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Summary

The method of model averaging has become an important tool to deal with model uncer-
tainty, for example in situations where a large amount of different theories exist, as are
common in economics. Model averaging is a natural and formal response to model uncer-
tainty in a Bayesian framework, and most of the paper deals with Bayesian model averaging.
The important role of the prior assumptions in these Bayesian procedures is highlighted.
In addition, frequentist model averaging methods are also discussed. Numerical methods
to implement these methods are explained, and I point the reader to some freely available
computational resources. The main focus is on uncertainty regarding the choice of covari-
ates in normal linear regression models, but the paper also covers other, more challenging,
settings, with particular emphasis on sampling models commonly used in economics. Ap-
plications of model averaging in economics are reviewed and discussed in a wide range
of areas, among which growth economics, production modelling, finance and forecasting
macroeconomic quantities. (JEL: C11, C15, C20, C52, O47).

1 Introduction

This paper is about model averaging, as a solution to the problem of model uncertainty and

focuses mostly on the theoretical developments over the last two decades and its uses in appli-

cations in economics. This is a topic that has now gained substantial maturity and is generat-

ing a rapidly growing literature. Thus, a survey seems timely. The discussion focuses mostly
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on uncertainty about covariate inclusion in regression models (normal linear regression and its

extensions), which is arguably the most pervasive situation in economics. Advances in the con-

text of models designed to deal with more challenging situations, such as data with dependency

over time or in space or endogeneity (all quite relevant in economic applications) are also dis-

cussed. Two main strands of model averaging are distinguished: Bayesian model averaging

(BMA), based on probability calculus and naturally emanating from the Bayesian paradigm by

treating the model index as an unknown, just like the model parameters and specifying a prior on

both; and frequentist model averaging (FMA), where the chosen weights are often determined so

as to obtain desirable properties of the resulting estimators under repeated sampling and asymp-

totic optimality.

In particular, the aims of this paper are:

• To provide a survey of the most important methodological contributions in model averag-

ing, especially aimed at economists. The presentation is formal, yet accessible, and uses a

consistent notation. This review takes into account the latest developments, which is im-

portant in such a rapidly developing literature. Technicalities are not avoided, but some are

dealt with by providing the interested reader with the relevant references. Even though the

list of references is quite extensive, this is not claimed to be an exhaustive survey. Rather,

it attempts to identify the most important developments that the applied economist needs to

know about for an informed use of these methods. This review complements and extends

other reviews and discussions; for example by Hoeting et al. (1999) on Bayesian model

averaging, Clyde and George (2004) on model uncertainty, Moral-Benito (2015) on model

averaging in economics and Wang et al. (2009) on frequentist model averaging. Dormann

et al. (2018) present an elaborate survey of model averaging methods used in ecology. Fur-

ther, a review of weighted average least squares is provided in Magnus and De Luca (2016)

while Fragoso et al. (2018) develop a conceptual classification scheme to better describe

the literature in Bayesian model averaging. Koop (2017) discusses the use of Bayesian

model averaging or prior shrinkage as responses to the challenges posed by big data in

empirical macroeconomics. This paper differs from the earlier surveys mainly through the

combination of a more ambitious scope and depth and the focus on economics.

• By connecting various strands of the literature, to enhance the insight of the reader into the

way these methods work and why we would use them. In particular, this paper attempts to

tie together disparate literatures with roots in econometrics and statistics, such as the litera-

ture on forecasting, often in the context of time series and linked with information criteria,

fundamental methodology to deal with model uncertainty and shrinkage in statistics1, as

1Choosing covariates can be interpreted as a search for parsimony, which has two main approaches in Bayesian
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well as more ad-hoc ways of dealing with variable selection. I also discuss some of the

theoretical properties of model averaging methods.

• To discuss, in some detail, key operational aspects of the use of model averaging. In partic-

ular, the paper covers the various commonly used numerical methods to implement model

averaging (both Bayesian and frequentist) in practical situations, which are often char-

acterized by very large model spaces. For Bayesian model averaging, it is important to

understand that the weights (based on posterior model probabilities) are typically quite

sensitive to the prior assumptions, in contrast to the usually much more robust results for

the model parameters given a specific model. In addition, this sensitivity does not vanish as

the sample size grows (Kass and Raftery, 1995; Berger and Pericchi, 2001). Thus, a good

understanding of the effect of (seemingly arbitrary) prior choices is critical.

• To review and discuss how model averaging has already made a difference in economics.

The paper lists a number of, mostly recent, applications of model averaging methods in

economics, and presents some detail on a number of areas where model averaging has fur-

thered our understanding of economic phenomena. For example, we highlight the contribu-

tions to growth theory, where BMA has been used to shed light on the relative importance

of the three main growth theories (geography, integration and institutions) for develop-

ment, as well as on the existence of the so-called natural resource curse for growth; the

use of BMA in combining inference on impulse responses from models with very different

memory characteristics; the qualification of the importance of established early warning

signals for economic crises; the combination of inference on production or cost efficien-

cies through different models, etc. Model averaging provides a natural common framework

in which to interpret the results of different empirical analyses and as such should be an

important tool for economists to resolve differences.

• To provide sensible recommendations for empirical researchers about which modelling

framework to adopt and how to implement these methods in their own research. In the case

of Bayesian model averaging, I recommend the use of prior structures that are easy to elicit

and are naturally robust. I include a separate section on freely available computational

resources that will allow applied researchers to try out these methods on their own data,

without having to incur a prohibitively large investment in implementation. In making rec-

ommendations, it is inevitable that one draws upon personal experiences and preferences,

statistics: through the use of shrinkage priors, which are absolutely continuous priors that shrink coefficients to zero

but where all covariates are always included in the model, and through allocating prior point mass at zero for each

of the regression coefficients, which allows for formal exclusion of covariates and implies that we need to deal with

many different models, which is the approach recommended here.
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to some extent. Thus, I present the reader with a somewhat subjective point of view, which

I believe, however, is well-supported by both theoretical and empirical results.

Given the large literature, and in order to preserve a clear focus, it is important to set some

limits to the coverage of the paper. As already explained above, the paper deals mostly with

covariate uncertainty in regression models, and does not address issues like the use of Bayesian

model averaging in classification trees (Hernández et al., 2018) or in clustering and density es-

timation (Russell et al., 2015). The large literature in machine learning related to nonparamet-

ric approaches to covariate uncertainty (Hastie et al., 2009) will also largely be ignored. The

present paper focuses on averaging over (mostly nontrivial) models as a principled and formal

statistical response to model uncertainty and does not deal with data mining or machine learning

approaches, as further briefly discussed in Subsection 2.2. In addition, this paper considers situa-

tions where the number of observations exceeds the number of potential covariates as this is most

common in economics (some brief comments on the opposite case can be found in footnote 17).

As mentioned above, I discuss Bayesian and frequentist approaches to model averaging. This

paper is mostly concerned with the Bayesian approach for the following reasons:

• BMA benefits from a number of appealing statistical properties, such as point estimators

and predictors that minimize Mean Squared Error (MSE), and the calibration of the asso-

ciated intervals (Raftery and Zheng, 2003). In addition, probabilistic prediction is optimal

in the log score sense. Furthermore, BMA is typically consistent and is shown to display

optimal shrinkage in high-dimensional problems. More details can be found in Subsection

3.2.

• Computationally, BMA is much easier to implement in large model spaces than FMA, since

efficient MCMC algorithms are readily available.

• In contrast to FMA methods, BMA immediately leads to readily interpretable posterior

model probabilities and probabilities of inclusion of possible determinants in the model.

• I personally find the finite-sample and probability-based nature of the Bayesian approach

very appealing. I do realize this is, to some extent, a personal choice, but I prefer to oper-

ate within a methodological framework that immediately links to prediction and decision

theory.

• There is a large amount of recent literature using the Bayesian approach to resolve model

uncertainty, both in statistics and in many areas of application, among which economics

4



features rather prominently. Thus, this focus on Bayesian methods is in line with the ma-

jority of the literature and seems to reflect the perceived preference of many researchers in

economics.

Of course, as Wright (2008) states: “One does not have to be a subjectivist Bayesian to

believe in the usefulness of BMA, or of Bayesian shrinkage techniques more generally. A fre-

quentist econometrician can interpret these methods as pragmatic devices that may be useful for

out-of-sample forecasting in the face of model and parameter uncertainty.”

This paper is organised as follows: in Section 2 I discuss the issue of model uncertainty

and the way it can naturally be addressed through Bayesian model averaging. This section also

comments on the construction of the model space and introduces the specific context of covariate

uncertainty in the normal linear model. Section 3 provides a detailed account of Bayesian model

averaging, focusing on the prior specification, its properties and its implementation in practice.

This section also provides a discussion of various generalizations of the sampling model and of

a number of more challenging models, such as dynamic models and models with endogenous

covariates. Section 4 describes frequentist model averaging, its computational implementation,

and its links with forecast combinations. Section 5 mentions some of the literature where model

averaging methods have been applied in economics and discusses how model averaging methods

have contributed to our understanding of a number of economic issues. In Section 6 some freely

available computational resources are briefly discussed, and the final section concludes.

2 Model uncertainty

It is hard to overstate the importance of model uncertainty for economic modelling. Almost

invariably, empirical work in economics will be subject to a large amount of uncertainty about

model specifications. This may be the consequence of the existence of many different theories2 or

of many different ways in which theories can be implemented in empirical models (for example,

by using various possible measures of theoretical concepts or various functional forms) or of

other aspects such as assumptions about heterogeneity or independence of the observables. It is

important to realize that this uncertainty is an inherent part of economic modelling, whether we

acknowledge it or not. Putting on blinkers and narrowly focusing on a limited set of possible

models implies that we may fail to capture important aspects of economic reality. Thus, model

uncertainty affects virtually all modelling in economics and its consequences need to be taken

into account. There are two main strategies that have been employed in the literature:

2Or perhaps more precisely, the lack of a universally accepted theory, which has been empirically verified as a

(near) perfect explanation of reality, clearly a chimera in the social sciences.
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• Model selection: such methods attempt to choose the best of all models considered, ac-

cording to some criterion. Examples of this abound and some of the main model selection

strategies used in the context of a linear regression model are briefly described in Subsec-

tion 2.2. The most important common characteristic of model selection methods is that

they choose a model and then conduct inference conditionally upon the assumption that

this model actually generated the data. So these methods only deal with the uncertainty

in a limited sense: they try to select the “best” model, and their inference can only be

relied upon if that model happens to be (a really good approximation to) the data gener-

ating process. In the much more likely case where the best model captures some aspects

of reality, but there are other models that capture other aspects, model selection implies

that our inference is almost always misleading, either in the sense of being systematically

wrong or overly precise. Model selection methods simply condition on the chosen model

and ignore all the evidence contained in the alternative models, thus typically leading to

underestimation of the uncertainty.

• Model averaging: here we take into account all the models contained in the model space

we consider (see Subsection 2.1) and our inference is averaged over all these models, using

weights that are either derived from Bayes’ theorem (BMA) or from sampling-theoretic

optimality considerations (FMA). This means our inference takes into account a possible

variation across models and its precision is adjusted for model uncertainty. Averaging over

models is a very natural response to model uncertainty, especially in a Bayesian setting, as

explained in some detail later in this section.

As it is unlikely that reality (certainly in the social sciences) can be adequately captured

by any single model, it is often quite risky to rely on a single selected model for inference,

forecasts and (policy) conclusions. It is much more likely that an averaging method gives a better

approximation to reality and it will almost certainly improve our estimate of the uncertainty

associated with our conclusions.

One could argue that the choice between model selection and model averaging methods boils

down to the underlying question that one is interested in answering. If that question relates to

identifying the “true” model within a model space that is known to contain the data generating

process, then model selection might be the appropriate strategy. However, if the question relates

to, for example, the effect of primary education on growth, then there is no reason at all to arti-

ficially condition the inference on choosing a single model. More precisely, the choice between

model averaging and model selection is related to the decision problem that we aim to solve.

In most typical situations, however, the implicit loss function we specify will lead to model av-

eraging. Examples are where we are interested in maximizing accuracy of prediction or in the
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estimation of covariate effects. So it makes sense to use model averaging in economics, whenever

we are (as usual) interested in quantities that are not model-specific (such as predictions, effects

of possible determinants, elasticities, efficiencies etc.).

As already mentioned, one important and potentially dangerous consequence of neglecting

model uncertainty, either by only considering one model from the start or by choosing a single

model through model selection, is that we assign more precision to our inference than is war-

ranted by the data, and this leads to overly confident decisions and predictions. In addition, our

inference can be severely biased. See Chatfield (1995) and Draper (1995) for extensive discus-

sions of model uncertainty. In the context of the evaluation of macroeconomic policy, Brock

et al. (2003) describe and analyse some approaches to dealing with the presence of uncertainty

about the structure of the economic environment under study. Starting from a decision-theoretic

framework, they recommend model averaging as a key tool in tackling uncertainty. Brock and

Durlauf (2015) specifically focus on policy evaluation and provide an overview of different ap-

proaches, distinguishing between cases in which the analyst can and cannot provide conditional

probabilities for the effects of policies.

As an example, Durlauf et al. (2012) examine the effect of different substantive assumptions

about the homicide process on estimates of the deterrence effect of capital punishment3. Con-

sidering four different types of model uncertainty, they find a very large spread of effects, with

the estimate of net lives saved per execution ranging from -63.6 (so no deterrence effect at all)

to 20.9. The latter evidence was a critical part of the National Academy of Sciences report that

concluded there is no evidence in favour of or against a deterrent effect of capital punishment.

This clearly illustrates that the issue of model uncertainty needs to be addressed before we can

answer questions such as this and many others of immediate relevance to society.

Another example, which is discussed in more detail in Subsection 5.1.1, concerns the empiri-

cal evidence for the three main types of economic growth determinants traditionally mentioned in

the literature: geography, integration (trade) and institutions (often linked to property rights and

rule of law). Earlier influential papers in growth theory have tended to consider only a limited

number of possible models, focusing on a particular theory but without adequately covering pos-

sible alternative theories. This led Acemoglu et al. (2001) and Rodrik et al. (2004) to conclude

that the quality of institutions is the only robust driver of development, while Frankel and Romer

(1999) find that trade is the dominating determinant. Analyses using BMA in Lenkoski et al.

(2014) and Eicher and Newiak (2013) lead to much more balanced conclusions, where all three

main theories are seen to be important for growth. This highlights the importance of accounting

for a large enough class of possible models and dealing with model uncertainty in a principled

3A systematic investigation of this issue goes back to Leamer (1983).
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and statistically sound manner.

Over the last decade, there has been a rapidly growing awareness of the importance of dealing

with model uncertainty for economics. As examples, the European Economic Review has recently

published a special issue on “Model Uncertainty in Economics” which was also the subject of the

2014 Schumpeter lecture in Marinacci (2015), providing a decision-theory perspective. In addi-

tion, a book written by two Nobel laureates in economics (Hansen and Sargent, 2014), focuses

specifically on the effects of model uncertainty on rational expectations equilibrium concepts.

In line with probability theory, the formal Bayesian response to dealing with uncertainty is

to average. When dealing with parameter uncertainty, this involves averaging over parameter

values with the posterior distribution of that parameter in order to get the predictive distribution.

Analogously, model uncertainty is also resolved through averaging, but this time averaging over

models with the (discrete) posterior model distribution. The latter procedure is usually called

Bayesian model averaging and was already described in Leamer (1978) and later used in Min and

Zellner (1993), Osiewalski and Steel (1993), Koop et al. (1997) and Raftery et al. (1997). BMA

thus appears as a direct consequence of Bayes’ theorem (and hence probability laws) in a model

uncertainty setting and is perhaps best introduced by considering the concept of a predictive

distribution, often of interest in its own right. In particular, assume we are interested in predicting

the unobserved quantity yf on the basis of the observations y. Let us denote the sampling model4

for yf and y jointly by p(yf |y, θj,Mj)p(y|θj,Mj), where Mj is the model selected from a set

of K possible models, and θj ∈ Θj groups the (unknown) parameters of Mj . In a Bayesian

framework, any uncertainty is reflected by a probability distribution5 so we assign a (typically

continuous) prior p(θj|Mj) for the parameters and a discrete prior P (Mj) defined on the model

space. We then have all the building blocks to compute the predictive distribution as

p(yf |y) =
K
∑

j=1

[

∫

Θj

p(yf |y, θj,Mj)p(θj|y,Mj)dθj

]

P (Mj|y), (1)

where the quantity in square brackets is the predictive distribution given Mj obtained using the

posterior of θj given Mj , which is computed as

p(θj|y,Mj) =
p(y|θj,Mj)p(θj|Mj)

∫

Θj
p(y|θj,Mj)p(θj|Mj)dθj

≡
p(y|θj,Mj)p(θj|Mj)

p(y|Mj)
, (2)

with the second equality defining p(y|Mj), which is used in computing the posterior probability

4For ease of notation, we will assume continuous sampling models with real-valued parameters throughout, but

this can immediately be extended to other cases.
5Or, more generally, a measure.

8



assigned to Mj as follows:

P (Mj|y) =
p(y|Mj)P (Mj)

∑K
i=1 p(y|Mi)P (Mi)

≡
p(y|Mj)P (Mj)

p(y)
. (3)

Clearly, the predictive in (1) indeed involves averaging at two levels: over (continuous) param-

eter values, given each possible model, and discrete averaging over all possible models. The

denominators of both averaging operations are not immediately obvious from (1), but are made

explicit in (2) and (3). The denominator (or integrating constant) p(y|Mj) in (2) is the so-called

marginal likelihood of Mj and is a key quantity for model comparison. In particular, the Bayes

factor between two models is the ratio of their marginal likelihoods and the posterior odds are

directly obtained as the product of the Bayes factor and the prior odds. The denominator in (3),

p(y), is defined as a sum and the challenge in its calculation often lies in the sheer number of

possible models, i.e. K.

Bayesian model averaging as described above is thus the formal probabilistic way of obtain-

ing predictive inference, and is, more generally, the approach to any inference problem involving

quantities of interest that are not model-specific. So it is also the Bayesian solution to conducting

posterior inference on e.g. the effects of covariates. Formally, the posterior distribution of any

quantity of interest, say ∆, which has a common interpretation across models is a mixture of the

model-specific posteriors with the posterior model probabilities as weights, i.e.

P∆|y =
K
∑

j=1

P∆ | y,Mj
P (Mj | y). (4)

The rapidly growing importance of model averaging as a solution to model uncertainty is

illustrated by Figure 1, which plots the citation profile over time of papers with the topic “model

averaging” in the literature. The figure also indicates influential papers (with 250 citations or

more) published in either economics or statistics journals6. A large part of the literature uses

Bayesian model averaging methods, reflected in the fact that citations to papers with the topic

“Bayesian” and “model averaging” account for more than 70% of the citations in Figure 1. The

sheer number of recent papers in this area is evidenced by the fact that Google Scholar returns

over 52,500 papers in a search for “model averaging” and over 39,000 papers when searching

for “Bayesian” and “model averaging”, over half of which date from the last decade (data from

November 5, 2018).

6There are also some heavily cited papers on model averaging in a number of other application areas, in particular

biology, ecology, sociology, meteorology, psychology and hydrology. The number of citations is, of course, an

imperfect measure of influence and the cutoff at 250 leaves out a number of key papers, such as Brock and Durlauf

(2001) and Clyde and George (2004) with both over 200 citations.
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Figure 1: Total number of citations to papers with topic “model averaging” over years 1989-2018. Papers in

economics or statistics journals with at least 250 citations are indicated by vertical lines proportional to the number

of citations received. Source: Web of Science, November 5, 2018.

2.1 Construction of the model space

An important aspect of dealing with model uncertainty is the precise definition of the space of all

models that are being considered. The idea of model averaging naturally assumes a well-defined

space of possible models, over which the averaging takes place. This is normally a finite (but

potentially very large) space of models, denoted by M. There are also situations where we might

consider an infinite space of models, for example when we consider data transformations of the

response variable within a single family, such as the Box-Cox family7. In these cases where

models are indexed by continuous parameters, model averaging is done by integration over these

parameters and is thus perhaps less obvious. In other words, it is essentially a part of the standard

Bayesian treatment of unknown parameters. Another example is given in Brock et al. (2003), who

mention “hierarchical models in which the parameters of a model are themselves functions of

various observables and unobservables. If these relationships are continuous, one can trace out a

continuum of models.” Again, Bayesian analysis of hierarchical models is quite well-established.

In economics arguably the most common case of model uncertainty is where we are unsure

about which covariates should be included in a linear regression model, and the associated model

space is that constructed by including all possible subsets of covariates. This case is discussed

in detail in the next subsection. A minor variation is where some covariates are always included

and it is inclusion or exclusion of the “doubtful” ones that defines the model space. In order to

carefully construct an appropriate model space, it is useful to distinguish various common types

7Hoeting et al. (2002) use a number of specific values for the Box-Cox parameter, to aid interpretation, which

gets us back to a finite model space
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of uncertainty. Brock et al. (2003) identify three main types of uncertainty that typically need to

be considered:

• Theory uncertainty. This reflects the situation where economists disagree over fundamental

aspects of the economy and is, for example, illustrated by the ongoing debates over which

are important drivers for economic growth (see the discussion in Subsection 5.1) or what

are useful early warning signals for economic crises (see Subsection 5.4).

• Specification uncertainty. This type of uncertainty is about how the various theories that are

considered will be implemented, in terms of how they are translated into specific models.

Examples are the choice of available variables as a measure of theoretical constructs, the

choice of lag lengths8, parametric versus semi- or nonparametric specifications, transfor-

mations of variables, functional forms (for example, do we use linear or non-linear models)

and distributional assumptions (which also include assumptions about dependence of ob-

servables).

• Heterogeneity uncertainty. This relates to model assumptions regarding different obser-

vations. Is the same model appropriate for all, or should the models include differences

that are designed to accommodate observational heterogeneity? A very simple example

would be to include dummies for certain classes of observations. Another example is given

by Doppelhofer et al. (2016) who introduce heterogeneous measurement error variance in

growth regressions.

The definition of the model space is intricately linked with the model uncertainty that is being

addressed. For example, if the researcher is unsure about the functional form of the models and

about covariate inclusion, both aspects should be considered in building M. Clearly, models that

are not entertained in M will not contribute to the model-averaged inference and the researcher

will thus be blind to any insights provided by these models. Common sense should be used in

choosing the model space: if one wants to shed light on the competing claims of various papers

that use different functional forms and/or different covariates, it would make sense to construct a

model space that combines all functional forms considered (and perhaps more variations if they

are reasonable) with a wide set of possibly relevant and available covariates. The fact that such

spaces can be quite large should not be an impediment.9 In practice, not all relevant model spaces

used in model averaging analyses are large. For example, to investigate the effect of capital pun-

ishment on the murder rate (see the discussion earlier in this section), Durlauf et al. (2012) build

a bespoke model space by considering the following four model features: the probability model

8Particularly relevant in e.g. forecasting and VAR modelling in Subsections 5.2 and 5.3.
9Certainly not for a Bayesian analysis, where novel numerical methods have proven to be very efficient.
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(linear or logistic regression), the specification of the covariates (relating to the probabilities of

sentencing and execution), the presence of state-level heterogeneity, and the treatment of zero ob-

servations for the murder rate. In all, the model space they specify only contains 20 models, yet

leads to a large range of deterrence effects. Another example of BMA with a small model space

is the analysis of impulse response functions in Koop et al. (1997), who use two different popular

types of univariate time series models with varying lag lengths, leading to averaging over only 32

models (see Subsection 5.2). Here the model space only reflects specification uncertainty.

