously purchase the good at period 1. The

second one is a sequential-diffusion strategy, in which the firm offers a price such that sophisticated

consumers purchase at period 1 and act as early adopters, whereas naive consumers purchase the

good at period 2, following the lead of the sophisticated consumers.

In what follows, we derive the optimal price among all simultaneous-diffusion strategies in

Section 4.1 and among all sequential-diffusion strategies in Section 4.2. Section 4.3 addresses the

optimal strategy for the firm by comparing the profits derived in both strategies.

4.1 Simultaneous-diffusion strategy

To diffuse the good to both sophisticated and naive consumers at the same time, the price needs

to be less than or equal to the expected present discounted sum of utilities of all consumers. That
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is, letting psim be the simultaneous-diffusion price, the price should satisfy the following condition.

psim ≤ min
{

ueS(t = 1|psim), ueN (t = 1|psim)
}

= min

{

∞
∑

t=1

λt−1

C v(n),

∞
∑

t=1

λt−1

C v(1)

}

= min

{

v(n)

1− λC

,
v(1)

1− λC

}

=
v(1)

1− λC

The price is set at the expected present discounted sum of utilities of the naive consumers, that is,

psim = v(1)/(1−λC). Contrary to the expectations of the naive consumers, all consumers actually

join the network at period 1. Therefore, the ex-post or actual surplus of consumers is computed as

follows.

V sim
i =

∞
∑

t=1

[

λt−1

C v(n)
]

− psim =
v(n)− v(1)

1− λC

(i = S,N)

The profit of the firm can be derived as nv(1)/(1−λC). The following proposition summarizes the

results.

Proposition 1. The optimal simultaneous-diffusion price such that both sophisticated and naive

consumers purchase at period 1 is as follows:

psim =
v(1)

1− λC

The corresponding profit and consumer surplus, respectively, are as follows:

πsim =
nv(1)

1− λC

, V sim
S = V sim

N =
v(n)− v(1)

1− λC

Proposition 1 implies that the firm sets the price at the expected present discounted sum of

utilities of the naive consumers in order to diffuse the good to all consumers at period 1. It would

be necessary to aggressively discount the price to meet the preferences of the naive consumers. In

addition, we have the following corollary regarding consumer surplus.

Corollary 1. Both sophisticated and naive consumers derive the same surplus under the simultaneous-

diffusion pricing.
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4.2 Sequential-diffusion strategy

Here, we consider the optimal sequential-diffusion prices such that sophisticated consumers purchase

the good before naive consumers do. Let pseq be the sequential-diffusion price, which should satisfy

the following two conditions.

ueN (t = 1|pseq) <pseq ≤ ueS(t = 1|pseq) (1)

pseq ≤ ueN (t = 2|pseq) (2)

Inequality (1) implies that only sophisticated consumers purchase the good at period 1. Inequality

(2) guarantees that naive consumers will purchase at period 2 after observing that all sophisticated

consumers purchased at period 1. Given that pseq satisfies both inequalities, ueS(t = 1|pseq), ueN (t =

1|pseq), and ueN (t = 2|pseq) can be computed as follows.

ueS(t = 1|pseq) = v(nS) +

∞
∑

t=2

[

λt−1

C v(n)
]

= v(nS) +
λCv(n)

1− λC

ueN (t = 1|pseq) =
∞
∑

t=1

[

λt−1

C v(1)
]

=
v(1)

1− λC

ueN (t = 2|pseq) =

∞
∑

t=2

[

λt−2

C v(nS + 1)
]

=
v(nS + 1)

1− λC

The firm offers the highest price that satisfies inequalities (1) and (2), which is equivalent to

min{ueS(t = 1|pseq), ueN (t = 2|pseq)}. We can state the following proposition regarding the optimal

prices among the sequential-diffusion prices.

Proposition 2. The optimal sequential-diffusion price such that sophisticated consumers purchase

before naive consumers do is given by:

pseq =































v(nS) +
λCv(n)

1− λC

if 0 ≤ λC ≤ λ̄C ,

v(nS + 1)

1− λC

if λ̄C ≤ λC < 1,
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where

λ̄C ≡ v(nS + 1)− v(nS)

v(n)− v(nS)
.

The corresponding profit and consumer surplus, respectively, are as follows.

πseq = pseq · nS + δF · pseq · nN

V seq
S =



























0 if 0 ≤ λC ≤ λ̄C

λC{v(n)− v(nS)} − {v(nS + 1)− v(nS)}
1− λC

if λ̄C ≤ λC < 1

V seq
N =



























v(n)− v(nS) if 0 ≤ λC ≤ λ̄C

v(n)− v(nS + 1)

1− λC

if λ̄C ≤ λC < 1

It is noteworthy that there is no incentive for any sophisticated consumer to delay purchase to

the next period. The price is set at a level at which naive consumers purchase the good at period

2 only if they observe that all sophisticated consumers have already purchased. If a sophisticated

consumer deviated from buying the good at period 1, no naive consumers would purchase at period

2. Therefore, the deviation never enables each sophisticated consumer to enjoy the largest network

size from the start of his/her use of the good, and never improves his/her payoffs.

Proposition 2 implies that the optimal price depends on the combined discount factor for

consumers λC . When consumers do not heavily discount and/or do not quickly become bored

with using the good (i.e., λC > λ̄C), the firm offers a price equal to the willingness to pay of

naive consumers at period 2, given that sophisticated consumers have already purchased, that is,

pseq = ueN (t = 2|pseq). Note that the willingness to pay of each naive consumer is formed based on

the belief that his/her purchase will increase the network size from nS to nS +1 because the naive

consumers cannot anticipate that other naive consumers also join the network at the same time. In

contrast to their forecast, all naive consumers do join the network eventually. Thus, although the

price is set at the willingness to pay of the naive consumers, they can eventually derive a positive

surplus. In sum, both sophisticated and naive consumers enjoy a positive surplus.
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Of special interest is the case in which consumers heavily discount and/or quickly become bored

(i.e., λC < λ̄C). In this case, as ueS(t = 1|pseq) < ueN (t = 2|pseq), the firm offers a price equal to the

willingness to pay of the sophisticated consumers at period 1, that is, pseq = ueS(t = 1|pseq). Because

their willingness to pay is based on their perfect forecast of the future network sizes, unlike naive

consumers, the surplus of the sophisticated consumers becomes zero. On the other hand, naive

consumers purchase the good after observing that all sophisticated consumers have purchased at

period 1, which implies that a sufficient size of the network has been established. Therefore, only

naive consumers can gain a positive surplus. Note that the parameter range narrows as the effective

network size increases, that is, λ̄C goes to 0 as n increases. As n gets larger, at period 2, there

is a larger difference between the network size that the naive consumers expect, nS + 1, and the

actually formed network size, n. In other words, naive consumers significantly underestimate the

discounted sum of utilities from the network, that is, ueN (t = 2|pseq) becomes smaller compared with

ueS(t = 1|pseq). Therefore, when the effective network size is large, ueS(t = 1|pseq) < ueN (t = 2|pseq)

tends not to be satisfied, which leads to a small value of λ̄C .
11

We have the following corollary regarding the consumer surplus.

