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Abstract

We investigate the behaviour of agents in bilateral contests within arbitrary network struc-

tures when valuations and efficiencies are heterogenous. These parameters are interpreted as

measures of strength. We provide conditions for when unique, pure strategy equilibria exist.

When a player starts attacking one player more strongly, others join in on fighting the victim.

Different efficiencies in fighting make players fight those of similar strength. Centrality of a

player (having more enemies) makes a player weaker and her opponents are more likely to

attack with more effort.
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1 Introduction

Competition takes the most vigorous form when the parties involved do not use resources for

production or consumption, but rather to disable, destroy or appropriate resources from others

(Hirshleifer, 1995; Sandler, 2000). The resources employed for these goals, in the form of sol-

diers, military equipment and time spent are sunk, irrespective of the final outcome. This form of

competition can broadly be defined as conflict. It is this wasteful nature and the strategic consid-

erations that spurred the interest of economists and game theorists. The theoretical contributions

in this domain are typically built on models with a single conflict with two or more parties. Ad-

vancements in transportation and information technology allow states and other international,

and potentially militant interest groups to engage in multiple conflicts around the globe. That

has added more complexity in how such agents are related to each other. In most of the existing

models it is impossible to distinguish a fight for a single prize from a fight against specific enemies.

The motivation of agents is not to fight someone specific within the ‘aggregate others’, although

in reality individuals, political groups and nation states typically have a sense of who each of their

opponents are.

The aim of this paper is to develop a framework with multiple interconnected opponents, to un-

derstand how the differences between rivals (i.e position in the conflict structure, efficiency in the

conflict technology and prizes within and across the bilateral conflicts) shape the optimal strate-

gies in conflict games.

Two considerations give rise to the type of model we suggest. On the one hand, conflict is char-

acterised by sunk effort investments aiming at increasing the probability of winning a prize. This

prize can be land, power or natural resources in the case of war or market share and influence

in the case of marketing and lobbying, respectively. This trade-off is frequently modelled by a

contest (e.g. Konrad, 2009; Vojnovic, 2016).

On the other hand, conflicts often have a structure of multiple, simultaneous battlefields between

the different parties involved. Just as much as strength, the degree of centrality mattered when

Germany engaged in battles on multiple fronts in WWI and WWII. These considerations give rise

to a network of conflictual links between agents, where each link represents a bilateral contest.

To illustrate this, take a look at the set of Militarised Interstate Disputes between states1 in 1878

– the year when the Congress of Berlin ended the Russo-Turkish War – and the type of relations in

1A Militarised Interstate Dispute is a set of interactions involving the threat, display, or use of force between or
among states (Gochman and Maoz, 1984).

1



(1878) (1962)

Figure 1: Militarised interstate disputes
Source: Networks of Nations: The Evolution, Structure, and Impact of International Networks, 1816-2001, (Maoz, 2010)

1962 – the height of the Cold War–, depicted in Figure 1.

In both periods of time the overall conflict structure within states is represented by networks of

bilateral conflicts. In 1878, the structure of disputes was characterised mainly by a network with

line components in which a state had at most two different conflicts at the same time. In 1962 the

picture is different, whilst there is a non-negligible number of isolated bilateral conflicts, there is

a less trivial cluster of nodes centred around military powerful and/or resource rich states like

the United States, Russia, China, or Iraq among others. It conceptually is hard to judge whether

it was the strength of Russia that made other countries engage in conflict with the US, or whether

they did so in order to oppose the threat that a potential US hegemony meant to them. In the

literature on International Relations, the former is broadly comprised by the term Bandwagoning,

while the latter is frequently referred as Balancing (Waltz, 1979). The paper at hand sheds light on

this question in a stylised setting.

While the number of Militarised Interstate Disputes have declined over the second half of the

20th century, the was a sharp increase in internal and internationalised internal conflict. These

types of conflict are often referred to as civil wars and include recent examples like the Syrian war,

the civil war in Ukraine and the Colombian conflict.2 As figure 2 suggests, the number of parties

in military conflicts has increased on average over time, with the sharpest increase happening

2See figure 11 in the appendix for that claim and a more detailed definition of the conflict types mentioned here.
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Figure 2: Violent Conflicts Involve More Parties Over Time

after 9/11. Since every additional agent can have conflicts with multiple agents in the network,

the increase in conflictual links is likely to be even more pronounced, giving rise to the study at

hand.

We propose a setting in which there is an exogenous structure of bilateral conflicts across n

opponents as in Franke and Öztürk (2015) (from heron FÖ). Each link between a pair of players

represents a bilateral conflict. While FÖ considers cases of symmetric characteristics, we allow

for heterogeneity between opponents in terms of their efficiency of conflict investment and the

valuations of winning, within and between different conflicts. We model conflict using a contest

success function based on the axiomatisation proposed by Skaperdas (1996). Finally, we induce

a trade-off between different conflicts through a budget-constrained cost function – following the

formulation proposed by Kovenock and Roberson (2012a), which can accommodate two canonical

cases already studied in the literature: i) pure cost convex case and ii) budget constrained case.

The latter yields to the fact that military budgets can hardly ever be altered in the short run when

conflicts were not anticipated.

We show that a unique and interior Nash Equilibrium exists in the pure cost case, independently of

the model parameters. In contrast, in the budget constrained case the uniqueness and interiority

of the equilibrium rely on the spread of valuations a player holds for the different conflicts she

is involved in and the characteristics of the impact function. In line with FÖ, we show that a

general algebraic solution for the equilibrium strategies does not exist for most types of networks.
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We thus use implicit methods to investigate some local effects of the asymmetries between the

players’ characteristics. We find that asymmetries in the prizes leads to Bandwagoning behaviour,

mainly driven by the interaction of local network externalities induced by the conflict structure.3

If there are players of different strength, as indicated by their efficiency to transform resources into

winning probabilities, players tend to fight opponents more strongly that are similar with respect

to their strength. Finally, we investigate the changes in the strategies due to heterogeneity in the

number of conflicts of a player’s opponents. We find that more central players tend to be fought

more fiercely.

Related Literature: Modelling conflict on networks is a relatively recent stream of research in

economics (Dziubiński et al., 2016), starting with the model proposed by Franke and Öztürk

(2015). The authors define a model where players are embedded in a network of bilateral con-

flicts and each player chooses the amount of resources that they want to invest to each conflict.

The conflict is modelled using a lottery success function. The trade-off between different conflicts

is induced through a convex cost function of the total amount of resources employed. They relate

the total conflict investment with the player’s number of conflicts. The article focusses on ag-

gregate behaviour and thus abstracts from individual characteristics by assuming symmetry with

respect to all model parameters.

Beside the seminal paper by Franke and Öztürk (2015) and the subsequent studies looking at this

type of environment (e.g. König et al., 2017; Dziubiński et al., 2017; Matros and Rietzke, 2018)4

there are different fields that are related to the paper at hand. The key distinction between our

paper and the afore-mentioned (among other differences) is that the players choose an effort level

for each opponent they share a link with, rather than choosing a single effort that they employ

against all players. 5 Settings with link specific actions, not necessarily conflict or contest though,

are quite recent. To the best of our knowledge in addition to Franke and Öztürk (2015) the only

models on games on networks that introduce multidimensional strategies are Goyal et al. (2008)

or Bourlès et al. (2017). In analysing heterogeneity of players and their response with respect to

specific opponents, this characteristic is crucial.

3Klose and Kovenock (2015) refer to these as identity-dependent externalities. The first formalisation in contest to
our knowledge can be found in Linster (1993).

4Huremovic (2016) studies as well conflicts on networks but with a different perspective. He is interested in the
endogenous network formation of a network of conflict.

5Even though Dziubiński et al. (2017) studies an environment of conflicts on network with a multidimensional
strategy space, this feature comes from the fact that is a dynamic game rather than considering a link specific action
space.
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Apart from that, our paper is related to the literature on multi-battle contests based on the canon-

ical Colonel Blotto game. The Colonel Blotto game has been studied extensively since its first

formulation by Borel (1921), where two players need to allocate simultaneously a finite number

of resources over k different battlefields, the outcome over each battlefield is modelled as an all-

pay-auction. This specification is well-researched with characterisations of heterogeneity between

players, complementarity of prizes and other modifications to the standard formulation (Borel

and Ville, 1938; Gross and Wagner, 1950; Laslier, 2002; Roberson, 2006; Hart, 2008; Hortala-Vallve

and Llorente-Saguer, 2012; Weinstein, 2012; Kovenock and Roberson, 2012a; Kovenock et al., 2015;

Macdonell and Mastronardi, 2015; Thomas, 2018).

Using a lottery to determine the outcome in each battlefield following the Tullock (1980) contest

success function, where the probability of winning a specific battlefield is a non-decreasing function

in the own resource allocation and decreasing in the enemy’s allocation, is another approach to

the two player Colonel Blotto problem. Based on this contest success function, Friedman (1958) is

able to characterise the equilibrium in pure strategies of the two-player game with symmetric and

asymmetric budgets and battlefield valuations. The main result of that study is that the optimal

allocation is proportional to the valuation of the prizes.6 This result is a special case of our model.

