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Abstract

In a recent contribution to the financial econometrics literature, Chu et al. (2017) provide the first examination

of the time-series price behaviour of the most popular cryptocurrencies. However, insufficient attention

was paid to correctly diagnosing the distribution of GARCH innovations. When these data issues are

controlled for, their results lack robustness and may lead to either underestimation or overestimation of future

risks. The main aim of this paper therefore is to provide an improved econometric specification. Particular

attention is paid to correctly diagnosing the distribution of GARCH innovations by means of Kolmogorov

type non-parametric tests and Khmaladze’s martingale transformation. Numerical computation is carried out

by implementing a Gauss-Kronrod quadrature. Parameters of GARCH models are estimated using maximum

likelihood. For calculating P-values, the parametric bootstrap method is used. Further reference is made to

the merits and demerits of statistical techniques presented in the related and recently published literature.

Keywords: Autoregressive conditional heteroskedasticity (ARCH), generalized autoregressive conditional

heteroskedasticity (GARCH), market volatility, nonlinear time series, Khmaladze transform.
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1. Introduction

A cryptocurrency, such as Bitcoin, is a digital decentralized currency that makes use of cryptography to

regulate the creation and transactions of the exchange unit. It is an emerging, retail-focused, highly speculative

market that lacks a legal and regulatory framework comparable to other asset classes. Cryptocurrencies are

decentralized in the sense that it is not created by any central authority and may, in principle, be immune to

any central bank’s interferences. At the time of writing this paper, it is estimated that the transaction volume

in cryptocurrencies exceeds 100 million USD per day. The number of hedge funds that trade cryptocurrencies

has recently reached approximately 100 for the first time ([41]), of which more than three-quarters were

launched in 2017. The increase, from 55 hedge funds at Aug. 29 to 110 hedge funds at Oct. 18, comes as

investors pile into the high-octane cryptocurrency market, which has seen a tenfold increase in its value in

2017.

Although the cryptocurrency market is still relatively new and undeveloped, there have been a number of

interesting developments. Just by way of illustration, in Q4 of 2017 alone, the following occurred: JP Morgan

confirmed heavy investment in blockchain technology, which underpins cryptocurrency transactions; CME

Group, the world’s largest futures exchange operator, announced the launch of trading in Bitcoin derivatives

at the end of 2017, pending regulatory review; Swiss bank Vontobel, the country’s second-biggest provider of

structured products comes after CME Group, announced the launch of Bitcoin futures on the Swiss stock

exchange. Such involvement on behalf of institutional market participants makes it interesting to study this

newly emerging asset class.

From a regulatory perspective, the Financial Conduct Authority (FCA) has expressed concern that retail

investors have increasingly been buying Bitcoin contracts for difference (CFDs). The FCA listed price volatility,

leverage, charges and funding costs, and price transparency as four risks to investing in crypto-based CFDs.

This paper examines the first of these risks: volatility.1

1.1. Related literature

Understanding price volatility dynamics is of considerable interest to those seeking to understand the price

dynamics of a financial assets. To this end, there is a well-developed body of research on econometric inference

techniques for (mostly second order) stationary financial data. However, there is a paucity of research on

cryptocurrency volatility modelling. Of particular interest is the recent work on volatility of cryptocurrencies

by Chu, Chan, Nadarajah, and Osterrieder (2017, [14]), which provides the first modelling of the seven most

popular cryptocurrencies. The aim of this paper is to extend their work and propose an alternative, and

arguably more robust, econometric specification.

1 The decision to focus on price volatility is largely motivated by data availability, since it has been impossible for me to

obtain data on other risks. However, we now have fairly trustworthy closing price data from four main cryptocurrency exchanges.

And this data is what is used in this study.
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In related literature, [29] empirically analyses Bitcoin prices using an autoregressive jump-intensity GARCH

model and finds strong evidence of time-varying jump behaviour. [12] test for the optimal number of states

for a Markov regime-switching (MRS) model to capture the regime heteroskedasticity of Bitcoin. [36] run a

model comparison exercise according to three information criteria, namely Akaike (AIC), Bayesian (BIC)

and Hannan-Quinn (HQ) and find that the AR-CGARCH model gives the best fit for Bitcoin. [17] fit more

than 1,000 GARCH models to the log returns of the exchange rates to find that two-regime GARCH models

produce better VaR and ES predictions than single-regime models for four of the main cryptocurrencies,

namely Bitcoin, Ethereum, Ripple and Litecoin. [44] investigate Bitcoin for the BTC/USD exchange rate

using high-frequency (transaction-level) data obtained from Mt. Gox exchange, the leading platform during

the sample period of June 2011 to November 2013, and note the asset’s extreme volatility and apparent

discontinuities in the price process. They assert two empirical observations. First, they argue that jumps are

an essential component of the price dynamics of the BTC/USD exchange rate: out of the 888 sample days,

they identify 124 jump days. Second, they show that jumps cluster in time: they find that runs of jump days

that are incompatible with the assumption of independent Poisson arrival times. They conclude that order

flow imbalance, illiquidity, and the dominant effect of aggressive traders are significant factors driving the

occurrence of jumps.

At first, these findings seems intuitive. Cryptoassets, by virtue of their design, do not rely on the stabilizing

policy of a central bank. As a result, the reaction to new information - whether this information is spurious

or fundamental - are prone to demonstrate high volatility relative to established assets. This volatility is

amplified by the relative illiquidity of the market. In addition, the absence of official market makers would

make cryptoassets fragile to large market movements.

Using a GARCH (1,1) model, [11] examined Bitcoin’s volatility in respect to the macroeconomic variables

of countries where it was being traded the most. It was argued that if the volatility levels follow the

same trend as in the last six and a half years, Bitcoin may match the fiat currency levels of volatility in

2019-2020. Building on this work, [14] fitted 12 GARCH-type models to seven major cryptocurrencies. The

the distribution of the innovation process were taken to be one of normal, skew normal, Student’s t, skew

Student’s t, skew generalized error distribution, inverse Gaussian, and generalized hyperbolic distribution.

Model selection criteria were then used to pick the best fit. They found that Gaussian innovations provide

the smallest values of AIC, AICc, BIC, HQC and CAIC for each cryptocurrency and each GARCH-type

model. Further, [14] make use of the skewed generalized error distribution (SGED).

This paper will demonstrate that using a skewed generalized error distribution is a poor modelling choice.

This is because the moment generating function of a SGED does not exist under some important conditions.