Corollary 2. Naive consumers derive a higher surplus than do sophisticated consumers with the

sequential-diffusion price. That is, it always holds that V seq
S < V seq

N .

The intuition behind the advantage of näıveté in Corollary 2 is that sophisticated consumers

have to endure the disadvantages of the small network at period 1, whereas naive consumers can

enjoy benefits of the full network from the beginning of their use of the product.

4.3 Optimal diffusion strategy

Here, using the results derived in Sections 4.1 and 4.2, we address the optimal fixed pricing for

a monopolistic firm. First, comparing the simultaneous- and sequential-diffusion prices yields the

following lemma.

11The denominator of λ̄C ∈ (0, 1] represents the network value generated by the additional participation of all naive
consumers, and the numerator represents the incremental network value. It is easily shown that λ̄C is decreasing in
the number of naive consumers nN and λ̄C = 1 when nN = 1. Therefore, the critical value λ̄C is considered as the
accuracy of naive consumers’ expectations because the naive consumers’ underestimation for network values will be
smaller with a smaller number of naive consumers.
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Figure 1: Simultaneous- vs. sequential-diffusion pricing

Lemma 4. The sequential-diffusion price is always higher than the simultaneous-diffusion price.

That is, psim < pseq holds.

Lemma 4 confirms the predictable result that the firm can charge a higher price to diffuse the

good sequentially. Next, comparing the profits with simultaneous- and sequential-diffusion prices,

we have the following proposition regarding the optimal pricing of the firm.

Proposition 3. It is optimal for the monopolistic firm to charge the sequential-diffusion price pseq

if and only if the discount factor for the firm is large enough to satisfy δF > max {f(λC) , 0},

where

f(λC) =































nv(1)− nS {λCv(n) + (1− λC)v(nS)}
nN {λCv(n) + (1− λC)v(nS)}

if 0 ≤ λC ≤ λ̄C ,

nv(1)− nSv(nS + 1)

nNv(nS + 1)
if λ̄C ≤ λC < 1.

Otherwise, it is optimal to charge the simultaneous-diffusion price psim.

Note that f(λC) is decreasing for λC ∈ [0, λ̄C ] and is constant for λC ∈ [λ̄C , 1]. Figure 1 shows

the partition of the equilibrium price by the firm using numerical analysis.

All three panels of the figure show that the firm offers the sequential-diffusion price when δF

is larger than the critical value f(λC), indicating that the sequential-diffusion strategy is more

profitable for the firm when the firm’s discount factor is sufficiently large. It seems to be a nat-
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ural result. With the simultaneous-diffusion strategy, all profits can be obtained without being

discounted, but a large price discount is required to make naive consumers purchase along with

sophisticated consumers, as shown in Lemma 4. In contrast, with the sequential-diffusion strategy,

the profit from naive consumers will be obtained later at period 2. However, as shown in Lemma

4, the firm can charge a higher price because of the leadership of sophisticated consumers.

In addition, the left and center panels of the figure illustrate the case of v(nt) = nt, indicating

that the sequential-diffusion pricing would be optimal for the firm if the effective network size is

sufficiently large. The left panel shows the case where the effective network size is small, indicating

that the simultaneous-diffusion strategy is more likely to be beneficial if the combined discount

factor of the consumer is small. Finally, the right panel illustrates the case where v(nt) = n0.2
t ,

implying weak network externalities. A comparison of the center and right panels of the figure

indicates that the stronger is the network effect of the durables, the greater is the advantage of the

sequential-diffusion strategy for the firm.12

Furthermore, with Corollaries 1 and 2, we obtain the following corollay with respect to the

surpluses of both consumer types.

Corollary 3. Under the fixed pricing, sophisticated consumers never enjoy a greater surplus than

do naive consumers.

Under the simultaneous-diffusion strategy, both types of consumers derive the same surplus

because they purchase the good at the same price and at the same time. More interestingly, under

the sequential-diffusion strategy, the surplus of sophisticated consumers is less than that of naive

consumers. With the sequential-diffusion price, naive consumers never join the network before

sophisticated consumers (the early adopters) do so. Because sophisticated consumers expect such

behavior of the naive consumers, they have no option but to participate in the network first. As a

result, sophisticated consumers have to endure the disadvantages of a small network at period 1.

However, when the naive consumers purchase at the next period, they can immediately enjoy the

advantages of the largest network size. Therefore, naive consumers obtain a greater surplus than

do sophisticated consumers.

12Proposition 3 also indicates that f(λC) is increasing in v(1), implying that the larger the stand-alone benefit for
using the product, the more likely it is to charge simultaneous-diffusion price.
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Let us reconsider the above discussion from the viewpoint of the firm. Under the simultaneous-

diffusion strategy, the firm extracts the same surplus from every consumer. On the other hand,

under the sequential-diffusion strategy, the firm can extract more surplus from the sophisticated

consumers by charging a higher price to all consumers. In summary, we can state the following

proposition regarding the preceding discussion.

Proposition 4. Assume that the total effective number of consumers n is constant. Let α ∈ [0, 1) be

the ratio of sophisticated consumers, that is, nS = αn and nN = (1−α)n. Then, the simultaneous-

diffusion price psim does not depend on α, whereas an increase in α raises the sequential-diffusion

price pseq and the profit of the firm πseq.

Proposition 4 provides the comparative statics of the firm’s profit with respect to the ratio

between the two types of consumers. It shows that the simultaneous-diffusion price does not depend

on the ratio between the sophisticated and naive consumers. However, under the sequential-diffusion

strategy, as the ratio of sophisticated consumers increases, the firm charges them the higher price

and then gains a greater profit. That is, the firm benefits from more consumers being sophisticated.

5 Responsive and Pre-Announced Pricing Strategies

The purpose of this section is to confirm the robustness of Proposition 3, that the sequential-

diffusion strategy prevails in equilibrium unless the firm heavily discounts its future profits, even if

the firm can set different prices at each period.

Section 5.1 considers the case of responsive pricing, in which the firm can dynamically adjust the

price at every period. We also consider the case of pre-announced pricing in Section 5.2, in which

the firm can commit to the future price path that it will charge. After confirming the robustness

of our main result in both cases, Section 5.3 confirms that Coase conjecture, that committing to a

future price path improves the firm’s profit, holds.