This strand of the literature relies on models with only two players. Our paper is a contribution to

the theory of contests in which we extend the current set of models by considering a multi-player

environment with asymmetric efficiency of resources toward the conflict outcome and conflict

prizes. This variation allow us to find new insights about the effects of the interactions of local

network externalities across different conflicts.

We also add to a debate in the literature of international relations. In a war and many other con-

flictual settings, there is no (strong) institution that allows parties to come to a peaceful agreement.

This state can be referred to as Hobbesian anarchy, due to Hobbes (1998). It is the law of the Jungle

that should determine the winner(s) in such a state. Differences in the parties’ strengths should

thus be crucial to any analysis of conflict. Early on, Waltz (1979) and Walt (1987) coined the terms

Balancing and Bandwagoning. Balancing is a behaviour where weaker parties ally to balance the

power of a strong common opponent. Bandwagoning refers to the case where weak parties rally

behind the strategic goals of the hegemon. There has been an ongoing discussion about which

of these is more likely to occur in situations of armed conflict.7 Our model allows to introduce

a hegemon into the model, using different measures of strength, in order to shed light on the

6Robson (2005) generalises it by allowing the contest success function to include an effectiveness advantage and
idiosyncratic noise.

7See for example Schweller (1994), Waltz (1997) and Lieber and Alexander (2005).
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behaviour of the remaining players.

The rest of the paper is structured as follows. In the next section, we describe the setup of

the model and discuss some its properties. In Section 3, we prove the uniqueness of an interior

Nash Equilibrium, discuss some of its properties and show the non-existence of a general explicit

algebraic solution to the model. In section 3.1, we study the specific family of k-regular network

structures that enables us to have sharper predictions regarding the equilibrium behaviour. In this

section we also present some comparative statics. In section 3.2, we present results concerning the

asymmetries coming from the network structure. Section 4 concludes.

2 The Model

Let I = {1, . . . , n} be a finite set of players with n ≥ 3. All battlefields are contained in B ⊆ I2

where I2 is the set of unordered pairs of I with typical element (ij). The underlying conflict

network G is represented by the connected graph associated with the pair of sets (I, B).8 We

say that any pair of players i and j is involved in a bilateral conflict on battlefield (ij) if and

only if (ij) ∈ B. The network G is undirected (∀{i, j} : (ij) ∈ B ⇔ (ji) ∈ B) and irreflexive

(∀i ∈ I : (ii) 6∈ B). Let Ni = {j ∈ I|(ij) ∈ B} denote the set of i’s rivals. The total number of

rivals of i is given by di = |Ni|. The set Ñi = {1, ..., di} then uses the opponent ordering eij , which

is the row number of each element of the ordered vector Ni from j low to high. The total number

of battlefields is 1
2b with b =

∑

i di = |B|. Notice, that every player has at most (n − 1) rivals

and, consequently, the network G contains at most n(n−1)
2 battlefields. In each bilateral conflict,

(ij) ∈ B, players i and j fight for a strictly positive exogenous prize. Player i’s valuation of

winning the prize against player j is denoted vij . This framework can accommodate constant-

sum bilateral conflicts, when vij = vji, or non constant-sum bilateral conflicts, when vij 6= vji.
9

Each player i can allocate an amount of resources xij ∈ R+ in order to increase her probability

of winning battlefield (ij) against player j. Thus, xi = (xeij )j∈Ni
is a di-dimensional vector that

contains all effort choices of player i.

The outcome of each bilateral conflict is determined by the total amount of resources allocated to

8 A graph G is connected if for every pair of players i and j in N there exists a path between them. We do not
consider disconnected network structures. The results that we are presenting hold for any non-trivial component of
any disconnected network. A path in a network G between nodes h and l is a sequence of links i1i2, i2i3, . . . , ik−1ik
such that every imim+1 ∈ B for each m ∈ {1, . . . , k− 1}, with i1 = h and ik = l. Each node in the sequence {i1, . . . , ik}
needs to be distinct.

9The latter case can also capture the idea of identity externalities as mentioned before.
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that specific battlefield. Player i’s probability of winning is determined by a contest success function

(from hereon CSF) p(aixij , ajxji), where ai ∈ R++ captures how efficiently player i can employ

her resources to increase this probability. The CSF is increasing and concave in xij and decreasing

and convex in xji.
10 Further, it does not depend on any xlk with (lk) 6= (ij). The axiomatised class

of CSFs by Skaperdas (1996) satisfies these properties. Thus, the probability of i winning the prize

in the battlefield against j obtains as

p̃ij = p̃(aixij , ajxji) =











f(aixij)
f(aixij)+f(ajxji)

if (xij + xji) 6= 0

pij if (xij + xji) = 0

(CSF)

where pij ∈ (0, 1) is the tie breaking rule. The impact function f(.) is a twice differentiable, positive

and strictly increasing function of its argument with f(0) = 0.

The tie breaking rule is defined exogenously in order to define the CSF at (0, 0). Since this might

cause problems for some of the results we intend to show, we use the fact that

p̃(aixij , ajxji) = lim
δ→0

f(aixij) + kδ

f(aixij) + f(ajxji) + (1 + k)δ

The limit of this function coincides with our previous definition at every point. Even the tie rule

can be set flexibly since

lim
δ→0

f(aixij) + kδ

f(aixij) + f(ajxji) + (1 + k)δ

∣

∣

∣

∣

xij=xji=0

= lim
δ→0

kδ

(1 + k)δ
=

k

1 + k
∈ (0, 1)

for every k ∈ (0,∞). This approach is essentially the one suggested in Myerson and Wärneryd

(2006) with the slight adjustment to accommodate more flexible tie breaking rules. The function

we intend to use as contest success function is thus

p(aixij , ajxji) =
f(aixij) + kδ

f(aixij) + f(ajxji) + (1 + k)δ
(1)

for some arbitrarily small δ > 0.11

For ease of notation, throughout the rest of the paper, let ω = (v, a) be the combination of b values

collected in v and the n population weights collected in a. The space of all such combinations

10This translates into the following condition on f(): f ′′(aixij)(f(aixij) + f(ajxji))− 2f ′(aixij) < 0. In words, f()
can have any degree of concavity but should not be too convex.

11 Note that this implies pij + pji 6= 1 for k 6= 1. Alternatively one could assume k = 1 implying pij = 1

2
, resulting in

pij + pji = 1. All results are robust to with respect to that modelling choice.
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is Ω ∈ R
b+n
++ . We call the case where all valuations across players and battlefields and all effi-

ciencies across all players are the same a strictly symmetric parameterisation and denote it ω. Let

Ω = {(λ1111b, λ2111n)|(λ1, λ2) ∈ R
2
++} denote the set of all such parameterisations.12

Players incur costs for employing resources which are captured by C(Xi) where Xi =
∑

j∈Ni
xij

denotes total resources spent by a player across all her battlefields. We consider a budget-constrained

cost-based framework as the one proposed by Kovenock and Roberson (2012b) such that for some

R > 0, we have

C(Xi) =











c(Xi) if Xi ≤ R

∞ if Xi > R

(2)

The properties of c(Xi) determine the magnitude of opportunity costs for player i. If the function

is strongly increasing at some level of Xi, she will have to withdraw resources from other battle-

fields rather than increasing the total amount of resources spent. In general, c(Xi) is continuous,

non-decreasing and convex. We use c′(0) = 0 for proving our results but they go through for

sufficiently small c′(0) > 0 as well. This definition of the cost function allows the study of two

canonical formulations. In the budget-constrained case (BCC) the cost function is c(Xi) = 0 for all

Xi. In this case the opportunity costs across battlefields are mediated solely through the curvature

properties of the CSF. Since the marginal returns on each battlefield are strictly increasing in own

allocated resources, each player exerts the total amount Xi = R across all battlefields.

The second case is the pure cost case (PCC) in which R is arbitrarily large, such that we can guar-

antee Xi < R in equilibrium for each player i. The opportunity costs for each battlefield enter the

model through the positive cross derivatives of c(Xi) which in this case is assumed to be strictly

convex.

For technical tractability we ignore the mixed case in which there is a non-trivial cost function

c(Xi) and potentially binding constraints for some players but not all players.

For each battlefield (ij) ∈ B, agent i’s expected pay-off is uij : R+×R+ → R+ such that uij = pijvij .

We assume that agents are expected pay-off maximisers with risk-neutral preferences. We con-

12111k is a k × 1 vector containing only ones.
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sider an additively separable utility function given by 13

Ui(xi,x−i,G) =
∑

j∈Ni

uij − C(Xi)

The set of players, the network structure, the action spaces and expected payoffs define a simul-

taneous game. Our objective is to study the Nash equilibrium of this game and how the char-

acteristics of the network structure, distribution of values and assumptions on the cost function

influence the equilibrium behaviour.