Using Student’s t to model the innovation process also represents a poor choice for financial engineering

applications since the distribution does not possess a moment generating function. If innovations followed a

Student’s t distribution under a risk-neutral measure then the value of a call option would be infinite.
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2. Preliminaries

Given a price process Si, we define (Xi)i∈N = ln(Si/Si−1) to be the daily log-returns of observed data series,

indexed by time index i, where

Xi = µi + σiǫi, i > r, (1)

is driven by some innovation process ǫi, for r ≥ 1. This allows µi and σi to depend on Fi−1 =

σ{Hi, X1, . . . , Xi−1}, where Fi−1 is the σ−algebra induced by variables that are observed at time i− 1, and

Hi is a random vector with plausibly exogenous variables. Then, (ǫi)i>r is a normal random i.i.d. sequence

satisfying the standard assumptions E[ǫi] = 0 and V ar(ǫi) = 1. Note that ǫi ⊥⊥ Fi−1, ∀ i > r. We further

assume that ǫ1, . . . , ǫn are observations from the process (ǫi, i ∈ Z)2 to be strictly stationary, ergodic, and

nonanticipative. The requirement of causality is often added to the set of assumptions. However, we are able

to get this for ”free” since every strictly stationary GARCH process is causal.

The above framework was used by [23] to introduce the so-called Auto-Regressive Conditional Heteroskedas-

ticity (ARCH) class of processes which stemmed from (1) with non-constant σi. These allowed the conditional

variance σ2
i to depend on lagged values of (Xi − µi)

2. [7] generalized this framework with the so-called

GARCH models, and since then there has been a range of models that fall under the broad umbrella

of (Generalized) Autoregressive conditional heteroskedasticity i.e. GARCH literature. An important fea-

ture in GARCH models is that σi depends on its own past values. Further, the conditional distribution

{Xi|Fi−1} is such that {Xi|Fi−1} ∼ N(µi, σ
2
i ). In this case we say that the innovations are Gaussian and

that E{(Xi − µi)
2|Fi−1} = σ2

i . Since σ is not observable per se, we need σn to admit stationarity. In other

words, we need E[σ2
n] to converge to some positive constant as n → ∞. Next, we outline the main models in

this family that are relevant for the purposes of this study.

2.1. GARCH(1,1)

Setting r = 1, µi = µ, and H = σ1, yields GARCH (1,1)3:

σ2
i = ω + α(Xi−1 − µ)2 + βσ2

i−1 = ω + σ2
i−1(αǫ

2
i−1 + β), ∀ i ≥ 2, α ≥ 0, β ≥ 0, ω > 0. (2)

By taking expectations of σ2
n, it is possible to show its stability conditions:

E[σ2
n] = ω + αE

[

E{Xn−2 − µ)2|Fi−1}+ βE(σ2
i−1)

]

= ω(α+ β)E(σ2
i−1)

= ω

[

1− (1− k)n−1

k
+ (1− k)n−1(σ2

1)

]

where k = 1− α− β. If k > 0 then we can see that E[σ2
n] stabilizes as n → ∞: limn→∞ E[σ2

n] =
ω
k

2 Without loss of generality, the index i can be assumed to take values in either N0 or in Z.
3 It is evident that an ARCH(1) model can be derived from (2) by simply setting β = 0.
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Lemma 2.1.1. Let us consider two processes σ and ν, with starting conditions σ1 and ν1, both driven by a

single innovation process ǫ:

|σ2
n+1 − ν2n+1| = |σ2

n − ν2n|(αǫ2n + β)

= |σ2
n − ν2n|

n
∏

k=1

(αǫ2k + β).

The condition k > 0, needed for finiteness of first moment, is stronger than the stationarity condition

E

[

ln(αǫ2k + β)

]

< 0.

Proof. If E

[

ln(αǫ2k +β)

]

< 0 then, by application of L.L.N. to sequence ln(αǫ2k +β), k ≥ 1, we can see that

|σ2
n − ν2n|

n
∏

k=1

(αǫ2k + β) → 0.

Further, by application of S.L.L.N.,

1

n

n
∑

k=1

[

ln(αǫ2k + β)

]

→ E

[

ln(αǫ2k + β)

]

< 0.

Therefore, for a given α > 0,

1

n

n
∑

k=1

[

ln(αǫ2k + β)

]

→ E

[

ln(αǫ2k + β)

]

< −na

for almost all n ≥ 1, and
n
∏

k=1

[

αǫ2k + β

]

< e−na

for almost all n ≥ 1. Since the log function is concave, we apply Jensen’s inequality to yield:

E

[

ln(αǫ2k + β)

]

≤ lnE

[

αǫ2k + β

]

.

Hence the condition k > 0 is stronger than the stationarity condition E

[

ln(αǫ2k + β)

]

< 0, as required.

2.2. GARCH(p,q)

It is possible to introduce more lags for X and σ. Consider r = max(p, q), H = (σ1, . . . , σr), µi = µ, and

σ2
i = ω +

p
∑

k=1

βkσ
2
i−k +

q
∑

j=1

αj(Xi−j−µ)2 , i > r

where αj , βj ≥ 0, j ∈ {1, . . . , r}, and ω > 0. Therefore, E[σ2] = ω +
∑r

j=1 λjE[σ2
i−j ], where αj = 0 ∀j > q,

βj = 0 ∀j > p, and λj = αj + βj . Asymptotic properties are discussed in next Lemma.
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Lemma 2.2.1. Let k = 1−∑max(p,q)
j=1 λj . Then,

lim
n→∞

E[σ2
n] =







ω/k, ∀k > 0

+∞ ∀k ≤ 0

Proof. Proof follows [42], which expands on the proof partly shown in [7]. First, we define K(z) =

zr
∑r

j=1 λjz
r−j . The aim is to demonstrate that k = K(1) > 0 =⇒ limn→∞ E[σ2

n] =
ω

K(1) and k = K(1) ≤
0 =⇒ limn→∞ E[σ2

n] = +∞. Let U ≡ {z ⊂ C : |z| < 1} be a unit ball on a complex plane. K(1) > 0 implies

that all roots of the polynomial K(z) are within U . These roots are the eigenvalues of the matrix

A =





















λ1 λ2 . . . λr

1 0 . . . 0

0 1 . . . 0
...

...
... 0

0 . . . 1 0





















.

For exposition, we require the spectral radius of A.

Definition 2.1. Let X be a Banach space and let f : B → R be a bounded linear functional on X. The

norm of f , denoted by ‖f‖, is defined by ‖f‖ = inf{L ∈ [0,+∞) : |f(x)| ≤ L‖x‖ for all x ∈ X}. If ‖ · ‖
is any norm of the set of r × r matrices, then the spectral radius of A, denoted by ρ(A), is defined by

ρ(A) = limn→∞ ‖An‖1/n.

