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Abstract 

We analyze short-term futures oil pricing over the 2003-2016 time-period in order 

to analyze the bubble-like dynamics, which characterizes the 2007-2009 years 

according to a large body of recent literature. Our investigation, based on a flexible 

three-agent model (hedgers, fundamentalist speculators and chartists), confirms the 

presence of a bubble price pattern, which we attribute to the strong destabilizing 

behaviour of fundamentalist speculators (e.g. hedge funds). The inclusion of the 

2009-2016 sub-period, in spite of sharp and unexpected fluctuations in oil prices 

and a significant increase in the influence of geopolitical factors, fails to invalidate 

our financial interpretation.  
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1. Introduction 

   

Between 2003 and 2016, oil prices witness unprecedented fluctuations that result in 

two major cycles, which straddle the 2009 global financial freeze. The first cycle 

begins in 2003, when prices – starting from a persistent low level (about 30 dollars 

per barrel on average) – increase continuously. A decline, which begins in mid-

2006, due mostly to the first reduction in two decades of oil demand by OECD 

countries, is followed, in the subsequent two years, by an extremely rapid and 

unexpected upswing variously attributed to shifting fundamentals, institutional 

changes and/or to financial bubble behaviour, upswing which is the main  issue of 

this paper. 

In more detail, Master (2008) and Sari et al. (2012), among others, attribute it  to 

the influx of institutional investors in commodity markets that is to the 

financialization of the sector (on this see also Tang and Xiong 2012). Hamilton 

(2009) and Kesicki, on the other hand, (2010) relate it to fundamental variables 

(weak dollar combined with low elasticity of supply). More recently, financial herd 

behavior has emerged as a possible interpretation of this phenomenon, starting a 

new strand in the literature on the relative importance of financial determinants in 

commodity pricing, which Demirer et al. (2015) and Boyd et al. (2018) summarize. 

Regarding explanations based on bubble detection, a vast and growing strand in the 

literature has focused on the so-called log-period power law (LPPL) model set out by 

Sornette and Johansen (1997) and applied to oil pricing by Sornette et al. (2009) 

and Zhang and Yao (2016).  

With the world economy plunged in the Great Recession and with major 

technological innovations (shale oil in particular) and geopolitical turmoil (Middle-

East conflicts, Saudi Arabia energy policy shifts) affecting the global oil industry, a 
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proper identification of oil price drivers, during the second cycle (2009 – 2016), 

becomes more difficult.1 Indeed the market witnesses unprecedented – and 

confusing - changes in demand and supply factors, leaving it open to question, 

whether financial (cum bubble) drivers play a relevant role throughout the 2003 – 

2016 period and, second, how alterations in standard trading patterns brought 

about the large price swings observed in the 2003-2009 period.  

Recent empirical studies test the relevance of financial drivers, using the 

Commitment of Traders Futures Only report data in order to quantify, in various 

ways, financial speculative pressure (see, among others, Kim, 2015, and Gogolin 

and Kearney, 2016, and the literature quoted therein). In this paper, we address 

this problem building a model, which incorporates agents moved by purely financial 

considerations and market sentiment alongside traditional market players.2 This 

model is consistent with the LPLL approach to the detection of bubbles and 

complements it by disentangling the various drivers of super-exponential behaviour 

and of log-periodic price dynamics oscillation. 

In a highly innovative article, Frankel and Froot (1986) underlined the importance of 

the interaction between standard financial market operators, such as chartists (or 

noise traders) and fundamentalist speculators, as a driver of an endogenous non-

linear law of motion in foreign exchange rate dynamics. In the same vein, a large 

and booming literature on commodity/oil pricing, building on heterogeneous agent 

models (HAM) by Brock and Hommes (1997, 1998) and Westerhoff (2004), among 

many others, posited that agents react to differing information sets, resulting in 

market prices, which are weighted averages of their heterogeneous reactions.  

                                                           
1 On the oil supply and price stabilization policy of Saudi Arabia see Nakov and Nuño (2011). See 
Santabárbara (2017) for details on the November 2014 and December 2015 OPEC oil supply policy 
decisions. For an interpretation of the 2014 oil price slump, which emphasizes the role of demand 
factors, see Baumeister and Kilian (2015). 
2 On this line, see the alternative of Deeney et al. (2015) who introduce a financial “sentiment index”, 
built along the lines of Baker and Wurgler (2006) in an equity market context. 



3 

 

Drawing inspiration from Westerhoff and Reitz (2005), Reitz and Westerhoff (2007) 

and Tokic (2011), we build a model in which three categories of agents interact: 

noise traders, fundamentalist speculators and hedgers. Noise traders react to past 

price changes and can either stabilize or destabilize the market, according to 

whether they behave as contrarians (negative feedback traders) or trend followers 

(positive feedback traders). Fundamentalist speculators, among whom we include 

financial agents, respond to deviations of market returns from equilibrium. In this 

case, a destabilizing behavior is due to lack of confidence in the mean-reverting 

nature of market prices. Finally, we account for the presence of industry investors, 

producers and consumers, by including them in the category of hedgers who reduce 

risk by using futures contracts. In this line, our model combines typical financial 

market behavior with dynamic hedging of commodity contracts.3   

This paper combines the different strands in the literature reviewed above, 

introducing some relevant innovations. Based on the Zhou-Sornette (2009) and on 

the Phillips et al. (2011) methodologies, we identify the presence of a bubble 

between January 2007 and February 2009. Our model allows us to attribute the 

former to shifts in the behavior of three categories of agents: feedback traders, 

fundamentalists and hedgers. This greatly expands the dynamics of the standard 

HAM pricing paradigm. We impose no a priori restrictions on the signs of the 

parameters of the futures returns relationship and stabilizing or destabilizing 

reactions of economic agents are allowed for. In the same way, no restrictions are 

imposed on the sign of the speed of adjustment coefficient in the logistic functions, 

which model the entry in (exit from) the market of these agents according to their 

trust in the reliability of market pricing. We also introduce two indicators to control 

for currency and financial market conditions, finding that changes in weighted US 

                                                           
3
 Along these lines, Kao et al. (2016) explicitly introduce contrarians alongside positive 
feedback traders and fundamentalists. 
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dollar exchange rate and the VIX (VOX) index have a statistically significant impact 

on oil pricing patterns. More specifically, we find a negative correlation between the 

USD and oil prices, a finding which confirms well-known stylized facts about the oil 

market. We also find negative correlation between oil prices and the VOX index, 

which we take as indicative of a depressing effect of business uncertainty on oil 

price quotations.    