3 Equilibrium Analysis

Given the above structure, each player faces the following maximisation problem of dimension di

determined by the network structure G for given x−i,

max
xi∈R

di
+

Ui(xi,x−i,G) with a given x−i ∈ R
b−di
+ (3)

In the pure cost case, the equilibrium behaviour is described by the balance of marginal benefits

and marginal costs for each battlefield (ij) ∈ B and every player i ∈ I

aif
′(aixij)f(ajxji)

(f(aixij) + f(ajxji))2
vij = C ′(Xi) (PCC)

In the budget-constrained case, when the properties of the cost function induce the opportunity

costs through a fixed budget that needs to be spent, the optimal allocation of resources for each

player i ∈ I for every battlefield (ij) ∈ B in equilibrium is characterised by

f(aixij) + f(ajxji)
∑

k∈Ni
[f(aixik) + f(akxki)]

=

√

vijf ′(aixij)f(ajxji)
∑

k∈Ni

√

vikf ′(aixik)f(akxki)
(BCC)

Players’ marginal benefits are shaped by the resource allocation of their direct rivals but also

the rivals of their rivals and so on. This interdependency induced by the cost function determines

how an individual reacts to changes in some of the parameters of the environment. Some of the

13Robson (2005) show that expected utility maximisers end up maximising the sum of benefits of each conflict if they
are risk neutral. For a network setting this result still holds.
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behavioural implications thus occur even though a player’s preferences are not directly altered.

FÖ asserted that a unique equilibrium exists irrespective of the network structure if the players

characteristics in terms of their preferences and technologies are homogenous. In the setting of

convex costs, this homogeneity is not needed to guarantee uniqueness. Under a strict budget con-

straint we can guarantee it by staying in an open neighbourhood around symmetric parameters.

With the CSF as defined in (1), the game is a continuous game with a finite set of players and com-

pact strategy spaces. Thus, we can apply the theorems due to Debreu (1952), Glicksberg (1952)

and Fan (1952) in order to guarantee the existence of a pure-strategy Nash equilibrium. Due to

the continuity of the cost function and the (almost) infinite marginal gains close to (0, 0) on each

battlefield, equilibria are strictly interior. If that is given, the system of first order conditions (from

hereon referred to as F ) characterises these equilibria. We show that the determinant of that sys-

tem is always strictly larger than zero. This provides us with the following result.

Proposition 1 (Pure Cost Case).

For the pure cost case, a unique, interior pure-strategy Nash equilibrium exists. The solution function

x(ω) : Ω 7→ R
b
++ has the following properties:

• It is of class C∞

• Its derivative is given by Dx(ω) = − [DxF (x(ω);ω)]−1DωF (x(ω);ω)

The budget-constrained setting is slightly more complicated, as players cannot increase or de-

crease their total efforts Xi to any other level than R. We need to ensure that every player can

equalise marginal returns across battlefields. Consider Figure 3. A player i for which di = 2 can

pin down her decision on both battlefields by choosing only xi1 since xi2 = R − xi1. The figure

shows her marginal utilities on both battlefields. Since they are both decreasing in the respective

effort, marginal utility on battlefield 2 is increasing in xi1.

With MUi1 player i has enough endowment to balance marginal utilities, that is, to reach the

intersection of the two functions. If we increase the battlefield value from vi1 to v′i1, as is shown by

the dotted line MU ′
i1, it would be optimal to spend all resources on the battlefield with the higher

marginal revenue and we obtain a corner solution.

Since the marginal utilities increase in the valuations and efficiencies, this also restricts the relative

values vi1
vi2

and efficiency parameters (i.e. ai and aj). This mutual restraint can be characterised

more precisely.

10



R

MUi1

MU ′
i1

MUi2

xi1 = R− xi2

MU

Figure 3: Marginal Utilities for a Player with 2 Battlefields

Take some player i ∈ I and denote the highest valuation she holds with vih = max{vij |j ∈ Ni}.

The highest marginal utility that player i can get in the battlefield against h when xih = R is

max
xhi≤R

∂Ui(xi,x−i,G)
∂xih

∣

∣

∣

∣

xih=R

=







1
4
aif

′(aiR)
f(aiR) vih if ai

ah
≤ 1

aif
′(aiR)f(ahR)

(f(aiR)+f(ahR))2
vih if ai

ah
> 1

Since the first order condition of this problem is given by

∂Ui(xi,x−i,G)
∂xih∂xhi

=
aiahf

′(aixih)f
′(ahxhi)(f(aixih)− f(ahxhi))

(f(aixih) + f(ahxhi))3
!
= 0

the argument that solves it is xhi =
ai
ah
xih, meaning that the highest marginal utility for a specific

battlefield is achieved when winning probabilities are the same for both players.

Equally well, on the battlefield where i holds the lowest valuation vil = min{vij |j ∈ Ni}, we can

find the minimal marginal utility under any profile where xih = R as

min
xli≤R

∂Ui(xi,x−i,G)
∂xil

∣

∣

∣

∣

xil=0

=
aif

′(0)

f(alR)
vil

When this marginal utility (denote it MUij for some battlefield (ij)) is larger than the one on

(ih) when xhi = min{ ai
ah
xih, R} = min{ ai

ah
R,R}, then player i has an incentive to divert resources

to other battlefields, since MUik ≥ MUil under this profile for k 6= h. Thus, we want to assert that

11



min
xli≤R

∂Ui(xi,x−i,G)
∂xil

∣

∣

∣

∣

xil=0

> max
xhi≤R

∂Ui(xi,x−i,G)
∂xih

∣

∣

∣

∣

xih=R

To complete this argument of the proof, one has to notice that for xih = 0 and xhi = R, we have

MUih ≥ MUik for all k 6= h. This implies that each player can achieve MUij = MUik for all

{j, k} ∈ Ni.

MU

Rank of vij
2 3 4 1

Figure 4: MUih can be equalised with all MUij
Note: Valuations are ordered from high to low, i.e. 1 represents

If that holds, we can use the same techniques as in the former proof to obtain the following

result.

Proposition 2 (Budget-Constrained Case).

If for all i ∈ I we have

vil
vih

>
1

4

f(alR)

f(aiR)

f ′(aiR)

f ′(0)
(4)

then for each ω ∈ Ω a strictly interior, unique pure-strategy Nash equilibrium exists.

The solution function x(ω) : Ω 7→ Rb
++ has the following properties:14

• It is of class C∞.

• Its derivative is given by Dx(ω) = − [DxF (x(ω);ω)]−1DωF (x(ω);ω).

14This is a slight abuse of notation. Technically, the function is x̃(ω) : Ω 7→ Rb+n
++ . The shadow prices of increasing

the total amount of efforts λ is an output of that function for all i ∈ I. Here, we construct the function from the b

components of x̃ that are associated with the b effort levels.
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Therefore, the interplay of battlefield values, the initial endowment and properties of the the

impact function f(.) determine whether the game has a unique Nash equilibrium. Note that the

case ai = aj = 1 and vij = vji = v > 0 for all (ij) ∈ B always fulfils the condition.

The analytic condition is particularly interesting as a familiar assumption made in economics

could guarantee existence for all kinds of parameters. If we assume that the impact of the first

marginal effort increase is infinitely large, that is limx→0 f
′(x) = ∞, there is no bound on budgets

and valuations anymore. While we do not intend to use this assumption for the rest of the paper, it

relates to common assumptions made in economics like the Inada-condition in production or utility

functions. One could state it as the first marginal unit sent to a battlefield having a large impact

compared to a further unit sent when there are already many on the field.

Games played on networks give rise to a complex set of dependencies. Any attempt to solve for

equilibria should reflect this for the model at hand. The following result tells us that to solve

explicitly the system of first order conditions, we need to express the best response functions of

some player i as functions of a player’s strategies that does not share a link with i.

Lemma 1.

There exists an indirect global dependence where for any pair of agents h and l who are not rivals (i.e.

h 6∈ Nl and l 6∈ Nh), the effort levels as characterised by the system of first order conditions can implicitely

be expressed as xh
∗(X∗

−{h,l},xl
∗) and xl

∗(X∗
−{l,h},xh

∗).

In that sense, the fact that we have a connected network creates indirect relations between all

players throughout the rivals of rivals along any path of the network. This does not mean that

players “respond” to distant players as the word best-response function suggests. It is merely a

mathematical fact that we use to show that an algebraic solution for the equilibria can be obtained

for hardly any network structure. How much any player’s actions affect another player’s effort

levels in equilibrium depends on how long the shortest possible path between them is. Consider

for example a line network with 6 players in a budget constrained setting. In this case the two

players in the ends allocate all their resources in their unique battlefield. Let player i be one of

the end players in the line. Based on Lemma 1, we can mathematically express any of her best

responses as x∗ij = xij(xjk(xkl(xlp(xpq)))) as illustrated by Figure 5.

i j k l p q

Figure 5: Line Network with 6 Players

Notice, that through the use of the FOCs, each of these nested functions applies a square to
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a sum. Therefore, to find the equilibrium strategies, we require to find the roots of at least one

general polynomial of degree 25.