Now, the statement K(1) > 0 is equivalent to saying that the spectral radius of A is smaller than 1. If the

roots of K are inside the unit ball, then K(1) > 0. If K(1) = 0 then 1 is a unit root not in the unit ball,

which is a contradiction. If K(1) < 0 then K(z) → ∞ as z → ∞ so there would be a real root of K greater

than 1. Lets say that now K(1) > 0. Then ∃z0 ∈ (0, 1) so that K(z) > 1, ∀z ∈ [z0, 1]. We fix z, and let

vi =









E[σ2
i ]

zE[σ2
i−1]

zr−1E[σ2
i−r+1]









, and ω̃















ω

0
...

0















.

E[σ2
i ] = ω +

∑r
j=1 λjE[σ2

i−j ], ∀ i ≥ r + 1 is equivalent to vi = ω̃Azvi−1 ∀ i ≥ r + 1, where

Az =





















λ1 λ2/z · · · λr/z
r−1

z 0 · · · 0

0 z · · · 0
...

. . .
. . . 0

0 . . . z 0





















.

Define the norm ‖B‖ = max1≤i≤r

(

∑r
j=1 |Bij |

)

. We get ‖Az = z < 1‖, since K(z) > 0. It follows

that vn = (I + Az + . . . + An−r−1
z ) ω̃ + An−r

z vr. Next, define |x| = max1≤i≤r |xj |. Then, for any matrix
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B, |Bx| ≤ ‖B‖|x|. Therefore |An−r
z vr| ≤ ‖An−r

z ‖|vr| ≤ zn−r|vr| → 0 as n → ∞. Since ‖A‖ < 1,

I + Az + . . . + An−r−1
z → (I − Az)

−1, as n → ∞. Thus, vn converges to (I − Az)
−1w̃ = wy, where

(I −Az)y = e1 = (1, 0, . . . , 0)′. Therefore, yj = zj−1y1, and 1 = y1 −
∑r

j=1 λjz
−j+1y1 = y1K(1). Therefore,

y1 = 1/K(1) and E[σ2
n] converges to ω/K(1). Next, we demonstrate that

k =≤ 0 =⇒ lim
n→∞

E[σ2
n] = +∞ (3)

and

k = K(1) > 0 =⇒ lim
n→∞

E[σ2
n] =

ω

K(1)
. (4)

We examine (3) first to show that k =≤ 0 implies that limn→∞ E[σ2
n] = ∞.

Case 1. Let K(1) = 0. Then A is the transition matrix of an irreducible Markov chain s.t. An → B, with

Bij = πj =

∑r
k=j λk

∑r
k=1 kλk

, ∀i, j ∈ {1, . . . , r}.

Therefore, if
∑r

k=j λk = 1, then E[σ2
n] → ∞ as n → ∞.

Case 2. Let K(1) < 0, and a =
∑r

j=1 λj > 1. Therefore,

E[σ2
n] >

E[σ2
n]

a
=

ω

a
+

r
∑

j=1

λj

a
E[σ2

n−j ].

Let un be the solution of un = ω
a +

∑r
j=1 un−j , n > r, j ∈ {1, . . . , r} and uj = E[σ2

n]. Then E[σ2
n]−un > 0

∀ n > r. Since
∑r

k=j λk = 1, un/n converges to a positive number. Hence E[σ2
n] → ∞ as → ∞, as

required.

2.3. Exponential GARCH (EGARCH)

The EGARCH models, introduced by [38], allow r = 1, H = σ2
1 , and ln(σ2

i ) = ω + α[|ǫi−1| − E(|ǫi−1|)] +
γǫi−1 + β ln(σ2

i−1), i ≥ 2. In this framework, E[ln(σ2
i )] convergence to a (finite) limit exists if and only if

|β| < 1. This limit is ω/(1− β).

2.4. Nonlinear GARCH (NGARCH)

A recognised problem with the standard GARCH models is their inability to differentiate negative and

positive innovations. We tend to observe that volatility changes are more pronounced after a large negative

shock when compared to an equally large positive shock. This is the so-called leverage effect. The NGARCH

models, introduced by [24], aim to model such asymmetry of volatility behaviour in previous specifications.

The models is now set up as σ2 = ω + α(ǫi−1 − ρ)2σ2
i−1 + βσ2

i−1, i ≥ 2. The restrictions for the positivity
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of σ2
i are ω > 2, α, β ≥ 0. Parameter ρ is the leverage effect. The limit of E[σ2

n] is ω/k for k > 0. E[σ2
n]

converges if and only if 1 − k = α(1 + θ2) + β < 1. An alternative version of the NGARCH model was

originally estimated by Engle and Bollerslev [22], σ2
i = ω + α|ǫi−1|δ + βσ2

t−1. With most financial assets, the

rates of returns are estimated δ < 2, although not always significantly so.

2.5. Glosten-Jagannathan-Runkle (GJR)-GARCH

The motivation behind GJR-GARCH models, introduced by [28], was to model the asymmetric behaviour of

volatility when innovations are negative or positive. In these models, r = 1, H = σ1:

σ2
i = ω + ασ2

i−1ǫ
2
i−1 + βσ2

i−1 + γσ2
i−1{sup(0,−ǫ2i−1)}2, i ≥ 2.

Again, the limit of E[σ2
n] is ω/k for k > 0. E[σ2

n] converges if and only if k = 1− α− β − γ/2 > 0.

2.6. Augmented GARCH

The Augmented GARCH models, introduced by [19], contain all the GARCH specifications mentioned

previously. The assumption ǫi ∼ N(0, 1) is relaxed, and it is assumed that only the common distribution of

ǫi are mean 0 and unit variance. Under the assumption αi ≥ 0 for i ∈ {0, . . . , 5}, the model is described as

follows. Let us define

fδ(x) =







xδ−1
δ ∀δ > 0

ln(x) ∀δ = 0

A similar consideration yields

f−1
δ (x) =







(xδ + 1)1/δ ∀δ > 0

ex ∀δ = 0

Then, define the volatility process σ as σ2
i = f−1

λ (φi − 1) i ≥ 2, where

ξ1,i = α1 + α2|ǫi − c|δ + α3{sup(0, c− ǫi)}δ, (5)

ξ2,i = α4fδ(|ǫi − c|) + α5fδ{sup(0, c− ǫi}, (6)

φi = α0 + φi−1ξ1,i−1 + ξ2,i−1. (7)

Strict stationarity is achieved if E[ln(ξ1,i−1)] < 0 and E[max(ξ2,i−1)] < ∞. Further, by Jensen’s inequality,

E(ln(ξ1,i−1) < 0 if E[ξ1,i−1] < 1. Further discussion of the time series particulars of models a-la GARCH in

the context of cryptocurrency modelling is presented in [14].4

4 For a classic treatment of GARCH type models, the interested reader is referred to [9], [30], and [31]. A more up to date

exposition is available [26].