5.1 Responsive pricing

Let pt be the price of the good at period t. As in Section 4, we focus on the simultaneous-

and sequential-diffusion strategies. Obviously, the ability of the firm to change its prices across

18



periods (or equivalently, the lack of a price commitment) does not affect the equilibrium level

of simultaneous-diffusion prices, under which all consumers purchase the good at period 1. The

following proposition shows the condition for which there exists the optimal sequential-diffusion

strategy in the case where the firm can adjust its price at every period.

Proposition 5. If the consumers’ discount factor and the depreciation rate are small enough to

satisfy:

δCβ <
v(nS)− v(1)

v(n)− v(nS)
, (3)

then there exists the price pair (p̂seq
1

, p̂seq
2

) such that sophisticated consumers purchase at period 1

and naive consumers purchase at period 2, where p̂seq
1

and p̂seq
2

are given by

p̂seq
1

=
v(nS)− δCβ{v(n)− v(nS)}

1− λC

, p̂seq
2

=
v(nS + 1)

1− λC

.

The corresponding profit and consumer surplus, respectively, are as follows.

π̂seq = p̂seq
1

nS + δF · p̂seq
2

nN , V̂ seq
S = δC · v(n)− v(nS)

1− λC

, V̂ seq
N =

v(n)− v(nS + 1)

1− λC

.

Otherwise, if inequality (3) does not hold, then the unique responsive pricing would be the simultaneous-

diffusion one and the corresponding price, profit, and consumer surplus equal to the ones given in

Proposition 1.

Equation (3) represents the condition under which the sequential-diffusion strategy prevails in

equilibrium. Compared with the fixed-pricing case, in this case, sophisticated consumers have a

greater strategic incentive to postpone their purchases in order to match the timing of purchase with

naive followers because doing so could reduce the price offered at period 2. Details are provided

in the Appendix, but let us briefly explain the intuition behind it. Proposition 5 shows that p̂seq
1

is decreasing in β, that is, the period 1 price decreases as consumers become easily bored. When

consumers become easily bored with a product, sophisticated consumers have a greater incentive

to start using the good when the network is at its largest possible size. In other words, each

sophisticated consumer would be likely to delay purchase to the next period in which all the naive
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consumers will join the network. As a result of these deviation incentives, the firm cannot charge

the higher price at period 1. On the other hand, if the firm offers too low a price, naive consumers

will also purchase the good at period 1. Therefore, under responsive pricing, the firm cannot

perform the sequential-diffusion strategy when consumers become easily bored with the product.

Next, we derive the condition under which the sequential-diffusion strategy is more profitable

for the firm when it can adjust its price at every period, as summarized in the following proposition.

Proposition 6. Suppose that the monopolistic firm can adjust its price at every period. It is

optimal for the firm to charge the sequential-diffusion prices (p̂seq
1

, p̂seq
2

) if and only if the discount

factor for the firm is large enough to satisfy δF > max
{

f̂(δC , β) , 0
}

, where

f̂(δC , β) ≡
nv(1)− nS {v(nS)− δCβ (v(n)− v(nS))}

nN · v(nS + 1)
.

Proposition 6 implies that it is more profitable for the firm to charge the sequential-diffusion

prices unless the discount factor for the firm is too small. Therefore, the result of Proposition 3 is

qualitatively unchanged even if the firm can adjust its price at every period.

Proposition 6 also implies that ∂f̂(δC , β)/∂δC = ∂f̂(δC , β)/∂β > 0. With responsive pricing,

the sequential-diffusion pricing is more likely to be beneficial to the firm when consumers discount

the future payoff more (i.e., when δC gets smaller) and/or when consumers become bored less

easily (i.e., when β gets smaller). In contrast, with fixed pricing, we have ∂f(λC)/∂δC ≤ 0 and

∂f(λC)/∂β ≥ 0. That is, the change in δC has the opposite impact on the thresholds under the

fixed and responsive pricing strategies. An increase in δC directly increases the present discount

value and the willingness to pay of all consumers. Under fixed pricing, this direct effect enables the

firm to charge the higher sequential-diffusion price because the firm commits to the fixed price such

that no sophisticated consumers benefit by delaying their purchase. However, if the firm cannot

make such a binding commitment but adopts responsive pricing, the increase in δC also affects the

behavior of sophisticated consumers. As δC becomes larger, the sophisticated consumers have a

greater incentive to delay their purchases to the next period, which would lead the firm to offer a

larger price discount. As a result, under responsive pricing, the second indirect effect dominates

the first direct effect. That is why an increase in δC makes the sequential-diffusion strategy less

profitable for the firm.
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5.2 Pre-announced pricing

Here, we consider the case in which the firm can perfectly commit to a future price path. For the

same reason as in Section 5.1, we first analyze the sequential-diffusion strategy and then find the

condition under which the sequential-diffusion strategy is optimal for the firm.

Proposition 7. When the monopolist can commit to a future price path, the optimal price pair

(p̃seq
1

, p̃seq
2

), such that sophisticated consumers purchase at period 1 and naive consumers purchase

at period 2, is given by:

p̃seq
1

= v(nS) +
λCv(n)

1− λC

, p̃seq
2

=
v(nS + 1)

1− λC

,

The corresponding profit and consumer surplus, respectively, are as follows.

π̃seq = p̃seqnS + δF · p̃seqnN , Ṽ seq
S = 0, Ṽ seq

N =
v(n)− v(nS + 1)

1− λC

The firm sets the period 1 price at the level of the sophisticated consumers’ willingness to pay.

Similarly, the period 2 price is set at the naive consumers’ willingness to pay. Because sophisticated

consumers form fulfilled expectations, their surplus will be fully extracted by the firm. In contrast,

because naive consumers underestimate the network value of the good at the time of purchase, they

can eventually gain a positive surplus.

Next, we derive the condition under which the sequential-diffusion strategy is more profitable

for the firm when it can commit to a future price path, as summarized in the following proposition.

Proposition 8. Suppose that the monopolistic firm can commit to a future price path. It is optimal

for the firm to charge the sequential-diffusion prices (p̃seq
1

, p̃seq
2

) if and only if the discount factor

for the firm is large enough to satisfy δF > max
{

f̃(λC) , 0
}

, where:

f̃(λC) ≡
nv(1)− nS {(1− λC)v(nS) + λCv(n)}

nN · v(nS + 1)
.

Proposition 8 confirms the robustness of Proposition 3, that is, the sequential-diffusion strategy

is optimal for the firm unless the firm greatly discounts its future profits.
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5.3 Profitability of pre-announcement

Here, we check Coase conjecture that committing to a future price path can improve the profit of

the monopolist. To this end, comparing π̂seq and π̃seq yields the following proposition.

Proposition 9. Committing to the future price path improves the profit of the monopolistic firm.