Denoting the length of the longest path in a given network with L, solving the system of first order

conditions for all players, generally requires us to find the roots of at least one general polynomial

of degree 2L. This is a mathematical impossibility for any degree greater or equal to 5, according

to the Abel-Ruffini Theorem (1779).

Corollary 1.

The equilibrium strategies of the game do not have a generic algebraic solution if the length of the longest

path between any two players is greater than or equal to 3.

By a generic algebraic solution we mean any formula which would express the roots of the

polynomial as functions of the coefficients by means of algebraic operations (i.e +,−,× or /) and

roots of natural degrees. This is the reason for employing more implicit methods when analysing

equilibrium behaviour, or more specifically, changes in equilibrium behaviour that correspond to

changes in parameters. Also, we need to restore some degree of symmetry that we impose on the

network structure.

3.1 k-Regular Networks

Propositions 1 and 2 provide the general form of the matrix of derivatives for any unique equilib-

rium. If we focus our attention on a subset of network structures, it is possible to obtain closed

forms of these matrices to assess comparative statics more precisely. As these expressions appear

more often in the subsequent part of the paper, denote p1ij = p1(aixij , ajxji) as the derivative of pij

respect to its first argument, p2ij = p2(aixij , ajxji) the derivative of pij respect to the second argu-

ment. The second and cross-derivatives are equivalently given by p11ij = p11(aixij , ajxji) = −p22ji

and p12ij = p12(aixij , ajxji) = −p21ji . The set of graphs we consider is defined as follows.

Definition.

A k-regular network is any graph for which di = k for all i ∈ I and some k ∈ {2, ..., n− 1}.

This family of graphs includes the complete network (k = n − 1) and the ring (or minimal

connected) network (k = 2) as well as some networks in between these extreme cases as illustrated

by Figure 6 for the case of n = 6.

Within these networks it is possible to characterise the equilibrium strategies in case of a sym-

metric parametrisation as in FÖ. We can establish a link between the network structure within that
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(c) k = 5

Figure 6: Examples of k-Regular Networks for n = 6

class of graphs and the equilibrium efforts exerted. This means that, even though in a relatively

restrictive set of cases, we are able to infer the exact network structure from the strategies played.

Lemma 2.

If ω ∈ Ω the following holds:

The graph is k-regular for k ≤ n − 1 if and only if the equilibrium for all i ∈ I is xij = xs > 0 for all

j ∈ I\{i}.

This equilibrium obtains as

xs =
1

k
C ′−1(p1(axs, axs)av) > 0

This result might be useful, as often in real world conflicts effort levels, in the form of soldiers or

monetary contributions, are more observable than the underlying network structure. Note that a

symmetric equilibrium in a k-regular network does not necessarily imply that ω ∈ Ω though. The

condition for a strategy profile xs to constitute an equilibrium in such a network is

p1(aix
s, ajx

s)

p1(akxs, alxs)
=

vkl
vij

for all (ij), (kl) ∈ B, which can be satisfied for ω /∈ Ω. If we restrict the degrees of freedom

further there is some deductions one can make about the parameters as well.

Corollary 2.

If the graph is k-regular for k < n− 1, and the equilibrium for all i ∈ I is uniquely defined by some effort
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choice R
k ≥ xs > 0 for all i ∈ I it follows that

aj = ai ⇔ vij = vji ∀i, j ∈ I

Probably the most frequently used CSF is the one suggested by Tullock (1980) for which f(x) =

x. With the above we can have a first glance at potential comparative statics with respect to pa-

rameters.

Example 1 (Relative Battlefield Values).

Let every player in a k-regular network have an endowment equal to one and values such that vij = vji for

all (ij) ∈ B. Also V =
∑

j∈Ni
vij for all i ∈ I. In a budget-constrained setting, the equilibrium behaviour

will be given by

For all i ∈ I and every (ij) ∈ B the optimal allocation strategy is x∗ij =
vij
∑

k∈Ni

vik

When instead of facing a budget constraint, the opportunity cost of allocating resources is induced by a

cost function, we observe the same equilibrium strategy if it is of the form C(Xi) = 1
4X

V
i . The degree of

convexity of the cost function thus needs to be proportional to the total value of the contest to each player.

Since all involved functions are continuous in their respective arguments, we might infer that increases in

own value increase an agent’s effort, while those values winning over her decrease it.

Notice, that if we have an environment where players are symmetric and all dimensions (i.e. endowment,

battlefield values, number of rivals), our setting collapse to the same equilibrium behaviour already found

previously in the literature by Friedman (1958). In there the network structure starts to be redundant and

only the relative battlefield values will determine the amount of resources allocated to a given conflict. If

all valuations are multiplied by the same constant, strategies do not change. Following up on the notion of

externalities, this illustrates why it does not matter how much individual i hates individual j (vij high). If

individual k is hated more (vik > vij), it appears as if i relatively likes j. This is also in line with observing

conflict even in very cohesive groups like tribes and families.

In a symmetric equilibrium within a k-regular network, the first order conditions are the same

for every player since Xi = kxs. Thus, we can do a comparative static analysis on the symmetric

equilibrium k-regular effort choice with respect to the parameters. Note that this is different from

the comparative statics we do later on. There we start at a symmetric parametrisation and then
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change a particular parameter, rather than the joint value for all player for that parameter.

∂xs

∂a
< 0,

∂xs

∂v
> 0,

∆xs

∆k
< 0

The effect of increasing everyones’ valuations should be correctly anticipated. If we move from

one symmetric equilibrium to the next along a linear increase of all efficiencies we do see a reduc-

tion in individual efforts. The same holds if the degree k increases for all players. The marginal

change in total effort, X = nkxs, is proportional to the first two expressions. Thus, we can say that

it increases in valuations and decreases in efficiencies. Notice though that reduced efforts through

increases in symmetric efficiencies should not be confused with what could be coined effective ef-

forts x̃ij = aixij . For instance in a war between countries, although less soldiers are sent to the

battle by each agent, the battle intensity could increase since the weapons got more powerful. We

find the same result as FÖ related to the degree of the network (i.e. total effort increasing in k),

which should not be too surprising as we are in a strictly symmetric setting.

We stop investigating symmetric changes of parameters here, as this paper is concerned with

asymmetries in networks of conflicts. In Proposition 1 and 2 we already gave an abstract charac-

terisation of the derivatives at any given equilibrium. In the the setting of k-regular networks, we

can provide general algebraic expressions that allow us to perform comparative statics for which

we know the signs and magnitudes.

Proposition 3.

In a k-regular network the partial derivatives around the equilibrium at an arbitrary symmetric parametri-

sation ω ∈ Ω can be obtained analytically as

∂xij
∂vij

= −z − (k − 1)C ′′(X)

z − kC ′′(X)

ap1

z
> 0

∂xil
∂vij

=
C ′′(X)

z − kC ′′(X)

ap1

z
< 0 for all l 6= j

∂xij
∂ai

= − 1 + z

z − kC ′′(X)

(

p1v

z
+

xs

a

)

for all i ∈ I and (ij) ∈ B where z = a2p11v. All other partial derivatives vanish.
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If X → R with the cost function defined in 2, these become

∂xij
∂vij

= −k − 1

k

p1

ap11v
> 0

∂xil
∂vij

= −1

k

p1

ap11v
< 0 for l 6= j

∂xij
∂ai

= 0

Let us consider the comparative statics of valuations first. For this it is more illustrative to con-

sider the budget-constrained case. As expected, a player increases her effort on a battlefield as her

corresponding value increases. In the constrained setting, she must therefore shift resources from

other battlefields. Since these other battlefields are still symmetric with respect to the respective

valuations, the reductions in efforts are symmetric. Intuition would thus let us to believe that

∂xij

∂vij
+ (k − 1) ∂xil

∂vij
= 0. That is in fact the case.

If we observe the pure cost case, this trade-off is mediated by the convexity of C(·). If C ′′(X) → 0,

the player just increases her effort on (ij) without reducing it anywhere else. If C ′′(X) → ∞ we

do in fact end up with the constrained solution.15

The efficiency parameters cannot make a difference to the effort distribution in the budget-constrained

case since the marginal change applies symmetrically to all battlefields and makes us end up in

the same symmetric equilibrium for a given k and R. In the pure cost case it is interesting to note

that the sign of the effect of an efficiency increase is not clearly defined for all cases. For the class

of impact functions that are homogenous of degree r (within the class axiomatised by Skaperdas

(1996)) one can show that both signs are indeed possible.

Proposition 4.

Let f(ax) = (ax)r for r ∈ (0, 2)16 and C(X) = 1
2X

2. Then we have

∂xij
∂ai

< 0 for r = 1

∂xij
∂ai

> 0 for r → 0

∂xij
∂ai

> 0 for r → 2

15This convergence result assumes that C′′(X) is continuously differentiable. Since we obtained the results indepen-
dently from solving the constrained optimisation of 3, this is not necessary and just an additional observation.