8



Table 1: Cryptocurrency Market Capitalizations in USD: Jun 22, 2014 - Mar 24, 2018. Data accessed 24-Mar-18.

Name Symbol Market Cap Price % 7d Share of Market

Bitcoin BTC $146,064,176,501 $8,622.92 11.93% 43.98%

Ripple XRP $25,145,211,528 $0.64 7.87% 7.57%

Litecoin LTC $9,005,259,992 $161.43 11.35% 2.71%

Dash DASH $3,343,681,609 $419.69 15.18% 1.01%

Monero XMR $3,339,885,427 $210.54 12.31% 1.01%

Dogecoin DOGE $400,962,064 $0.00 18.35% 0.12%

MaidSafeCoin MAID $132,063,392 $0.29 13.73% 0.04%

3. Data

Recent daily market capitalization figures for all cryptocurrencies can be accessed via [15], who provide

daily cryptocurrency data (transaction count, on-chain transaction volume, value of created coins, price,

market cap, and exchange volume) in CSV format. The daily data sample of the coins selected is from

22-Jun-14 to 24-Mar-18. Other notable cryptocurrencies such as Ethereum etc were omitted due to lack

of sufficient time-series data available. Source code for the data collection tools is available at Github

(https://github.com/whateverpal/coinmetrics-tools). The data is transformed into its log returns.

Although there is a deluge of new cryptocurrencies (around 1500 cryptocurrencies recorded at the time

of writing), vast majority are new and have extremely short time-series observations. However, there is

sufficiently long time-series available for the cryptocurrencies in our sample. When taken together, this

sample represented around 66 per cent of the total market at the end of 2017. This figure at end of March

stood at 56 per cent. At the end of 2017 Bitcoin alone dominated 62.5 per cent of the market. This figure at

end of March stood at 44 per cent, see Table 1.
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3.1. Daily log returns, ACF & PCF, kurtosis in logarithmic returns - Bitcoin, Dashcoin, Dogecoin, and

Litecoin

Figure 1: Data for Bitcoin, Dashcoin, Dogecoin, and Litecoin from June 22, 2014 - March 24, 2018. (Left) Graphs of the daily

log returns of the exchange rates. (Middle) Sample autocorrelation function (ACF) and partial autocorrelation function (PACF)

for the return series. (Right) The solid blue line is the empirical Pdf of log returns. The dotted red line is the normal Pdf.

Initial signs indicate presence of volatility clustering and kurtosis in logarithmic returns.
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3.2. Daily log returns, ACF & PCF, kurtosis in logarithmic returns - Maidsafecoin, Monero, and Ripple

Figure 2: (Data for Maidsafecoin, Monero, and Ripple from June 22, 2014 - March 24, 2018. (Left) Graphs of the daily log

returns of the exchange rates. (Middle) Sample autocorrelation function (ACF) and partial autocorrelation function (PACF) for

the return series. (Right) The solid blue line is the empirical Pdf of log returns. The dotted red line is the normal Pdf. Initial

signs indicate presence of volatility clustering and kurtosis in logarithmic returns.
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4. Goodness of fit

This section demonstrates that, contrary to [14], there is a strong empirical argument against modelling

innovations under Gaussian assumptions. Further, arguing against [14], one can also demonstrate a theoretical

case for not relying on Skewed GED (SGED) assumptions, but using GED innovations instead.

4.1. Kolmogorov-Smirnov and Cramer von-Mises criteria

Next, we outline the theoretical framework behind the goodness of fit tests, which are used for diagnosing

the distribution of GARCH innovations. Many tests for normality exist in the literature. For example, the

Jarque-Bera test is based on symmetry and kurtosis. The chi-square test is also widely used for distributional

assumptions. However, these test have well-known issues. Jarque-Bera test tends to overreject the null

hypothesis of normality in the presence of long memory in the series. Further, i.i.d. is the usual assumption

in most of such tests.

One alternative is to use the Kolmogorov-Smirnov type tests. However, it is difficult to apply the Kolmogorov

test in the presence of estimated parameters, particularly for multivariate data where the number of estimated

parameters is large. If estimated parameters are ignored, the inference will be invalid. The method proposed

by [4] addresses this problem by combining a Kolmogorov-Smirnov type test of conditional distribution

specifications for time series with Khmaladze’s K-transformation, as in [39]. The K-transformation takes the

empirical distribution of pseudo-observations and maps it to a process W , that is asymptotically Brownian.

Using an amended Bai method, outlined in [42], we now check whether innovations are Gaussian 5. To this

end, two appropriate tests are Kolmogorov-Smirnov and Cramer-von-Mises criteria. Both tests are used since

KS is a general test and can be under-powered.

The distribution function F of the Kolmogorov-Smirnov criterion is

F (x) =
4

π

∞
∑

k=1

(−1)k

2k + 1
e−(2k+1)2π2/(8x2).

The distribution of the Cramer von-Mises criterion is the same as

4

π2

∞
∑

k=1

Z2
k

2k + 1
,

where Z1, Z2, . . . are i.i.d. standard Gaussian.

4.2. Khmaladze’s martingale transformation

The argument is presented as follows. Define ei, which are GARCH(p,q) pseudo-observations, as ei =
xi−µ̂i

σ̂i
,

i ∈ {1, . . . , n}. Let ui = N(ei), i ∈ {1, . . . , n}. The associated order statistics are v1, . . . , vn. Set conditions

5 These checks are not carried out in [14]
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Table 2: Quantiles for Kolmogorov-Smirnov and Cramer von-Mises criteria.

Confidence level Kolmogorov-Smirnov Cramer von-Mises

90% 1.96 1.2

95% 2.241 1.657

99% 2.807 2.8

v0 = 0, vn+1 = 1. Following [4], we define

ġ(s) =









1

−N−1(s)

[−N−1(s)]2









, and C(s) =

∫ 1

0

ġ(t)ġ⊤(t)dt, s ∈ (0, 1).