It can be easily shown that π̂seq < π̃seq, which implies that Coase conjecture holds in our model

with naive consumers. From Propositions 5 and 7, we can see p̂seq
1

< p̃seq
1

and p̂seq
2

= p̃seq
2

. When

the firm cannot commit to its future prices, it must discount the period 1 price to prevent the

sophisticated consumers from postponing their purchases to the next period. However, when the

firm commits to the period 2 price, the sophisticated consumers cannot obtain any price discount

by postponing their purchase. As a result, the firm benefits from committing to the future price

path because it can charge the higher price at period 1.

6 First- and Second-Best Commitment Strategies

So far, we have analyzed three pricing strategies: fixed, responsive, and pre-announced pricing

strategies. This section demonstrates the first- and second-best strategies for the firm. To this end,

we confine our attention to the parameter range in which the firm adopts the sequential-diffusion

strategy, which is equivalent to δF ∈ [max{f(λC), f̂(δC , β), f̃(λC), 0}, 1).

First, it can easily be seen that pre-announced pricing is the optimal strategy for the firm

among the three strategies. Proposition 9 shows that pre-announced pricing is more profitable

than responsive pricing. It is also preferable to fixed pricing, as indicated by the strategy space of

the fixed pricing being a subset of the strategy space of the pre-announced pricing. Therefore, the

pre-announced pricing is the first-best strategy if it is possible for the firm to implement it.

However, in reality, it is difficult for the firm to credibly commit to the complete path of future

prices at the initial period, but committing to a fixed price may be more implementable. Thus, a

comparison of fixed and responsive pricing indicates the second-best strategy regarding the firm’s

commitment. We have the following lemma regarding the order of the sequential-diffusion prices

under both cases.
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Lemma 5. The sequential-diffusion prices under fixed pricing (pseq) and responsive pricing (p̂seq
1

and p̂seq
2

) are ordered as follows:















p̂seq
1

< pseq < p̂seq
2

if 0 ≤ λC < λ̄C

p̂seq
1

< p̂seq
2

= pseq if λ̄C ≤ λC < 1.

Lemma 5 implies that p̂seq
1

is always lower than p̂seq
2

. In other words, when the firm can adjust

the price at every period, the introductory or penetration pricing prevails in equilibrium, as shown

in Bensaid and Lesne (1996) and Cabral et al. (1999).

When λC is large enough to satisfy λC ≥ λ̄C , the fixed sequential-diffusion price pseq is higher

than p̂seq
1

and is equal to p̂seq
2

. Therefore, in this case, it is obviously more profitable to commit to

the fixed price. In contrast, when λC is smaller than λ̄C , p
seq is higher than p̂seq

1
and lower than

p̂seq
2

, which increases the possibility that the firm will benefit by employing responsive pricing. We

find the condition under which responsive pricing is more beneficial than fixed pricing.

Proposition 10. Suppose that the discount factor for the firm is large enough to satisfy δF ∈

[max{f(λC), f̂(δC , β), 0}, 1). If

λ̄C − λC >
δC
δF

· nS

nN

, (4)

then it is unprofitable for the firm to commit to the fixed price at period 1. Otherwise, the firm can

benefit from committing to the fixed price.

Proposition 10 shows three results: (i) if λC ≥ λ̄C , the condition (4) is not satisfied, that is,

fixed pricing is always more profitable than responsive pricing; (ii) when λ < λ̄C , as δC/δF and/or

nS/nN become smaller, responsive pricing is more likely to be profitable than fixed pricing; and

(iii) when the effective network size n is small, λ̄C becomes large, which increases the likelihood

that responsive pricing is more likely to be profitable than fixed pricing.

The intuition behind the results is as follows. Result (i) is obvious from Lemma 5. With

regard to Result (ii), under sequential-diffusion pricing, some price discounts are required to prevent

sophisticated consumers from delaying their purchases to the next period. Under fixed pricing, these

price discounts will be applied not only to sophisticated consumers but also to naive consumers. In
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Figure 2: Fixed vs. responsive pricing strategies (α = 0.2, δF = 0.9).

contrast, under responsive pricing, the firm can stop discounting for naive consumers by adjusting its

price at period 2. If δC/δF becomes smaller, then larger price discounts are required, which increases

the advantage of responsive pricing. If nS/nN becomes smaller, then, under fixed pricing, the price

discounts would apply to naive consumers, which also increases the advantages of responsive pricing.

Finally, regarding Result (iii), λ̄C will take a large value when the effective network size is small,

as discussed in Section 4.2. As shown in Proposition 2, when λ̄C is large, the willingness to pay

of the sophisticated consumers is lower than that of the naive consumers. As a result, under fixed

pricing, the sequential-diffusion price tends to be set at the level of the sophisticated consumers’

willingness to pay, and is also applied to naive consumers, despite their higher willingness to pay.

In contrast, under responsive pricing, the firm will be able to adjust its price at period 2 to avoid

discounting the price offered to naive consumers. Thus, when the effective network effect is small,

responsive pricing is more likely to be profitable than fixed pricing.

Finally, we perform numerical analyses to illustrate the above results of Proposition 10 and to

discuss how the result would be affected by the effective network size, n. We consider a sufficiently

large value of δF = 0.9 for the sequential-diffusion strategy to be optimal. In addition, we let

v(nt) =
√
nt and α = 0.2, that is, nS = 0.2n and nN = 0.8n. Note that varying α does not

qualitatively change our numerical results. In each panel of Figure 2, we define g1(δC) and g2(δC)

as follows:

g1(δC) ≡
v(nS)− v(1)

v(n)− v(nS)
· 1

δC
, g2(δC) ≡ 1−

(

λ̄C

δC
− nS

δFnN

)

,

where the former comes from condition (3) in Proposition 5 and the latter from condition (4) in
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Proposition 10. In the region of β < g1(δC), sophisticated consumers purchase at period 1 and

naive consumers purchase at period 2. In the region of β > g2(δC), the firm can obtain higher

profits under responsive pricing than under fixed pricing. The shaded area of each graph in the

figure represents the parameter region where responsive pricing is more profitable for the firm,

which shrinks gradually as n increases. In other words, when the effective network size is relatively

small, it would be profitable for the firm to make no commitments to future prices.

7 Managerial Implications

One of the important messages from our study is that the sequential-diffusion strategy is profitable

for the monopolistic firm selling durable goods that exhibit network externalities, unless consumers

quickly become bored with using the goods and/or unless the firm heavily discounts its future

profits. Furthermore, sophisticated consumers, because of their sophistication, get lower surplus

than do naive consumers. In other words, the existence of sophisticated consumers enables the

firm to charge a higher price. The main driver of these results is the existence of naive consumers

who have a lower willingness to pay than do the sophisticated consumers at the initial period.