It is important to distinguish between the case where the model space contains the “true”

data-generating model and the case where it does not. These situations are respectively referred

to as M-closed and M-open in the statistical literature (Bernardo and Smith, 1994). Most the-

oretical results (such as consistency in Subsection 3.2.1) are obtained in the simpler M-closed

case, but it is clear that in economic modelling the M-open framework is a more realistic set-

ting. Fortunately, model selection consistency results10 can often be shown to extend to M-open

settings in an intuitive manner (Mukhopadhyay et al., 2015; Mukhopadhyay and Samanta, 2017)

and George (1999a) states that “BMA is well suited to yield predictive improvements over single

selected models when the entire model class is misspecified. In a sense, the mixture model elabo-

ration is an expansion of the model space to include adaptive convex combinations of models. By

incorporating a richer class of models, BMA can better approximate models outside the model

class.” A decision-theoretic approach to implementing BMA in an M-open environment is pro-

vided in Clyde and Iversen (2013), who treat models not as an extension of the parameter space,

but as part of the action space. The main objection to using BMA in the M-open framework

is the perceived logical tension between knowing the “true” model is not in M and assigning a

prior on the models in M. However, in keeping with most of the literature, we will assume that

the user is comfortable with assigning a prior on M, even in M-open situations.11

2.2 Covariate uncertainty in the normal linear regression model

Most of the relevant literature assumes the simple case of the normal linear sampling model.

This helps tractability, and it is fortunately also a model that is often used in empirical work. In

addition, it is a canonical version for nonparametric regression12, which is gaining in popularity.

10As explained in Subsection 3.2.1, model selection consistency is the property that the posterior probability of

the data-generating model tends to unity with sample size in an M-closed setting.
11Personally, I prefer to think of the prior over models as a reflection of prior beliefs about which models would

be “useful proxies for” (rather than “equal to”) the data-generating process, so I do not feel the M-open setting leads

to a significant additional challenge for BMA.
12A typical nonparametric regression approach is to approximate the unknown regression function for the mean

of y given x as a linear combination of a finite number of basis functions of x.
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We shall follow this tradition, and will assume for most of the paper13 that the sampling model

is normal with a mean which is a linear function of some covariates14. We shall further assume,

again in line with the vast majority of the literature (and many real-world applications) that the

model uncertainty relates to the choice of which covariates should be included in the model,

i.e. under model j the n observations in y are generated from

y|θj,Mj ∼ N(αι+ Zjβj, σ
2). (5)

Here ι represents a n × 1-dimensional vector of ones, Zj groups kj of the possible k regressors

(i.e. it selects kj columns from an n× k matrix Z, corresponding to the full model) and βj ∈ ℜkj

are its corresponding regression coefficients. Furthermore, all considered models contain an in-

tercept α ∈ ℜ and the scale σ > 0 has a common interpretation across all models. We standardize

the regressors by subtracting their means, which makes them orthogonal to the intercept and ren-

ders the interpretation of the intercept common to all models. The model space is then formed by

all possible subsets of the covariates and thus contains K = 2k models in total15. Therefore, the

model space includes the null model (the model with only the intercept and kj = 0) and the full

model (the model where Zj = Z and kj = k). This definition of the model space is consistent

with the typical situation in economics, where theories regarding variable inclusion do not nec-

essarily contradict each other. Brock and Durlauf (2001) refer to this as the “open-endedness” of

the theory16. Throughout, we assume that the matrix formed by adding a column of ones to Z

has full column rank17.

This model uncertainty problem is very relevant for empirical work, especially in the social

sciences where typically competing theories abound on which are the important determinants of a

13Section 3.9 explores some important extensions, e.g. to the wider class of Generalized Linear Models (GLMs)

and some other modelling environments that deal with specific challenges in economics.
14This is not as restrictive as it may seem. It certainly does not mean that the effects of determinants on the mod-

elled phenomenon are linear; we can simply include regressors that are nonlinear transformations of determinants,

interactions etc.
15This can straightforwardly be changed to a (smaller) model space where some of the regressors are always

included in the models.
16In the context of growth theory, Brock and Durlauf (2001) define this concept as “the idea that the validity of

one causal theory of growth does not imply the falsity of another. So, for example, a causal relationship between

inequality and growth has no implications for whether a causal relationship exists between trade policy and growth.”
17For economic applications this is generally a reasonable assumption, as typically n > k, although they may

be of similar orders of magnitude. In other areas such as genetics this is usually not an assumption we can make.

However, it generally is enough that for each model we consider to be a serious contender the matrix formed by

adding a column of ones to Zj is of full column rank, and that is much easier to ensure. Implicitly, in such situations

we would assign zero prior and posterior probability to models for which kj ≥ n. Formal approaches to use g-priors

in situations where k > n include Maruyama and George (2011) and Berger et al. (2016), based on different ways

of generalizing the notion of inverse matrices.
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phenomenon. Thus, the issue has received quite a lot of attention both in statistics and economics,

and various approaches have been suggested. We can mention:

1. Stepwise regression: this is a sequential procedure for entering and deleting variables in a

regression model based on some measure of “importance”, such as the t-statistics of their

estimated coefficients (typically in “backwards” selection where covariates are considered

for deletion) or (adjusted) R2 (typically in “forward” selection when candidates for inclu-

sion are evaluated).

2. Shrinkage methods: these methods aim to find a set of sparse solutions (i.e. models with a

reduced set of covariates) by shrinking coefficient estimates toward zero. Bayesian shrink-

age methods rely on the use of shrinkage priors, which are such that some of the estimated

regression coefficients in the full model will be close to zero. A common classical method

is penalized least squares, such as LASSO (least absolute shrinkage and selection opera-

tor), introduced by Tibshirani (1996), where the regression “fit” is maximized subject to a

complexity penalty. Choosing a different penalty function, Fan and Li (2001) propose the

smoothly clipped absolute deviation (SCAD) penalized regression estimator.

3. Information criteria: these criteria can be viewed as the use of the classical likelihood ra-

tio principle combined with penalized likelihood (where the penalty function depends on

the model complexity). A common example is the Akaike information criterion (AIC).

The Bayesian information criterion (BIC) implies a stronger complexity penalty and was

originally motivated through asymptotic equivalence with a Bayes factor (Schwarz, 1978).

Asymptotically, AIC selects a single model that minimizes the mean squared error of pre-

diction. BIC, on the other hand, chooses the “correct” model with probability tending to

one as the sample size grows to infinity if the model space contains a true model of finite

dimension. So BIC is consistent in this setting, while AIC has better asymptotic behaviour

if the true model is of infinite dimension18. Spiegelhalter et al. (2002) propose the De-

viance information criterion (DIC) which can be interpreted as a Bayesian generalization

of AIC.19

4. Cross-validation: the idea here is to use only part of the data for inference and to assess

how well the remaining observations are predicted by the fitted model. This can be done

18A careful classification of the asymptotic behaviour of BIC, AIC and similar model selection criteria can be

found in Shao (1997) and its discussion.
19DIC is quite easy to compute in practice, but has been criticized for its dependence on the parameterization and

its lack of consistency.
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repeatedly for random splits of the data and models can be chosen on the basis of their

predictive performance.

5. Extreme Bounds Analysis (EBA): this procedure was proposed in Leamer (1983, 1985)

and is based on distinguishing between “core” and “doubtful” variables. Rather than a

discrete search over models that include or exclude subsets of the variables, this sensitivity

analysis answers the question: how extreme can the estimates be if any linear homogenous

restrictions on a selected subset of the coefficients (corresponding to doubtful covariates)

are allowed? An extreme bounds analysis chooses the linear combinations of doubtful

variables that, when included along with the core variables, produce the most extreme

estimates for the coefficient on a selected core variable. If the extreme bounds interval is

small enough to be useful, the coefficient of the core variable is reported to be “sturdy”.

A useful discussion of EBA and its context in economics can be found in Christensen and

Miguel (2018).

6. s-values: proposed by Leamer (2016a,b) as a measure of “model ambiguity”. Here σ is

replaced by the ordinary least squares (OLS) estimate and no prior mass points at zero are

assumed for the regression coefficients. For each coefficient, this approach finds the inter-

val bounded by the extreme estimates (based on different prior variances, elicited through

R2); the s-value (s for sturdy) then summarizes this interval of estimates in the same way

that a t-statistic summarizes a confidence interval (it simply reports the centre of the in-

terval divided by half its width). A small s-value then indicates fragility of the effect of

the associated covariate, by measuring the extent to which the sign of the estimate of a

regression coefficient depends on the choice of model.

7. General-to-specific modelling: this approach starts from a general unrestricted model and

uses a pre-selected set of misspecification tests as well as individual t-statistics to reduce the

model to a parsimonious representation. We refer the reader to Hoover and Perez (1999)

and Hendry and Krolzig (2005) for background and details. Hendry and Krolzig (2004)

present an application of this technique to the cross-country growth dataset of Fernández

et al. (2001b) (“the FLS data”, which record average per capita GDP growth over 1960-

1992 for n = 72 countries with k = 41 potential regressors).

8. The Model Confidence Set (MCS): this approach to model uncertainty consists in con-

structing a set of models such that it will contain the best model with a given level of

confidence. This was introduced by Hansen et al. (2011) and only requires the specifica-

tion of a collection of competing objects (model space) and a criterion for evaluating these

objects empirically. The MCS is constructed through a sequential testing procedure, where
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an equivalence test determines whether all objects in the current set are equally good. If

not, then an elimination rule is used to delete an underperforming object. The same sig-

nificance level is used in all tests, which allows one to control the p-value of the resulting

set and each of its elements. The appropriate critical values of the tests are determined by

bootstrap procedures. Hansen et al. (2011) apply their procedure to e.g. US inflation fore-

casting, and Wei and Cao (2017) use it for modelling Chinese house prices, using predictive

elimination criteria.

9. Best subset regression of Hastie et al. (2009), called full subset regression in Hanck (2016).

This method considers all possible models: for a given model size kj it selects the best in

terms of fit (the lowest sum of squared residuals). As all these models have kj parameters,

none has an unfair advantage over the others using this criterion. Of the resulting set of

optimal models of a given dimension, the procedure then chooses the one with the smallest

value of some criterion such as Mallows’ Cp
20. Hanck (2016) does a small simulation

exercise to conclude that log runtime for complete enumeration methods is roughly linear

in k, as expected. Using the FLS data and a best subset regression approach which uses a

leaps and bounds algorithm (see Section 3.3) to avoid complete enumeration of all models,

he finds that the best model for the FLS data has 22 (using Cp) or 23 (using BIC) variables.

These are larger model sizes than indicated by typical BMA results on these data21.

10. Bayesian variable selection methods based on decision-theory. Often such methods avoid

specifying a prior on model space and employ a utility or loss function defined on an

all-encompassing model, i.e. a model that nests all models being considered. An early

contribution is Lindley (1968), who proposes to include costs in the utility function for

adding covariates, while Brown et al. (1999) extend this idea to multivariate regression.

Other Bayesian model selection procedures that are based on optimising some loss or utility

function can be found in e.g. Gelfand and Ghosh (1998), Draper and Fouskakis (2000) and

Dupuis and Robert (2003). Note that decision-based approaches do need the specification

of a utility function, which is arguably at least as hard to formulate as a model space prior.

11. Bayesian model averaging, discussed here in detail in Section 3.

12. Frequentist model averaging, discussed in Section 4.

20Mallows’ Cp was developed for selecting a subset of regressors in linear regression problems. For model Mj

with kj parameters Cp =
SSEj

σ̂2 − n + 2kj where SSEj is the error sum of squares from Mj and σ̂2 the estimated

error variance. E(Cp) = kj (approximately) and regressions with low Cp are favoured.
21For example, using the prior setup later described in (6) with fixed g, Ley and Steel (2009b) find the models

with highest posterior probability to have between 5 and 10 regressors for most prior choices. Using random g, the

results in Ley and Steel (2012) indicate that a typical average model size is between 10 and 20.
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In this list, methods 5-8 were specifically motivated by and introduced in economics. Note

that all but the last two methods do not involve model averaging and essentially aim at uncover-

ing a single “best” model (or a set of models for MCS). In other words, they are model selection

methods, as opposed to the model averaging methods that we focus on here. As discussed be-

fore, model selection strategies condition the inference on the chosen model and ignore all the

evidence contained in the alternative models, thus typically leading to an underestimating of the

uncertainty. BMA methods can also be used for model selection, by e.g. simply selecting the

model with the highest posterior probability22. Typically, the opposite is not true as most model

selection methods do not specify prior probabilities on the model space and thus can not provide

posterior model probabilities.

Some model averaging methods in the literature combine aspects of both frequentist and

Bayesian reasoning. Such hybrid methods will be discussed along with BMA if they employ

a prior over models (thus leading to posterior model probabilities and inclusion probabilities of

covariates), and in the FMA section if they do not. Thus, for example BACE (Bayesian averaging

of classical estimates) of Sala-i-Martin et al. (2004) will be discussed in Section 3 (Subsection

3.7) and weighted average least squares (WALS) of Magnus et al. (2010) is explained in Section

4. As a consequence, all methods discussed in Section 3 can be used for model selection, if

desired, while the model averaging methods in Section 4 can not lead to model selection.

Comparisons of some methods (including the method by Benjamini and Hochberg (1995)

aimed at controlling the false discovery rate) can be found in Deckers and Hanck (2014) in the

context of cross-sectional growth regression. Błażejowski et al. (2018) replicate the long-term

UK inflation model (annual data for 1865-1991) obtained through general-to-specific principles

in Hendry (2001) and compare this with the outcomes of BACE (using k = 20). They find that

the single model selected in Hendry (2001) contains all variables that were assigned very high

posterior inclusion probabilities in BACE. However, by necessity, the model selection procedure

of Hendry (2001) conditions the inference on a single model, which has a posterior probability

of less than 0.1 in the BACE analysis (it is the second most probable model, with the top model

obtaining 20% of the posterior mass).

Wang et al. (2009) claim that there are model selection methods that automatically incorpo-

rate model uncertainty by selecting variables and estimating parameters simultaneously. Such

approaches are e.g. the SCAD penalized regression of Fan and Li (2001) and adaptive LASSO

methods as in Zou (2006). These methods sometimes possess the so-called oracle property23.

22Another possibly interesting model is the median probability model of Barbieri and Berger (2004), which is the

model including those covariates which have marginal posterior inclusion probabilities of 0.5 or more. This is the

best single model for prediction in orthogonal and nested correlated designs under commonly used priors.
23The oracle property implies that an estimating procedure identifies the “true” model asymptotically if the latter
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However, the oracle property is asymptotic and assumes that the “true” model is one of the mod-

els considered (the M-closed setting). So in the practically much more relevant context of finite

samples and with true models (if they can even be formulated) outside the model space these

procedures will very likely still underestimate uncertainty.

Originating in machine learning, a number of algorithms aim to construct a prediction model

by combining the strengths of a collection of simpler base models, like random forests, boost-

ing or bagging (Hastie et al., 2009). As these methods typically exchange the neat, possibly

structural, interpretability of a simple linear specification for the flexibility of nonlinear and non-

parametric models and cannot provide probability-based uncertainty intervals, we do not consider

them in this article. Various machine learning algorithms use model averaging ideas, but they are

quite different from the model averaging methods discussed in this paper in that they tend to

focus on combining “poor” models, since weak base learners can be boosted to lower predictive

errors than strong learners (Hastie et al., 2009), they work by always combining a large number of

models and their focus is purely predictive, rather than parameter estimation or the identification

of structure. In line with their main objective, they do often provide good predictive performance,

especially in classification problems24. An intermediate method was proposed in Hernández et al.

(2018), who combine elements of both Bayesian additive regression trees and random forests, to

offer a model-based algorithm which can deal with high-dimensional data. For discussions on

the use of machine learning methods in economics, see Varian (2014), Kapetanios and Papailias

(2018) and Korobilis (2018).

3 Bayesian model averaging

The formal Bayesian response to model uncertainty is Bayesian model averaging, as already

explained in Section 2. Here, BMA methods are defined as those model averaging procedures

for which the weights used in the averaging are based on exact or approximate posterior model

probabilities and the parameters are integrated out for prediction, so there is a prior for both

models and model-specific parameters.

is part of the model space and has the optimal square root convergence rate. See Fan and Li (2001).
24Domingos (2000) finds that BMA can fail to beat the machine learning methods in classification problems, and

conjectures that this is a consequence of BMA “overfitting”, in the sense that the sensitivity of the likelihood to small

changes in the data carries over to the weights in (4).
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3.1 Prior Structures

As we will see, prior assumptions can be quite important for the final outcomes, especially for the

posterior model probabilities used in BMA. Thus, a reasonable question is whether one can assess

the quality of priors or limit the array of possible choices. Of course, the Bayesian paradigm

prescribes a strict separation between the information in the data being analysed and that used for

the prior25. In principle, any coherent26 prior which does not use the data can be seen as “valid”.

Nevertheless, there are a number of legitimate questions one could (and, in my view, should) ask

about the prior:

• Does it adequately capture the prior beliefs of the user? Is the prior a “sensible” reflection

of prior ideas, based on aspects of the model that can be interpreted? This could, for exam-

ple, be assessed through (transformations of) parameters or predictive quantities implied

by the prior. At the price of making the prior data-dependent, priors can even be judged on

the basis of posterior results. Leeper et al. (1996) introduce the use of priors in providing

appropriate structure for Bayesian VAR modelling and propose the criterion “reasonable-

ness of results” as a general desirable property of priors. They state that “Our procedure

differs from the standard practice of empirical researchers in economics only in being less

apologetic. Economists adjust their models until they both fit the data and give ‘reasonable’

results. There is nothing unscientific or dishonest about this. It would be unscientific or

dishonest to hide results for models that fit much better than the one presented (even if the

hidden model seems unreasonable), or for models that fit about as well as the one reported

and support other interpretations of the data that some readers might regard as reasonable.”

• Does it matter for the results? If inference and decisions regarding the question of interest

are not much affected over a wide range of “sensible” prior assumptions, it indicates that

you need not spend a lot of time and attention to finesse these particular prior assumptions.

This desirable characteristic is called “robustness” in Brock et al. (2003). Unfortunately,

when it comes to model averaging, the prior is often surprisingly important, and then it is

important to find structures that enhance the robustness, such as the hierarchical structures

in Subsections 3.1.2 and 3.1.3.

• What is the predictive ability (as measured by e.g. scoring rules)? The immediate avail-

25This is essentially implicit in the fact that the prior times the likelihood should define a joint distribution on the

observables and the model parameters, so that e.g. the numerator in the last expression in (2) is really p(y, θj |Mj)

and we can use the tools of probability calculus.
26This means the prior is in agreement with the usual rules of probability, and prevents “Dutch book” scenarios,

which would guarantee a profit in a betting setting, irrespective of the outcome.
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ability of probabilistic forecasts that formally incorporate both parameter and model un-

certainty provides us with a very useful tool for checking the quality of the model. If a

Bayesian model predicts unobserved data well, it reflects well upon both the likelihood and

the prior components of this model. Subsection 3.2.2 provides more details in the context

of model averaging.

• Are the desiderata of Bayarri et al. (2012) for “objective” priors satisfied? These key the-

oretical principles, such as consistency and invariance, can be used to motivate the main

prior setup in this paper. Here we focus on the most commonly used prior choices, based

on (6) introduced in the next subsection. These prior structures have been shown (Bayarri

et al., 2012) to possess very useful properties. For example, they are measurement and

group invariant and satisfy exact predictive matching.27

• What are the frequentist properties of the resulting Bayesian procedure? Even though fre-

quentist arguments are, strictly speaking, not part of the underlying rationale for Bayesian

inference, these procedures often perform well in repeated sampling experiments, and

BMA is not an exception28. This is discussed in Subsection 3.2.3.

• Can it serve as a benchmark? This is mentioned in Brock et al. (2003), who argue that

priors “should be flexible enough to allow for their use across similar studies and thereby

facilitate comparability of results.” Leeper et al. (1996) use the terminology “reference

prior”29 as a prior which “only reflects a simple summary of beliefs that are likely to be

uncontroversial across a wide range of users of the analysis.”

3.1.1 Priors on model parameters

When deciding on the priors for the model parameters, i.e. p(θj|Mj) in (2), it is important to real-

ize that the prior needs to be proper on model-specific parameters. Indeed, any arbitrary constant

in p(θj|Mj) will similarly affect the marginal likelihood p(y|Mj) defined in (2). Thus, if this con-

stant emanating from an improper prior multiplies p(y|Mj) and not the marginal likelihoods for

all other models, it clearly follows from (3) that posterior model probabilities are not determined.

27See Bayarri et al. (2012) for the precise definition of these criteria for “objective” model priors.
28However, frequentist performance necessarily depends on the assumptions made about the “true” data generating

model, so there is no guarantee that BMA will do well in all situations and, for example, there is anecdotal evidence

that it can perform worse in terms of, say, mean squared error than simple least squares procedures for situations

with small k.
29In the statistical literature, this name is typically given to a prior which is somewhat similar in spirit but derived

from a set of precise rules designed to minimize the information in the prior; see Bernardo and Smith (1994).
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If the arbitrary constant relates to a parameter that is common to all models, it will simply cancel

in the ratio (3), and for such parameters we can thus employ improper priors (Fernández et al.,

2001a; Berger and Pericchi, 2001). In our normal linear model in (5), the common parameters

are the intercept α and the variance σ2, and the model-specific parameters are the βjs.

In this paper, we will primarily focus on the prior structure proposed by Fernández et al.

(2001a), which is in line with the majority of the current literature30. Fernández et al. (2001a)

start from a proper conjugate prior specification, but then adopt Jeffreys-style non-informative

priors for the common parameters α and σ2. For the model-specific regression coefficients βj ,

they propose a g-prior specification (Zellner, 1986) for the covariance structure31. The prior

density32 is then as follows:

p(α, βj, σ |Mj) ∝ σ−1f
kj
N (βj|0, σ

2g(Z ′
jZj)

−1), (6)

where f q
N(·|m,V ) denotes the density function of a q-dimensional Normal distribution with mean

m and covariance matrix V . It is worth pointing out that the dependence of the g-prior on the de-

sign matrix is not in conflict with the usual Bayesian precept that the prior should not involve the

data, since the model in (5) is a model for y given Zj , so we simply condition on the regressors

throughout the analysis. The regression coefficients not appearing in Mj are exactly zero, repre-

sented by a prior point mass at zero. The amount of prior information requested from the user is

limited to a single scalar g > 0, which can either be fixed or assigned a hyper-prior distribution.