If a = −N−1(s) and

x = −N
′

(a) =
e−a2/2

√
2π

,

then

C(s) =









1− s −x −ax

−x 1− s+ ax x(1 + a2)

−ax x(1 + a2) 2(1− s) + ax(1 + a2)









for all s ∈ (0, 1). Then define Vn(s) =
1√
n

∑n
i=1{I(vi ≤ s)− s}. The K-transform of Vn is

Wn(s) = Vn(s)−
∫ s

0

{

ġ⊤(t)C−1(t)

∫ 1

t

ġ(τ)dVn(τ)

}

dt, s ∈ [0, 1]

Wn is approximately Brownian under the null of innovations being standard Gaussian N(0, 1). Then, [4]

suggests to approximate C(vj) by
n
∑

k=j

(vk+1 − vk)ġ(vk)ġ
⊤(vk),

and this can be calculated exactly for Gaussian innovations. On the other hand, computing

∫ vk

vk−1

C−1(t)ġ(t)dt (8)

is difficult, which is perhaps the reason why [14] avoid this methodology. [4] suggests to approximate it by

C−1(vk−1)

∫ vk

vk−1

ġ(t)dt = C−1(vk){{g(vk)− g(vk−1)}.

Instead, we follow the method proposed by [42] and estimate (8) using Gauss-Kronrod quadrature, such that

∫ vk

vk−1

C−1(t)ġ(t)dt ≈ (vk − vk−1)C
−1

(

vk−1 + vk
2

ġ
vk−1 + vk

2

)

.

Only then the Kolmogorov-Smirnov and Cramer von-Mises test criteria are used to assess goodness of fit.

Kolmogorov-Smirnov := KS = max
j∈{1,...,n}

|Wn(vj)|, Cramer von-Mises := CvM =
1

n

n
∑

j=1

W 2
n(vj)(vj+1−vj)
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4.3. Generalised Error Distribution

The Generalised Error Distribution (GED) is an alternative to the Gaussian, which has some attractive

properties that are naturally amenable to modelling innovations in our context. A r.v. X of parameter ν > 0,

is X ∼ GED(ν) if its density is

fv(x) =
1

bv21+1/vΓ

(

1 + 1 + 1
ν

)e−
1
2

|x|
bν , x ∈ R, where bν = 2−

1
ν

√

√

√

√

√

√

√

Γ

(

1
v

)

Γ

(

3
v

) .

Let Fα be the distributed gamma with parameters α = β = 1. Then F of X ∼ GED(ν), and its inverse

F−1, are

F (x) =



















1
2 − 1

2F1/ν

(

1
2

(

|x|
bν

)ν)

x ≤ 0

1
2 + 1

2F1/ν

(

1
2

(

x
bν

)ν)

x > 0

, and F−1(x) =



















1
2 − 1

2F1/ν

(

1
2

(

|x|
bν

)ν)

0 < u ≤ 1
2

1
2 + 1

2F1/ν

(

1
2

(

x
bν

)ν)

1
2 ≤ u < 1.

4.3.1. Statistical limitations of SGED vs GED: when mgf fails to exist

This section presents two key results, which are offered in support of arguments presented in the introduction

section of this paper. First, it is shown why the moment generating function (mgf) of a Generalized Error

Distribution (GED) exists when v ≥ 1 and fails to exist when 0 < v < 1. Second, it is shown why the mgf of

the Skewed GED (SGED) fails to exist for any k 6= 0, an important set of conditions for estimation. These

arguments proceed as follows.

Let M(t) = EetX ,−∞ < t < ∞ denote a mgf. The pdf of GED is

fv(x) =
v exp(− 1

2 |xλ |v

λ21+1/vΓ

(

1
v

) , v > 0, x ∈ R

where Γ(·) is the Gamma function, and

λ =



2−
2
v

Γ

(

1
v

)

Γ

(

3
v

)





1
2

.

The pdf of SGED is

g(x) =

exp

(

− 1
2

(

− 1
k ln

(

1− k(x−η)
α

))2)

√
2πα

(

1− k(x−η)
α

)

where x ∈
(

−∞, η + α
k

)

if k > 0, x ∈
(

η + α
k ,∞

)

if k < 0. Further, η and α are a real constant and a

positive constant respectively. When k → 0, g(·) reduces to the pdf of a random normal variable (r.v.) with

mean η and variance α2.
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Lemma 4.3.1. Let a r.v. X be distributed GED s.t. v > 0. Then the moment-generating function M(t)

exists ∀ t, when v > 1; ∃ in the region (−
√
2,
√
2) when v = 1; and does not exist ∀ t > 0 when 0 < v < 1.

Proof. Let us take any v > 0 so thatM(t) = c1
∫∞
−∞ etxe−c2|x|vdx, −∞ < t < ∞, where c1 = v

(

λ21+1/vΓ

(

1
v

))−1

and c2 = (2λv)−1. Suppose that 0 < v < 1. Then ∀x > 0

etxe−c2|x|v = e
tx

(

1− c2
tx1−v

)

.

Let x0 > 0 be such that c2
tx1−v < 1

2 ∀ x ≥ x0 so that

e
tx

(

1− c2
tx1−v

)

≥ etx/2 ∀x ≥ x0.

It follows that
∫ ∞

−∞
etxe−c2|x|vdx = ∞.

Therefore M(t) ∄ ∀ t > 0 when 0 < v < 1. When v = 1, the pdf f(x) = 1√
2
e−

√
2|x|, −∞ < x < ∞. Let

M(t) =
1√
2

∫ ∞

−∞
etx−

√
2|x|dx =

1√
2
(I1 + I2),

where

I1 =

∫ 0

−∞
etx+

√
2xdx and I2 =

∫ −∞

0

etx−
√
2xdx.

Letting x = −y yields

I1 =
1

t+
√
2

and I2 =
1

t−
√
2

Then,

M(t) =
1√
2

(

1√
2 + t

+
1√

2− t

)

= 2

((

2− t2
))−1

=

(

1− t2

2

)−1

for any |t| <
√
2. Further, ∄ M(t) when |t| ≥

√
2.

Let v > 1. Then define

M(t) = c1

∫ ∞

−∞
etx−c2|x|vdx, −∞ < t < ∞

= c1

{

∫ 0

−∞
etx−c2|x|vdx+

∫ ∞

0

etx−c2|x|vdx

}

= c1(I1 + I2).

Since tx− c2x
v = −c2x

(

1− t
c2xv−1

)

= −c2x
v

(

1 + o(1)

)

, it is evident that as x → ∞, I2 < ∞ ∀ tt∈R. Let

x < 0. Then,

tx− c2|x|v = −c2c2|x|v
(

1− tx

c2|x|v
)

= −c2c2|x|v
(

1− t

c2|x|v−1

)

= −c2c2|x|v
(

1 + o(1)

)

as x → −∞.
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Therefore I1 < ∞ ∀ t. Then M(t) exists for all t ∈ (−∞,∞). Apply Maclaurin expansion and letting

Mk(0) = EXk, k ≥ 0 yields

M(t) =

∞
∑

k=0

tk

k!
EXk.