Even if the price was set higher than the naive consumers’ willingness to pay at the initial period

(i.e., the stand-alone benefit), sophisticated consumers anticipate that naive consumers will join the

network after observing the network expansion generated by sophisticated consumers. Therefore,

sophisticated consumers have no option but to participate in the network first, before its size

expands, to entice the naive consumers to subsequently enter into the network. In other words,

sophisticated consumers have to take the leadership role to indicate the true value of the network

to the naive consumers. This is the reason why the existence of the naive consumers sustains

the firm’s sequential-diffusion strategy in equilibrium. Moreover, sophisticated consumers have to

endure the disadvantages of the small network size before the naive consumers join the network,

whereas naive consumers can enjoy the largest network size immediately, as soon as they purchase

the good. For this reason, the sophisticated consumers never gain a greater surplus than that of

the naive consumers.

An important lesson from our model for firms selling durable goods with network externalities

is that information about the current network size must be disclosed by the firm at the beginning of
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every period. If the firm does not construct such an information disclosure system, naive consumers

never realize that the sophisticated consumers have purchased the good. Then, this lack of learning

opportunities dampens the incentives of the sophisticated consumers to join the network first. That

is, the firm has to make information about the current number of users and/or the sales volume

public.

In addition, it is important not only to disclose information about the current network size,

but also to provide an environment that assists more consumers to predict the future network size

correctly. Proposition 4 shows that the firm can benefit from an increase in the ratio of sophisticated

consumers. Therefore, the firm should supply information to consumers to decrease the proportion

of naive consumers who cannot predict the purchase decisions of others. For example, the existence

of a word-of-mouth viral site, where consumers can communicate with each other about the good,

may help naive consumers to determine other consumers’ purchasing intentions.

Moreover, in Proposition 10 and the corresponding numerical analysis, we show that, as the

effective network size and/or the proportion of sophisticated consumers become larger, the ad-

vantage of fixed pricing (committing to a fixed price) against responsive pricing (pricing without

commitment) becomes greater. Recent movements to establish an IoT might enlarge the maxi-

mum effective network range, n, in which the product exhibits network externalities, which makes

consumers more sensitive to others’ purchase decisions. In addition, the recent development of

social networking has made it easier for consumers to sophisticatedly predict the future dissemi-

nation of products. The trends may enhance the managerial significance of committing to a fixed

price. Often, in reality, it may be difficult to promise to hold prices constant for long periods. A

most-favored-customer clause is one potential strategy for doing so. This clause is an agreement

between a seller and a buyer in which a seller commits to the buyer not to sell to other buyers at a

lower price. Thus, by imposing the most-favored-customer clause, the firm can commit not to raise

its price over the future. However, the use of the most-favored-customer clauses may have been

of interest to antitrust authorities because it reduces firms’ incentives to lower their prices (e.g.,

Cooper, 1986; Schnitzer, 1994).

Another potential strategy is a pre-order or subscription sales system. Using our model, we

explain how to use pre-order sales to commit to a fixed price. At the beginning of period 1, the

firm announces that it will receive pre-orders at the price pseq and that the deadline for pre-orders
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is the end of period 2. Sophisticated consumers may pre-order at period 1. At the beginning of

period 2, the firm should announce the number of pre-orders it has received. After observing the

announcement, the naive consumers follow the sophisticated consumers to pre-order the good. This

strategy not only enables the firm to credibly commit to maintaining its price at pseq during the

pre-order period, but also informs sophisticated consumers of such a commitment. As a result, the

firm can sell the good to all consumers at pseq.

From the social welfare point of view, the simultaneous diffusion of network durables is better

than the sequential one because the former enables all consumers to enjoy full network at their

first period of use without any delay. However, as our results show, a monopolist selling network

durable goods can intentionally slow down the speed of diffusion of the goods taking advantages

of consumers’ heterogeneity in their knowledge. If all consumers are sophisticated, or all are

naive, the monopolist will choose the simultaneous-diffusion strategy and no welfare loss arises. In

other words, the diversity in consumers’ knowledge allows the monopolist to choose the sequential-

diffusion strategy, leading to socially excessive delay in the diffusion of the goods.

8 Conclusion

This paper has investigated the optimal pricing and diffusion of durable goods that exhibit positive

network externalities. A key departure in our paper from many existing studies is to consider

the existence of naive consumers as well as sophisticated (rational) consumers. In our model,

in contrast to sophisticated consumers, naive consumers do not anticipate the network sizes at

any future period, simply believing that the current network size will be maintained for future

periods. This heterogeneity among consumers significantly alters the optimal pricing strategy and

the diffusion of durable goods.

Our hope is that the framework we have developed can be a first step towards analyzing the

dynamic pricing and the diffusion of durable goods with the heterogeneity among consumers with

respect to their predictive accuracies. We mention a couple of future research agenda.

First, this paper assumes that consumers live for infinite periods, that is, they do not exit

from the network that they join. This assumption means naive consumers underestimate the

network value of the good compared with sophisticated consumers. In a model where consumers
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can exit from the network, naive consumers who cannot predict the exit of other consumers would

overestimate the network value of the good. In this case, the results obtained in this paper might

change. That is a potentially fruitful direction for future research

Second, we assume that consumers are homogeneous except with regard to their expectations

on future network sizes to focus to how the heterogeneity of their expectations affects the optimal

pricing and the diffusion of durable goods with network externalities. It would also be interesting

to see how the diversity in consumers valuation for the good as well as in their expectations affects

the optimal pricing and the diffusion patterns of the good.

Appendix: Proofs

Proof of Proposition 2

The comparison of ueS(t = 1|pseq) and ueN (t = 2|pseq) yields the following condition.

ueS(t = 1|pseq) > ueN (t = 2|pseq) ⇐⇒ v(nS) +
λCv(n)

1− λC

>
v(nS + 1)

1− λC

⇐⇒ λC >
v(nS + 1)− v(nS)

v(n)− v(nS)
≡ λ̄C

Thus, if λC > λ̄C , the price is set at pseq = ueN (t = 2|pseq). Otherwise, the price is set at

ueS(t = 1|pseq). Using this, we can obtain the corresponding profit, as shown in Proposition 2.

When λC is larger than λ̄C , the surpluses of the sophisticated and naive consumers, respectively,

can be computed as follows.

V seq
S = uS(t = 1|pseq)− ueN (t = 2|pseq)

=

[

v(nS) +
λCv(n)

1− λC

]

− v(nS + 1)

1− λC

=
λC{v(n)− v(nS)} − {v(nS + 1)− v(nS)}

1− λC

V seq
N = uN (t = 2|pseq)− ueN (t = 2|pseq) = v(n)

1− λC

− v(nS + 1)

1− λC

=
v(n)− v(nS + 1)

1− λC

Similarly, the consumer surplus can be computed when λC is smaller than λ̄C , as follows.

V seq
S = uS(t = 1|pseq)− ueS(t = 1|pseq) = 0
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V seq
N = uN (t = 2|pseq)− ueS(t = 1|pseq) = v(n)

1− λC

−
[

v(nS) +
λCv(n)

1− λC

]

= v(n)− v(nS)

Proof of Corollary 2

First, when λC ≤ λ̄C , V
seq
S = 0 and V seq

N = v(n)− v(nS) > 0. Thus, it holds that V seq
S < V seq

N .