In addition, the marginal likelihood for each model (and thus the Bayes factor between each pair

of models) can be calculated in closed form (Fernández et al., 2001a). In particular, the posterior

distribution for the model parameters has an analytically known form as follows:

p(βj |α, σ,Mj) = f
kj
N (βj | δ(Z

′
jZj)

−1Z ′
jy, σ

2δ(Z ′
jZj)

−1) (7)

p(α | σ,Mj) = f 1
N(α | ȳ, σ2/n) (8)

p(σ−2 |Mj) = fGa

(

σ−2 |
n− 1

2
,
sδ
2

)

, (9)

where δ = g/(1 + g), ȳ = 1
n

∑n
i=1 yi, sδ =

[

δy′QXj
y + (1− δ)(y − ȳι)′(y − ȳι)

]

with QW =

In−W (W ′W )−1W ′ for a full column rank matrix W and Xj = (ι : Zj) (assumed of full column

rank, see footnote 17). Furthermore, fGa(· | a, b) is the density function of a Gamma distribution

30A textbook treatment of this approach can be found in Chapter 11 of Koop (2003).
31In line with most of the literature, in this paper g denotes a variance factor rather than a precision factor as in

Fernández et al. (2001a). Interestingly, the g-prior appears earlier in the context of combining forecasts by Diebold

and Pauly (1990), who use a regression-based forecast combination framework as a means to introduce shrinkage in

the weights and adopt an empirical Bayes (see Subsection 3.1.3) approach to selecting g.
32For the null model, the prior is simply p(α, σ) ∝ σ−1.
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with mean a/b. The conditional independence between βj and α (given σ) is a consequence of

demeaning the regressors. After integrating out the model parameters as above, we can write the

marginal likelihood as

p(y|Mj) ∝ (1 + g)
n−1−kj

2 [1 + g(1−R2
j )]

−n−1

2 , (10)

where R2
j is the usual coefficient of determination for model Mj , defined through 1 − R2

j =

y′QXj
y/[(y − ȳι)′(y − ȳι)], and the proportionality constant is the same for all models, includ-

ing the null model. In addition, for each model Mj , the marginal posterior distribution of the

regression coefficients βj is a kj-variate Student-t distribution with n − 1 degrees of freedom,

location δ(Z ′
jZj)

−1Z ′
jy (which is the mean if n > 2) and scale matrix δsδ(Z

′
jZj)

−1 (and vari-

ance δsδ
n−3

(Z ′
jZj)

−1 if n > 3). The out-of-sample predictive distribution for each given model

(which in a regression model will of course also depend on the covariate values associated with

the observations we want to predict) is also a Student-t distribution with n − 1 degrees of free-

dom. Details can be found in equation (3.6) of Fernández et al. (2001a). Following (4), we can

then conduct posterior or predictive inference by simply averaging these model-specific distri-

butions using the posterior model weights computed (as in (3)) from (10) and the prior model

distributions described in the next subsection.

There are a number of suggestions in the literature for the choice of fixed values for g, among

which the most popular ones are:

• The unit information prior of Kass and Wasserman (1995) corresponds to the amount of

information contained in one observation. For regular parametric families, the “amount of

information” is defined through Fisher information. This gives us g = n, and leads to log

Bayes factors that behave asymptotically like the BIC (Fernández et al., 2001a).

• The risk inflation criterion prior, proposed by Foster and George (1994), is based on the

Risk inflation criterion (RIC) which leads to g = k2 using a minimax perspective.

• The benchmark prior of Fernández et al. (2001a). They examine various choices of g

depending on the sample size n or the model dimension k and recommend g = max(n, k2).

When faced with a variety of possible prior choices for g, a natural Bayesian response is to

formulate a hyperprior on g. This was already implicit in Zellner and Siow (1980) who use a

Cauchy prior on the regression coefficients, corresponding to an inverse gamma prior on g. This

idea was investigated further in Liang et al. (2008), where hyperpriors on g are shown to alleviate

certain paradoxes that appear with fixed choices for g. Sections 3.1.3 and 3.2.1 will provide more

detail.
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The g-prior is a relatively well-understood and convenient prior with nice properties, such

as invariance under rescaling and translation of the covariates (and more generally, invariant

to reparameterization under affine transformations), and automatic adaptation to situations with

near-collinearity between different covariates (Robert, 2007, p. 193). It can also be interpreted

as the conditional posterior of the regression coefficients given a locally uniform prior and an

imaginary sample of zeros with design matrix Zj and a scaled error variance.

This idea of imaginary data is also related to the power prior approach (Ibrahim and Chen,

2000), initially developed on the basis of the availability of historical data (i.e. data arising from

previous similar studies). In addition, the device of imaginary training samples forms the basis

of the expected-posterior prior (Pérez and Berger, 2002). In Fouskakis and Ntzoufras (2016b)

the power-conditional-expected-posterior prior is developed by combining the power prior and

the expected-posterior prior approaches for the regression parameters conditional on the error

variance.

Som et al. (2015) introduce the block hyper-g/n prior for so-called “poly-shrinkage”, which

is a collection of ordinary mixtures of g-priors applied separately to groups of predictors. Their

motivation is to avoid certain paradoxes, related to different asymptotic behaviour for different

subsets of predictors. Min and Sun (2016) consider the situation of grouped covariates (occurring,

for example, in ANOVA models where each factor has various levels) and propose separate g-

priors for the associated groups of regression coefficients. This also circumvents the fact that in

ANOVA models the full design matrix is often not of full rank.

A similar idea is used in Zhang et al. (2016) where a two-component extension of the g-prior

is proposed, with each regressor being assigned one of two possible values for g. Their prior

is proper by treating the intercept as part of the regression vector in the g-prior and by using a

“vague” proper prior33 on σ2. They focus mostly on variable selection.

A somewhat different approach was advocated by George and McCulloch (1993, 1997), who

use a prior on the regression coefficient which does not include point masses at zero. In particular,

they propose a normal prior with mean zero on the entire k-dimensional vector of regression

coefficients β given the model Mj which assigns a small prior variance to the coefficients of

the variables that are “inactive”34 in Mj and a larger variance to the remaining coefficients. In

addition, their overall prior is proper and does not assume a common intercept.

33Note that this implies the necessity to choose the associated hyperparameters in a sensible manner, which is

nontrivial as what is sensible depends on the scaling of the data.
34Formally, all variables appear in all models, but the coefficients of some variables will be shrunk to zero by the

prior, indicating that their role in the model is negligible.
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Raftery et al. (1997) propose yet another approach and use a proper conjugate35 prior with

a diagonal covariance structure for the regression coefficients (except for categorical predictors

where a g-prior structure is used).

3.1.2 Priors over models

The prior P (Mj) on model space is typically constructed by considering the probability of inclu-

sion of each covariate. If the latter is the same for each variable, say w, and we assume inclusions

are prior independent, then

P (Mj) = wkj(1− w)k−kj . (11)

This implies that prior odds will favour larger models if w > 0.5 and the opposite if w < 0.5.

For w = 0.5 all model have equal prior probability 1/k. Defining model size as the number of

included regressors in a model, a simple way to elicit w is through the prior mean model size,

which is wk.36 As the choice of w can have a substantial effect on the results, various authors

(Brown et al., 1998; Clyde and George, 2004; Ley and Steel, 2009b; Scott and Berger, 2010)

have suggested to put a Beta(a, b) hyperprior on w. This results in

P (Mj) =
Γ(a+ b)

Γ(a)Γ(b)

Γ(a+ kj)Γ(b+ k − kj)

Γ(a+ b+ k)
, (12)

which leads to much less informative priors in terms of model size. Ley and Steel (2009b)

compare both approaches and suggest choosing a = 1 and b = (k − m)/m, where m is the

chosen prior mean model size. This means that the user only needs to specify a value for m.

The large differences between the priors in (12) and (11) can be illustrated by the prior odds they

imply. Figure 2 compares the log prior odds induced by the fixed and random w priors, in the

situation where k = 67 (corresponding to the growth dataset first used in Sala-i-Martin et al.

(2004)) and using m = 7, 33.5 and 50. For fixed w, this corresponds to w = 7/67, w = 1/2 and

w = 50/67 while for random w, we have used the specification of Ley and Steel (2009b). The

figure displays the prior odds in favour of a model with ki = 10 versus models with varying kj .

Note that the random w case always leads to down-weighting of models with kj around k/2,

irrespectively of m. This counteracts the fact that there are many more models with kj around

k/2 in the model space than of size nearer to 0 or k.37 In contrast, the prior with fixed w does

not take the number of models at each kj into account and simply always favours larger models

35Conjugate prior distributions combine analytically with the likelihood to give a posterior in the same class of

distributions as the prior.
36So, if our prior belief about mean model size is m, then we simply choose w = m/k.
37This reflects the multiplicity issue analysed more generally in Scott and Berger (2010) who propose to use (12)

with a = b = 1 implying a prior mean model size of k/2. The number of models with kj regressors in M is given
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Figure 2: Log of Prior Odds: ki = 10 vs varying kj . From Ley and Steel (2009b).

when m > k/2 and smaller ones when m < k/2. Note also the much wider range of values that

the log prior odds take in the case of fixed w. Thus, the choice of m is critical for the prior with

fixed w, but much less so for the hierarchical prior structure, which is naturally adaptive to the

data observed.

It is often useful to elicit prior ideas by focusing on model size, as it is an easily under-

stood concept. In addition, there will often be a preference for somewhat smaller models due

to their interpretability and simplicity. The particular choice of m = 7 (mentioned above) was

used in Sala-i-Martin et al. (2004) in the context of growth regression and has become a rather

popular choice in a variety of applied contexts. Sala-i-Martin et al. (2004) sensibly argue that

the prior mean model size should not be linearly increasing with k, but provide little motivation

for specifically choosing m = 7. The origins of this choice may be related to computational

restrictions faced by earlier empirical work (e.g. the EBA analysis of Levine and Renelt (1992)

was conducted on a restricted set of models that never had more than 8 regressors). I think that

any particular prior choice should be considered within the appropriate context and I would en-

courage the use of sensitivity analyses and robust prior structures (such as the hierarchical prior

leading to (12)). Giannone et al. (2018) investigate whether sparse modelling is a good approach

to predictive problems in economics on the basis of a number of datasets from macro, micro and

finance. They find that artificially tight model priors38 focused on small models induce sparsity

at the expense of predictive performance and model fit. They conclude that “predictive model

by
(

k
kj

)

. For example, with k = 67, we have 1 model with kj = 0 and kj = k, 8.7 × 108 models with kj = 7 and

kj = 60 and a massive 1.4× 1019 models with kj = 33 and 34.
38They use a very tight prior indeed, which corresponds to a prior mean model size m = k/(k + 1) which is less

than one!
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uncertainty seems too pervasive to be treated as statistically negligible. The right approach to

scientific reporting is thus to assess and fully convey this uncertainty, rather than understating it

through the use of dogmatic (prior) assumptions favoring low dimensional models.”

George (1999b) raises the issue of “dilution”, which occurs when posterior probabilities are

spread among many similar models, and suggest that prior model probabilities could have a built-

in adjustment to compensate for dilution by down-weighting prior probabilities on sets of similar

models. George (2010) suggests three distinct approaches for the construction of these so-called

“dilution priors”, based on tessellation determined neighbourhoods, collinearity adjustments, and

pairwise distances between models. Dilution priors were implemented in economics by Durlauf

et al. (2008) to represent priors that are uniform on theories (i.e. neighbourhoods of similar mod-

els) rather than on individual models, using a collinearity adjustment factor. A form of dilution

prior in the context of models with interactions of covariates is the heredity prior of Chipman

et al. (1997) where interaction are only allowed to be included if both main effects are included

(strong heredity) or at least one of the main effects (weak heredity). In the context of examin-

ing the sources of growth in Africa, Crespo Cuaresma (2011) comments that the use of a strong

heredity prior leads to different conclusions than the use of a uniform prior in the original paper

by Masanjala and Papageorgiou (2008).39 Either prior is, of course, perfectly acceptable, but

it is clear that the user needs to reflect which one best captures the user’s own prior ideas and

intended interpretation of the results. Using the same data, Moser and Hofmarcher (2014) com-

pare a uniform prior with a strong heredity prior and a tesselation dilution prior and find quite

similar predictive performance (as measured by LPS and CRPS, explained in Section 3.2.2) but

large differences in posterior inclusion probabilities (probably related to the fact that both types

of dilution priors are likely to have quite different responses to multicollinearity).

Womack et al. (2015) propose viewing the model space as a partially ordered set. When

the number of covariates increases, an isometry argument leads to the Poisson distribution as

the unique, natural limiting prior over model dimension. This limiting prior is derived using two

constructions that view an individual model as though it is a “local” null hypothesis and compares

its prior probability to the probability of the alternatives that nest it. They show that this prior

induces a posterior that concentrates on a finite true model asymptotically.

Another interesting recent development is the use of a loss function to assign a model prior.

Equating information loss as measured by the expected minimum Kullback-Leibler divergence

between any model and its nearest model and by the “self-information loss”40 while adding an

39See also Papageorgiou (2011), which is a reply to the comment by Crespo Cuaresma.
40This is a loss function (also known as the log-loss function) for probability statements, which is given by the

negative logarithm of the probability.
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adjustment for complexity, Villa and Lee (2016) propose the prior P (Mj) = exp(−ckj) for some

c > 0. This builds on an idea of Villa and Walker (2015).

3.1.3 Empirical Bayes versus Hierarchical Priors

The prior in (6) and (11) only depends on two scalar quantities, g and w. Nevertheless, these

quantities can have quite a large influence on the posterior model probabilities and it is very

challenging to find a single default choice for g and w that performs well in all cases, as explained

in e.g. Fernández et al. (2001a), Berger and Pericchi (2001) and Ley and Steel (2009b). One way

of reducing the impact of such prior choices on the outcome is to use hyperpriors on w and g,

which fits seamlessly with the Bayesian paradigm. Hierarchical priors on w are relatively easy to

deal with and were already discussed in the previous section.

Zellner and Siow (1980) used a multivariate Cauchy prior on the regression coefficients rather

than the normal prior in (6). This was inspired by the argument in Jeffreys (1961) in favour of

heavy-tailed priors41. Since a Cauchy is a scale mixture of normals, this means that implicitly the

Zellner-Siow prior uses an Inverse-Gamma(1/2, n/2) prior on g.

Liang et al. (2008) introduce the hyper-g priors, which correspond to the following family of

priors:

p(g) =
a− 2

2
(1 + g)−a/2 (13)

where a > 2 in order to have a proper distribution for g > 0. This includes the priors proposed

in Strawderman (1971) in the context of the normal means problem. A value of a = 4 was

suggested by Cui and George (2008) for model selection with known σ, while Liang et al. (2008)

recommend values 2 < a ≤ 4. Feldkircher and Zeugner (2009) propose to use a hyper-g prior

with a value of a that leads to the same mean of the, so-called, shrinkage factor42 δ = g/(1 + g)

as for the unit information or the RIC prior. Ley and Steel (2012) consider the more general class

of beta priors on the shrinkage factor where a Beta(b, c) prior on δ induces the following prior on

g:

p(g) =
Γ(b+ c)

Γ(b)Γ(c)
gb−1(1 + g)−(b+c). (14)

41The reason for this was the limiting behaviour of the resulting Bayes factors as we consider models with better

and better fit. In this case, you would want these Bayes factors, with respect to the null model, to tend to infinity.

This criterion is called “information consistency” in Bayarri et al. (2012) and its absence is termed “information

paradox” in Liang et al. (2008).
42The name “shrinkage factor” derives from the fact that the posterior mean of the regression coefficients for a

given model is the OLS estimator times this shrinkage factor, as clearly shown in (7) and the ensuing discussion.
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This is an inverted beta distribution43 (Zellner, 1971, p. 375) which clearly reduces to the hyper-g

prior in (13) for b = 1 and c = (a/2) − 1. Generally, the hierarchical prior on g implies that the

marginal likelihood of a given model is not analytically known, but is the integral of (10) with

respect to the prior of g. Liang et al. (2008) propose the use of a Laplace approximation for this

integral, while Ley and Steel (2012) use a Gibbs sampler approach to include g in the Markov

chain Monte Carlo procedure (see footnote 54). Some authors have proposed Beta shrinkage

priors as in (14) that lead to analytical marginal likelihoods by making the prior depend on the

model: the robust prior of Bayarri et al. (2012) truncate the prior domain to g > [(n + 1)/(kj +

1)] − 1 and Maruyama and George (2011) adopt the choice b + c = (n − kj − 1)/2 with c <

1/2. However, the truncation of the robust prior is potentially problematic for cases where n

is much larger than a typical model size (as is often the case in economic applications). Ley

and Steel (2012) propose to use the beta shrinkage prior in (14) with mean shrinkage equal

to the one corresponding to the benchmark prior of Fernández et al. (2001a) and the second

parameter chosen to ensure a reasonable prior variance. They term this the benchmark beta prior

and recommend using b = cmax{n, k2} and c = 0.01.

An alternative way of dealing with the problem of selecting g and w is to adopt so-called

“empirical Bayes” (EB) procedures, which use the data to suggest appropriate values to choose

for w and g. Of course, this amounts to using data information in selecting the prior, so is not

formally in line with the Bayesian paradigm. Often, such EB methods are adopted for reasons

of convenience and because they are sometimes shown to have good properties. In particular,

they provide “automatic” calibration of the prior and avoid the (relatively small) computational

complications that typically arise when we adopt a hyperprior on g. Motivated by information

theory, Hansen and Yu (2001) proposed a local EB method which uses a different g for each

model estimated by maximizing the marginal likelihood. George and Foster (2000) develop a

global EB approach, which assumes one common g and w for all models and borrows strength

from all models by estimating g and w through maximizing the marginal likelihood, averaged

over all models. Liang et al. (2008) propose specific ways of estimating g in this context.

There is some evidence in the literature regarding comparisons between fully Bayes and EB

procedures: Cui and George (2008) largely favour (global) EB in the context of known σ and

k = n, whereas Liang et al. (2008) find that there is little difference between EB and fully

Bayes procedures (with unknown σ and k < n). Scott and Berger (2010) focus on EB and fully

Bayesian ways of dealing with w, which, respectively, use maximum likelihood44 and a Beta(1,1)

or uniform hyperprior on w. They remark that both fully Bayesian and EB procedures exhibit

43Also known as a gamma-gamma distribution (Bernardo and Smith, 1994, p. 120).
44This is the value of w that maximizes the marginal likelihood of w summed over model space, or argmaxw p(y)

in (3), which can be referred to as type-II maximum likelihood.
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clear multiplicity adjustment: as the number of noise variables increases, the posterior inclusion

probabilities of variables decrease (the analysis with fixed w shows no such adjustment; see

also footnote 37). However, they highlight some theoretical differences, for example the fact

that EB will assign probability one to either the full model or the null model whenever one of

these models has the largest marginal likelihood. They also show rather important differences in

various applications, one of which uses data on GDP growth. Overall, they recommend the use of

fully Bayesian procedures. Li and Clyde (2017) compare EB and fully Bayes procedures in the

more general GLM context (see Section 3.9.1), and find that local EB does badly in simulations

from the null model in that it almost always selects the full model.

3.2 Properties of BMA

3.2.1 Consistency and paradoxes

One of the desiderata in Bayarri et al. (2012) for objective model selection priors is model selec-

tion consistency (introduced by Fernández et al. (2001a)), which implies that if data have been

generated by Mj ∈ M, then the posterior probability of Mj should converge to unity with sample

size45. Fernández et al. (2001a) present general conditions for the case with non-random g and

show that consistency holds for e.g. the unit information and benchmark priors (but not for the

RIC prior). When we consider hierarchical priors on g, model selection consistency is achieved

by the Zellner-Siow prior in Zellner and Siow (1980) but not by local and global EB priors nor

by the hyper-g prior in Liang et al. (2008), who therefore introduce a consistent modification, the

hyper-g/n prior, which corresponds to a beta distribution on g/(n+ g). Consistency is shown to

hold for the priors of Maruyama and George (2011), Feldkircher and Zeugner (2009) (based on

the unit information prior) and the benchmark beta prior of Ley and Steel (2012).

Moreno et al. (2015) consider model selection consistency when the number of potential

regressors k grows with sample size. Consistency is found to depend not only on the priors for

the model parameters, but also on the priors in model space. They conclude that if k = O(nb),

the unit information prior, the Zellner-Siow prior and the intrinsic prior46 lead to consistency for

0 ≤ b < 1/2 under the uniform prior over model space, while consistency holds for 0 ≤ b ≤ 1 if

45So this is a concept defined in the M-closed framework, mentioned in Subsection 2.1.
46Intrinsic priors were introduced to justify the intrinsic Bayes factors (Berger and Pericchi, 1996). In principle,

these are often based on improper reference (see footnote 29) or Jeffreys priors and the use of a so-called minimal

training sample to convert the improper prior to a proper posterior. The latter is then used as a prior for the remaining

data, so that Bayes factors can be computed. As the outcome depends on the arbitrary choice of the minimal training

sample, such Bayes factors are typically “averaged” over all possible training samples. Intrinsic priors are priors that

(at least asymptotically) mimic these intrinsic Bayes factors.
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we use a Beta(1,1) hyperprior on w in (12). Wang and Maruyama (2016) investigate Bayes factor

consistency associated with the prior structure in (6) for the problem of comparing nonnested

models under a variety of scenarios where model dimension grows with sample size. They show

that in some cases, the Bayes factor is consistent whichever the true model is, and that in others,

the consistency depends on the pseudo-distance between the models. In addition, they find that

the asymptotic behaviour of Bayes factors and intrinsic Bayes factors are quite similar.

Mukhopadhyay et al. (2015) show that in situations where the true model is not one of the

candidate models (the M-open setting), the use of g-priors leads to selecting a model that is in an

intuitive sense closest to the true model. In addition, the loss incurred in estimating the unknown

regression function under the selected model tends to that under the true model. These results

have been shown under appropriate conditions on the rate of growth of g as n grows and for both

the cases when the number of potential predictors remains fixed and when k = O(nb) for some

0 < b < 1.47 Mukhopadhyay and Samanta (2017) extend this to the situation of mixtures of g-

priors and derive consistency properties for growing k under a modification of the Zellner-Siow

prior, that continue to hold for more general error distributions.

Using Laplace approximations, Xiang et al. (2016) prove that in the case of hyper-g priors

with growing model sizes, the Bayes factor is consistent when k = O(nb) for some 0 < b ≤ 1,

even when the true model is the null model. For the case when the true model is not the null

model, they show that Bayes factors are always consistent when the true model is nested within

the model under consideration, and they give conditions for the non-nested case. In the specific

context of analysis-of-variance (ANOVA) models, Wang (2017) shows that the Zellner-Siow prior

and the beta shrinkage prior of Maruyama and George (2011) yield inconsistent Bayes factors

when k is proportional to n due to the presence of an inconsistency region around the null model.

To solve the latter inconsistency, Wang (2017) propose a variation on the hyper-g/n prior, which

generalizes the prior arising from a Beta distribution on g/(n
k
+ g). Consistency for the power-

expected-posterior approach using independent Jeffreys baseline priors is shown by Fouskakis

and Ntzoufras (2016a).