By symmetry (X is symmettric around 0), we get EXk = 0 for when k is odd. For when k is event, k = 2m,

EX2m =

(

Γ( 1v )

Γ( 3v )

)mΓ( 2m+1
v )

Γ( 1v )
, m ≥ 1.

Therefore

M(t) =

∞
∑

m=0

t2m

(2m)!

(

Γ( 1v )

Γ( 3v )

)mΓ( 2m+1
v )

Γ( 1v )
.

Hence the result. A closed form expression is not available for M(T ).

Lemma 4.3.2. The mgf M(t) of a SGED does not exist for any t > 0 when k < 0, and for any t < 0 when

k > 0.

Proof. Case 1: k < 0. If k < 0, then the pdf of SGEDS is

g(x) =

exp

(

− 1
2

(

− 1
k log

(

1 + −k(x−η)
α

))2)

√
2πα

(

1 + −k(x−η)
α

) , x ≥ η +
α

k
,

where α > 0, η ∈ (−∞,∞) are constants.

The mgf is

M(t) =
∞
∑

η+α
k

etxg(x)dx, −∞ < t < ∞.

Let 1 + (−k)x−η
α = y. then x = α(−k)−1(y − 1) + η and therefore

m(t) =
e(η+α/k)t

√
2πα

∫ ∞

0

(

e−
αty
k − (log y)2

2k2 −log y

)

dy. (9)

Then

−αty

k
− (log y)2

2k2
− log y = −αyt

k

(

1 +

k

(

(log y)2

2k2 + log y

)

αyt
.

Therefore, for any t > 0, there is a y0 s.t.

−αty

k
− (log y)2

2k2
− log y ≥ −αyt

2k
.

Using the property of (9), we have

M(t) ≥ e(η+α/k)t

√
2π(−k)

∫ ∞

y0

(

e(αyt)/(2k)
)

dy = ∞,
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therefore the mgf does not exist ∀k < 0, just as it does not exist ∀ t > 0.

Case 2: k > 0. Let X be SGED with k > 0. Define Y = −X. The pdf of Y is

h(y) =

exp

(

− 1
2

(

−1
(−k′) log

(

1 + (−k′)(y−η′)
α

))2)

√
2πα

(

1 + (−k′)(y−η′)
α

) , y ≥ η′ +
α

k′
,

where η′ = −η and k′ = −k. Then Y is SGED with k′ < 0, and therefore EetY does not exist for any t > 0.

Therefore, M(t) = EetX ∄ ∀ t < 0, as required.

5. Empirical Results

5.1. Testing if innovations are Gaussian.

After estimating the parameters of the GARCH(1,1) model for Bitcoin data with constant mean and Gaussian

innovations, we proceed to test the hypothesis of whether the innovations are gaussian. Although a test of

normality was proposed in [4], we make use of an updated implementation that deploys a Gauss-Kronrod

quadrature.

Both the KS and CvM goodness of fit tests reject strongly (at 1%) the null of gaussianity of innovations

for GARCH(1,1). For GARCH(1,1) using Bitcoin data, the K-S test statistic was 10.02, and the CVM test

statistic was 13.58. In fact, the null of gaussianity is rejected strongly for all GARCH(p,q) models, with

p, q ∈ {1, . . . , 5} (see Table 3). Just by way of illustration, Figure 3 plots the Brownian motion paths of the

innovations process trajectories for all GARCH(p,q) models, with p, q ∈ {1, . . . , 5} for Bitcoin. The dotted

line indicates critical values for a 95% level for the Kolmogorov-Smirnov statistic. Repeating this exercise

for the rest of the currencies in sample produces comparable results. Table 3 shows the P-Values of KS for

GARCH(1,1) across all currencies in sample. The null of gaussianity is strongly rejected for all GARCH(p,q)

models, with p, q ∈ {1, . . . , 5}, for all cryptocurrencies in sample.

Table 3: KS test, null of gaussianity.

Asset Reject at 95%? Reject at 99%?

Bitcoin Yes Yes

Dash Yes Yes

Dogecoin Yes Yes

Litecoin Yes Yes

Maidsafecoin Yes Yes

Monero Yes Yes

Ripple Yes Yes
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Figure 3: Brownian motion path of a innovations process trajectories for all GARCH(p,q) models, with p, q ∈ {1, . . . , 5}, using

(left to right) Bitcoin data. The results are presented without loss of generality since results for the other cryptoassets considered

in this paper are directly comparable, see Table 3. The dotted line indicates 95% confidence level for Kolmogorov-Smirnov

statistic.
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5.2. Dealing with non-Gaussian innovations

Next, using maximum likelihood, parameters of the GARCH(1,1) model are estimated with constant mean

and Generalized Error Distribution (GED) innovations. Following [42], we apply the Khmaladze transform

for GED innovations to obtain pseudo-observations un,i = Gν̂(ei), i ∈ {1, . . . , n}. The tests are based on the

empirical distribution function

Dn(u) =
1

n

n
∑

i=1

I(un,i ≤ u), u ∈ [0, 1].

This should approximate the uniform distribution function D(u) = u for u ∈ [0, 1] under the null that

innovations follow GED distribution.

For calculating P-values, the parametric bootstrap method is used as per [27]. To calculate the bootstrap

statistics, for the models and sample sizes considered, N = 1000 bootstrap samples were used. Using Bitcoin

data, for GARCH(1,1) the K-S test statistic was 0.9265 (p-value 8.4 %), and the CVM test statistic was 0.1956

(p-value 5.8%). Both the goodness of fit tests fail to reject the null of GED innovations for GARCH(1,1)

using Bitcoin data. Further, we fail to reject the null of GED innovations for all GARCH(1,1) models for all

cryptocurrencies in sample.

The distributions are now plotted in order to visually be able to compare specific aspects for differences.

For illustration, Figure 4 shows that the empirical process Dn lies within the 95% confidence band for the

currencies in sample. The bootstrap algorithm (N = 1000) takes around 1hr to run for all currencies using

MatlabR2017a, on a 64-bit pc with 4gb of RAM.
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Figure 4: Approximating the uniform distribution function D(u) = u for u ∈ [0, 1] under the null that innovations follow GED

distribution. The empirical process Dn lies within the 95% confidence band: (left to right) Bitcoin, Dash, Dogecoin, Litecoin,

Maidsafecoin, Monero, and Ripple. In fact, we fail to reject the null of GED innovations for all GARCH(1,1) models for all

cryptocurrencies in sample. See ’Dealing with non-Gaussian innovations’ subsection.
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6. Discussion

A researcher’s understanding of financial asset price volatility has, for the most part, to be deduced from

volatility proxies, as volatility itself is inherently unobservable. Good proxies improve parameter estimation

for time volatility models. While credible parameter estimation is important, it is not an end in itself. The

search for optimal proxies is beneficial to pricing financial instruments and risk management. Understanding

the nature of such proxies is key for many financial applications, including asset pricing and risk management.