Next, when λC ≥ λ̄C , we can show V seq
S < V seq

N as follows.

V seq
N − V seq

S =
v(n)− v(nS + 1)

1− λC

− λC{v(n)− v(nS)} − {v(nS + 1)− v(nS)}
1− λC

= v(n)− v(nS) > 0

Proof of Lemma 4

For λC ∈ [λ̄C , 1), it is easily seen that psim < pseq as follows.

pseq − psim =
v(nS + 1)

1− λC

− v(1)

1− λC

> 0

We can also show psim < pseq for λC ∈ [0, λ̄C ] as follows.

pseq − psim = v(nS) +
λCv(n)

1− λC

− v(1)

1− λC

=
(1− λC)v(nS) + λCv(n)− v(1)

1− λC

>
v(nS)− v(1)

1− λC

> 0

Proof of Proposition 3

Two possible cases should be considered.

(i) 0 ≤ λC ≤ λ̄C

In this case, it holds that pseq = ueS(t = 1|pseq). Comparing the profits under simultaneous-

and sequential-diffusion prices, we have the following condition for πseq > πsim.

πseq − πsim = (nS + δFnN )

[

v(nS) +
λCv(n)

1− λC

]

− n · v(1)

1− λC
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=
(nS + δFnN ) {(1− λC)v(nS) + λCv(n)} − nv(1)

1− λC

> 0

⇐⇒ δF >
nv(1)− nS {λCv(n) + (1− λC)v(nS)}

nN {λCv(n) + (1− λC)v(nS)}
≡ f1(λC)

where f ′
1(λC) = − nv(1) {v(n)− v(nS)}

nN {λCv(n) + (1− λC)v(nS)}2
< 0

(ii) λ̄C ≤ λC < 1

In this case, it holds that pseq = ueN (t = 2|pseq). Comparing the profits under simultaneous-

and sequential-diffusion prices, we have the following condition for πseq > πsim.

πseq − πsim = (nS + δFnN )
v(nS + 1)

1− λC

− n · v(1)

1− λC

=
nSv(nS + 1)− nv(1) + δF · nNv(nS + 1)

1− λC

> 0

⇐⇒ δF >
nv(1)− nSv(nS + 1)

nNv(nS + 1)
≡ f2(λC)

Proof of Proposition 4

Fix the total number of consumers at n. Let nS = αn and nN = (1− α)n. First, it is obvious

that psim = v(1)/(1− λC) is independent of α. Next, p
seq can be rewritten as

pseq =































v(αn) +
λCv(n)

1− λC

if 0 ≤ λC ≤ λ̄C ,

v(αn+ 1)

1− λC

if λ̄C ≤ λC < 1,

which is increasing in α. Finally, we prove that πseq is also increasing in α as follows.

πseq = pseq · αn+ δF · pseq · (1− α)n = npseq {α+ δF (1− α)}
∂πseq

∂α
= n

∂pseq

∂α
{α+ δF (1− α)}+ npseq(1− δF ) > 0
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Proof of Proposition 5

We find the optimal price such that all sophisticated consumers purchase at period 1 and all

naive consumers purchase at period 2. Then, we will confirm that sophisticated consumers have no

incentive to postpone their purchases to the next period. That is, there is no equilibrium in which

only a portion of the sophisticated consumers purchase in period 1.

In order for sequential diffusion to occur in equilibrium, the period 1 price must be high enough

to satisfy p̂seq
1

> v(1)/(1 − λC) because naive consumers also purchase at period 1 if it holds that

p̂seq
1

≤ v(1)/(1− λC).

First, we consider the period 2 price, p̂seq
2

, given that all sophisticated consumers purchase at

period 1. At the beginning of period 2, all naive consumers observe that the current network size

is nS . In addition, each of them anticipates that if he/she joins the network, the network size will

become nS + 1, which will be continued over future periods. Therefore, the firm sets the period 2

price at p̂seq
2

= v(nS + 1)/(1− λC) to make all naive consumers purchase.

Next, let us consider the decision regarding the period 1 price, p̂seq
1

. The indirect utility of

sophisticated consumers at period 1 is given by:

VS = v(nS) +
λCv(n)

1− λC

− p̂seq
1

.

Note that p̂seq
1

should be set so that each sophisticated consumer has no inventive to postpone

purchase to the next period. Consider a situation in which one sophisticated consumer deviates

from the equilibrium path. In the situation, at period 2, the naive consumers consider that the

network size will become nS if he/she purchases the good. Therefore, the period 2 price will be set at

p′
2
= v(nS)/(1−λC). Because all remaining consumers actually join the network, the sophisticated

consumer who deviated will gain the following surplus:

V ′
S =

v(n)− v(nS)

1− λC

The condition under which all sophisticated consumers have no inventive to deviate from purchasing

at period 1 is that VS ≥ δCV
′
S holds. Note that V ′

S is discounted by δC , not by λC = δC(1 − β).
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We find the condition for p̂seq
1

as follows.

VS ≥ δCV
′
S ⇐⇒ v(nS) +

λCv(n)

1− λC

− p̂seq
1

≥ v(n)− v(nS)

1− λC

× δC

⇐⇒ p̂seq
1

≤ (1 + δC − λC)v(nS)− (δC − λC)v(n)

1− λC

=
v(nS)− δCβ{v(n)− v(nS)}

1− λC

Thus, the firm charges the following period 1 price.

p̂seq
1

= max

{

v(nS)− δCβ{v(n)− v(nS)}
1− λC

, 0

}

As described above, this price has to satisfy pseq
1

> v(1)/(1−λC). The condition that the parameters

should satisfy is as follows.

v(nS)− δCβ{v(n)− v(nS)}
1− λC

>
v(1)

1− λC

⇐⇒ δCβ <
v(nS)− v(1)

v(n)− v(nS)

Using p̂seq
1

and p̂seq
2

, we obtain the corresponding profit of the firm and the consumer surplus, as

shown in Proposition 5.

Finally, we prove that there is no equilibrium in which only a portion of sophisticated consumers

purchase at period 1 and the remaining sophisticated consumers do so at period 2. Let nt
S be

the number of sophisticated consumers who purchase at period t. Given that n1

S sophisticated

consumers purchase at period 1, each naive consumer at period 2 expects that the network size

will become n1

S + 1 if he/she purchases the good. That is, the price of period 2 will be set at

p2 = v(n1

S+1)/(1−λC) < pseq
2

. Note that this price is lower than the equilibrium price. Eventually,

all naive consumers join the network and derive the following surplus.

V 2

S = VN =
v(n)− v(n1

S + 1)

1− λC

In this case, sophisticated consumers who purchase at period 1 obtain the following surplus.