16See e.g. Pérez-Castrillo and Verdier (1992) applied to bilateral contest for this restriction.
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There are two competing effects that determine the sign: (i) the opportunity to reduce costs al-

lows each player to maintain the same probabilities on each battlefield while lowering total costs

and (ii) the increased efficiency increases marginal probabilities on each battlefield, thus creating

an incentive to increase efforts.

Interestingly, the effect that any change has on the rest of the network seems to be independent

of this sign. This is due to the fact that the slope of the best response functions, implicitly charac-

terised by the FOCs, is proportional to the cross-derivatives of the CSF on that battlefield. Since at

any equilibrium in which aixij = ajxji we have p12ij = −p21ji and p12ij = p21ji , which implies p12ij = 0.

Since one can show that this is a maximum with respect to xji, player i will reduce her effort if j

changes her effort in either direction.

Proposition 5.

Fix some k-regular network G. Let ω′ = ω + (0,1iiǫ) for some ω ∈ Ω and S = (I ′, B′) ⊆ G such that S

is a complete network. If there exists some ǫ > 0 such that ω′ ∈ V (ω) and the equilibrium x(ω′) satisfies

xij(ω
′) ≶ xs for all ∈ I ′\{i}, then

xji(ω
′) < xs

xjk(ω
′) > xs

Furthermore, if we define ∆xlq = xlq − xs, we have

∆xij > ∆xji,∆xjk

In words, irrespective of whether she becomes more or less aggressive, the other players in the

network reduce their efforts towards her.

Figure 5 illustrates what happens in case one player becomes more aggressive (player A), while

another reduces her efforts against her opponents (player D).17 The magnitude of the arrows

between players indicates the relative level of efforts.

Panel (a) of the figure represents the symmetric case in which all efforts (arrows) are of the same

magnitude. Choosing daA and daD such that the indicated changes in A’s and D’s effort follow,

we see in panel (b) that the two remaining players concentrate their efforts against each other.

17This is a straightforward extension to the above result. An increase/decrease in efforts for an increase in a implies
the opposite behaviour if a decreases.
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A M1

D M2

(a) Symmetric Case

daA,daD

A M1

D M2

(b) One Aggressive, One Defen-
sive Player

Figure 7: Diagrammatic Representation of Proposition 5 for k = 3
Note: The size of the arrows refers to the relative amount of resources allocated in each bilateral conflict. Throughout

the rest of the paper, numbers will indicate numerical observations, while different sizes of arrows indicate actual
results.

Given a specific level of costs that is prohibitive (or a strict budget constraint), efficiencies become

a scaling factor of effective budgets. Since after applying the change it must be that either aA > aD

or aA < aD, one can interpret the above figure in terms of the fight of rich against the poor.

The prediction of the model at hand is that conflict intensity contracts towards the mediocrely

endowed individuals and away from the rich and the poor. If efficiency is a measure of strength,

the model suggests that the weaker players will rather fight each other in a situation where a

single player is stronger than the rest. While Bandwagoning in typically needs the weak to rally

behind the strong player who in turns fights them less/ceases to fight them, Balancing (i.e. the

weak teaming up to oppose the strong) is not the strategically optimal behaviour.

While any change in efficiencies bears a certain degree of symmetry with it, since ∂ai is the same

for all (ij), a change in valuations induces more asymmetric strategic responses.

Proposition 6.

Fix some k-regular network G. Let ω′ = ω + (1ijǫ,0) for some ω ∈ Ω and S = (I ′, B′) ⊆ G such that

S is a complete network.18 There exists some ǫ > 0 such that ω′ ∈ V (ω) and the equilibrium x(ω′) for all

k ∈ I ′\{i, j} satisfies

xij(ω
′) > xs > xik(ω

′)

xjk(ω
′) > xs > xji(ω

′)

xkj(ω
′) > xs > xki(ω

′)

(5)

18In network terms: S is a subgraph of G induced by the clique I′.
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Furthermore, if we define ∆xlq = xlq − xs, we have

∆xij > ∆xjk,∆xkj (6)

Figure 8 exemplifies this statement for the case of three players.

The effect of increasing player 1’s value on her effort level against player 3 is intuitive. The effects

on player j’s and all player k’s efforts are less obvious. Roughly speaking, the effect of increasing

vij has a first-order effect only on player i’s effort levels and a second-order effect on all other

players. This is due to how the values feed into the players’ payoffs. While each own valuation

has a direct effect on her payoff, it can only affect other players’ payoffs through the strategic

channel. That is, the fact that even ‘impartial’ players change their equilibrium effort in case of a

change in some other player’s values is a result of the interdependencies of battlefields.

1 3

2

(a) Symmetric Case

v13 ↑
1 3

2

(b) Asymmetric Case

Figure 8: Diagrammatic Representation of Proposition 6 for k = 2

The behaviour of the preceding proposition, graphically depicted in Figure 8 is an even clearer

prediction of Bandwagoning behaviour as opposed to Balancing. Player 1 attacks player 2 more

aggressively and thus fights player 2 considerably less. Player two in turn does the same and

so they end up fighting player 3 jointly. Interpreting a high valuation as strength is a common

interpretation in the contest literature.19 This result could equally well be described as a form of

bullying, where one individual decides to bully a peer and so-called bystanders follow the bully

and become hacks. The fact that significant shares of adolescents are observed to behave in that

matter is well-established in social psychology (see for example Craig and Pepler (1998), O’connell

et al. (1999) and Salmivalli et al. (1996)).

19This interpretation as strength or ability comes from the fact that a shift in valuation is isomorphic to a shift in costs,
since a contestant with payoff p(xi, xj)vib− xi shows the same behaviour as one with payoff p(xi, xj)vi −

1

b
xi.
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3.2 Network Structure and Degree Asymmetry

The preceding comparative statics can be interpreted in terms of a strong player affecting the

whole network. So far we have looked at strength by considering the preference and technology

parameters. The degree centrality of a player ( i.e. the number of links she has to other players) is

another measure we could explore with that interpretation. Though we are leaving the realm of k-

regular networks here, some of the symmetry features and the associated intuition are important

in these discrete comparative statics as well.

Example 2 (Relative Network Structure).

Consider a budget-constrained setting in which every player has an endowment equal to one and faces

battlefields with the same value v̄ in each conflict. We introduce asymmetries solely a single player’s degree.

There are 4 players and one of them faces rivals with different degree.

4 1

2

3

1

0.244

0.378
0.5

0.495
0.5

0.495
0.5

0.378
0.5

0.505
0.5

0.505
0.5

Figure 9: Example asymmetry due to the network structure with budget constraint
Note: Red figures indicate efforts when player 4 is linked to player 1. Black figures give the efforts when only players

1,2 and 3 are connected to each other.

In this network, player 1 chooses the same efforts against players 2 and 3. From her perspective these

two players are identical. Player 4 differs from them as she puts all her resources on (14). For player 1 this

means that the probability p12 is bounded by above by 1/2. Comparing this to our earlier results, it seems

that the number of rivals is weakening player 1 on each battlefield. If the value on (14) is also given by v̄

though, her expected payoff in the 4-player game is higher than in the 3-player game (1.062v̄ > v̄).

How many rivals a player’s rival has thus acts as another measure of strength. There is two

opposite forces working in asymmetric networks: the own degree and the rivals degree. Given
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a symmetric parametrisation, every player allocates a strictly positive amount of resources to all

her battlefields. That implies that if the amount of battlefields that she is involved in increases,

her efforts can be no greater than with fewer battlefield. However, the way that she is going

to decrease them depends on the characteristics of her rivals and their rivals. To understand

how these forces interact with each other, we consider a simple environment with strict budget

constraint equal to one and a network that exhibit high asymmetry in the players’ degrees. One

such structure is the star network. The periphery players (p) allocate all their resources against the

central player (i or j) and the central player allocate the same amount of resources against all her

rivals, 1
di

or 1
dj

.

i

p

pp

p

j

p

p

p

p

p

0.165
0.25

0.165
0.25

0.165
0.25

0.165
0.25

0.135
0.2

0.135
0.2

0.135
0.2

0.135
0.2 0.135

0.20.34

0.322

Figure 10: Star networks of order 5 (left) and 6 (right).

The effect of the own degree is straightforward. The central players allocate resources inversely

proportional to their degrees. In the star network of order 5 for all p ∈ Ni we have xip = 1
4 and

for the star network of order 6 for all p ∈ Nj we have xjp = 1
5 . In order to create some extra

variance in terms of the degree distribution while we keep the setting tractable, we joint the two

stars by adding a link between the two central players, as it is shown in Figure 10 by the dashed

line. In this case xij = 0.34, xip = 0.165, xji = 0.322 and xjp = 0.135. Even though player j has

the opportunity to win a prizes on one more battlefield than player i, their payoffs are almost the

same (Ui = 1.080 > 1.081 = Uj) compared to the case where both star networks are in isolation

(Ui = 0.800 < 0.833 = Uj). This example shows that the number of battles a player is involved

can weaken her. Indeed, the pressure made by the rivals of my rivals is beneficial or the enemy of

my enemy is (or at least can be) my friend.