So far, we have presented a critique of the econometric specification which has been recently proposed in [14].

The authors of [14] fitted twelve GARCH type models and the the distribution of the innovation process were

taken to be one of normal, skew normal, Student’s t, skew Student’s t, skew generalized error distribution,

inverse Gaussian, and generalized hyperbolic distribution. Model selection criteria were then used to pick the

best fit.

They found that Gaussian innovations provided the smallest values of AIC, AICc, BIC, HQC and CAIC for

each cryptocurrency and each GARCH-type model. Among the twelve best fitting GARCH type models,

the IGARCH (1, 1) model with normal innovations gives the smallest values of AIC, AICc, BIC, HQC and

CAIC for Bitcoin, Dash, Litecoin, Maidsafecoin and Monero. The GJR-GARCH (1, 1) model with normal

innovations gives the smallest values of AIC, AICc, BIC, HQC and CAIC for Dogecoin. The GARCH (1, 1)

model with normal innovations gives the smallest values of AIC, AICc, BIC, HQC and CAIC for Ripple.

The best fitting models were then used to provide, in their view acceptable, estimates of value at risk. The

practicality of taking such an approach is open to question. There are several potential issues that are

apparent.

First, [14] did not test whether innovations are Gaussian. To check if the innovations are Gaussian, a test

of goodness-of-fit has been proposed by [4], who developed a Kolmogorov-Smirnov type test of conditional

distribution specifications for time series based on the comparison of an estimated conditional distribution

function with the distribution function of a uniform on [0, 1]. To overcome the parameter error estimation

effect, a martingale transformation is applied that delivers a nuisance-free limiting distribution for the test

statistic. In order to address these concerns, we follow [42] and checks whether innovations are Gaussian

first, before applying any model selection criteria. To this end, we deploy the Kolmogorov-Smirnov and

Cramer-von-Mises test statistics.

Second, [14] make loose assumptions when considering the distribution of the innovation process, namely

Student’s t and skewed Student’s t. Care must be taken when using the (standardized) t for financial

applications since its moment generating function does not exist. The nature of option pricing necessitates

the use of probability distributions which provide not only a good fit to the empirical distribution of

log-returns and have all their moments defined. If the innovations had a t distribution under an equivalent

martingale measure, the value of a call option would be infinite.

Third, although there is often a case for including higher moments (evidence of skewness in asset returns,

fat tails etc), one must proceed with caution. When we include higher order moments, we should consider
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the combination of 3 possible cases. First is the time-dependence of higher order moments. Second is the

contemporary relationship between moments (e.g. skewness and kurtosis, variance and kurtosis). Third is the

time dependent relationship between moments (e.g. skewness (t) and kurtosis (t-1), variance (t) and kurtosis

(t-1)). Hence, more specifications should be considered. One must be wary of uncertainties in modelling the

time-dependent structure of the underlying parameters. As was forcefully argued in [32], when modelling

dynamic interactions among the first four moments are considered the misspecification error will likely be

more substantial, potentially resulting in misguided empirical findings.

Finally, computational complexity and burden are non-negligible in this context. The distribution is

determined by parameters which are estimated by MLE using an numerical optimisation algorithm. Most

parametric models employ MLE technique, mainly using the numerical optimisation algorithm to deal with

the potential non-linearity and asymmetry of the likelihood function. Indeed modelling the time-varying

interactions among the higher order moments obtained from the underlying asymmetric distribution function

(e.g. skewed Student’s t-distribution) makes it much more complicated to optimise the likelihood.

So what can we learn about this? Although one can recall Cox’s dictum that all models are ”wrong”6, model

selection is an important part of any statistical analysis, and indeed is central to the pursuit of science in

general. One could argue that the first step in doing applied econometrics is to establish a philosophy about

models and data analysis, and then find a suitable model selection criterion. Authors in [14] skip this first

step: they simply run a battery of AIC-type model tests on different models.

In general, AIC finds the most predictive model. BIC finds, with probability closer to 1 as the data increases,

the ”correct” model if it is in the set of models considered. However, we often do not live in that sort of

world. Model selection is still an art: we use our knowledge of the problem, model selection criteria, theory,

and judgement to select a model. Yet, our models are often imperfect or misspecified or lack full information

and so we can rarely be content with just optimizing AIC/BIC.

7. Possible directions for future work - Bubbles and the switching literature

The literature on Markov switching models with application to asset bubbles could make a useful contribution

to the empirical debate on cryptocurrency returns. For example, one interesting approach to test for bubbles

(using Markov switching process methodology) was proposed by Hall, Psaradakis, and Sola (1999) [33] to

capture the change from a non-bubble regime to a bubble regime. [13] apply the Hall-Psaradakis-Sola test

and combine it with that of [40] to investigate the existence of bubbles in the Bitcoin market, detecting a

number of short-lived bubbles over the period 2010-2014. More recently, [5] build on this result by exploring

autoregressive regime switching models for a variety of economic data series, including Bitcoin, that have

previously been argued to contain bubbles, with a view to establishing whether they had a common bubble

signature. With some technical caveats, they find that Bitcoin prices show bubble-like characteristics. It

6 ”Essentially, all models are wrong, but some are useful.” in Box, George E. P.; Norman R. Draper (1987). Empirical

Model-Building and Response Surfaces, p. 424, Wiley.
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must be noted, however, that explosive roots need not employ regime switching methods. See, for example,

the tests developed in [40], or the methodology proposed in [10] and [45] - all of which do not employ Markov

Switching. It is possible that this line of research could shed some further light on the dynamics of the data

generating process of cryptoassets. However, this is beyond the scope of this paper and is best left for future

research.

8. Conclusion

This paper examined the behaviour of time series properties of cryptocurrency assets using established

econometric techniques for weakly stationary financial data. Checks were performed on whether innovations are

Gaussian or GED by using Kolmogorov type non-parametric tests and Khmaladze’s martingale transformation.