V 1

S = v(n1

S) +
λCv(n)

1− λC

− p1

Consider a deviation such that one sophisticated consumer postpones purchasing to period 2. Then,
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each naive consumer at period 2 expects that the network size will become n1

S if he/she purchases

the good. That is, the price of period 2 will be set at p2 = v(n1

S)/(1− λC) < pseq
2

. Eventually, all

naive consumers join the network and derive the following surplus.

V ′
S =

v(n)− v(n1

S)

1− λC

There is no incentive for such a deviation if and only if:

V 1

S ≥ V ′
S

⇐⇒ v(n1

S) +
λCv(n)

1− λC

− pseq
1

≥ v(n)− v(n1

S)

1− λC

× δC

⇐⇒ p1 ≤
(1 + δC − λC)v(n

1

S)− (δC − λC)v(n)

1− λC

<
(1 + δC − λC)v(nS)− (δC − λC)v(n)

1− λC

= pseq
1

.

That is, to ensure that such a deviation is unprofitable, the period 1 price should be set at a

lower price than the equilibrium price (i.e., p1 < pseq
1

). However, setting such a low price never

improves the profit of the firm. Therefore, there is no equilibrium such that only a portion of the

sophisticated consumers purchase at period 1 and the remaining do so at period 2.

Proof of Proposition 6

Comparing the profits under simultaneous- and sequential-diffusion prices, we have the following

condition for π̂seq > πsim.

π̂seq > πsim ⇐⇒ nS

(1 + δC − λC)v(nS)− (δC − λC)v(n)

1− λC

+ δF · nN

v(nS + 1)

1− λC

> n
v(1)

1− λC

⇐⇒ δF >
nv(1)− nS {(1 + δC − λC)v(nS)− (δC − λC)v(n)}

nN · v(nS + 1)
≡ f̂(δC , β)

Proof of Proposition 7

This proof is similar to that for Proposition 5. First, we consider the price of period 2, p̃seq
2

,

given that all sophisticated consumers purchase at period 1. At the beginning of period 2, all naive

consumers observe that the current network size is nS . In addition, each of them anticipates that if

he/she joins the network, the network size becomes nS +1, which will continue over future periods.

Therefore, the firm sets the price of period 2 at p̃seq
2

= v(nS + 1)/(1 − λC) to induce all naive
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consumers to purchase, which is equal to p̂seq
2

.

Next, let us consider the decision on the period 1 price, p̃seq
1

. When the firm commits to setting

the period 2 price at p̃seq
2

, sophisticated consumers cannot win any price discount if they postpone

their purchase to the next period. Therefore, even if the price of period 1 is set at sophisticated

consumers’ willingness to pay, they will purchase the good at period 1, which implies that the firm

set the price of period 1 at p̃seq
1

= uS(t = 1|pseq) = v(nS) + λCv(n)/(1− λC).

Using p̃seq
1

and p̃seq
2

, we obtain the corresponding profit of the firm and consumer surplus as

shown in Proposition 7.

Proof of Proposition 8

Comparing the profits under simultaneous- and sequential-diffusion prices, we have the following

condition for π̃seq > πsim.

π̃seq > πsim ⇐⇒ nS

{

v(nS) +
λCv(n)

1− λC

}

+ δF · nN

v(nS + 1)

1− λC

> n
v(1)

1− λC

⇐⇒ δF >
nv(1)− nS {(1− λC)v(nS) + λCv(n)}

nN · v(nS + 1)
≡ f̃(λC)

Proof of Lemma 5

We consider the following two cases.

(i) 0 ≤ λC < λ̄C

In this case, from the definition of λ̄C , p
seq < pseq

2
holds as follows.

λC < λ̄C ⇐⇒ v(nS) +
λCv(n)

1− λC

<
v(nS + 1)

1− λC

⇐⇒ pseq < pseq
2

Next, we prove that pseq
1

< pseq, as follows.

pseq − pseq
1

= v(nS) +
λCv(n)

1− λC

− (1 + δC − λC)v(nS)− (δC − λC)v(n)

1− λC

=
(1− λC)v(nS) + λCv(n)− (1 + δC − λC)v(nS) + (δC − λC)v(n)

1− λC

=
δC{v(n)− v(nS)}

1− λC

> 0
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That is, pseq
1

< pseq < pseq
2

holds for λC ∈ [0, λ̄C).

(ii) λ̄C ≤ λC < 1

First, it can be confirmed that pseq
2

= pseq = v(nS + 1)/(1− λC) holds. Next, we prove that

pseq
1

< pseq
2

, as follows.

pseq
2

− pseq
1

=
v(nS + 1)

1− λC

− (1 + δC − λC)v(nS)− (δC − λC)v(n)

1− λC

=
v(nS + 1)− v(nS) + δCβ{v(n)− v(nS)}

1− λC

> 0

That is, pseq
1

< pseq
2

= pseq holds for λC ∈ [λ̄C , 1).

Proof of Proposition 10

Suppose that the discount factor for the firm δF is sufficiently large. We consider the following

two cases.

(i) 0 ≤ λC < λ̄C

In this case, it holds that β > 1− λ̄C/δC .

πseq < π̂seq ⇐⇒ (nS + δFnN )

[

v(nS) +
λCv(n)

1− λC

]

< nS

(1 + δC − λC)v(nS)− (δC − λC)v(n)

1− λC

+ δF · nN

v(nS + 1)

1− λC

⇐⇒ δC
δF

· nS

nN

<
v(nS + 1)− v(nS)

v(n)− v(nS)
− λC

⇐⇒ δC
δF

· nS

nN

< λ̄C − λC

(ii) λ̄C ≤ λC < 1

In this case, it holds that pseq
1

< pseq
2

= pseq as shown in Lemma 5. Therefore, πseq > π̂seq

always holds.

In sum, we obtain the condition for πseq < π̂seq as follows.

δC
δF

· nS

nN

< λ̄C − λC

35



References

Ajorlou, A., Jadbabaie, A. and Kakhbod, A. (2016), ‘Dynamic pricing in social networks: The

word-of-mouth effect’, Management Science 64(2), 971–979.

Anderson, C. K. and Wilson, J. G. (2003), ‘Wait or buy? The strategic consumer: Pricing and

profit implications’, Journal of the Operational Research Society 54(3), 299–306.

Anily, S. and Hassin, R. (2013), ‘Pricing, replenishment, and timing of selling in a market with

heterogeneous customers’, International Journal of Production Economics 145(2), 672–682.

Aoyagi, M. (2010), ‘Optimal sales schemes against interdependent buyers’, American Economic

Journal: Microeconomics 2(1), 150–82.

Aoyagi, M., Bhalla, M. and Gunay, H. (2016), ‘Social learning and delay in a dynamic model of

price competition’, Journal of Economic Theory 165, 565–600.