To understand the magnitude of this effect we can compare the equilibrium allocation with the

strategy coming from the heuristic 1
di

for different combinations of di and dj , as it is presented in

Table 1. Notice that the difference between having an equal resource allocation and the equilib-

23



xij − 1
di

di
dj 5 10 20 50 100

3 0.080 0.073 0.068 0.065 0.064
4 0.116 0.113 0.109 0.107 0.106
5 0.139 0.138 0.135 0.134 0.133
10 0.189 0.191 0.191 0.190 0.190
15 0.207 0.210 0.210 0.210 0.209
20 0.216 0.219 0.220 0.219 0.219
30 0.225 0.229 0.229 0.226 0.229
50 0.233 0.237 0.238 0.238 0.238
100 0.238 0.243 0.244 0.244 0.244

Table 1: Network comparative statics

rium strategies is always positive. This means that the amount of resources allocated to the rival

(i.e. j) with higher degree is always higher. Indeed, even though di increases for a given dj we ob-

serve a non-linear relation where the marginal increase has a decreasing effect over the difference.

This exercise suggests that in settings in which we can isolate the effect of own degree and rivals

degree, there is an initial effect related to the opponents’ degree leading player i to allocate more

resources against her. However, the changes in the magnitude are negligible with respect to the

rival’s degree changes.

4 Conclusion

We presented a model of conflict networks, focussing on heterogeneity of parameters and changes

in individual behaviour. Existence and uniqueness are discussed in a framework that accommo-

dates convex costs and budget constraints. In this framework it is possible to obtain comparative

statics with respect to effort efficiency, valuations and – in a more discrete fashion – the degree of

centrality of a player. We interpreted these results in terms of Bandwagoning – following a strong

player against her opponents – and Balancing – many weak(er) players joining forces to oppose a

strong(er) player.

The results seem to advocate Bandwagoning over Balancing, irrespective of the kind of strength

we consider. Since part of these considerations also have to do with threats that are dynamic in

nature, a full discussion of the two phenomena needs a model with multiple periods of interac-

tion, although the channel we describe here should not cease to exist in any such model.
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Endogenous network formation seems to be the natural next step, as strength should be at the

heart of the consideration with whom to start a fight. Since for standard methods like backward

induction, this requires to pin down payoffs, this is a technical challenge.

Providing the players with a conflict technology only, makes it hard to talk about the potential for

peace in this framework. Mutli-graph theory allows for two separate networks, one with conflict

and one with cooperative links. The opportunity costs of conflict generated by the opportunity of

cooperation can add a new perspective to this line of research. There is a recent, special interest

in this type of settings, following the work by Jackson and Nei (2015), Hiller (2017), and König

et al. (2017). However, due to the complexity of applying multiple networks simultaneously, these

model either focus on endogenous network formation without an explicit allocation stage or on

unidimensional action spaces over an exogenous multi-layer network.

Finally, with sufficiently simple networks, it is possible to test how real entities behave under cer-

tain parameter constellations. First steps have been made in that direction, but there are many

more hypotheses to be tested.
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Appendix

Proofs

For ease of notation, throughout the appendix, let us state the first order conditions and the corre-

sponding Hessian as primitives to the proofs. For each i ∈ I we have

Fij =
∂p(aixij , ajxji)

∂xij
aivij − C ′(Xi) = 0 ∀j ∈ Ni (7)

The Hessian H is then a block-symmetric matrix for which each diagonal block associated with

some player i’s first order condition is given by

Hi = [hi]lq =







∂2p(aixij ,ajxji)
(∂xij)2

a2i vij − C ′′(Xi) if l = q

−C ′′(Xi) else
(8)

Each off-diagonal block in row i and column j obtains as

Oij = [oij ]lq =







∂2p(aixij ,ajxji)
∂xij∂xji

aiajvij if l = i ∧ q = j

0 else
(9)

Note that OT
ij = −vij

vji
Oji.

Proofs from the main text

Proof of Proposition 1. The proof proceeds in three steps. First, we will show that a pure strategy

equilibrium exists for all ω ∈ Ω. Then, by means of contradiction, we show that every such

equilibrium must be strictly interior and thus be defined by the system of first order conditions

F as defined in 7. Finally, we show that the Jacobian of this system has a constant (positive)

sign across Ω. By application of the implicit function theorem (IFT) this implies that an open

neighbourhood around every ω ∈ Ω exists in which x(ω) is unique.

Claim 1.

A pure strategy equilibrium exists for all ω ∈ Ω.
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Proof.

Applying the well-known theorems due to Debreu (1952), Fan (1952) and Glicksberg (1952), the

result follows from making the following assertions. The game with the CSF defined in 1 is a

continuous game with a finite set of players. The utility functions are strictly concave (and thus

quasi-concave) if and only if

C ′′(Xi) >

∏

j∈Ni
p11ij vij

∑

k∈Ni

∏

l 6=k p
11
il vil

Whenever di is odd, the numerator is negative and the denominator is positive and vice versa

for di even. Since C ′′(Xi) ≥ 0 for all Xi ∈ R+, this conditon is always fulfilled and the claim

follows.

Lemma 3.

In any equilibrium we have Ri > xij > 0 and Rj > xji > 0 for all (ij) ∈ B.

Proof.

In the pure cost case we asserted Ri to be “sufficiently” high. For some player i with di = 1 this

means Ri is such that

C ′(Ri) > p1ijvij

Such an Ri ∈ R++ always exists.

The rest of the proof of the lemma will proceed in two steps.

Claim 2.

Any strategy profile with xij = xji = 0 for any (ij) ∈ B can never be an equilibrium.

Proof.

Player i can increase her utility by a (almost)20 discrete amount while increasing her costs by an

infinitesimal increment. This is a profitable deviation.

Claim 3.

Any strategy profile with xij > 0 and xji = 0 for any (ij) ∈ B can never be an equilibrium.

20We can chose δ arbitrarily small, so the marginal benefit becomes arbitrarily large.
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Proof.

Suppose not and consider let player i’s strategy profile be given by Xi = (xi1, ..., xij , ..., xini
).

Now consider the alternative profile x′i which is such that x′ij = xij − ǫ > 0. The probability

of winning on (ij) is still (sufficiently close to) 1 and costs have reduced, thus it constitutes a

profitable deviation. A contradiction.

Claim 4.

For every ω ∈ Ω we have det(H) > 0.

Proof.

The general formula for det(Hi) obtains as

det(Hi) =





∏

j∈Ni

p11ij vij



− C ′′(Xi)





∑

j∈Ni

∏

l 6=j

p11il vil





Note that this also applies to any principal minor of Hi (and their principal minors and so on)

simply by summing and taking products over a strict subset of Ni.

Besides the diagonal blocks, H is a sparse matrix with only one (potentially) non-zero element in

each Oij . The determinant can thus be expressed as the sum of the determinant of the diagonal

matrix and the additional possible permutations with the respective rows.

In order to do so, let the set of all such permutations be denoted Sn with typical element σ. It

contains all sets of (ij) ∈ B that correspond to the additional row permutations. As a last piece of

notation we introduce Hi(σ) which is the submatrix of Hi obtained by deleting all cofactors (jj)

such that (ij) ∈ σ. Using the signum function notation for determinants, we get
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det(H) =
∏

i∈I

det(Hi) +
∑

σ∈Sn

sgn(σ)
∏

(ij)∈σ

−
(

p12ij
)2

vijvji
∏

i∈I

det(Hi(σ))

=
∏

i∈I

det(Hi) +
∑

σ∈Sn

sgn(σ)(−1)|σ|
∏

(ij)∈σ

(

p12ij
)2

vijvji
∏

i∈I

det(Hi(σ))

=
∏

i∈I

det(Hi) +
∑

σ∈Sn

∏

(ij)∈σ

(

p12ij
)2

vijvji
∏

i∈I

det(Hi(σ))

where the last equality follows from the fact that the signum is negative when |σ| is odd and

positive when |σ| is even.

One can see that for any J ⊆ Ni (including the empty set)

∂ det(Hi(J))

∂C ′′(Xi)
> 0 if di − |J | even

∂ det(Hi(J))

∂C ′′(Xi)
< 0 if di − |J | odd

Increasing the degree of convexity of the cost function for all i ∈ I and all Xi, this implies21

∇HC′′ > 0

Thus, the linear cost case is a lower bound to the determinant. More formally

det(H)
∣

∣

∣

∣

C′′(Xi)=0∀i∈I

> 0 ⇒ det(H) > 0

Since all off-diagonal elements beside the cross-derivatives in the Oij or Oji matrices are zero, the

only permutations that result in a diagonal that has a nonzero product are those where row (ij) is

swapped with row (ji). Let σ(B) contain the (ij) ∈ B that are permuted.