The null of gaussianity was rejected at 1% for all GARCH(p,q) models, with p, q ∈ {1, . . . , 5}, for all

cryptocurrencies in sample. Although a test of normality was proposed in [4], an updated test was used

herewith, with a computationally advantageous Gauss-Kronrod quadrature. Parameters of GARCH models

were estimated with generalized error distribution innovations using maximum likelihood. For calculating

P-values, the parametric bootstrap method was used as per [27]. In this context, there appears to be a

strong empirical argument against modelling innovations under the assumption of Gaussianity. Further,

there appears to be a theoretical case for using GED innovations, rather than SGED. We demonstrated that

the mgf of the Skewed GED (SGED) fails to exist under some conditions.

These results can be used to arrive at a option pricing methodology under equivalent martingale measure -

something that the methodology outlined in [14] does not allow one to do. Such methodology for pricing

options under the GARCH assumption is described in detail in [18], [20], and [21]. As the cryptoasset market

attracts increasing attention from regulators and investors alike, the results in this paper will be important

for investment and risk management purposes.
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Appendices

Appendix.1. Moments of absolutely continuous distributions

Let g be a measurable function, i.e. {x ∈ R; g(x) ≤ y} ∈ B, and

E{g(X)} =

∫

R

g(x)f(x)dx, if

∫

R

|g(x)|f(x)dx < ∞.

The variance of X is

V ar(X) = E[{X − E(X)}2] =
∫

R

{X − E(X)}2f(x)dx.

The mgf is

MX(u) = E[euX ] =

∫

R

euXf(x)dx, u ∈ R

when the right-hand side is finite. If the mgf is finite on an open interval containing zero, then the pth

moment is the pth derivative w.r.t. u, evaluated at u = 0,

E[Xp] =
dp

dup
MX(u)

∣

∣

∣

∣

∣

u=0

Appendix.2. Deriving moments for error distributions in GARCH models

Let us take a GARCH(1, 1) time series model for weakly stationary financial data, specified by

Xt = σtZt

where {Xt} is the observed data, {Zt} is the innovation process, and {σ2
t } is the volatility process specified

by

σ2
t = ω + α1X

2
i−1 + β1σ

2
i−1.

For each distribution for Zt, we give explicit expressions for E[Zt], E[Z2
t ], E[Z

3
t ], E[Z

4
t ], Value at Risk

VaRp[Zt], and Expected Shortfall ESp[Zt].

Appendix.2.1. Calculating the moments: Gaussian distribution

If Zt are independent and identical Gaussian random variables with mean µ and unit variance then

E[Zt] = µ

E[Z2
t ] = µ2 + 1

E[Z3
t ] = µ3 + 3µ

E[Z4
t ] = µ4 + 6µ2 + 3

VaRp[Zt] = µ+Φ−1(p)

ESp[Zt] = µp+ φ(Φ−1(p))

where φ(·) is the probability density function of a standard Gaussian random variable, and Φ(·) is the

cumulative distribution function of a standard Gaussian random variable.
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Appendix.2.2. Properties of Generalized Error Distribution (GED)

If {Zt} are independent and identical generalized error random variables with location parameter µ and

shape parameter a then

E[Zt] = µ

E[Z2
t ] = µ2 +

a2/a−1Γ(3/a)

Γ(1 + 1/a)

E[Z3
t ] = µ3 +

3µa2/a−1Γ(3/a)

Γ(1 + 1/a)

E[Z4
t ] = µ4 +

6µ2a2/a−1Γ(3/a)

Γ(1 + 1/a)
+

a4/a−1Γ(5/a)

Γ(1 + 1/a)

VaRp[Zt] =























µ− a1/a
[

Q−1

(

1
a , 2p

)]1/a

if p ≤ 1/2

µ+ a1/a
[

Q−1

(

1
a , 2(1− p)

)]1/a

if p > 1/2

ESp[Zt] =



















µp− a1/2

2Γ(1/a)Γ

(

1
a
µ−VaR)a

a if VaR ≤ µ

µp− a1/2

2 + a1/2

2Γ(1/a)γ

(

1
a
VaR−µ)a

a if VaR > µ

where

Q(a, x) =

(

Γ(a)

)−1 ∫ ∞

x

ta−1e−tdt

is the regularized complementary incomplete gamma function,

γ(a, x) =

∫ x

0

ta−1e−tdt

is the incomplete gamma function, and

Γ(a, x) =

∫ ∞

x

ta−1e−tdt

is the complementary incomplete gamma function. This distribution is abbreviated by GED.
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Appendix.2.3. Calculating the moments: Skewed Generalized Error Distribution (SGED)

If {Zt} are independent and identical generalized error random variables with location parameter µ and

shape parameter a then

E[Zt] = µ− δ +
Cθ2

k

[

− (1− λ)2 + (1 + λ)2
]

Γ

(

2

k

)

E[Z2
t ] = (µ− δ)2 +

2C(µ− δ)θ2

k

[

− (1− λ)2 + (1 + λ)2
]

Γ

(

2

k

)

+
Cθ3

k

[

− (1− λ)3 + (1 + λ)3
]

Γ

(

3

k

)

E[Z3
t ] = (µ− δ)3 +

3C(µ− δ)2θ2

k

[

− (1− λ)2 + (1 + λ)2
]

Γ

(

2

k

)

+
3C(µ− δ)θ3

k

[

(1− λ)3 + (1 + λ)3
]

Γ

(

3

k

)

+
Cθ4

k

[

− (1− λ)4 + (1 + λ)4
]

Γ

(

4

k

)

E[Z4
t ] = (µ− δ)4 +

4C(µ− δ)3θ2

k

[

− (1− λ)2 + (1 + λ)2
]

Γ

(

2

k

)

+
6C(µ− δ)2θ3

k

[

(1− λ)3 + (1 + λ)3
]

Γ

(

3

k

)

+
C(µ− δ)θ4

k

[

− (1− λ)4 + (1 + λ)4
]

Γ

(

4

k

)

+
Cθ5

k

[

(1− λ)5 + (1 + λ)5
]

Γ

(

5

k

)

VaRp[Zt] =























µ− δ − (1 + λ)θ

[

Q−1

(

1
k ,

2p
1+λ

)]1/k

, if p ≤ 1+λ
2

µ− δ + (1 + λ)θ

[

Q−1

(

1
k ,

2(1−p)
1−λ

)]1/k

, if p > 1+λ
2

ESp[Zt] =



















−C(1+λ)2θ2

k Γ

(

2
k ,

(µ−VaR−δ)2

(1+λ)kθk

)

, if VaR ≤ µ− δ

−C(1+λ)2θ2

k Γ

(

2
k

)

+ C(1−λ)2θ2

k γ

(

2
k ,

VaR−µ+δ)2

(1−λ)kθk

)

, if VaR > µ− δ
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