Arthur, W. B. (1989), ‘Competing technologies, increasing returns, and lock-in by historical events’,

The Economic Journal 99(394), 116–131.

Aviv, Y. and Pazgal, A. (2008), ‘Optimal pricing of seasonal products in the presence of forward-

looking consumers’, Manufacturing & Service Operations Management 10(3), 339–359.

Bensaid, B. and Lesne, J.-P. (1996), ‘Dynamic monopoly pricing with network externalities’, In-

ternational Journal of Industrial Organization 14(6), 837–855.

Besanko, D. and Winston, W. L. (1990), ‘Optimal price skimming by a monopolist facing rational

consumers’, Management Science 36(5), 555–567.

Besbes, O. and Lobel, I. (2015), ‘Intertemporal price discrimination: Structure and computation

of optimal policies’, Management Science 61(1), 92–110.

Bhalla, M. (2013), ‘Waterfall versus sprinkler product launch strategy: Influencing the herd’, The

Journal of Industrial Economics 61(1), 138–165.

36



Bond, E. W. and Samuelson, L. (1984), ‘Durable good monopolies with rational expectations and

replacement sales’, The RAND Journal of Economics 15(3), 336–345.

Cabral, L. (2011), ‘Dynamic price competition with network effects’, The Review of Economic

Studies 78(1), 83–111.

Cabral, L. M., Salant, D. J. and Woroch, G. A. (1999), ‘Monopoly pricing with network externali-

ties’, International Journal of Industrial Organization 17(2), 199–214.

Cachon, G. P. and Feldman, P. (2015), ‘Price commitments with strategic consumers: Why it can

be optimal to discount more frequently. . . than optimal’, Manufacturing & Service Operations

Management 17(3), 399–410.

Cachon, G. P. and Swinney, R. (2009), ‘Purchasing, pricing, and quick response in the presence of

strategic consumers’, Management Science 55(3), 497–511.

Chen, J., Doraszelski, U. and Harrington Jr, J. (2009), ‘Avoiding market dominance: Product

compatibility in markets with network effects’, The RAND Journal of Economics 40(3), 455–

485.

Cho, M., Fan, M. and Zhou, Y.-P. (2009), Strategic consumer response to dynamic pricing of per-

ishable products, in S. Netessine and C. S. Tang, eds, ‘Consumer-Driven Demand and Operations

Management Models’, Springer, New York, pp. 435–458.

Coase, R. H. (1972), ‘Durability and monopoly’, The Journal of Law and Economics 15(1), 143–

149.

Cooper, T. E. (1986), ‘Most-favored-customer pricing and tacit collusion’, The RAND Journal of

Economics 17(3), 377–388.

Doganoglu, T. (2003), ‘Dynamic price competition with consumption externalities’, Netnomics

5(1), 43–69.

Farrell, J. and Saloner, G. (1985), ‘Standardization, compatibility, and innovation’, The RAND

Journal of Economics 16(1), 70–83.

37



Fudenberg, D. and Tirole, J. (2000), ‘Pricing a network good to deter entry’, The Journal of

Industrial Economics 48(4), 373–390.

Glazer, A. and Hassin, R. (1986), ‘A deterministic single-item inventory model with seller holding

cost and buyer holding and shortage costs’, Operations Research 34(4), 613–618.

Glazer, A. and Hassin, R. (1990), ‘Optimal sales to users who hold inventory’, Economics Letters

34(3), 215–220.

Hendel, I. and Nevo, A. (2006), ‘Measuring the implications of sales and consumer inventory be-

havior’, Econometrica 74(6), 1637–1673.

Hendel, I. and Nevo, A. (2013), ‘Intertemporal price discrimination in storable goods markets’,

American Economic Review 103(7), 2722–2751.

Jerath, K., Netessine, S. and Veeraraghavan, S. K. (2010), ‘Revenue management with strategic

customers: Last-minute selling and opaque selling’, Management Science 56(3), 430–448.

Katz, M. and Shapiro, C. (1985), ‘Network externalities, competition, and compatibility’, American

Economic Review 75(3), 424–440.

Katz, M. and Shapiro, C. (1986), ‘Technology adoption in the presence of network externalities’,

Journal of Political Economy 94(4), 822–841.

Levin, Y., McGill, J. and Nediak, M. (2009), ‘Dynamic pricing in the presence of strategic consumers

and oligopolistic competition’, Management science 55(1), 32–46.

Li, J., Granados, N. and Netessine, S. (2014), ‘Are consumers strategic? Structural estimation from

the air-travel industry’, Management Science 60(9), 2114–2137.

Liu, Q. and Van Ryzin, G. J. (2008), ‘Strategic capacity rationing to induce early purchases’,

Management Science 54(6), 1115–1131.

Liu, T. and Schiraldi, P. (2012), ‘New product launch: Herd seeking or herd preventing?’, Economic

Theory 51(3), 627–648.

38



Makhdoumi, A., Malekian, A. and Ozdaglar, A. E. (2017), ‘Strategic dynamic pricing with network

externalities’, Rotman School of Management Working Paper No. 2980109. Available at SSRN:

https://ssrn.com/abstract=2980109.

Mersereau, A. J. and Zhang, D. (2012), ‘Markdown pricing with unknown fraction of strategic

customers’, Manufacturing & Service Operations Management 14(3), 355–370.

Miao, C.-H. (2010), ‘Consumer myopia, standardization and aftermarket monopolization’, European

Economic Review 54(7), 931–946.

Mitchell, M. and Skrzypacz, A. (2006), ‘Network externalities and long-run market shares’, Eco-

nomic Theory 29(3), 621–648.

Nair, H. (2007), ‘Intertemporal price discrimination with forward-looking consumers: Application

to the us market for console video-games’, Quantitative Marketing and Economics 5(3), 239–292.

Papanastasiou, Y. and Savva, N. (2017), ‘Dynamic pricing in the presence of social learning and

strategic consumers’, Management Science 63(4), 919–939.

Parakhonyak, A. and Vikander, N. (2018), ‘Optimal sales schemes for network goods’, Management

Science, forthcoming.

Radner, R., Radunskaya, A. and Sundararajan, A. (2014), ‘Dynamic pricing of network goods with

boundedly rational consumers’, Proceedings of the National Academy of Sciences 111(1), 99–104.

Schnitzer, M. (1994), ‘Dynamic duopoly with best-price clauses’, The RAND Journal of Economics

25(1), 186–196.

Su, X. (2007), ‘Intertemporal pricing with strategic customer behavior’, Management Science

53(5), 726–741.

Suslow, V. Y. (1986), ‘Commitment and monopoly pricing in durable goods models’, International

Journal of Industrial Organization 4(4), 451–460.

Zhou, J. and Chen, Y.-J. (2018), ‘Optimal pricing with sequential consumption in networks’, Op-

erations Research 66(5), 1218–1226.

39