Sparks et al. (2015) consider posterior consistency for parameter estimation, rather than

model selection. They consider posterior consistency under the sup vector norm (weaker than

the usual l2 norm) in situations where k grows with sample size and derive necessary and suffi-

cient conditions for consistency under the standard g-prior, the empirical Bayes specification of

47Unlike Moreno et al. (2015), they do not explicitly find different results for different priors on the model space,

which looks like an apparent contradiction. However, their results are derived under an assumption (their (A3))

bounding the ratio of prior model probabilities. Note from our Figure 2 that ratio tends to be much smaller when we

use a hyperprior on w.
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George and Foster (2000) and the hyper-g and Zellner-Siow mixture priors.

In addition, BMA also has important optimality properties in terms of shrinkage in high-

dimensional problems. In particular, Castillo et al. (2015) prove that BMA in linear regression

leads to an optimal rate of contraction of the posterior on the regression coefficients to a sparse

“true” data-generating model (a model where many of the coefficients are zero), provided the

prior sufficiently penalizes model complexity. Rossell and Telesca (2017) show that BMA leads

to fast shrinkage for spurious coefficients (and explore so-called nonlocal priors that provide even

faster shrinkage in the BMA context).

A related issue is that Bayes factors can asymptotically behave in the same way as infor-

mation criteria. Kass and Wasserman (1995) investigate the relationship between BIC (see Sec-

tion 2.2) and Bayes factors using unit information priors for testing non-nested hypotheses and

Fernández et al. (2001a) show that log Bayes factors with gj = n/f(kj) (with f(·) some function

which is finite for finite arguments) tend to BIC. When k is fixed, this asymptotic equivalence to

BIC extends to the Zellner-Siow and Maruyama and George (2011) priors (Wang, 2017) and also

the intrinsic prior (Moreno et al., 2015).

Liang et al. (2008) remark that analyses with fixed g tend to lead to a number of paradoxical

results. They mention the Bartlett (or Lindley) paradox, which is induced by the fact that very

large values of g will induce support for the null model, irrespective of the data48. Another

paradox they explore is the information paradox, where as R2
i tends to one, the Bayes factor in

favour of Mi versus, say, the null model does not tend to ∞ but to a constant depending on g (see

also footnote 41). From (16) in Subsection 3.4 this latter limit is ( w
1−w

)ki(1 + g)(n−ki−1)/2. Liang

et al. (2008) show that this information paradox is resolved by local or global EB methods, but

also by using hyperpriors p(g) that satisfy
∫

(1 + g)(n−ki−1)/2p(g)dg = ∞ for all ki ≤ k, which

is the case for the Zellner-Siow prior, the hyper-g prior and the benchmark beta priors (the latter

two subject to a condition, which is satisfied in most practical cases).

3.2.2 Predictive performance

Since any statistical model will typically not eliminate uncertainty and it is important to capture

this uncertainty in forecasting, it is sensible to consider probabilistic forecasts, which have be-

come quite popular in many fields. In economics, important forecasts such as the quarterly Bank

of England inflation report are presented in terms of predictive distributions, and in the field of

finance the area of risk management focuses on probabilistic forecasts of portfolio values. Rather

48This can be seen immediately by considering (16) in Subsection 3.4, which behaves like a constant times (1 +

g)(kj−ki)/2 as g → ∞.
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than having to condition on estimated parameters, the Bayesian framework has the advantage that

predictive inference can be conducted on the basis on the predictive distribution, as in (1) where

all uncertainty regarding the parameters and the model is properly incorporated. This can be used

to address a genuine interest in predictive questions, but also as a model-evaluation exercise. In

particular, if a model estimated on a subset of the data manages to more or less accurately pre-

dict data that were not used in the estimation of the model, that intuitively suggests satisfactory

performance.

In order to make this intuition a bit more precise, scoring rules provide useful summary

measures for the evaluation of probabilistic forecasts. Suppose the forecaster wishes to optimize

the scoring rule. If the scoring rule is proper, the forecaster has no incentive to predict any

other distribution than his or her true belief for the forecast distribution. Details can be found in

Gneiting and Raftery (2007).

Two important aspects of probabilistic forecasts are calibration and sharpness. Calibration

refers to the compatibility between the forecasts and the observations and is a joint property of the

predictions and the events that materialize. Sharpness refers to the concentration of the predictive

distributions and is a property of the forecasts only. Proper scoring rules address both of these

issues simultaneously. Popular scoring rules, used in assessing predictive performance in the

context of BMA are

• The logarithmic predictive score (LPS), which is the negative of the logarithm of the pre-

dictive density evaluated at the observation. This was introduced in Good (1952) and used

in the BMA context in Madigan et al. (1995), Fernández et al. (2001a,b) and Ley and Steel

(2009b).

• The continuous ranked probability score (CRPS). The CRPS measures the difference be-

tween the predicted and the observed cumulative distributions as follows49:

CRPS(Q, x) =

∫ ∞

−∞

[Q(y)− ✶(y ≥ x)]2 dy, (15)

where Q is the predictive distribution, x is the observed outcome and ✶(·) is the indicator

function. CRPS was found in Gneiting and Raftery (2007) to be less sensitive to outliers

than LPS and was introduced in the context of growth regressions by Eicher et al. (2011).

Simple point forecasts do not allow us to take into account the uncertainty associated with

the prediction, but are popular in view of their simplicity, especially in more complicated models

49An alternative expression is given by Gneiting and Raftery (2007) as CRPS(Q, x) = EQ|X−x|− 1
2EQ|X−Z|,

where X and Z are independent copies of a random variable with distribution function Q and finite first moment.

This shows that CRPS generalizes the absolute error, to which it reduces if Q is a point forecast.
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incorporating e.g. dynamic aspects or endogenous regressors. Such models are often evaluated

in terms of the mean squared forecast error or the mean absolute forecast error calculated with

respect to a point forecast.

There is a well-established literature indicating the predictive advantages of BMA. For ex-

ample, Madigan and Raftery (1994) state that BMA predicts at least as well50 as any single model

in terms of LPS and Min and Zellner (1993) show that expected squared error loss of point (pre-

dictive mean) forecasts is always minimized by BMA provided the model space includes the

model that generated the data51. On the basis of empirical results, Raftery et al. (1997) report

that predictive coverage is improved by BMA with respect to prediction based on a single model.

Similar results were obtained by Fernández et al. (2001a), who also use LPS as a model evalua-

tion criterion in order to compare various choices of g in the prior (6). Fernández et al. (2001b)

find, on the basis of LPS that BMA predicts substantially better than single models (such as the

model with highest posterior probability) in growth data. Ley and Steel (2009b) corroborate these

findings, especially with a hyperprior on w, as used in (12). Piironen and Vehtari (2017) focus

on model selection methods, but state that “From the predictive point of view, best results are

generally obtained by accounting for the model uncertainty and forming the full BMA solution

over the candidate models, and one should not expect to do better by selection.” In the context

of volatility forecasting of non-ferrous metal futures, Lyócsa et al. (2017) show that averaging of

forecasts substantially improves the results, especially where the averaging is conducted through

BMA.

3.2.3 Frequentist performance of point estimates

Point estimation is not a particularly natural Bayesian concept, and the Bayesian paradigm does

not rely on frequentist considerations (unlike FMA, where often the model weights are chosen

to optimize some frequentist criterion). Nevertheless, it is interesting to know the properties of

point estimates resulting from BMA under repeated sampling. Whenever we consider sampling-

theoretic properties, we require an assumption about the sampling model under which the prop-

erties will be studied. Using the assumption that the data is generated by the predictive in (1),

50This optimality holds under the assumption that the data is generated by the predictive in (1) rather than a

single “true” model. George (1999a) comments that “It is tempting to criticize BMA because it does not offer better

average predictive performance than a correctly specified single model. However, this fact is irrelevant when model

uncertainty is present because specification of the correct model with certainty is then an unavailable procedure.

In most practical applications, the probability of selecting the correct model is less than 1, and a mixture model

elaboration seems appropriate.”
51The importance of this latter assumption is discussed in Diebold (1991), who points out that violation of this

assumption could negatively affect large sample performance of BMA in point forecasting.
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Raftery and Zheng (2003) state a number of important results about Bayesian model selection

and BMA. Firstly, they state a result by Jeffreys (1961), which is that for two nested models,

model choice based on Bayes factors minimizes the sum of type I and type II errors. Secondly,

they mention properties of BMA point estimates (of parameters and observables). In particular,

BMA leads to point estimates that minimize MSE and BMA estimation intervals are calibrated

in the sense that the average coverage probability of a BMA interval with posterior probability α

is at least equal to α. Of course, this does not provide any guarantee for the frequentist properties

when the actual observations come from a different distribution, but there exists no compelling

argument for any particular choice of such a “true” distribution. I believe it is highly unlikely

in economics (as in most other areas of application) that the data are truly generated by a single

model within the model space (assumed in e.g. Castillo et al. (2015)) or a local neighbourhood

around such a model that shrinks with sample size52 (as in e.g Claeskens and Hjort (2003) and

Hjort and Claeskens (2003)) (see also footnote 50).

3.3 BMA in practice: Numerical methods

One advantage of the prior structure in (6) is that integration of the model parameters can be

conducted analytically, and the Bayes factor between any two given models can be computed

quite easily, given g, through (10). The main computational challenge is then constituted by the

often very large model space, which makes complete enumeration impossible. In other words,

we simply can not try all possible models, as there are far too many of them53.

A first possible approach is to (drastically) reduce the number of models under consideration.

One way to do this is the Occam’s window algorithm, which was proposed by Madigan and

Raftery (1994) for graphical models and extended to linear regression in Raftery et al. (1997). It

uses a search strategy to weed out the models that are clearly dominated by others in terms of

posterior model probabilities and models that have more likely submodels nested within them. An

algorithm for finding the best models is the so-called leaps and bounds method used by Raftery

(1995) for BMA, based on the all-subsets regression algorithm of Furnival and Wilson (1974).

The resulting set of best models can then still be reduced further through Occam’s window if

required. The Occam’s window and the leaps and bounds algorithms are among the methods

implemented in the BMA R package of Raftery et al. (2010) and the leaps and bounds algorithm

52Insightful comments concerning the practical relevance of this particular assumption can be found in Raftery

and Zheng (2003) and other discussions of Claeskens and Hjort (2003) and Hjort and Claeskens (2003).
53In areas such as growth economics, we may have up to k = 100 potential covariates. This implies a model space

consisting of K = 2100 = 1.26× 1030 models. Even with fast processors, this dramatically exceeds the number of

models that can be dealt with exhaustively. In other fields, the model space can even be much larger: for example,

in genetics k is the number of genes and can well be of the order of tens of thousands.
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was used in e.g. Masanjala and Papageorgiou (2008) and Eicher et al. (2011).

However, this tricky issue of exploring very large model spaces is now mostly dealt with

through so-called Markov chain Monte Carlo (MCMC) methods54. In particular, a popular strat-

egy is to run an MCMC algorithm in model space, sampling the models that are most promis-

ing: the one that is most commonly used is a random-walk Metropolis sampler usually referred

to as MC3, introduced in Madigan and York (1995) and used in e.g. Raftery et al. (1997) and

Fernández et al. (2001a). On the basis of the application in Masanjala and Papageorgiou (2008),

Crespo Cuaresma (2011) finds that MC3 leads to rather different results from the leaps and bounds

method, which does not seem to explore the model space sufficiently well.

The original prior in George and McCulloch (1993) is not conjugate in that the prior variance

of β does not involve σ2 (unlike (6)); this means that marginal likelihoods are not available

analytically, but an MCMC algorithm can easily be implemented by a Gibbs sampler on the joint

space of the parameters and the models. This procedure is usually denoted as Stochastic Search

Variable Selection (SSVS). George and McCulloch (1997) also introduce an alternative prior

which is conjugate, leading to an analytical expression for the marginal likelihoods and inference

can then be conducted using an MCMC sampler over only the model space (like MC3).

Clyde et al. (2011) remark that while the standard algorithms MC3 and SSVS are easy to

implement, they may mix poorly when covariates are highly correlated. More advanced algo-

rithms that utilize other proposals can then be considered, such as adaptive MCMC55 (Nott and

Kohn, 2005) or evolutionary Monte Carlo (Liang and Wong, 2000). Clyde et al. (2011) propose a

Bayesian adaptive sampling algorithm (BAS), that samples models without replacement from the

space of models. In particular, the probability of a model being sampled is proportional to some

54Suppose we have a distribution, say π, of which we do not know the properties analytically and which is difficult

to simulate from directly. MCMC methods construct a Markov chain that has π as its invariant distribution and

conduct inference from the generated chain. The draws in the chain are of course correlated, but ergodic theory still

forms a valid basis for inference. Various algorithms can be used to generate such a Markov chain. An important

one is the Metropolis-Hastings algorithm, which takes an arbitrary Markov chain and adjusts it using a simple

accept-reject mechanism to ensure the stationarity of π for the resulting Markov chain. Fairly mild conditions then

ensure that the values in the realized chain actually converge to draws from π. Another well-known algorithm is

the Gibbs sampler, which partitions the vector of random variables which have distribution π into components and

replaces each component by a draw from its conditional distribution given the current values of all other components.

Various combinations of these algorithms are also popular (e.g. a Gibbs sampler where one or more conditionals are

not easy to draw from directly and are treated through a Metropolis-Hastings algorithm). More details can be found

in e.g. Robert and Casella (2004) and Chib (2011).
55MCMC methods often require certain parameters (of the proposal distribution) to be appropriately tuned for

the algorithm to perform well. Adaptive MCMC algorithms achieve such tuning automatically. See Atchadé and

Rosenthal (2005) for an introduction.
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probability mass function with known normalizing constant. Every time a new model is sampled,

one needs to account for its mass by subtracting off its probability from the probability mass

function to ensure that there is no duplication and then draw a new model from the renormal-

ized distribution. The model space is represented by a binary tree structure indicating inclusion

or exclusion of each variable, and marginal posterior inclusion probabilities are set at an initial

estimate and then adaptively updated using the marginal likelihoods from the sampled models.

Generic numerical methods were compared in Garcı́a-Donato and Martı́nez-Beneito (2013),

who identify two different strategies:

i) MCMC methods to sample from the posterior (3) in combination with estimation based on

model visit frequencies and

ii) searching methods looking for “good” models with estimation based on renormalization

(i.e. with weights defined by the analytic expression of posterior probabilities, such as in

(16)).

Despite the fact that it may, at first sight, appear that ii) should be a more efficient strategy, they

show that i) is potentially more precise than ii) which could be biased by the searching procedure.

Nevertheless, implementations of ii) have lead to fruitful contributions, and a lot of the most

frequently used software (see Section 6) uses this method. Of course, if the algorithm simply

generates a chain through model space in line with the posterior model probabilities (such as

MC3 using the prior in (6)) then both strategies can be used to conduct inference on quantities of

interest, i.e. to compute the model probabilities to be used in (4). Indeed, Fernández et al. (2001a)

suggest the use of the correlation between posterior model probabilities based on i) and ii) as an

indicator of convergence of the chain. However, some other methods only lend themselves to one

of the strategies above. For example, the prior of George and McCulloch (1993) does not lead

to closed form expressions for the marginal likelihood, so SVSS based on this prior necessarily

follows the empirical strategy i). Examples of methods that can only use strategy ii) are BAS

in Clyde et al. (2011), which only samples each model once, and the implementation in Raftery

(1995) based on a leaps and bound algorithm which is used only to identify the top models.

These methods need to use the renormalization strategy, as model visit frequencies are not an

approximation to posterior model probabilities in their case.

MC3 uses a Metropolis sampler which proposes models from a small neighbourhood of the

current model, say Mj , namely all models with one covariate less or more. Whereas this works

well for moderate values of k, it is not efficient in situations with large k where we expect par-

simonious models to fit the data well. This is because the standard MC3 algorithm (using a uni-

form distribution on the model neighbourhood) will propose to add a covariate with probability
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(k − kj)/k, which is close to 1 if k >> kj . Therefore, the algorithm will much more frequently

propose to add a variable than to delete one. However, the acceptance rate of adding a new vari-

able is equal to the acceptance rate of deleting a variable if the chain is in equilibrium. Thus,

a large number of adding moves are rejected and this leads to a low between-model acceptance

rate. Brown et al. (1998) extend the MC3 proposal by adding a “swap” move where one included

and one excluded covariate are selected at random and the proposed model is the one where they

are swapped. They suggest to generate a candidate model by either using the MC3 move or the

swap move. Lamnisos et al. (2009) extend this further by decoupling the MC3 move into an “add”

and a “delete” move (to avoid proposing many more additions than deletions) and uniformly at

random choosing whether the candidate model is generated from an “add”, a “delete” or a “swap”

move. In addition, they allow for less local moves by adding, deleting or swapping more than

one covariate at a time. The size of the blocks of variables used for these moves is drawn from

a binomial distribution. This allows for faster exploration of the model space. In Lamnisos et al.

(2013) an adaptive MCMC sampler is introduced where the success probability of the binomial

distribution (used for block size) is tuned adaptively to generate a target acceptance probability of

the proposed models. They successfully manage to deal with problems like finding genetic links

to colon tumours with n = 62 and k = 1224 genes in a (more challenging) probit model con-

text (see Section 3.9.2), where their algorithm is almost 30 times more efficient56 than MC3 and

the adaptive Gibbs sampler of Nott and Kohn (2005). Problems with even larger k can be dealt

with through more sophisticated adaptive MCMC algorithms. Griffin et al. (2017) propose such

algorithms which exploit the observation that in these settings the vast majority of the inclusion

indicators of the variables will be virtually uncorrelated a posteriori. They are shown to lead to

orders of magnitude improvements in efficiency compared to the standard Metropolis-Hastings

algorithm, and are successfully applied to extremely challenging problems (e.g. with k = 22, 576

possible covariates and n = 60 observations).

In situations with more complicated models, it may not be practical to run an MCMC chain

over model space. One option would be to use an easily computed approximation to the marginal

likelihoods and to base the MCMC model moves on that approximation (discussed in Subsection

3.7), but this may not always work well. If the number of models is not too large, another

option is to treat all K models separately and to compute their marginal likelihoods directly so

that BMA inference can be implemented. This is not a straightforward calculation on the basis

of MCMC output for each model, but there are a number of standard methods in the statistics

literature. Chib (2011) discusses the method of Chib (1995) which is essentially based on Bayes’

56The efficiency is here standardized by CPU time. Generally, the efficiency of a Monte Carlo method is pro-

portional to the reciprocal of the variance of the sample mean estimator normalized by the size of the generated

sample.
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formula evaluated at a particular value of the parameters. Another popular method is bridge

sampling (Meng and Wong, 1996), which is a generalization of importance sampling with a high

degree of robustness with respect to the relative tail behaviour of the importance function. For

nested models, we can often compute Bayes factors through the Savage-Dickey density ratio

(Verdinelli and Wasserman, 1995), which is typically both easy to calculate and accurate. An

in-depth discussion of all of these methods can be found in DiCiccio et al. (1997).

3.4 Role of the prior

It has long been understood that the effect of the prior distribution on posterior model probabilities

can be much more pronounced than its effect on posterior inference given a model (Kass and

Raftery, 1995; Fernández et al., 2001a). Thus, it is important to better understand the role of the

prior assumptions in BMA. While Fernández et al. (2001a) examined the effects of choosing fixed

values for g, a more systematic investigation of the interplay between g and w was conducted in

Ley and Steel (2009b) and Eicher et al. (2011).

From combining the marginal likelihood in (10) and the model space prior in (11), we obtain

the posterior odds between models, given g and w:

P (Mi | y, w, g)

P (Mj | y, w, g)
=

(

w

1− w

)ki−kj

(1 + g)
kj−ki

2

(

1 + g(1−R2
i )

1 + g(1−R2
j )

)−n−1

2

. (16)

The three factors on the right-hand side of (16) correspond to, respectively, a model size (or

complexity) penalty induced by the prior odds on the model space, a model size penalty resulting

from the marginal likelihood (Bayes factor) and a lack-of-fit penalty from the marginal likelihood.

It is clear that for fixed g and w, the complexity penalty increases with g and decreases with

w (see also the discussion in Section 3.8 and in Eicher et al. (2011)). Ley and Steel (2012)

consider each of the three factors separately, and define penalties as minus the logarithm of the

corresponding odds factor, which ties in well with classical information criteria, which, in some

cases, correspond to the limits of log posterior odds (Fernández et al., 2001a). The complexity

penalty induced by the prior odds can be in favour of the smaller or the larger model, whereas

the penalties induced by the Bayes factor are always in favour of the smaller and the better fitting

models.

Ley and Steel (2012) find that the choice of the hyperpriors on g and w can have a large effect

on the induced penalties for model complexity but does not materially affect the impact of the

relative fit of the models. They also investigate how the overall complexity penalty behaves if we

integrate over g and w. Figure 3 plots the logarithm of the approximate posterior odds for Mi

versus Mj as a function of kj when fixing ki = 10, for different values of the prior mean model
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size, m, using a beta hyperprior on w as in Ley and Steel (2009b) and the benchmark beta prior

on g in (14) with c = 0.01. We use n = 72 and k = 41 (as in the FLS growth data) and assume

R2
i = R2

j . We contrast these graphs with those for fixed values of θ and g (corresponding to the

values over which the priors are centered) as derived from (16). Whereas the log posterior odds

are linear in (ki − kj) for fixed values of θ and g, they are much less extreme for the random θ

and g case, and consistently penalize models of size around k/2. This reflects the multiplicity

penalty (see Section 3.1.2) which is implicit in the prior and analyzed in Scott and Berger (2010)

in a more general context, and in Ley and Steel (2009b) in this same setting. The behaviour is

qualitatively similar to that of the prior odds in Figure 2. The difference with Figure 2 is that we

now consider the complexity penalty in the posterior, which also includes an (always positive)

size penalty resulting from the Bayes factor. No fixed w can induce a multiplicity correction. As

in Figure 2, the (relatively arbitrary) choice of m matters very little for the case with random w

(and g), whereas it makes a substantial difference if we keep w (and g) fixed.
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Figure 3: Posterior odds as a function of kj when ki = 10 with equal fit, using m = 7 (solid), m = k/2 (dashed),

and m = 2k/3 (dotted). Bold lines correspond to random w and g. From Ley and Steel (2012).

Thus, marginalising out the posterior model probabilities with the hyperpriors on w and g

induces a much flatter model size penalty over the entire range of model sizes. This then makes

the analysis less dependent on (usually arbitrary) prior assumptions and increases the relative

importance of the data contribution (the model fit) to the posterior odds.
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3.5 Data Robustness

Generally, in economics, the quality of the data may be problematic. An important issue is

whether policy conclusions and key insights change when data are revised to eliminate errors, in-

corporate improved data or account for new price benchmarks. For example, the Penn World Ta-

ble (PWT) income data, a dataset frequently used in cross-country empirical work in economics,

have undergone periodic revisions. Ciccone and Jarociński (2010) applied the methodologies

of Fernández et al. (2001b) and Sala-i-Martin et al. (2004) for investigating the determinants

of cross-country growth to data generated as in Sala-i-Martin et al. (2004) from three different

versions of the PWT, versions 6.0-6.2. Both methods led to substantial variations in posterior

inclusion probabilities of certain covariates between the different datasets.