The determinant has three types of elements:

• For σ(B) = ∅ we have
∏

(ij)∈B π11
ij > 0 since b is always an even number

• For |σ(B)| odd we have (−1)
∏

(ij)∈σ(B)−(p12ij )
2vijvji

∏

(ij)/∈σ(B) π
11
ij > 0

21In
∏

i∈I det(Hi) as well as
∏

i∈I det(Hi(σ)) for any possible permutation group σ.
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• For |σ(B)| even we have (+1)
∏

(ij)∈σ(B)−(p12ij )
2vijvji

∏

(ij)/∈σ(B) π
11
ij > 0

Thus, for all ω ∈ Ω we have det(H) > 0.

We conclude by applying the IFT to each ω ∈ Ω and noting that the system F is a function of

class C∞ over the open set Rb
++ × Ω.

Proof of Proposition 2. We employ the same steps as in the previous proof with the additional qual-

ification of condition 4.

Claim 5.

A pure strategy equilibrium exists for all ω ∈ Ω.

Proof.

Immediate from the previous proof.

Lemma 4.

If condition 4 is satisfied we have Ri > xij > 0 and Rj > xji > 0 for all (ij) ∈ B.

Proof.

Fix some (ij) ∈ B.

Case 1: di, dj ≥ 2 for some (ij) ∈ B

Claim 6.

In any equilibrium xij = xji = 0 cannot occur.

Proof.

Suppose not. The following is a profitable deviation: Let x′ik = xik − ǫ for some small ǫ > 0.

Some strictly positive effort level xik must exist due to the budget constraint. Due to continuity

of the CSF, the winning probability will not be affected by a lot. Employing x′ij = ǫ increases the

probability of winning on (ij) to (almost) one, and thus increases utility as well. A contradiction.
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Claim 7.

In any equilibrium xij > 0 and xji = 0 can never occur.

Proof.

Suppose not. The probability of winning of player i is one. If player i choses x′ij = xij − ǫ > 0

with γ ∈ (0, 1), the probability is still one. If x′ik = xik + ǫ, the probability of winning will increase

on that battlefield and so will the payoff. A contradiction.

Case 2: di ≥ 2 and dj = 1 for some (ij) ∈ B

Claim 8.

If condition 4 is fulfilled, then for all x−i ∈ R
b−di
+ there exists a vector xi = (xi1, ..., xij , ..., xini

) ∈ R
di
+

such that MUij = MUik for all k ∈ Ni\{j}.

Proof.

The proof is in the main text

Claim 9.

For every ω ∈ Ω we have det(H) > 0 if 4 is given.

Proof.

Given the structure of each Hi, for each contribution we need at least n permutations. Let

σ(B) contain the (ij) that are permuted beyond this. Each summand of the determinant is of the

following two types:

• (+1)





∏

i∈I

∏

j∈Ni\{ki}
(ij)/∈σ(B)

π11
ij





(

∏

(lq)∈σ(B)−(p12lq )
2vlqvql

)

if |σ(B)|+ n is even

• (−1)





∏

i∈I

∏

j∈Ni\{ki}
(ij)/∈σ(B)

π11
ij





(

∏

(lq)∈σ(B)−(p12lq )
2vlqvql

)

if |σ(B)|+ n is odd

These expressions are positive for every combination of |σ(B)| and n being even or odd, respec-

tively. This implies that det(H) > 0 for all ω ∈ Ω as long as condition 4 is satisfied.
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Optimality conditions for the budget-constrained case.

Let us recall the maximisation problem that a given player is facing

max
xi

∑

j∈Ni

vij
f(aixij)

[f(aixij) + f(ajxji)]
s.t.

∑

j∈Ni

xij ≤ R

Given the Lagrange associated to this constrained maximisation problem, the first order condi-

tions for the resources allocated to the battlefield (ij) is characterised by the following expression,

∂Li

∂xij
= 0 ⇒ vij ai f

′(aixij)f(ajxji)

[f(aixij) + f(ajxji)]2
= λi then f(aixij) =

√

vij ai f ′(aixij)f(ajxji)√
λi

− f(ajxji)

Summing over the rivals of player i are solving for the square root of λi

ai
,

√

λi

ai
=

∑

k∈Ni

√

vikf ′(aixij)f(akxki)
∑

k∈Ni
[f(akxik) + f(akxki)]

and

√

λi

ai
=

√

vijf ′(aixij)f(ajxji)

(f(aixij) + f(ajxji))

Using this two expressions we get that

f(aixij) + f(ajxji)
∑

k∈Ni
[f(aixik) + f(akxki)]

=

√

vij f ′(aixij)f(ajxji)
∑

k∈Ni

√

vik f ′(aixik)f(akxki)

Proof of Lemma 1.

As the network of conflict G induced by the disjoint pair of sets (N,B) is a connected graph we

always can find a path P between any two nodes. Let us take any two nodes h and l that are not

rivals (i.e. h 6∈ Nl and l 6∈ Nh), we know that there exist a path Phl = {hi2, i2i3, . . . , ik−1ik, ikl}
where ij ∈ I and all (ijik) ∈ B between them. As usual, the best-response of player h depends on

her rivals’ actions, thus x
∗
h = xh(x

∗
r1
, . . . ,x∗

rj
, . . . ,x∗

rk
) where all rj ∈ Nh. In particular, we know

that (hi2) ∈ B which implies that i2 ∈ Nh, them x
∗
h = xh(x

∗
r1
, . . . ,x∗

i2
, . . . ,x∗

rj
, . . . ,x∗

rk
). Notice

that x
∗
i2 = xi2(x

∗
g1
, . . . ,x∗

i3
, . . . ,x∗

gj
, . . . ,x∗

gk
) for all gi ∈ Ni2 . Following the sequence of nodes

describe path the path Phl, we can rewrite the best-response of player h as a function of her direct

rivals and all the nodes in the path such that x∗
h = xh(x

∗
r1
, . . . ,x∗

rj
, . . . ,x∗

rk
,x∗

i2,x
∗
i3, . . . ,x

∗
ik,x

∗
l ).

Thus, even though player are not direct rival between them and they are pay-off irrelevant in the
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primitives of the game, the best-response of any player will depend on the action of any player that

is connected by a path with her. As this the graph is connected this it true for any pair of player.

Therefore generically, we have that x∗
h = xh(X

∗
−{h,l},x

∗
l ) and analogously x

∗
l = xl(X

∗
−{h,l},x

∗
h)

where X
∗
−{h,l} = [x∗

i ]i∈I\{h,l}.

Proof of Corollary 1.

Recall the first order conditions induced by the optimisation problem of player i in battlefield

(ij),

vijf
′(aixij)f(ajxji)

[f(aixij) + f(ajxji)]2
= C ′(Xi) ⇒ f(aixij)

2 + 2f(aixij)f(ajxji) + f(ajxji)
2 − vijf

′(aixij)f(ajxji)

C ′(Xi)
= 0

Based on the result presented in Lemma 1, we know that player i allocation in the conflict against

j will depend also in the j rivals’ actions. If k ∈ Nj , player j optimality condition requires that

f(aixij) =
[f(aixij) + f(ajxji)]

2

[f(akxkj) + f(ajxjk)]2
f(akxkj)f

′(ajxjk)

f ′(ajxji)

vjk
vji

Using this expression in the optimality condition of player i for battlefield (ij), we get

[

[f(aixij) + f(ajxji)]
2

[f(akxkj) + f(ajxjk)]2
f(akxkj)f

′(ajxjk)

f ′(ajxji)

vjk
vji

]2

+ 2

[

[f(aixij) + f(ajxji)]
2

[f(akxkj) + f(ajxjk)]2
f(akxkj)f

′(ajxjk)

f ′(ajxji)

vjk
vji

]

f(ajxji)+

f(ajxji)
2 − vijf

′(aixij)f(ajxji)

C ′(Xi)
= 0

We are interested to solve for f(aixij) and f(ajxji) , to do that we need to find the roots of this

polynomial. Notice that this expression is of the form

A f(aixij)
4 +B f(aixij)

3f(ajxji) + C f(aixij)
2(2f(ajxji) + 6f(ajxji)

2)+

D f(aixij)(4f(ajxji)
3 + 4f(ajxji)

2) + E 2f(ajxji)
3 + F f(ajxji)

4 + C = 0,

which independently of the forms of the scalar A, B, C, D, E and F is an irreducible over C and

therefore irreducible over R+. We can continue the substitution process along any path between

player i and any other player l ∈ I. Each step further we are going to find a new term in our

polynomial which exponent is going to be squared due to the non-linearity of the primitives of
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the contest success function. Thus, to solve the system of equations induced by the maximisation

problem of each individual, we will need to solve at least one polynomial of degree 2L where L is

the largest path between a pair of player i and j. Hence, to solve the system of equations we will

need to find the root of at least one polynomial of the form

ax2
L

+ bx2
L−1 + . . .+ cx2

2−1 + dx2
1−1 + e = 0

Therefore, network structures in which we can find a path of length higher or equal than 3 will

require to find the roots of at least one general algebraic equation of degree higher or equal to 8 in

the best case scenario.