It is, of course, not surprising that solving a really complicated problem (assessing the pos-

terior distribution on a model space that contains huge quantities of models) on the basis of a

relatively small number of observations is challenging, and if we modify the data in the absence

of strong prior information, we can expect some (perhaps even dramatic) changes in our infer-

ence. Clearly, if we add prior information such changes would normally be mitigated. Perhaps

the most relevant question in practice is whether we can conduct meaningful inference using

BMA with the kinds of prior structures that we have discussed in this paper, such as (6), on the

basis of available data.

Using BMA, Feldkircher and Zeugner (2012) examine more in detail what causes the lack of

robustness found in Ciccone and Jarociński (2010). One first conclusion is that the changes are

roughly halved if the analyses with the different PWT data use the same set of countries. They

also stress that the use of the fixed value of g as in the benchmark prior leads to a very large g

and it is clear from (16) that this amplifies the effect of differences in the fit on posterior odds.

Thus, small differences in the data can have substantial impact on the results. They propose to

use a hyper-g prior which allows the model to adjust g to the data, and this dramatically reduces

the instability. Interestingly, this is not a stronger prior, but a less informative one. The important

thing is that fixing g at a value which is not warranted by the data quality leads to an exaggerated

impact of small difference in model fit. They find that the analysis with stochastic g leads to

much smaller values of g. The same behaviour was also found in Ley and Steel (2012) where

three datasets were analysed: two cross-country growth datasets as in Fernández et al. (2001b)

(with n = 72 and k = 41) and Sala-i-Martin et al. (2004) (with n = 88 and k = 67) and the

returns-to-schooling data of Tobias and Li (2004) (n = 1190 and k = 26). In all these examples,

the data favour57 values of g in the range 15-50, which contrasts rather sharply with the fixed

57This can be inferred from the likelihood which is marginalised with respect to all parameters but g and averaged

over models; see expression (9) in Ley and Steel (2012) which is plotted in their Figure 9.
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values of g that the benchmark prior would suggest, namely 1681, 4489 and 1190, respectively.

As a consequence of the smaller g, differences between models will be less pronounced and this

can be seen as a quite reasonable reaction to relatively low-quality data.

Rockey and Temple (2016) consider restricting the model space by imposing the presence of

initial GDP per capita and regional dummies, i.e. effectively using a more informative prior on

the model space. They conclude that this enhances robustness even when the analysis is extended

to more recent vintages of the Penn World Table (they also consider PWT 6.3-8.0).

3.6 Collinearity and Jointness

One of the primary outputs of a BMA analysis is the posterior distribution of the regression

coefficients, which is a mixed distribution (for each coefficient a continuous distribution with

mass point at zero, reflecting exclusion of the associated regressor) of dimension k, which is

often large. Thus, this is a particularly hard object to describe adequately. Summarizing this

posterior distribution merely by its k marginals is obviously a gross simplification and fails to

capture the truly multivariate nature of this distribution. Thus, efforts have been made to define

measures that more adequately reflect the posterior distribution. Such measures should be well

suited for extracting relevant pieces of information. It is important that they provide additional

insight into properties of the posterior that are of particular interest, and that they are easy to

interpret. Ley and Steel (2007) and Doppelhofer and Weeks (2009) propose various measures of

“jointness”, or the tendency of variables to appear together in a regression model. Ley and Steel

(2007) formulate four desirable criteria for such measures to possess:

• Interpretability: any jointness measure should have either a formal statistical or a clear

intuitive meaning in terms of jointness.

• Calibration: values of the jointness measure should be calibrated against some clearly de-

fined scale, derived from either formal statistical or intuitive arguments.

• Extreme jointness: the situation where two variables always appear together should lead to

the jointness measure reaching its value reflecting maximum jointness.

• Definition: the jointness measure should always be defined whenever at least one of the

variables considered is included with positive probability.

The jointness measure proposed in Ley and Steel (2007) satisfies all of these criteria and is defined

as the posterior odds ratio between those models that include a set of variables and the models

that only include proper subsets. If we consider the simple case of bivariate jointness between
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variables i and j, and we define the events ı̃ and ̃ as the exclusion of i and j, respectively,

this measure is the probability of joint inclusion relative to the probability of including either

regressor, but not both:

J ◦
ij =

P (i ∩ j | y)

P (i ∩ ̃ | y) + P (̃ı ∩ j | y)
.

An alternative measure, suggested by Doppelhofer and Weeks (2009), takes the form

Jij = ln
P (i ∩ j | y)P (̃ı ∩ ̃ | y)

P (i ∩ ̃ | y)P (̃ı ∩ j | y)
,

which has the interpretation of the log of the posterior odds of including i given that j is included

divided by the posterior odds of including i given that j is not included. Ley and Steel (2009a)

discuss how these and another jointness measure proposed by Strachan (2009) compare on the

basis of the criteria above. They highlight that Jij is undefined when a variable is always included

or excluded, and for such cases Doppelhofer and Weeks (2009) propose to use the log posterior

odds of inclusion of the variable with inclusion probability in (0, 1). This, however, implies that

pairwise jointness involving covariates that are almost always in the model will depend entirely

on the low-probability models not involving this variable. As J ◦ is a posterior odds ratio, its

values can be immediately interpreted as evidence in favour of jointness (values above one) or

disjointness (values below one, suggesting that variables are more likely to appear on their own

than jointly). Disjointness can occur, e.g., when variables are highly collinear and are proxies

or substitutes for each-other. In the context of two growth data sets, Ley and Steel (2007) find

evidence of jointness only between important variables, which are complements in that each of

them has a separate role to play in explaining growth. They find many more occurrences of

disjointness, where regressors are substitutes and really should not appear together. However,

these latter regressors tend to be fairly unimportant drivers of growth.

Man (2018) compares different jointness measures using data from a variety of disciplines

and finds that results differ substantially between the measures of Doppelhofer and Weeks (2009)

on the one hand and Ley and Steel (2007) on the other hand. In contrast, results appear quite ro-

bust across different prior choices. Man (2018) suggests the use of composite indicators, which

combine the information contained in the different concepts, often by simply averaging over dif-

ferent indicators. Given the large differences in the definitions and the properties of the jointness

measures considered, I would actually expect to find considerable differences. I would recom-

mend selecting a measure that makes sense to the user while making sure the interpretation of

the results is warranted by the properties of the specific measure chosen. The use of composite

indicators, however interesting it may be from the perspective of combining information, seems

to me to make interpretation much harder.
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Ghosh and Ghattas (2015) investigate the consequences of strong collinearity for Bayesian

variable selection. They find that strong collinearity may lead to a multimodal posterior distri-

bution over models, in which joint summaries are more appropriate than marginal summaries.

They recommend a routine calculation of the joint inclusion probabilities for correlated covari-

ates, in addition to marginal inclusion probabilities, for assessing the importance of regressors in

Bayesian variable selection.

Crespo Cuaresma et al. (2016) propose a different approach to deal with patterns of inclusion

such as jointness among covariates. They use a two-step approach starting from the posterior

model distribution obtained from BMA methods, and then use clustering methods based on la-

tent class analysis to unveil clusters of model profiles. Inference in the second step is based on

Dirichlet process clustering methods. They also indicate that the jointness measures proposed in

the literature (and mentioned earlier in this subsection) relate closely to measures used in data

mining (see their footnote 1). These links are further explored in Hofmarcher et al. (2018), who

propose a new measure of bivariate jointness which is a regularised version of the so-called Yule’s

Q association coefficient, used in the machine learning literature on association rules. They use

insights from the latter to extend the set of desirable criteria outlined above, and show they are

satisfied by the measure they propose.

3.7 Approximations and hybrids

The use of the prior structure in (6) for the linear normal model in (5) immediately leads to a

closed-form marginal likelihood, but for other Bayesian models this may not be the case. In par-

ticular, more complex models (such as described in Section 3.9) often do not allow for an analytic

expression. One approach to addressing this problem is to use an approximation to the marginal

likelihood, which is based on the ideas underlying the development of BIC (or the Schwarz cri-

terion). In normal (or, more generally, regular58) models, BIC can be shown (see Schwarz, 1978

and Raftery, 1995) to provide an asymptotic approximation to the log Bayes factor. In the spe-

cific context of the normal linear model with prior (6), Fernández et al. (2001a) provide a direct

link between the BIC approximation and the choice of g = n (the unit information prior, which

essentially leaves the asymptotics unaffected). Thus, in situations where closed-form expres-

sions for the Bayes factors are not available (or very costly to compute), BIC has been used to

approximate the actual Bayes factor. For example, some available procedures for models with en-

dogenous regressors and models assuming Student-t sampling are based on BIC approximations

to the marginal likelihood.

58Regular models are such that the sampling distribution of the maximum likelihood estimator is asymptotically

normal around the true value with covariance matrix equal to the inverse expected Fisher information matrix.
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An alternative approximation of posterior model probabilities is through the (smoothed) AIC.

Burnham and Anderson (2002) provide a Bayesian justification for AIC (with a different prior

over the models than the BIC approximation) and suggest the use of AIC-based weights as pos-

terior model probabilities. The smoothed AIC approximation is used in the context of assessing

the pricing determinants of credit default swaps in Pelster and Vilsmeier (2018)59.

Sala-i-Martin et al. (2004) use asymptotic reasoning in the specific setting of the linear model

with a g-prior to avoid specifying a prior on the model parameters and arrive at a BIC approxi-

mation in this manner. They call the resulting procedure BACE (Bayesian averaging of classical

estimates). This approach was generalized to panel data by Moral-Benito (2012), who proposes

Bayesian averaging of maximum likelihood estimates (BAMLE). In a similar vein, hybrids of

frequentist and Bayesian methods were used in Durlauf et al. (2008) and Durlauf et al. (2012)

to deal with the difficult issue of endogenous regressors (later discussed in Subsection 3.9.7). In

particular, they propose to use BIC approximations to posterior model probabilities for averag-

ing over classical two-stage least squares (2SLS) estimates. Durlauf et al. (2008) comment that:

“Hybrids of this type are controversial from the perspective of the philosophical foundations of

statistics and we do not pursue such issues here. Our concern is exclusively with communicating

the evidentiary support across regressions; our use of averaging is simply a way of combining

cross-model information and our posterior probabilities are simply relative weights.”

3.8 Prior robustness: illusion or not?

Previous sections have already stressed the importance of the choices of the hyperparameters and

have made the point that settings for g and w are both very important for the results. However,

there are examples in the literature where rather different choices of these hyperparameters led

to relatively similar conclusions, which might create the impression that these choices are not

that critical. For example, if we do not put hyperpriors on g and w, we note that the settings

used in Fernández et al. (2001b) and in Sala-i-Martin et al. (2004) lead to rather similar results

in the analysis of the growth data of Sala-i-Martin et al. (2004), which have n = 88 and k = 67.

The choices made in Fernández et al. (2001b) are w = 0.5 and g = k2, whereas the BACE

analysis in Sala-i-Martin et al. (2004) is based on w = 7/k (giving a prior mean model size

59Pelster and Vilsmeier (2018) comment that “Burnham and Anderson (2002) strongly suggest replacing BIC

by the (smoothed) Akaike Information Criterion (S-AIC) since BIC aims to identify the models with the highest

probability of being the true model for the data assuming a true model exists. Since a true model in reality does

not exist, BIC tends to assign too much weight to the best model. AIC, by the contrary, tries to select the model

that most adequately fits the unknown model, and can be interpreted as the probability that a model is the expected

best model in repeated samples. Hansen (2007) reports rather poor performance of BIC weights compared to S-AIC

weights, particularly if the sample size is large.”
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m = 7) and g = n. As BACE attempts to avoid specifying a prior on the model parameters, the

latter is not explicit, but follows from the expression used in Sala-i-Martin et al. (2004) for the

Bayes factors, which is a close approximation to Bayes factors for the model with prior (6) using

g = n. There is, however, an important tradeoff between values for g and w, which was visually

clarified in Ley and Steel (2009b) and was also mentioned in Eicher et al. (2011). In particular,

Ley and Steel (2009b) present a version of Figure 4 which shows the contours in (g,m) space

of the values of fit (R2
i ) of Model Mi that would give it equal posterior probability to Mj , when

n = 88, k = 67, ki = 8, kj = 7, and R2
j = 0.75.
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Figure 4: Equal Posterior Probability Contours for different values of R2
i , using n = 88, k = 67, ki = 8, kj = 7,

and R2
j = 0.75. The left panel is for fixed w and also indicates the choices of (g,m) in Fernández et al. (2001b)

(FLS) and Sala-i-Martin et al. (2004) (SDM). The right panel corresponds to random w. Adapted from Ley and Steel

(2009b).

From the left panel in Figure 4 the particular combinations of (g, w) values underlying the

analyses in Fernández et al. (2001b) and in Sala-i-Martin et al. (2004) are on contours that are

quite close, and thus require a very similar increase in R2 to compensate for an extra regressor

(in fact, the exact values are R2
i = 0.7731 for FLS and R2

i = 0.7751 for SDM). Remember

from Section 3.4 that the model complexity penalty increases with g and decreases with w (or

m = wk), so the effects of increasing both g and w (as in Fernández et al. (2001b) with respect

to Sala-i-Martin et al. (2004)) can cancel each-other out, as they do here.

In conclusion, it turns out that certain (often used) combinations happen to give quite sim-

ilar results. However, this does not mean that results are generally robust with respect to these
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choices, and there is ample evidence in the literature (Ley and Steel, 2009b; Eicher et al., 2011)

that these choices matter quite crucially. Also, it is important to point out that making certain

prior assumptions implicit (as is done in BACE) does not mean they no longer matter. Rather,

it seems to me more useful to be transparent about prior choices and to attempt to robustify the

analysis by using prior structures that are less susceptible to subjectively chosen quantities. This

is illustrated in the right panel of Figure 4, where the equal probability contours are drawn for

the case with a Beta(1, (k − m)/m) hyperprior on w. As discussed in Section 3.1.2, this prior

is much less informative, which means that the actual choice of m matters much less and the

trade-off between g and w has almost disappeared. A hyperprior can also be adopted for g, as in

Section 3.1.3, which would further robustify the analysis (see also Section 3.4).

3.9 Other sampling models

This section describes the use of BMA in the context of other sampling models, which are some-

times fairly straightforward extensions of the normal linear regression model (for example, the

Hoeting et al. (1996) model for outliers in Section 3.9.4 or the Student-t model mentioned in Sec-

tion 3.9.5) and sometimes imply substantial challenges in terms of prior elicitation and numerical

implementation. Many of the models below are inspired by issues arising in economics, such as

dynamic models, spatial models, models for panel data and models with endogenous covariates.

3.9.1 Generalized linear models

Generalized Linear Models (GLMs) describe a more general class of models (McCullagh and

Nelder, 1989) that covers the normal linear regression model but also regression models where

the response variable is non-normal, such as binomial (e.g. logistic or logit regression models,

probit models), Poisson, multinomial (e.g. ordered response models, proportional odds models)

or gamma distributed.

An early contribution to BMA with GLMs is Raftery (1996), who proposes to use approxi-

mations for the Bayes factors, based on the Laplace method for integrals. He also suggests a way

to elicit reasonable (but data-dependent) proper priors.

Sabanés Bové and Held (2011b) consider the interpretation of the g-prior in linear models

as the conditional posterior of the regression coefficients given a locally uniform prior and an

imaginary sample of zeros with design matrix Zj and a scaled error variance, and extend this

to the GLM context. Asymptotically, this leads to a prior which is very similar to the standard

g-prior, except that it has an extra scale factor c and a weighting matrix W in the covariance

structure. In many cases, c = 1 and W = I , which leads to exactly the same structure as (6).
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This idea was already used in the conjugate prior proposed by Chen and Ibrahim (2003), although

they only considered the case with W = I and do not treat the intercept separately. For priors

on g, Sabanés Bové and Held (2011b) consider a Zellner-Siow prior and a hyper-g/n prior. Both

choices are shown to lead to consistent model selection in Wu et al. (2016).

The priors on the model parameters designed for GLMs in Li and Clyde (2017) employ a

different type of “centering” of the covariates (induced by the observed information matrix at the

maximum likelihood estimator (MLE) of the coefficients), leading to a g-prior that displays local

orthogonality properties at the MLE. In addition, they use a wider class of (potentially truncated)

hyper-priors for g60. Their results rely on approximations, and, more importantly, their prior

structures are data-dependent (depending on y, not just the design matrix). Interestingly, on the

basis of theoretical and empirical findings in the GLM context, they recommend similar hyper-

priors61 as recommended by Ley and Steel (2012) in a linear regression setting.

The power-conditional-expected-posterior prior of Fouskakis and Ntzoufras (2016b) has also

been extended to the GLM setting in Perrakis et al. (2015).

3.9.2 Probit models

A popular approach for modelling dichotomous responses uses the probit model, which is an

example of a GLM. If we observe y1, . . . , yn taking the values either zero or one, this model

assumes that the probability that yi = 1 is modeled by yi|ηi ∼ Bernoulli(Φ (ηi)) where Φ is the

cumulative distribution function of a standard normal random variable and η = (η1, η2, . . . , ηn)
′

is a vector of linear predictors modelled as η = αι+ Zjβj, where α, βj and Zj are as in (5).

Typical priors have a product structure with a normal prior on βj (for example a g-prior) and

an improper uniform on α. Generally, posterior inference for the probit model can be facilitated

by using the data augmentation approach of Albert and Chib (1993).

When dealing with model uncertainty, this model is often analysed through a Markov chain

Monte Carlo method on the joint space of models and model parameters, since the marginal like-

lihood is no longer analytically available. This complicates matters with respect to the linear

regression model as this space is larger than model space and the dimension of the model param-

eters varies with the model. Thus, reversible jump Metropolis-Hastings methods (Green, 1995)

are typically used here. Details and comparison of popular algorithms can be found in Lamnisos

et al. (2009).

60In particular, they use the class of compound confluent hypergeometric distributions, which contains most hy-

perpriors used in the literature as special cases.
61Namely, the hyper-g/n prior and the benchmark beta prior.
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3.9.3 Generalized additive models

Generalized additive models are generalized linear models in which the linear predictor depends

linearly on unknown smooth functions of the covariates, so these models can account for non-

linear effects; see e.g. Hastie et al. (2009). In the context of the additive model62, Sabanés Bové

and Held (2011a) consider using fractional polynomials for these smooth functions in combina-

tion with a hyper-g prior. They combine covariate uncertainty with flexible modelling of additive

effects by expanding the model space to include different powers of each potential regressor. To

explore this large model space, they propose an MCMC algorithm which adapts the Occam’s

window strategy of Raftery et al. (1997). Using splines for the smooth functions, Sabanés Bové

et al. (2015) propose hyper-g priors based on an iterative weighted least squares approximation

to the nonnormal likelihood. They conduct inference using an algorithm which is quite similar to

that in Sabanés Bové and Held (2011b).

3.9.4 Outliers

The occurrence of outliers (atypical observations) is a general problem that may affect both pa-

rameter estimation and model selection, and the issue is especially relevant if the modelling

assumptions are restrictive, for example by imposing normality (i.e. thin tails). In the context

of normal linear regression, Hoeting et al. (1996) propose a Bayesian method for simultaneous

variable selection and outlier identification, using variable inflation to model outliers. They use

a proper prior and recommend the use of a pre-screening procedure to generate a list of poten-

tial outliers, which are then used to define the model space to consider. Ho (2015) applies this

methodology to explore the cross-country variation in the output impact of the global financial

crisis in 2008-9.

Outliers are also accommodated in Doppelhofer et al. (2016). In the context of growth data,

they also introduce heteroscedastic measurement error, with variance potentially differing with

country and data vintage. The model also accounts for vintage fixed effects and outliers. They

use data from eight vintages of the PWT (extending the data used in Sala-i-Martin et al. (2004))

to estimate the model, and conclude that 18 variables are relatively robustly associated with GDP

growth over the period 1960 to 1996, even when outliers are allowed for. The quality of the data

seems to improve in later vintages and varies quite a bit among the different countries. They

estimate the model using JAGS, a generic MCMC software package which determines the choice

of sampling strategy, but this approach is very computer-intensive63.

62This is where the link function is the identity link, so we have a normally distributed response variable.
63They comment that a single MCMC run takes about a week to complete, even with the use of multiple computers
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Of course, the use of more flexible error distributions such as scale mixtures of normals (like,

for example, the Student-t regression model mentioned in the next section) can be viewed as a

way to make the results more robust against outliers.

3.9.5 Non-normal errors

Doppelhofer and Weeks (2011) use a Student-t model as the sampling model, instead of the

normal model in (5) in order to make inference more robust with respect to outliers and un-

modelled heterogeneity. They consider either fixing the degrees of freedom parameter of the

Student-t distribution or estimating it and they use the representation of a Student-t as a con-

tinuous scale mixture of normals. Throughout, they approximate posterior model probabilities

by the normality-based BIC, so the posterior model probabilities remain unaffected and only the

estimates of the model parameters are affected64. Oberdabernig et al. (2018) use a Student-t sam-

pling model with fixed degrees of freedom in a spatial BMA framework to investigate the drivers

of differences in democracy levels across countries.

Non-normality can, of course, also be accommodated by transformations of the data. Hoeting

et al. (2002) combine selection of covariates with the simultaneous choice of a transformation of

the dependent variable within the Box-Cox family of transformations. Charitidou et al. (2018)

consider four different families of transformations along with covariate uncertainty and use model

averaging based on intrinsic and fractional Bayes factors.

3.9.6 Dynamic models

In the context of simple AR(F)IMA time-series models, BMA was used in e.g. Koop et al. (1997),

which will be discussed in more detail in Subsection 5.2.

Raftery et al. (2010) propose the idea of using state-space models in order to allow for the

forecasting model to change over time while also allowing for coefficients in each model to

evolve over time. Due to the use of approximations, the computations essentially boil down to

the Kalman filter. In particular, they use the following dynamic linear model, where the subscript

indicates time t = 1, . . . , T :

yt ∼ N(z
(j)′

t θ
(j)
t , H(j)) (17)

θ
(j)
t ∼ N(θ

(j)
t−1, Q

(j)
t ), (18)

and parallel chains.
64For each model they propose a simple Gibbs sampler setup after augmenting with the mixing variables.
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and the superscript is the model index with models differing in the choice of covariates in the first

equation. Choosing Q
(j)
t sequences is not required as they propose to use a forgetting factor (dis-

count factor) on the variance of the state equation (18). Using another forgetting factor, Raftery

et al. (2010) approximate the model probabilities at each point in time, which greatly simplifies

the calculations. Dynamic model averaging (DMA) is where these model weights are used to

average in order to conduct inference, such as predictions, and dynamic model selection (DMS)

uses a single model for such inference (typically the one with the highest posterior probability)

at each point in time. Koop and Korobilis (2012) apply DMA and DMS to inflation forecasting,

and find that the best predictors change considerably over time and that DMA and DMS lead to

improved forecasts with respect to the usual autoregressive and time-varying-parameter models.

Drachal (2016) investigates the determinants of monthly spot oil prices between 1986 and 2015,

using Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS). Although some

interesting patterns over time were revealed, no significant evidence was found that DMA is su-

perior in terms of forecast accuracy over, for example, a simple ARIMA model (although this

seems to be based only on point forecasts, and not on predictive scores). Finally, Onorante and

Raftery (2016) introduce a dynamic Occam’s window to deal with larger model spaces.

van der Maas (2014) proposes a dynamic BMA framework that allows for time variation in

the set of variables that is included in the model, as well as structural breaks in the intercept and

conditional variance. This framework is then applied to real-time forecasting of inflation.

Other time-varying Bayesian model weight schemes are considered in Hoogerheide et al.

(2010), who find that they outperform other combination forecasting schemes in terms of pre-

dictive and economic gains. They suggest forecast combinations based on a regression approach

with the predictions of different models as regressors and with time-varying regression coeffi-

cients.

Another increasingly important area of dynamic model averaging is the use of BMA methods

for ensembles of deterministic models, which was introduced for probabilistic weather forecast-

ing in Raftery et al. (2005). BMA is used to post-process the forecasts provided by ensembles65,

where each forecast is associated with a predictive distribution and weights are computed by

maximum likelihood (implemented through an expectation-maximization algorithm).

65An ensemble is a collection of runs of deterministic models which differ in initial conditions or physical model

assumptions.
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3.9.7 Endogeneity

If one or more of the covariates is correlated with the error term in the equation corresponding

to (5), we talk of endogeneity. In particular, we consider the following extension of the model in

(5):

y = αι+ xγ + Zjβj + ε (19)

x = Wδ + ν, (20)

where x is an endogenous regressor66 and W is a set of instruments, which are independent

of ε. Finally, the error terms corresponding to observation i are identically and independently

distributed as follows:

(εi, νi)
′ ∼ N(0,Σ), (21)

with Σ = (σij) a 2× 2 covariance matrix. It is well-known that whenever σ12 6= 0 this introduces

a bias in the OLS estimator of γ and a standard classical approach is the use of 2SLS estimators

instead. For BMA it also leads to misleading inference on coefficients and model probabilities,

even as sample size grows, as shown in Miloschewski (2016).

Tsangarides (2004) and Durlauf et al. (2008) consider the issue of endogenous regressors

in a BMA context. Durlauf et al. (2008) focus on uncertainty surrounding the selection of the

endogenous and exogenous variables and propose to average over 2SLS model-specific estimates

for each single model. Durlauf et al. (2012) consider model averaging across just-identified

models (with as many instruments as endogenous regressors). In this case, model-specific 2SLS

estimates coincide with LIML estimates, which means that likelihood-based BIC weights have

some formal justification.

Lenkoski et al. (2014) extend BMA to formally account for model uncertainty not only in

the selection of endogenous and exogenous variables, but also in the selection of instruments.

They propose a two-step procedure that first averages across the first-stage models (i.e. linear

regressions of the endogenous variables on the instruments) and then, given the fitted endogenous

regressors from the first stage, it again takes averages in the second stage. Both steps use BIC

weights. Their approach, named two-stage BMA (2SBMA), was used in Eicher and Kuenzel

(2016) in the context of establishing the effect of trade on growth, where feedback (and thus

endogeneity) can be expected.

Koop et al. (2012) use simulated tempering to design an MCMC method that can deal with

BMA in the endogeneity context in one step. It is, however, quite a complicated and computa-

66For simplicity, we focus the presentation on the case with one endogenous regressor, but this can immediately

be extended.
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tionally costly algorithm and it is nontrivial to implement.

Karl and Lenkoski (2012) propose IVBMA, which is based on the Gibbs sampler of Rossi

et al. (2006) for instrumental variables models and use conditional Bayes factors to include model

uncertainty in this Gibbs algorithm. It hinges on certain restrictions (e.g. joint Normality of the

errors is important and the prior needs to be conditionally conjugate), but the algorithm is very

efficient and is implemented in an R-package (see Section 6).

3.9.8 Panel data and individual effects

Panel (or longitudinal) data contain information on individuals (i = 1, . . . , N ) over different time

periods (t = 1, . . . , T ). Correlation between covariates and error term might arise through a

time-invariant individual effect, denoted by ηi in the model

yit = z′itβ + ηi + ǫit. (22)

Moral-Benito (2012) uses BMA in such a panel setting with strictly exogenous regressors (un-

correlated with the ǫits but correlated with the individual effects). In this framework, the vector

of regressors can also include a lagged dependent variable (yit−1) which is then correlated with

ǫit−1. Moral-Benito (2012) considers such a dynamic panel model within the BMA approach by

combining the likelihood function discussed in Alvarez and Arellano (2003) with the unit infor-

mation g-prior. Distinguishing between “within” and “between” estimators in a BMA context

is advocated by Desbordes et al. (2018), who stress that cross-sectional and time-series relation-

ships can be quite different. They use a BIC approximation for the log Bayes factors and average

over classical estimators (both discussed in Subsection 3.7).

Tsangarides (2004) addresses the issues of endogenous and omitted variables by incorporat-

ing a panel data system Generalized Method of Moments (GMM) estimator. This was extended

to the limited information BMA (LIBMA) approach of Mirestean and Tsangarides (2016) by

Chen et al. (2018), in the context of short-T panel models with endogenous covariates using a

GMM approximation to the likelihood. They then employ a BIC approximation of the limited

information marginal likelihood. Moral-Benito (2016) remarks on the controversial nature of

combining frequentist GMM procedures with BMA, as it is not firmly rooted in formal statisti-

cal foundations and GMM methods may require mean stationarity. Thus, Moral-Benito (2016)

proposes the use of a suitable likelihood function (derived in Moral-Benito (2013)) for dynamic

panel data with fixed effects and weakly exogenous67 regressors, which is argued to be the most

67This implies that past shocks to the dependent variable can be correlated with current covariates, so that there is

feedback from the dependent variable to the covariates
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relevant form of endogeneity in the growth regression context. Posterior model probabilities are

based on the BIC approximation of the log Bayes factors with a unit-information g-prior (see

Section 3.7) and on a uniform prior over model space.

León-González and Montolio (2015) develop BMA methods for models for panel data with

individual effects and endogenous regressors, taking into account the uncertainty regarding the

choice of instruments and exogeneity restrictions. They use reversible jump MCMC methods

(developed by Koop et al. (2012)) to deal with a model space that includes models that differ in

the set of regressors, instruments, and exogeneity restrictions in a panel data context.

3.9.9 Spatial data

If we wish to capture spatial interactions in the data, the model for panel data in (22) can be

extended to a Spatial Autoregressive (SAR) panel model as follows:

yit = ρ

N
∑

j=1

wijyjt + z′itβ + ηi + ξt + ǫit, (23)

where i = 1, . . . , N denotes spatial location and wij is the (i, j)th element of the spatial weight

matrix reflecting spatial proximity of the N regions, with wii = 0 and the matrix is normalized

to have row-sums of unity. Finally, there are regional effects ηi and time effects ξt, t = 1 . . . , T .

BMA in this model was used in LeSage (2014), building on earlier work, such as LeSage and Par-

ent (2007). Crespo Cuaresma et al. (2018) use SAR models to jointly model income growth and

human capital accumulation and mitigate the computational requirements by using an approx-

imation based on spatial eigenvector filtering as in Crespo Cuaresma and Feldkircher (2013).

Hortas-Rico and Rios (2016) investigate the drivers of urban income inequality using Spanish

municipal data. They follow the framework of LeSage and Parent (2007) to incorporate spatial

effects in the BMA analysis. Piribauer and Crespo Cuaresma (2016) compare the relative per-

formance of the BMA methods used in LeSage and Parent (2007) with two different versions

of the SVSS method (see Section 3.3) for spatial autoregressive models. On simulation data the

SVSS approaches tended to perform better in terms of both in-sample predictive performance

and computational efficiency.

An alternative approach was proposed by Dearmon and Smith (2016), who use the nonpara-

metric technique of Gaussian process regression to accommodate spatial patterns and develop a

BMA version of this approach. They apply it to the FLS growth data augmented with spatial

information.
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3.9.10 Duration models

BMA methods for duration models were first examined by Volinsky et al. (1997) in the context

of proportional hazard models and based on a BIC approximation. Kourtellos and Tsangarides

(2015) set out to uncover the correlates of the duration of growth spells. In particular, they inves-

tigate the relationship between inequality, redistribution, and the duration of growth spells in the

presence of other possible determinants. They employ BMA for Cox hazards models and extend

the BMA method developed by Volinsky et al. (1997) to allow for time-dependent covariates in

order to properly account for the time-varying feedback effect of the variables on the duration of

growth spells. Traczynski (2017) uses a Bayesian model-averaging approach for predicting firm

bankruptcies and defaults at a 12-month horizon using hazard models. The analysis is based on a

Laplace approximations for the marginal likelihood, arising from the logistic likelihood and a g-

prior. On model space, a collinearity-adjusted dilution prior is chosen. Exact BMA methodology

was used to identify risk factors associated with dropout and delayed graduation in higher edu-

cation in Vallejos and Steel (2017), who employ a discrete time competing risks survival model,

dealing simultaneously with university outcomes and its associated temporal component. For

each choice of regressors, this amounts to a multinomial logistic regression model, which is a

special case of a GLM. They use the prior as in Sabanés Bové and Held (2011b) in combination

with the hyper-g/n prior (see Subsection 3.2.1).

4 Frequentist model averaging

Frequentist methods68 are inherently different to Bayesian methods, as they tend to focus on esti-

mators and their properties (often, but not always, in an asymptotic setting) and do not require the

specification of a prior on the parameters. Instead, parameters are treated as fixed, yet unknown,

and are not assigned any probabilistic interpretation associated with prior knowledge or learning

from data. Whereas Bayesian inference on parameters typically centers around the uncertainty

(captured by a full posterior distribution) that remains after observing the sample in question,

frequentist methods usually focus on estimators that have desirable properties in the context of

repeated sampling from a given experiment.

Early examples of FMA can be found in the forecasting literature, such as the forecast com-

binations of Bates and Granger (1969). This literature on forecast combinations (discussed here

more in detail in Subsection 4.3) has become quite voluminous, see e.g. Granger (1989) and

68These are based on the “classical” statistical methodology which still underlies most introductory textbooks in

statistics and econometrics.
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Stock and Watson (2006) for reviews, while useful surveys of FMA can be found in Burnham

and Anderson (2002), Wang et al. (2009), Ullah and Wang (2013) and Dormann et al. (2018).

In the context of the linear regression model in (5), FMA estimators can be described as

β̂FMA =
K
∑

j=1

ωjβ̂j, (24)

where β̂j is an estimator based on model j and ωj, j = 1 . . . , K are weights in the unit simplex

within ℜK . The critical choice is then how to choose the weights.

Buckland et al. (1997) construct weights based on different information criteria. They pro-

pose using

ωj =
exp(−Ij/2)

∑K
i=1 exp(−Ii/2)

, (25)

where Ij is an information criterion for model j, which can be the AIC or the BIC. Burnham

and Anderson (2002) recommend the use of a modified AIC criterion, which has an additional

small-sample second order bias correction term. They argue that this modified AIC should be

used whenever n/k < 40.

Hjort and Claeskens (2003) build a general large-sample likelihood framework to describe

limiting distributions and risk properties of estimators post-selection as well as of model aver-

aged estimators. A crucial tool for this analysis is their assumption of local misspecification,

which allows them to derive asymptotic results in a framework that mimicks the effects of model

uncertainty (however, see footnote 52). Their approach also explicitly takes modeling bias into

account. Besides suggesting various FMA procedures (based on e.g. AIC, the focused informa-

tion criterion, FIC69, of Claeskens and Hjort (2003) and empirical Bayes ideas), they provide a

frequentist view of the performance of BMA schemes (in the sense of limiting distributions and

large sample approximations to risks).

Hansen (2007) proposed a least squares model averaging estimator with model weights se-

lected by minimizing the Mallows’ criterion (Cp as defined in footnote 20). This estimator, known

as Mallows model averaging (MMA), is easily implementable for linear regression models and

has certain asymptotic optimality properties, since the Mallows’ criterion is asymptotically equiv-

alent to the squared predictive error. Therefore, the MMA estimator minimizes the squared error

in large samples. Hansen (2007) shows that the weight vector chosen by MMA achieves opti-

mality in the sense conveyed by Li (1987). The assumed data generating process is an infinite

linear regression model, but the model space is kept quite small by asking the user to order the

69The underlying idea of FIC is that it focuses the analysis on parameters of interest, by ignoring the risk or loss

associated with parameters that are not of interest.
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regressors and by considering only the sequence of approximating models M1, . . . ,MK where

the jth model uses the first kj covariates, with 0 ≤ k1 < k2 < · · · < kK for some K ≤ n such

that the matrix of covariates for MK is of full column rank.

Hansen and Racine (2012) introduced another estimator within the FMA framework called

jackknife model averaging (JMA) that selects appropriate weights for averaging models by min-

imizing a cross-validation (leave-one-out) criterion. JMA is asymptotically optimal in the sense

of reaching the lowest possible squared errors over the class of linear estimators. Unlike MMA,

JMA has optimality properties under heteroscedastic errors and when the candidate models are

non-nested.

Liu (2015) derives the limiting distributions of least squares averaging estimators for linear

regression models in a local asymptotic framework. The averaging estimators with fixed weights

are shown to be asymptotically normal and a plug-in averaging estimator is proposed that mini-

mizes the sample analog of the asymptotic mean squared error. This estimator is compared with

the FIC, MMA and JMA estimators. The asymptotic distributions of averaging estimators with

data-dependent weights are shown to be nonstandard and a simple procedure to construct valid

confidence intervals is proposed.

Liu et al. (2016) extend MMA to linear regression models with heteroscedastic errors, and

propose a model averaging method that combines generalized least squares (GLS) estimators.

They derive Cp-like criteria to determine the model weights and show they are optimal in the

sense of asymptotically achieving the smallest possible MSE. They also consider feasible ver-

sions using both parametric and nonparametric estimates of the error variances. Their objective

is to obtain an estimator that generates a smaller MSE, which they achieve by choosing weights

to minimize an estimate of the MSE. They compare their methods with those of Magnus et al.

(2011), who also average feasible GLS estimators.

Most asymptotically optimal FMA methods have been developed for linear models, but

Zhang et al. (2016) specifically consider GLMs (see Section 3.9.1) and generalized linear mixed-

effects models70 and propose weights based on a plug-in estimator of the Kullback-Leibler loss

plus a penalty term. They prove asymptotic optimality (in terms of Kullback-Leibler loss) for

fixed or growing numbers of covariates. Another extension of the linear model is the partial lin-

ear model, which includes both linear and nonparametric components in the regression function.

FMA for such models is investigated in Zhang and Wang (2018) who do not consider estima-

tion of the parameters, but focus on finding weights that minimize the squared prediction error.

They use kernel smoothing to estimate each individual model, which implies a serious computa-

70These models are GLMs with so-called random effects, e.g. effects that are subject-specific in a panel data

context.
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tional burden when the number of candidate models is large. For larger model spaces, Zhang and

Wang (2018) recommend a model screening step (see Subsection 4.2) prior to model averaging.

This semiparametric setting is taken one step further in Zhu et al. (2018), who consider partial

linear models with varying coefficients. They also allow for heteroscedastic errors and assume

the “true” model is infinite-dimensional, as e.g. in Hansen (2007). They propose Mallows-type

weights based on minimizing expected predictive squared error, and prove asymptotic optimality

of the resulting FMA estimator (in terms of squared error loss). Li et al. (2018) also propose an

FMA approach based on semiparametric varying coefficient models, using MMA weights. In a

fully nonparametric regression context, Henderson and Parmeter (2016) propose a nonparamet-

ric regression estimator averaged over the choices of kernel, bandwidth selection mechanism and

local-polynomial order, while Tu (2018) uses local linear kernel estimation of individual models

and combines them with weights derived through maximizing entropy.

FMA was used for forecasting with factor-augmented regression models in Cheng and Hansen

(2015). In the context of growth theory, Sala-i-Martin (1997) uses (24), and focuses on the “level

of confidence”71, using weights that are either uniform or based on the maximized likelihood.

Another model-averaging procedure that has been proposed in Magnus et al. (2010) and re-

viewed in Magnus and De Luca (2016) is weighted average least squares (WALS), which can

be viewed as being in between BMA and FMA. The weights it implies in (24) can be given

a Bayesian justification. However, it assumes no prior on the model space and thus can not

produce inference on posterior model probabilities. WALS is easier to compute than BMA or

FMA, but quite a bit harder to explain and inherently linked to a nested linear regression setting.

Magnus and De Luca (2016) provide an in-depth description of WALS and its relation to BMA

and FMA. They state: “The WALS procedure surveyed in this paper is a Bayesian combina-

tion of frequentist estimators. The parameters of each model are estimated by constrained least

squares, hence frequentist. However, after implementing a semiorthogonal transformation to the

auxiliary regressors, the weighting scheme is developed on the basis of a Bayesian approach in

order to obtain desirable theoretical properties such as admissibility and a proper treatment of

ignorance. The final result is a model-average estimator that assumes an intermediate position

between strict BMA and strict FMA estimators [....] Finally we emphasize (again) that WALS is

a model-average procedure, not a model-selection procedure. At the end we cannot and do not

want to answer the question: which model is best? This brings with it certain restrictions. For

example, WALS cannot handle jointness (Ley and Steel, 2007; Doppelhofer and Weeks, 2009).

The concept of jointness refers to the dependence between explanatory variables in the poste-

71This is defined as the maximum probability mass one side of zero for a Normal distribution centred at the

estimated regression coefficient with the corresponding estimated variance.
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rior distribution, and available measures of jointness depend on posterior inclusion probabilities

of the explanatory variables, which WALS does not provide.” The choice of the weight func-

tion in WALS is based on risk (or MSE) considerations, and can be given a frequentist and a

Bayesian flavour: in the latter framework admissibility is ensured, so it is favoured by Magnus

and De Luca (2016). In particular, for transformations of the regressions coefficients they con-

sider robust72 priors in the class of reflected generalized gamma distributions (with a Laplace

prior as a (non-robust) special case). An extension called Hierarchical WALS was proposed in

Magnus and Wang (2014) to jointly deal with uncertainty in concepts and in measurements within

each concept, in the spirit of dilution priors (see Section 3.1.2). Generally, however, WALS is

rather closely linked to the context of covariate uncertainty in a normal linear regression frame-

work and the possibility of extensions to other settings seems limited. One important extension is

to the general GLM framework, developed in De Luca et al. (2018). They base WALS on a com-

bination of one-step MLEs and consider its asymptotic frequentist properties in the M-closed

local misspecification framework of Hjort and Claeskens (2003).

Wagner and Hlouskova (2015) consider frequentist model averaging for principal compo-

nents augmented regressions illustrated with the FLS data set on economic growth determinants.

In addition, they compare and contrast their method and findings with BMA and with the WALS

approach, finding some differences but also some variables that are important in all analyses.

Another comparison of different methods on growth data can be found in Amini and Parmeter

(2011). They consider BMA, MMA and WALS and find that results (in as far as they can be

compared: for example, MMA and WALS do not provide posterior inclusion probabilities) for

three growth data sets are roughly similar. In the context of GLMs, a comparison of BMA (as in

Chen and Ibrahim (2003), various FMA methods (e.g. based on smoothed versions of AIC, BIC

and FIC), a number of model selection procedures (e.g. LASSO, SCAD and stepwise regression)

and WALS is conducted by De Luca et al. (2018). They find that WALS performs similarly to

BMA and FMA based on FIC, and that these model averaging procedures outperform the model

selection methods.

4.1 Estimating the sampling variance of FMA estimators

The construction of confidence intervals associated with FMA estimators has to take into account

the model uncertainty, in order to achieve the expected coverage probability. The traditional clas-

sical confidence interval is derived conditional upon the chosen model, and thus underestimates

uncertainty and leads to confidence intervals that are too narrow. Buckland et al. (1997) propose

72This is a specific implementation of the robustness idea in Subsection 3.1: a robust prior has fatter tails than a

normal and is often defined as a prior for which p′(x)/p(x) → 0 as x → ∞.
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an adjustment to the standard error to be used in this traditional formula, but Hjort and Claeskens

(2003) show that the asymptotic distribution of the FMA estimator in (24) is not normal in their

local misspecification framework. They derive the limiting distribution and suggest an expression

for a confidence interval with correct coverage probability. Wang and Zhou (2013) prove that this

confidence interval is asymptotically equivalent to that constructed based only on the full model

estimator (which is very easy to compute). In fact, they also show that the same equivalence

result holds for the varying-coefficient partially linear model. This means that if the interest of

the user is only in interval estimation (for linear combinations of regression coefficients), there

appears to be no need to consider FMA and the full model should be able to provide the appro-

priate intervals. However, in simulations FMA does beat model selection procedures and the full

model in terms of finite sample MSE performance, which suggests that for point estimation there

is a clear advantage to model averaging.

4.2 Computational aspects of FMA

An important difference between BMA and FMA is that the latter does not lead to estimated

model probabilities73. A consequence of this for computation in large model spaces is that simple

MCMC algorithms where models are visited in line with their posterior probabilities are not

readily available. This restricts the ability of FMA methods to deal with large model spaces, as it

would need to enumerate the large number of models in (24). In addition, some approaches, like

JMA or other cross-validation schemes require non-trivial computational effort for each model

weight computation.

Thus, researches with an interest in applying FMA often rely on ways of reducing the model

space. In the literature, this has been implemented in a number of ways:

• Conduct a preliminary model-screening step to remove the least interesting models before

applying FMA. This was done in e,g, Claeskens et al. (2006) (for logistic models), Zhang

et al. (2013) (for forecasting discrete response time series) and Zhang et al. (2016) (for

GLMs). Inference is then conducted conditionally upon the outcome of the screening, so

that the uncertainty involved in this first step is not addressed by the model averaging.

This approach is not just used for FMA, as some BMA methods also include a preliminary

screening step: in particular, the use of Occam’s window (see Subsection 3.3) proposed for

graphical models in Madigan and Raftery (1994) and applied to linear regression in Raftery

et al. (1997).

73Nevertheless, Burnham and Anderson (2002) have suggested interpreting the estimated weights with AIC as

model probabilities.
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• In the context of covariate uncertainty in the linear model, apply an orthogonal transforma-

tion of the regressors. WALS critically relies on a semiorthogonal transformation which

effectively reduces the computational burden of WALS to the order k, in a model space of

dimension 2k. Of course, this does not allow us to conduct inference on inclusion prob-

abilities of the covariates and the inference is about estimating the effects of covariates.

For growth regressions with large model spaces, Amini and Parmeter (2012) introduce an

operational version of MMA by using the same semiorthogonal transformations as adopted

in WALS.

• Always include a subset of the covariates in each model. This was already used as a

device to simplify computations in early work in growth regressions, such as the EBA

in Levine and Renelt (1992), and is also found in WALS and e.g. the analysis of Wagner

and Hlouskova (2015).

4.3 Combining forecasts

4.3.1 The forecast combination puzzle

As mentioned earlier, there is a large literature in forecasting which combines point forecasts

from different models in an equation such as (24) to provide more stable and better-performing

forecasts. Of course, the choice of weights in combination forecasting is important. For example,

we could consider weighting better forecasts more heavily. In addition, time-varying weights

have been suggested. Stock and Watson (2004) examine a number of weighting schemes in

terms of the accuracy of point forecasts and find that forecast combinations can perform well

in comparison with single models, but that the best weighting schemes are often the ones that

incorporate little or no data adaptivity. This empirical fact that “optimally” estimated weights

often perform worse than equal weights in terms of mean squared forecast error is known as the

“forecast combination puzzle”.