Theorem 1.

Abel-Ruffini Theorem(1779)

A general algebraic equation of degree ≥ 5 cannot be solved in radicals. This means that there does not exist

any formula which would express the roots of such equation as functions of the coefficients by means of the

algebraic operations and roots of natural degrees.

By looking at the functional form of the reaction functions and the result of the Abel-Ruffini The-

orem, we can say that this type of system will not be an algebraic solution using radicals. Hence,

in our setting the equilibrium strategies of the game do not have a generic algebraic solution char-

acterisation if the longest path between any two players is higher than 3.

Proof of Lemma 2.

⇒:

Let ω = {12bv,1na} for some a, v ∈ R++ and di = k ∈ N+ for all i ∈ I.

Consider some FOC of the maximisation problem for some player i and some battlefield (ij)

∂p(axij , axji)

∂xij
av = C ′(Xi)

assume symmetry: xij = xji = xs

⇔ p1(axs, axs)av = C ′(kxs)

⇔ xs =
1

k
C ′−1(p1(axs, axs)av)

It is unique as per proposition 1.
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⇐:

Assume xlq = xs for all (lq) ∈ B some xs. Redoing the steps in the first part for any two players i

and j, we get

1

di
C ′−1(p1(axs, axs)av) =

1

dj
C ′−1(p1(axs, axs)av)

which implies di = dj .

Proof of Corollary 2.

Take condition ?? for some battlefield (ij) ∈ B and both players in that battlefield. The condition

obtains as

p1(aix
s, ajx

s)

p1(ajxs, aixs)
=

vji
vij

Assuming vij = vji we have

p1(aix
s, ajx

s) = p1(ajx
s, aix

s)

which can be true if and only if ai = aj .

Proof of Proposition 3.

In this case the Jacobian of the system of FOCs contains of the following elements:

∂Fij

∂xij
= a2i p

11
ij vij − C ′′(Xi) < 0

∂Fij

∂xji
= aiajp

12
ij vij ≶ 0

∂Fij

∂xik
= −C ′′(Xi) < 0

∂Fij

∂xki
= 0

Since at any symmetric equilibrium in a k-regular network p12ij = 0 for all (ij) ∈ B, this results

in Dx(F ) = diag(A1, A2, ..., An) with Ai = Bi + Ei and
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Bi =

























fi1 0 · · · · · · 0

0 fi2 0 · · · 0
...

. . .

...
. . .

0 fiN

























with fij := a2i p
11
ij vij and Ei = [e]kl = −C ′′(Xi) for all (kl). Note that at the symmetric equilib-

rium in a k-regular network we have fij = fkl = f = a2p11ij v.

The inverse of this matrix is given by applying the Sherman-Morrison formula to be

A−1
i =

1

f
I −

1
f2E

1− 1
f diC

′′(X)

or, in a more compact way,

A−1 = G = [g]l,q =







f−(di−1)C′′(X)
f−diC′′(X) f−1 if l = q

C′′(X)
f−diC′′(X)f

−1 else

The partial effects are then given by

∂x

∂ω
= − [Dx(F )]−1Dω(F )

or more precisely:
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∂xij
∂vij

= −f − (di − 1)C ′′(X)

f − diC ′′(X)

p1

ap11v
> 0

∂xik
∂vij

=
C ′′(X)

f − diC ′′(X)

p1

ap11v
< 0 for k 6= j

∂xij
∂ai

= − 1 + f

f − diC ′′(X)

(

p1

a2p11
+

x

a

)

The effects for the budget-constrained case obtain for C ′′ → ∞:22

∂xij
∂vij

= −di − 1

di

p1

ap11v
> 0

∂xik
∂vij

=
1

di

p1

ap11v
< 0 for k 6= j

∂xij
∂ai

= 0

∂xij
∂R

=
1

di

Proof of Proposition 4.

Under the assumed analytical forms, the expression for
∂xij

∂ai
obtains as

1

a3rv + ak

[

(xs)2 − 1

2
ar−1(xs)1+r − a2rvxs +

1

2
a1+rv(xs)r

]

(P1)

while the equilibrium effort for each player and battlefield is given by

xs =
(

a1+r r

2k
v
) 1

2−r

Case 1: r = 1

Given the claim in the proof we need to assert that the term in square parenthesis in the first

22Again, we also obtained these solving the constrained problem independently.
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expression is indeed positive. Under r = 1 it becomes

(xs)2 − a2vxs < 0

Since we know that xs > 0 this is equivalent to

xs =
1

2k
a2v < a2v

or k > 1
2 , which is true for every possible (non-trivial) k-regular network.

Case 2: r → 0

In this case xs → 0 and P1 becomes23

1

2

v

k

√

av

2k
> 0

Case 3: r → 2

Under this limit the expression in P1 changes to

(xs)2 −
(

2

a
+ a2v

)

xs + 4av

The equilibrium will be xs → 0 if a3v < k and xs → ∞ if a3v > k. In both cases the last expression

is tending towards something strictly positive.

Proof of Proposition 5.

From the derivatives obtained in the earlier result, we know already that xij(ω
′) > xs as well as

xik(ω
′) < xs for all k 6= j. Note that the change induced in a nested function f is less than that

induced in g whenever

|Df(g(x))g′(x)| < |g′(x)|

|Df(g(x))||g′(x)| < |g′(x)|

|Df(g(x))| < 1

23It is the last summand that contains an expression that is proportional to limr→0+ rr = 1. We are thus not using the
controversial mathematical convention that 00 = 1, but obtain the result from an actually defined limit.
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The changes we consider are either
∂xij

∂xji
, which is zero at the symmetric parametrisation and close

to zero near it, and

∣

∣

∣

∣

∂xij
∂xik

∣

∣

∣

∣

=

∣

∣

∣

∣

− −C ′′(Xi)

p11 − C ′′(Xi)

∣

∣

∣

∣

=

∣

∣

∣

∣

C ′′(Xi)

C ′′(Xi)− p11

∣

∣

∣

∣

< 1

This implies that any effect of a sufficiently small change in parameters from ω diminishes over

with increasing length of a path.

We denote each best response function as a nested function of the strategies that constitute the

shortest path through the graph to a nonzero derivative. In a slight abuse of notation, let us

denote player i’s best response function on battlefield (ij) as xij(xji(ai))

xji(xij(ai)) =xji(xij(a)) +
∂xji
∂xij

∂xij
∂ai

(a)(ai − a)

+
1

2

(

∂2xji
(∂xij)2

(

∂xij
∂ai

)2

+
∂xji
∂xij

∂2xij
(∂ai)2

)

(a)(ai − a)2

| ∂xji
∂xij

(a)=0
=xs − 1

2

p122a3v(z − C ′′(X))

z − C ′′(X)

(

∂xij
∂ai

)2

(ai − a)2

<xs

Note that this is irrespective of the sign of
∂xij

∂ai
.

Similarly, it follows that

xjk(xji(xij(ai))) = xs +
∂xjk
∂xji

∂2xji
(∂xij)2

(

∂xij
∂ai

)2

(ai − a)2 > xs

Proof for Proposition 6.

Just as in the above proof the effects of the other players in S can be obtained via a Taylor

approximation as

xji(xij(vij))=̃xs +
1

2

∂2xji
(∂xij)2

(

∂xij
∂vij

)2

(vij − v)2 < xs

xjk(xji(xij(vij)))=̃xs +
1

2

∂xjk
∂xji

∂2xji
(∂xij)2

(

∂xij
∂vij

)2

(vij − v)2 > xs
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xkj(xki(xik(vij)))=̃xs +
1

2

∂xkj
∂xki

∂2xki
(∂xik)2

(

∂xik
∂vij

)2

(vij − v)2 > xs

xki(xik(vij))=̃xs +
1

2

∂2xki
(∂xik)2

(

∂xik
∂vij

)2

(vij − v)2 < xs

Since the |∂xij

vij
|, |∂xik

vij
| > ∂xlq

vij
= 0 for any (lq) such that l 6= i, there exists some ǫ = vij − v such

that for any A 6= 0 any |Aǫ2| is strictly between the absolute value of these partial derivatives and

0.

Data and Graphs

The data we used for figure 2 stems from the Uppsala Conflict Data Program (UCDP). The dataset

is [a] dyad-year version of the UCDP/PRIO Armed Conflict Dataset. A dyad consists of two opposing

actors in an armed conflict where at least one party is the government of a state. (UCDP, 2018). For a

more detailed description of the dataset also see Harbom et al. (2018) or Pettersson and Eck (2018).

Figure 11: Frequency of Conflict Types over Time

Extrasystemic armed conflict is defined as a conflict between a state and a non-state group out-

side its own territory. Interstate armed conflicts are between two or more states. Internal armed

conflicts are between the government of a state and one or more internal opposition groups, with-

out intervention from other states. For Internationalised Internal conflict, intervention from other

states on one or both sides is added to the definition.
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