Smith and Wallis (2009) provide an explanation for this phenomenon in terms of the addi-

tional uncertainty associated with estimating the weights. Their analysis shows that if the opti-

mal weights are close to equal, then a simple average of competing forecasts (i.e. assuming the

weights are equal) can dominate a forecast combination with weights that are estimated from the

data. Along similar lines, Claeskens et al. (2015) also provide an explanation for the forecast

combination puzzle, but they explicitly treat the estimated weights as random and consider the

derivation of the optimal weights and their estimation jointly.
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4.3.2 Density forecast combinations

There is an increasing awareness of the importance of probabilistic or density forecasts, as de-

scribed in Section 3.2.2. Thus, a recent literature has emerged on density forecast combinations

or weighted linear combinations (pools) of prediction models. Density forecasts combinations

were discussed in Wallis (2005) and further developed by Hall and Mitchell (2007), where the

combination weights are chosen to minimize the Kullback-Leibler “distance” between the pre-

dicted and true but unknown density. The latter is equivalent to optimizing LPS as defined in

Section 3.2.2. The properties of such prediction pools are examined in some detail in Geweke

and Amisano (2011), who show that including models that are clearly inferior to others in the

pool can substantially improve prediction. Also, they illustrate that weights are not an indica-

tion of a predictive model’s contribution to log score. This approach is extended by Kapetanios

et al. (2015), who allow for more general specifications of the combination weights, by letting

them depend on the variable to be forecast. They specifically investigate piecewise linear weight

functions and show that estimation by optimizing LPS leads to consistency and asymptotic nor-

mality74. They also illustrate the advantages over density forecast combinations with constant

weights using simulated and real data.

5 Applications in Economics

There is a large and rapidly growing literature where model averaging techniques are used to

tackle empirical problems in economics. Before the introduction of model averaging methods,

model uncertainty was typically dealt with in a less formalized manner and perhaps even simply

ignored in many cases. Without attempting to be exhaustive, this chapter briefly mentions some

examples of model averaging in economic problems and highlights some instances where model

averaging has provided new empirical insights.

5.1 Growth regressions

Traditionally, growth theory has been an area where many potential determinants have been sug-

gested and empirical evidence has struggled to resolve the open-endedness of the theory (see

footnote 16). Extensive discussions of model uncertainty in the context of economic growth can

be found in Brock et al. (2003) and Temple (2000). Starting from neoclassical growth theory,

Barro (1991) investigates extensions by considering partial correlations and adding variables one

74Formally, this is shown for known thresholds of the piecewise linear weights, and is conjectured to hold for

unknown threshold parameters.
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by one to OLS regressions. By including human capital as a determinant (captured by school

enrollment) he finds empirical support for the neoclassical convergence theory (i.e. that poorer

countries tend to grow faster than richer ones). Rodrik et al. (2004) distinguish three main strands

of theories in the literature about drivers for growth: geography (which determines natural re-

sources and also influences agricultural productivity and the quality of human resources), inter-

national trade (linked with market integration) and institutions (more in particular, property rights

and the rule of law)75. Of course, there is a myriad of possible ways in which these theoretical

determinants could be measured in practice, leading to a large collection of possible models in

line with one or more of these theories. To make empirical implementation even more complex,

only the first theoretical source of growth (geography) can be safely assumed to be exogenous,

and for the other theories we need to be aware of the possibility that variables capturing these

effects may well be endogenous (see Subsection 3.9.7). The typical treatment of the latter issue

requires us to make choices regarding instrumental variables, yet again increasing the number of

potential models. Early attempts at finding a solution include the use of EBA (see Section 2.2)

in Levine and Renelt (1992) who investigate the robustness of the results from linear regressions

and find that very few regressors pass the extreme bounds test, while Sala-i-Martin (1997) em-

ploys a less severe test based on the “level of confidence” of individual regressors averaged over

models (uniformly or with weights proportional to the likelihoods). These more or less intuitive

but ad-hoc approaches were precursors to a more formal treatment through BMA discussed and

implemented in Brock and Durlauf (2001) and Fernández et al. (2001b). Hendry and Krolzig

(2004) present an application of general-to-specific modelling (see Section 2.2) in growth theory,

as an alternative to BMA. However, there is a long list of applications in this area where model

averaging is used, and some examples are given below, organised in terms of possible drivers of

growth.

5.1.1 Institutions

As mentioned above, the theory that institutions are a crucial driver for growth is often specifically

linked to property rights and the rule of law. Acemoglu et al. (2001) argue that private property

rights (as measured by government risk of expropriation) are a key determinant of growth, and

that the security of such property rights is crucially dependent on the colonial history. This leads

them to use mortality rates of the first European settlers as an instrument for the current insti-

tutions in those countries in a 2SLS regression analysis. They find that institutions have a large

effect on GDP per capita, and judge this effect to be robust with respect to adding other potential

75Durlauf (2018) provides a very complete discussion of the empirical evidence for links between institutions and

growth, concluding that institutions matter.
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determinants to their regression model. However, these extra variables are essentially added one

by one, so that the number of different models actually presented is quite limited. Also, they do

not consider any trade variables. In a similar fashion, Frankel and Romer (1999) focus on trade

as a growth driver and present empirical evidence to support that theory, but without controlling

for the effects of institutions. A somewhat broader empirical framework is used in Rodrik et al.

(2004), who aim to provide a comparison of the three main growth theories mentioned in the

previous subsection. They use three different samples and take into account the potential endo-

geneity of institution and integration variables. For the former, they choose rule of law and as an

integration variable, they select the ratio of trade to GDP. They use the instrument in Acemoglu

et al. (2001), which they replace for the largest sample by two other instruments: the fraction of

the population speaking English and the fraction speaking another European language as their

first language. As an additional instrument they adopt the constructed trade share as estimated

from a gravity model in Frankel and Romer (1999). Geography is measured by the distance from

the equator. Rodrik et al. (2004) conclude that institutions are the main driver of growth between

the three theories investigated. But again, this result hinges upon specific choices of variables to

represent the theories, specific choices of instruments and consideration of a very limited number

of models with other possible determinants. A systematic model averaging approach is imple-

mented in Lenkoski et al. (2014), using their 2SBMA methodology as explained in Subsection

3.9.7. They reexamine the data used by Rodrik et al. (2004) through 2SBMA to carefully address

the model and instrument uncertainty. Once they allow for additional theories in the model space,

they start finding important differences with the Rodrik et al. (2004) conclusions. In particular,

they conclude that all three main growth theories (geography, integration and institutions) play

an important part in development. A similar 2SBMA analysis in Eicher and Newiak (2013) also

includes intellectual property rights. Measuring intellectual property rights by the enforcement

of patents, Eicher and Newiak (2013) find evidence of strong positive effects of both intellectual

and physical property rights, as well as some effects to do with geography (malaria and tropics

both have a negative impact on development). The influence of trade on growth is analysed in

Eicher and Kuenzel (2016), again using the two-stage BMA approach of Lenkoski et al. (2014).

They find that sectoral export diversity serves as a crucial growth determinant for low-income

countries, and that this effect decreases with the level of development. They also find strong

evidence for institutional effects on growth.

All these model averaging results take into account many models with different instruments

and different growth determinants, and thus allow for a much more complete and nuanced in-

ference from the data than the earlier studies, more adequately reflecting the uncertainty of any

conclusions drawn. In addition, the instrument constructed by Acemoglu et al. (2001) has been

criticised by Albouy (2012), due to the problems in obtaining reliable historical mortality data.
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However, a model averaging approach that takes account of the uncertainty in the instruments will

simply downweigh inappropriate instruments. For example, settler mortality does not receive a

lot of weight in the instrumental variables equation of Lenkoski et al. (2014) for rule of law76

and those of Eicher and Newiak (2013) for patent protection and rule of law.77 Model averaging

is particularly natural and useful in the context of instrumental variables, where theory is at best

indicative and data quality may be a serious issue.

5.1.2 Energy consumption

The question of whether energy consumption is a critical driver of economic growth is inves-

tigated in Camarero et al. (2015). This relates to an important debate in economics between

competing economic theories: ecological economic theory (which considers the scarcity of re-

sources as a limiting factor for growth) and neoclassical growth theory (where it is assumed

that technological progress and substitution possibilities may serve to circumvent energy scarcity

problems). There are various earlier studies that concentrate on the bivariate relationship between

energy consumption and economic growth, but of course the introduction of other relevant covari-

ates is key. In order to resolve this in a formal manner, they use the BMA framework on annual

US data (both aggregate and sectoral) from 1949 to 2010, with up to 32 possible covariates. Ca-

marero et al. (2015) find that energy consumption is an important determinant of aggregate GDP

growth (but their model does not investigate whether energy consumption really appears as an en-

dogenous regressor, so that they can not assess whether there is also feedback) and also identify

energy intensity, energy efficiency, the share of nuclear power and public spending as important

covariates. Sectoral results support the conclusion about the importance of energy consumption,

but show some variation regarding the other important determinants.

5.1.3 Government spending

The effect of government investment versus government consumption on growth in a period of

fiscal consolidation in developed economies is analysed in Jovanovic (2017). Using BMA and a

dilution prior (based on the determinant of the correlation matrix), it is found that public invest-

ment is likely to have a bigger impact on GDP than public consumption in the countries with high

public debt. Also, and more controversially, the (investment) multiplier is likely to be higher in

countries with high public debt than in countries with lower public debt. The results suggest that

76Although settler mortality does seem to have some use an an instrument for integration.
77But when replacing patent protection by patent enforcement, settler mortality actually becomes an important

instrument.
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fiscal consolidation should be accompanied by increased public investment. Using the dataset

from Sala-i-Martin et al. (2004) and a prior which replaces the g-prior in (6) by a prior structure

with a covariance for βj proportional to an identity matrix and independence between βj and

σ, Lee and Chen (2018) come to largely similar conclusions as previous studies using g-priors.

However, they find some differences: one is that both government consumption share and gov-

ernment share of GDP are important drivers for growth, with a positive effect. They conjecture

that the difference with the results in Sala-i-Martin et al. (2004) (finding negative effects and less

importance for these variables) is a consequence of the different prior in combination with the

high pairwise correlation between these covariates.

5.1.4 Natural resources

As discussed in Frankel (2012), a surprising empirical fact is that the raw data (based on average

growth of countries for 1970-2008) certainly do not suggest a positive correlation between natural

resource wealth and economic growth. This is often termed the “natural resource curse” and

Frankel (2012) lists six possible mechanisms: the long-run trend of world prices for commodities;

volatility in commodity prices; permanent crowding out of manufacturing, where spillover effects

are thought to be concentrated; autocratic or oligarchic institutions; anarchic institutions, such as

unenforceable property rights, unsustainably rapid depletion, or civil war; and cyclical expansion

of the nontraded sector via the Dutch disease.

On the basis of a relatively small number of cross-country growth regressions, Sachs and

Warner (2001) conclude that the curse is real and that the most likely explanation could be through

crowding out of growth-stimulating activity. They find that resource-abundant countries tend to

be high-price economies and that contributes to less export-led growth in these countries. Using

BMA, Arin and Braunfels (2018) examine the existence of the natural resource curse focusing

on the empirical links between oil rents and long-term growth. They find that oil revenues have

a robust positive effect on growth. When they include interactions and treat them simply as

additional covariates, they find that the positive effect can mostly be attributed to the interaction of

institutional quality and oil revenues, which would suggest that institutional quality is a necessary

condition for oil revenues to have a growth-enhancing effect. However, if they use a prior that

adheres to the strong heredity principle (see Section 3.1.2), they find instead that the main effect

of oil rents dominates. In any case, their BMA results lead them to the conclusion “that oil rents

have a robust positive effect on economic growth and that the resource curse is a red herring.”
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5.1.5 Other determinants

A specific focus on the effect of measures of fiscal federalism on growth was adopted in Asatryan

and Feld (2015). They conclude that, after controlling for unobserved country heterogeneity, no

robust effects of federalism on growth can be found.

Man (2015) investigates whether competition in the economic and political arenas is a robust

determinant of aggregate growth, and whether there exists jointness among competition variables

versus other growth determinants. This study also provides a comparison with EBA and with

“reasonable extreme bounds analysis”, which also takes the fit of the models into account. Evi-

dence is found for the importance and positive impact on growth of financial market competition,

which appears complementary to other important growth determinants. Competition in other

areas does not emerge as a driver of economic growth.

Piribauer (2016) estimates growth patterns across European regions in a spatial econometric

framework, building on threshold estimation approaches (Hansen, 2000) to account for structural

heterogeneity in the observations. The paper uses the prior structure by George and McCulloch

(1993, 1997) with SSVS (see Section 3.3), and concludes that initial income, human capital

endowments, infrastructure accessibility, and the age structure of the population all appear to be

robust driving forces of income growth.

Lanzafame (2016) derives the natural or potential growth rates of Asian economies (using a

Kalman filter on a state-space model) and investigates the determinants of potential growth rates

through BMA methods (while always including some of the regressors). He finds evidence of

robust links with various aspects of institutional quality, the technology gap with the US, trade,

tertiary education, and the growth rate of the working-age population.

5.2 Inflation and Output Forecasting

In the context of time series modelling with ARIMA and ARFIMA models, BMA was used for

posterior inference on impulse responses78 for real GNP in Koop et al. (1997). This is an example

where the behaviour of the quantity of interest (impulse response) is very different between the

groups of models considered. ARFIMA (Autoregressive Fractionally Integrated Moving Aver-

age) models allow for long memory behaviour which is characterized by a fractional differencing

parameter δ ∈ (−1, 0.5)79. Processes with δ > 0 are called long memory processes, while for

δ < 0 we have intermediate memory. The special case of δ = 0 corresponds to the more fa-

78The impulse response function measures the effect of a unitary shock on an economic quantity as a function of

time. For a stationary process, impulse responses are the coefficients of its (infinite) moving average representation.
79For this range of values of δ the process (expressed in first differences) is stationary and invertible.
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miliar ARIMA class, which leads to an impulse response function that tends to values on the

positive real line when the time horizon goes to infinity. In contrast, ARFIMA models, lead only

to limiting impulse responses of either zero (when δ < 0) or ∞ (for δ > 0). Even though the

real interest in practice may be in finite time horizons, these limiting results of course impact

on the entire impulse response function. This fact actually led Hauser et al. (1999) (who use a

frequentist model selection approach) to conclude that ARFIMA models are not appropriate for

inference on persistence, in conflict with the earlier recommendation in Diebold and Rudebusch

(1989). However, by using model averaging rather than model selection, we are not forced to

choose either one of these models, but we can formally combine the (often necessarily disparate)

inference on persistence and take proper account of the uncertainty. In Koop et al. (1997), the

model space chosen is characterized by different combinations of autoregressive and moving av-

erage lag lengths (from 0 to 3) and includes both ARIMA and ARFIMA models for real US GNP.

Thus, the posterior distribution of impulse responses is bimodal for (medium and long run) finite

horizons and for the impulse response at infinity it contains point masses at zero and ∞.

Cogley and Sargent (2005) consider Bayesian averaging of three models for inflation using

dynamic model weights. Another paper that uses time-varying BMA methods for inflation fore-

casting is van der Maas (2014). The related strategy of dynamic model averaging, due to Raftery

et al. (2010) and described in Section 3.9.6, was used in Koop and Korobilis (2012). Forecasting

inflation using BMA has also been examined in Eklund and Karlsson (2007), who propose the use

of so-called predictive weights in the model averaging, rather than the usual BMA based on pos-

terior model probabilities. Shi (2016) models and forecasts quarterly US inflation and finds that

Bayesian model averaging with regime switching leads to substantial improvements in forecast

performance over simple benchmark approaches (e.g. random-walk or recursive OLS forecasts)

and pure BMA or Markov switching models. Ouysse (2016) considers point and density fore-

casts of monthly US inflation and output growth that are generated using principal components

regression (PCR) and BMA. A comparison between 24 BMA specifications and 2 PCR ones

in an out-of-sample, 10-year rolling event evaluation leads to the conclusion that PCR methods

perform best for predicting deviations of output and inflation from their expected paths, whereas

BMA methods perform best for predicting tail events. Thus, risk-neutral policy-makers may

prefer the PCR approach, while the BMA approach would be the best option for a prudential,

risk-averse forecaster.

Bencivelli et al. (2017) investigate the use of BMA for forecasting GDP relative to simple

bridge models80 and factor models. They conclude that for the Euro area, BMA bridge models

80Bridge models relate information published at monthly frequency to quarterly national account data, and are

used for producing timely “now-casts” of economic activity.
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produce smaller forecast errors than a small-scale dynamic factor model and an indirect bridge

model obtained by aggregating country-specific models.

Ductor and Leiva-Leon (2016) investigate the time-varying interdependence among the eco-

nomic cycles of the major world economies since the 1980’s. They use a BMA panel data ap-

proach (with the model in (22) including a time trend) to find the determinants of pairwise de-

synchronization between the business cycles of countries. They also apply WALS and find that it

indicates the same main determinants as BMA.

A probit model is used for forecasting US recession periods in Aijun et al. (2018). They

use a Gibbs sampler based on SSVS (but with point masses for the coefficients of the excluded

regressors), and adopt a generalized double Pareto prior (which is a scale mixture of normals)

for the included regression parameters along with a dilution prior over models based on the

correlation between the covariates. Their empirical results on monthly U.S. data (from 1959:02

until 2009:02) with 108 potential covariates suggest the method performs well relative to the

main competitors.

5.3 VAR and DSGE modelling

A popular econometric framework for jointly modelling several variables is the vector autore-

gressive (VAR) model. Koop (2017) provides an intuitive and accessible overview of Bayesian

methods for inference with these types of models. BMA methodology has been applied by Gar-

ratt et al. (2003) for probability forecasting of inflation and output growth in the context of a

small long-run structural vector error-correcting model of the UK economy. George et al. (2008)

apply BMA ideas in VARs using SSVS methods with priors which do not induce exact zero re-

strictions on the coefficients, as in George and McCulloch (1993). Koop and Korobilis (2016)

extend this to Panel VARs where the restrictions of interest involve interdependencies between

and heterogeneities across cross-sectional units.

Feldkircher and Huber (2016) use a Bayesian VAR model to explore the international spillovers

of expansionary US aggregate demand and supply shocks, and of a contractionary US monetary

policy shock. They use SVSS and find evidence for significant spillovers, mostly transmitted

through financial channels and with some notable cross-regional variety.

BMA methods for the more restricted dynamic stochastic general equilibrium (DSGE) mod-

els were used in Strachan and van Dijk (2013), with a particular interest in the effects of investment-

specific and neutral technology shocks. Evidence from US quarterly data from 1948-2009 sug-

gests a break in the entire model structure around 1984, after which technology shocks appear

to account for all stochastic trends. Investment-specific technology shocks seem more important
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for business cycle volatility than neutral technology shocks.

5.4 Crises and finance

There is a substantial literature on early warning signals for economic crises going back many

decades, illustrated by the review in Frankel and Saravelos (2012) and forcefully brought back

to attention by the global financial crisis of 2008-9. Unfortunately, the established early warn-

ing signals did not provide clear alerts for this recent crisis (see, for example, Rose and Spiegel

(2011)). Feldkircher et al. (2014) focus on finding leading indicators for exchange market pres-

sures during the crisis and their BMA results indicate that inflation plays an important aggravating

role, whereas international reserves act as a mitigating factor. Early warning signals are also in-

vestigated in Christofides et al. (2016) who consider four different crisis dimensions: banking,

balance of payments, exchange rate pressure, and recession and use balanced samples in a BMA

analysis. They do not identify any single early warning signal for all dimensions of the 2008 cri-

sis, but find that the importance of such signals is specific to the particular dimension of the crisis

being examined. They argue that the consensus in the previous literature about early warning sig-

nals (such as “foreign currency reserves” and “exchange rate overvaluations” mentioned in, for

example, Frankel and Saravelos (2012)) hinges critically on the fact that many earlier analyses

only considered models that were in line with a particular theory. Taking theory uncertainty into

account in a formal statistical framework, the conclusions change.

Following the work of Rose and Spiegel (2011) and the earlier BMA approach of Giannone

et al. (2011), Feldkircher (2014) uses BMA to identify the main macroeconomic and financial

market conditions that help explain the real economic effects of the crisis of 2008-9. He finds

that countries with strong pre-crisis growth in credit and/or in real activity tended to be less re-

silient. Ho (2015) investigates the causes of the crisis, using BMA, BACE and the approach of

Hoeting et al. (1996) (see Section 3.9.4) to deal with outliers, and finds that the three methods

lead to broadly similar results. The same question about the determinants of the 2008 crisis was

addressed in Chen et al. (2017), who use a hierarchical prior structure with groups of variables

(grouped according to a common theory about the origins of the crisis) and individual variables

within each group. They use BMA to deal with uncertainty at both levels and find that “financial

policies and trade linkages are the most relevant groups with regard to the relative macroeco-

nomic performance of different countries during the crisis. Within the selected groups, a number

of pre-existing financial proxies, along with measures of trade linkages, were significantly corre-

lated with real downturns during the crisis. Controlling for both variable uncertainty and group

uncertainty, our group variable selection approach is able to identify more variables that are sig-

nificantly correlated with crisis intensity than those found in past studies that select variables
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individually.”

The drivers of financial contagion after currency crises were investigated through BMA meth-

ods in Dasgupta et al. (2011). They use a probit model for the occurrence of a currency crisis

in 54 to 71 countries for four years in the 1990s and find that institutional similarity is an im-

portant predictor of financial contagion during emerging market crises. Puy (2016) investigates

the global and regional dynamics in equity and bond flows, using data on portfolio investments

from international mutual funds. In addition, he finds strong evidence of global contagion. To

assess the determinants of contagion, he regresses the fraction of variance of equity and bond

funding attributable to the world factor on a set of 14 structural variables, using both WALS and

BMA. Both point towards distance and political risk as robust drives of contagion, Puy (2016)

concludes that “sudden surges/stops tend to strike fragile countries, i.e. emerging markets with

unstable political systems and poor connection to the main financial centers.”

Moral-Benito and Roehn (2016) explore the relationship between financial market regulation

and current account balances. They use a dynamic panel model and combine the BMA method-

ology with a likelihood-based estimator that accommodates both persistence and unobserved het-

erogeneity. In their investigation of the determinants of current account balances, Desbordes et al.

(2018) highlight “three features which are likely to be shared by many panel data applications:

high model uncertainty, presence of slope heterogeneity, and potential divergence in short-run

and long-run effects”.

The use of BMA in forecasting exchange rates by Wright (2008) leads to the conclusion that

BMA provides slightly better out-of-sample forecasts (measured by mean squared prediction er-

rors) than the traditional random walk benchmark. This is confirmed by Ribeiro (2017), who

also argues that a bootstrap-based method, called bumping, performs even better. Iyke (2015)

analyses the real exchange rate in Mauritius using BMA. Different priors are adopted, including

empirical Bayes. There are attempts to control for multicollinearity in the macro determinants

using three competing model priors incorporating dilution, among which the tessellation prior

and the weak heredity prior (see Section 3.1.2). Adler and Grisse (2017) examine behavioral

equilibrium exchange rates models, which relate a long-run cointegration relationship between

real exchange rates to fundamental macroeconomic variables, in a panel regression across curren-

cies. They use BACE to deal with model uncertainty and find that some variables (central bank

reserves, government consumption, private credit, real interest rates and the terms of trade) are

robustly linked with real exchange rates. The introduction of fixed country effects in the models

greatly improves the fit to real exchange rates over time.

BMA applied to a meta-analysis is used by Zigraiova and Havranek (2016) to investigate

the relationship between bank competition and financial stability. They find some evidence of
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publication bias81 but encounter no clear link between bank competition and stability, even when

correcting for publication bias and potential misspecifications.

Devereux and Dwyer (2016) examine the output costs associated with 150 banking crises

using cross country data for the years after 1970. They use BMA to identify important determi-

nants of output changes after crises and conclude that for high-income countries the behavior of

real GDP after a banking crisis is most closely associated with prior economic conditions, where

above-average changes in credit tend to be associated with larger expected decreases in real GDP.

For low-income economies, the existence of a stock market and deposit insurance are linked with

quicker recovery of real GDP.

Pelster and Vilsmeier (2018) use Bayesian Model Averaging to assess the pricing-determinants

of credit default swaps. They use an autoregressive distributed lag model with time-invariant

fixed effects and approximate posterior model probabilities on the basis of smoothed AIC. They

conclude that credit default swaps price dynamics can be mainly explained by factors describing

firms’ sensitivity to extreme market movements, in particular variables measuring tail dependence

(based on so-called dynamic copula models).

Horvath et al. (2017) explore the determinants of financial development as measured by fi-

nancial depth (both for banks and stock markets), the efficiency of financial intermediaries (both

for banks and stock markets), financial stability and access to finance. They use BMA to analyse

financial development in 80 countries using nearly 40 different explanatory variables and find that

the rule of law is a major factor in influencing financial development regardless of the measure

used. In addition, they conclude that the level of economic development matters and that greater

wealth inequality is associated with greater stock market depth, although it does not matter for

the development of the banking sector or for the efficiency of stock markets and banks.

The determinants of US monetary policy are investigated in Wölfel and Weber (2017), who

conclude from a BMA analysis that over the long-run (1960-2014) the important variables in

explaining the Federal Funds Rate are inflation, unemployment rates and long-term interest rates.

Using samples starting in 1973 (post Bretton-Woods) and 1982 (real-time data), the fiscal deficit

and monetary aggregates were also found to be relevant. Wölfel and Weber (2017) also account

for parameter instability through the introduction of an unknown number of structural breaks

and find strong support for models with such breaks, although they conclude that there is less

81Generally, this is the situation that the probability of a result being reported in the literature (i.e. of the paper

being published) depends on the sign or statistical significance of the estimated effect. In this case, the authors found

some evidence that some authors of primary studies tend to discard estimates inconsistent with the competition-

fragility hypothesis, one of the two main hypotheses in this area. For an in-depth discussion of publication bias and

meta-analyses in economics, see Christensen and Miguel (2018).
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evidence for structural break since the 1990s.

Watson and Deller (2017) consider the relationship between economic diversity and unem-

ployment in the light of the economic shocks provided by the recent “Great Recession”. They

use a spatial BMA model allowing for spatial spillover effects on data from US counties with a

Herfindahl diversity index computed across 87 different sectors. They conclude that increased

economic diversity within the county itself is associated with significantly reduced unemploy-

ment rates across all years of the sample (2007-2014). The economic diversity of neighbours is

only strongly associated with reduced unemployment rates at the height of the Great Recession.

Ng et al. (2016) investigate the relevance of social capital in stock market development using

BMA methods and conclude that trust is a robust and positive determinant of stock market depth

and liquidity.

BMA was used to identify the leading indicators of financial stress in 25 OECD countries by

Vašı́ček et al. (2017). They find that financial stress is difficult to predict out of sample, either

modelling all countries at the same time (as a panel) or individually.

5.5 Production modelling

For production or cost modelling through stochastic frontier models, there exists a large amount

of uncertainty regarding the distributional assumptions, particularly for the one-sided errors that

capture inefficiencies. There is no theoretical guidance and a number of different distributions

are used in empirical work. Given the typical lack of observations per firm (just one in cross-

sectional analyses), the distribution used has a potentially large effect on the inference on firm

efficiencies82, a key aspect of interest in this type of modelling.

Bayesian methods were introduced in this context by van den Broeck et al. (1994). They deal

with the uncertainty regarding the specification of the inefficiency distribution through BMA,

so that inference on all aspects of interest (such as elasticities, returns to scale, firm-specific

posterior and predictive efficiencies, etc.) is appropriately averaged over the models considered.

Other, more ad-hoc, approaches to providing model averaged estimates for some features of

productivity or inefficiency appear, for example, in Sickles (2005), who takes simple averages of

technical efficiency estimates for US banks across a range of alternative stochastic frontier panel

data models, with the aim of providing “a clear and informative summary”. This is formalized

82For example, the exponential inefficiency distribution is a popular choice, as it is relatively easy to work with,

but because of its shape (with a lot of mass near zero) it will tend to lead to a cluster of highly efficient firms; this

contrasts with other, more flexible, distributions, such as the gamma or generalized gamma distributions or mixtures

of distributions; see Griffin and Steel (2008).
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in Parmeter et al. (2016), who develop FMA methods for (cross-sectional) stochastic frontier

models. In particular, they consider models that allow for the variance of the symmetric model

error and the parameters of the inefficiency distribution to depend on possible covariates, and the

uncertainty resides in which are the appropriate sets of covariates in these distributions and which

covariates should be included in the frontier itself (typically functions of inputs for a production

frontier, but there could be other covariates, such as time in a panel setup, etc.). One method

averages inefficiencies and works for nested structures, and another is a J-fold cross-validation

method similar to JMA, which can be used when inefficiency distributions are not nested.

McKenzie (2016) considers three different stochastic frontier models with varying degrees of

flexibility in the dynamics of productivity change and technological growth, and uses Bayesian

model averaging to conduct inference on productivity growth of railroads.

Cost efficiency in the Polish electricity distribution sector is analysed through Bayesian meth-

ods in Makieła and Osiewalski (2018). Given the complexity of the models involved, they do not

run a chain over model space but treat models separately, using the so-called corrected arithmetic

mean estimator for the marginal likelihoods (this involves importance sampling after trimming

the parameter space). They use BMA in carefully chosen model spaces that address uncertainty

regarding the included covariates and also regarding the existence of firm inefficiencies.

5.6 Other applications

Havranek et al. (2015) use BMA in a meta-analysis of intertemporal substitution in consumption.

Havranek and Sokolova (2016) investigate the mean excess sensitivity reported in studies esti-

mating consumption Euler equations. Using BMA methods, they control for 48 variables related

to the context in which estimates are obtained in a sample of 2,788 estimates reported in 133

published studies. Reported mean excess sensitivity seems materially affected by demographic

variables, publication bias and liquidity constraints and they conclude that the permanent income

hypothesis seems a pretty good approximation of the actual behavior of the average consumer.

Havranek et al. (2017) consider estimates of habit formation in consumption in 81 published stud-

ies and try and relate differences in the estimates to various characteristics of the studies. They

use BMA (with MC3) and FMA83 and find broadly similar results using both methods. Another

example of the use of BMA in meta-analysis is Philips (2016) who investigates political budget

cycles and finds support for some of the context-conditional theories in that literature.

83Here they follow the approach suggested by Amini and Parmeter (2012), who build on Magnus et al. (2010)

and use orthogonalization of the covariate space, thus reducing the number of models that need to be estimated from

2k to k. In individual regressions they use inverse-variance weights to account for the estimated dependent variable

issue.
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The determinants of export diversification are examined in Jetter and Ramı́rex Hassan (2015)

who conclude that Primary school enrollment has a robust positive effect on export diversifica-

tion, whereas the share of natural resources in gross domestic product lowers diversification lev-

els. Using the IVBMA approach of Karl and Lenkoski (2012) (see Subsection 3.9.7) they find

that these findings are robust to accounting for endogeneity.

Kourtellos et al. (2016) use BMA methods to investigate the variation in intergenerational

spatial mobility across commuter zones in the US using model priors based on the dilution idea.

Their results show substantial evidence of heterogeneity, which suggests exploring nonlinearities

in the spatial mobility process.

Returns to education have been examined through BMA in Tobias and Li (2004). Koop et al.

(2012) use their instrumental variables BMA method in this context. Cordero et al. (2016) use

BMA methods to assess the determinants of cognitive and non-cognitive educational outcomes

in Spain. The link between tuition fees and demand for higher education has been investigated

in Havranek et al. (2018) in a meta-analysis framework. After accounting for publication bias,

they conclude that the mean effect of tuition fees on enrolment is close to zero. BMA and FMA

approaches (the latter using the orthogonal transformation of Amini and Parmeter (2012)) lead

to very similar results and also indicate that enrolment of male students and students at private

universities does tend to decrease with tuition fees.

Daude et al. (2016) investigate the drivers of productive capabilities (which are important for

growth) using BACE based on bias-corrected least squares dummy variable estimates (Kiviet,

1995) in a dynamic panel context with country-specific effects.

Through spatial BMA, Oberdabernig et al. (2018) examine democracy determinants and find

that spatial spillovers are important even after controlling for a large number of geographical

covariates, using a student-t version of the SAR model (see subsection 3.9.9) with fixed degrees

of freedom. Also employing a model with spatial effects, Hortas-Rico and Rios (2016) examine

the main drivers of urban income inequality using Spanish municipal data.

Cohen et al. (2016) investigate the social acceptance of power transmission lines using an EU

survey. An ordered probit model was used to model the level of acceptance and the fixed country

effects of that regression were then used as dependent variables in a BMA analysis, to further

explain the heterogeneity between the 27 countries covered in the survey.

In order to identify the main determinants of corruption, Jetter and Parmeter (2018) apply

IVBMA to corruption data with a large number of endogenous regressors, using lagged values

as instruments. They conclude that institutional characteristics (e.g. rule of law, government

effectiveness and urbanization rate) and the extent of primary schooling emerge as important
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predictors, while they find little support for historical, time-invariant cultural, and geographic

determinants.

Pham (2017) investigates the impact of different globalization dimensions (both economic

and non-economic) on the informal sector and shadow economy in developing countries. The

methodology of León-González and Montolio (2015) is used to deal with endogenous regressors

as well as country-specific fixed effects.

The effect of the abundance of resources on the efficiency of resource usage is explored

in Hartwell (2016). This paper considers 130 countries over various time frames from 1970

to 2011, both resource-abundant and resource-scarce, to ascertain a link between abundance of

resources and less efficient usage of those resources. Efficiency is measured by e.g. gas or oil

consumption per unit of GDP, and three-stage least squares estimates are obtained for a system

of equations. Model averaging is then conducted according to WALS. The paper concludes

that for resource-abundant countries, the improvement of property rights will lead to a more

environmentally sustainable resource usage.

Wei and Cao (2017) use dynamic model averaging (DMA) to forecast the growth rate of

house prices in 30 major Chinese cities. They use the MCS test (see Section 2.2) to conclude that

DMA achieves significantly higher forecasting accuracy than other models in both the recursive

and rolling forecasting modes. They find that the importance of predictors for Chinese house

prices varies substantially over time and that the Google search index for house prices has recently

surpassed the forecasting ability of traditional macroeconomic variables. Housing prices in Hong

Kong were analysed in Magnus et al. (2011) using a GLS version of WALS.

Robust determinants of bilateral trade are investigated in Chen et al. (2018), using their

LIBMA methodology (see Section 3.9.8). They find evidence of trade persistence and of im-

portant roles for the exchange rate regime, several of the traditional “core” variables of the trade

gravity model as well as trade creation and diversion through trade agreements. They stress that

neglecting to address model uncertainty, dynamics, and endogeneity simultaneously would lead

to quite different conclusions.

6 Software and resources

The free availability of software is generally very important for the adoption of methodology by

applied users. There are a number of publicly available computational resources for conducting

BMA. Early contributions are the code by Raftery et al. (1997) (now published as an R package

in Raftery et al. (2010)) and the Fortran code used by Fernández et al. (2001a).
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Recently, a number of R-packages have been created, in particular the frequently used BMS

package (Feldkircher and Zeugner, 2014). Details about BMS are given in Zeugner and Feld-

kircher (2015). Two other well-known R-packages are BAS (Clyde, 2017), explained in Clyde

et al. (2011), and BayesVarSel (Garcı́a-Donato and Forte, 2015), described in Garcı́a-Donato

and Forte (2018). When endogenous regressors are suspected, the R-package ivbma (Lenkoski,

Karl, and Neudecker, 2014) implements the method of Karl and Lenkoski (2012). For situations

where we wish to allow for flexible nonlinear effects of the regressors, inference for (general-

ized) additive models as in Sabanés Bové and Held (2011a) and Sabanés Bové et al. (2015) can

be conducted by the packages glmBfp (Gravestock and Sabanés Bové, 2017) on CRAN and hy-

pergsplines (Sabanés Bové, 2011) on R-Forge, respectively. For dynamic models, an efficient

implementation of the DMA methodology of Raftery et al. (2010) is provided in the R package

eDMA (Catania and Nonejad, 2017), as described in Catania and Nonejad (2018). This software

uses parallel computing if shared memory multiple processors hardware is available. The model

confidence set approach (as described in Section 2.2) can be implemented through the R package

MCS (Catania and Bernardi, 2017) as described in Bernardi and Catania (2018). Finally, the R

packages MuMIn (Bartoń, 2016) and AICcmodavg (Mazerolle, 2017) contain a wide range of

different information-theoretic model selection and FMA methods.

In addition, code exists in other computing environments; for example LeSage (2015) de-

scribes Matlab code for BMA with spatial models. Błażejowski and Kwiatkowski (2015, 2018)

present packages that implements Bayesian model averaging (including jointness measures) and

BACE in gretl.84 Perrakis and Ntzoufras (2018) describe an implementation in WinBUGS (using

Gibbs sampling over all parameters and the models) for BMA under hyperpriors on g.

Using the BMS package Amini and Parmeter (2012) successfully replicate the BMA results

of Fernández et al. (2001b), Masanjala and Papageorgiou (2008) and Doppelhofer and Weeks

(2009). Forte et al. (2018) provide a systematic review of R-packages publicly available in CRAN

for Bayesian model selection and model averaging in normal linear regression models. In partic-

ular, they examine in detail the packages BAS, BayesFactor (Morey et al., 2015), BayesVarSel,

BMS and mombf (Rossell et al., 2014) and highlight differences in priors that can be accom-

modated (within the class described in (6)), numerical implementation and posterior summaries

provided. All packages lead to very similar results on a number of real data sets, and generally

provide reliable inference within 10 minutes of running time on a simple PC for problems up to

p = 100 or so covariates. They find that BAS is overall faster than the other packages considered

but with a very high cost in terms of memory requirements and, overall, they recommend BAS

with estimation based on model visit frequencies85. If memory restrictions are an issue (for mod-

84Gretl is a free, open-source software (written in C) for econometric analysis with a graphical user interface.
85The BAS package also has the option to use the sampling method (without replacement) called Bayesian Adap-
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erately large p or long runs) then BayesVarSel is a good choice for small or moderate values of

n, while BMS is preferable when n is large.

A number of researchers have made useful BMA and FMA resources freely available:

• Clyde: http://stat.duke.edu/˜clyde/software for BAS and her papers can

be found at http://www2.stat.duke.edu/˜clyde/research/.

• Feldkircher and Zeugner: http://bms.zeugner.eu/resources/ a dedicated BMA

resource page with lots of free software and introductory material.

• Hansen: https://www.ssc.wisc.edu/˜bhansen/progs/progs_ma.html con-

tains code (in R, Matlab, Gauss and STATA) implementing MMA and JMA.

• Magnus: http://www.janmagnus.nl/items/WALS.pdf for MATLAB and Stata

implementations of WALS, described in Magnus and De Luca (2011).

• Raftery: https://www.stat.washington.edu/raftery/Research/bma.html

for his BMA papers and http://www.stat.washington.edu/raftery/software.

html for software and data.

• Steel: http://www.warwick.ac.uk/go/msteel/steel_homepage/bma has

BMA papers that I contributed to as well as code (Fortran) and data.

7 Conclusions

Model uncertainty is a pervasive (and often not fully recognized) problem in economic applica-

tions. It is important to realize that simply ignoring the problem (and sticking to a single model,

as is the traditional approach) is clearly not a solution, and has the dangerous consequence of pre-

senting conclusions with an excess of confidence, since the results do not take into account the

host of other possible models that could have been tried. Even if we do acknowledge the existence

of other models, the use of model selection techniques and presenting our inference conditional

upon the single chosen model typically leads to an underestimation of our uncertainty and can

induce important biases86. Of course, for applying model averaging it is key that we define an ap-

tive Sampling (BAS) described in Clyde et al. (2011), which is based on renormalization and leads to less accurate

estimates in line with the comments in Section 3.3.
86Model selection can only be a valid strategy in certain circumstances, for example if we are interested in the

identity of the “true” model and if the latter is part of the model space or if all other models in the appropriate model

space are massively dominated by a single model. Both situations are unlikely to occur in economic applications.
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propriate model space, which adequately reflects all the uncertainty in the problem, for example

in terms of theory, implementation or modelling assumptions.

In my view, the proliferation of “empirically supported” theories in economics, for exam-

ple, on what are key drivers for growth, or which indicators can serve as early warning signals for

financial crises, is to an important extent due to the tendency of investigators to focus their empir-

ical analyses on models that are largely in line with their own preferred theories. This means that

debates often remain unresolved, and I firmly believe that model averaging with appropriately

chosen model spaces, encompassing (at least) all available theories, can provide very compelling

evidence in such situations. I interpret the rapidly growing use of model averaging methods in

economics as a recognition of how much can be gained by adopting principled approaches to the

resolution of model uncertainty.

Model averaging methods broadly come in two flavours: Bayesian (BMA) and frequentist

(FMA). The choice between BMA versus FMA is to some extent a matter of taste and may

depend on the particular focus and aims of the investigation. For this author, the theoretically

optimal, finite sample nature of BMA makes it particularly attractive for use in situations of

model uncertainty. Also, the availability of posterior inclusion probabilities for the regressors

and model probabilities (which also allows for model selection if required) seem to be clear

advantages of BMA. In addition, BMA is easily implemented in very large model spaces and

possesses some attractive properties (as detailed in Subsection 3.2).

Clearly, priors matter for BMA and it is crucial to be aware of this. Looking for solutions

that do not depend on prior assumptions at all can realistically only be achieved on the surface

by hiding the implicit prior assumptions underneath. I believe it is much preferable to be explicit

about the prior assumptions and the recent research in prior sensitivity can serve to highlight

which aspects of the prior are particularly critical for the results and how we can “robustify” our

prior choices. A recommended way to do this is through the use of hyperpriors on hyperparam-

eters such as w and g, given a prior structure such as the one in (6). We can then, typically,

make reasonable choices for our robustified priors by eliciting simple quantities, such as prior

mean model size. The resulting prior avoids being unintentionally informative and has the extra

advantage of making the analysis more adaptive to the data. For example, in cases of weak or un-

reliable data it will tend to favour smaller values of g, avoiding unwarranted precise distinctions

between models. This may well lead to larger model sizes, but that can easily be counteracted by

choosing a prior on the model space that is centered over smaller models.

Sensitivity analysis (over a range of different priors and different sampling models) is indis-

pensable if we want to convince our colleagues, clients and policy makers. Providing an explicit

mapping from these many assumptions to the main results is a key aspect of careful applied re-
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search, and should not be neglected. There are many things that theory and prior desiderata can

tell us, but there will always remain a lot that is up to the user, and then it is important to try and

capture a wide array of possible reasonable assumptions underlying the analysis. In essence, this

is the key message of model averaging and we should take it to heart whenever we do empirical

research, certainly in non-experimental sciences such as economics.

I believe that model averaging is well on its way to take its rightful place in the toolbox of

the economist, as a powerful methodology for the resolution of uncertainty. The free availability

of well-documented and efficient software should stimulate its wider adoption in the profession.

Besides formally accounting for uncertainty (as expressed by our choice of model space) in our

inference and policy conclusions, it can, in my view, also contribute to constructive and focused

communication within economics. In particular, model averaging creates an excellent unify-

ing platform to highlight and explain the reasons for differences in empirical findings, through

e.g. differences in model space, priors in BMA or weights in FMA.
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Griffin, J., K. Łatuszyński, and M. Steel (2017). In search of lost (mixing) time: Adaptive MCMC

schemes for Bayesian variable selection with very large p. ArXiv 1708.05678, University of

Warwick.

Griffin, J. and M. Steel (2008). Flexible mixture modelling of stochastic frontiers. Journal of

Productivity Analysis 29, 33–50.

Hall, S. and J. Mitchell (2007). Combining density forecasts. International Journal of Forecast-

ing 23, 1–13.

Hanck, C. (2016). I just ran two trillion regressions. Economics Bulletin 36, 2017–42.

89



Hansen, B. (2000). Sample splitting and threshold estimation. Econometrica 68, 575–603.

Hansen, B. (2007). Least squares model averaging. Econometrica 75, 1175–89.

Hansen, B. and J. Racine (2012). Jackknife model averaging. Journal of Econometrics 157,

38–46.

Hansen, L. and T. Sargent (2014). Uncertainty Within Economic Models, Volume 6 of World

Scientific Series in Economic Theory. Singapore: World Scientific.

Hansen, M. H. and B. Yu (2001). Model selection and the principle of minimum description

length. Journal of the American Statistical Association 96, 746–74.

Hansen, P., A. Lunde, and J. Nason (2011). The model confidence set. Econometrica 79, 453–97.

Hartwell, C. (2016). The institutional basis of efficiency in resource-rich countries. Economic

Systems 40, 519–38.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning. New

York: Springer.

Hauser, M., B. Pötscher, and E. Reschenhofer (1999). Measuring persistence in aggregate out-

put: ARMA models, fractionally integrated ARMA models and nonparametric procedures.

Empirical Economics 24, 243–69.

Havranek, T., R. Horvath, Z. Irsova, and M. Rusnak (2015). Cross-country heterogeneity in

intertemporal substitution. Journal of International Economics 96, 100–18.

Havranek, T., Z. Irsova, and O. Zeynalova (2018). Tuition fees and university enrolment: A

meta-regression analysis. Oxford Bulletin of Economics and Statistics 80, 1145–84.

Havranek, T., M. Rusnak, and A. Sokolova (2017). Habit formation in consumption: A meta-

analysis. European Economic Review 95, 142–67.

Havranek, T. and A. Sokolova (2016). Do consumers really follow a rule of thumb? three thou-

sand estimates from 130 studies say “probably not”. Working Paper 8/2016, Czech National

Bank.

Henderson, D. and C. Parmeter (2016). Model averaging over nonparametric estimators. In
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