The main results read as follows. The bubble affects all categories of agents, in 

some cases reinforcing their behavior (as observed over the whole sample period) in 

other cases altering it. More specifically, the bubble tends to bring about a 

stabilizing reaction from hedgers and chartists (acting as contrarians) and to 

reinforce the market destabilizing behaviour of fundamentalists. These results apply 

to the entire sample (2003 – 2016) and are strongly corroborated over the 2003-

2009 subset.    

By modelling both the one-month and the three-month to expiry futures contracts, 

based on weekly data, we test whether contract maturity affects these patterns. As 

expected, in periods of turmoil and rising uncertainty, we find evidence of short-

termism by rational financial agents, as the absolute values of the coefficients tend 

to be larger in actual value in the case of the one-month contract.  

This research is structured as follows. Section 2 analyses the theoretical and 

empirical characteristics of our three-agent model. Section 3 sets forth the empirical 

estimates over the periods. Section 4, concludes the paper and provides an 

economic and financial interpretation of the observed oil futures price gyrations.    
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2. The model 

 

2.1 Theoretical considerations 

Hedging transactions are intended to reduce the risk of unwanted future cash price 

changes.  We define the return of cash position in the oil market as 𝑟𝑐𝑡 = ∆𝑙𝑜𝑔𝐶𝑡 = ∆𝑐𝑡  
where 𝐶𝑡 is the cash (spot) oil price. In the same way, the return of futures positions 

is 𝑟𝑓𝑡 = ∆𝑙𝑜𝑔𝐹𝑡 = ∆𝑓𝑡, where 𝐹𝑡 is the price of the corresponding futures contract. An 

investor who takes short (long) position of one unit in the oil cash market will hedge 

by taking a long (short) position of 𝛽 in the futures market. This hedge ratio can be 

regarded as the fraction of the short (long) position that is covered by futures 

purchases (sales). 

Prices are set in an order-driven market. Every period traders revise their long/short 

positions; price changes from t to t+1 are a function of their excess demands and 

can be parameterized by the following log-linear function 

 𝑓𝑡+1 = 𝑓𝑡 + 𝛼(𝐷𝑡𝐶 + 𝐷𝑡𝐹 + 𝐷𝑡𝐻) + 𝑒𝑡+1   (1) 

 

where α is a positive market reaction coefficient and 𝐷𝑡𝐶 , 𝐷𝑡𝐹 and 𝐷𝑡𝐻 denote the 

demand of chartists (feedback traders), fundamentalists and hedgers. The residual 

1te  accounts for additional factors that may impact on prices.  The demand of 

feedback traders at time t is given by 

 𝐷𝑡𝐶 = 𝑎1𝑆𝑖𝑡𝐶 (𝑓𝑡 − 𝑓𝑡−1) + 𝑎1∗𝑟𝑈𝑆𝐷,𝑡 + 𝑎1∗∗𝐷𝑉𝑂𝑋𝑡         (2) 

 

Coefficient 
1

a  is positive as feedback traders expect the existing price trend to 

persist in the subsequent time period. They will buy the contract if ∆𝑓𝑡 is positive 
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and sell it if ∆𝑓𝑡 is negative.4 Their overall impact is nonlinear and given by 𝑎1𝑆𝑖𝑡𝐶 

where 𝑆𝑖𝑡𝐶 is assumed to measure the fraction of the set of feedback traders entering 

the market at time t. This fraction depends upon market conditions and is 

parameterized by the following logistic function  

 

𝑆𝑖𝑡𝐶 = [1 + 𝑒𝑥𝑝 {−𝛾𝐶 (|𝑁 − 𝑟𝑓𝑡−𝑖| 𝜎𝑟𝑓𝑡−𝑖2⁄ )}]−1              𝑖 = 0,1, … , 𝑙    (3) 

 

N is the normal (equilibrium) return of the oil futures contract, which is defined as 

the following n-periods moving average of current and past commodity futures 

returns 𝑁 = ∑ 𝑟𝑓𝑡−𝑘 𝑛⁄𝑛−1𝑘=0 .  We assume, in this way, that oil futures returns are the 

algebraic sum of two stochastic components: an equilibrium level N and a 

temporary deviation (𝑁 − 𝑟𝑓𝑡−𝑖).  The value of the delay parameter i is determined 

empirically as it depends upon the physical and institutional characteristics of WTI 

oil pricing.  The component |𝑁 − 𝑟𝑓𝑡−𝑖| 𝜎𝑟𝑓𝑡−𝑖2     ⁄ is a signal to noise ratio. The larger the 

deviation of 𝑟𝑓𝑡−𝑖 from N , the stronger the perception of market disequilibrium and 

the larger the fraction of feedback traders that will post orders on the market. The 

denominator, 𝜎𝑟𝑓𝑡−𝑖2 , is an index of futures price variability. It accounts for the impact 

of risk. A higher (lower) risk associated with higher (lower) price volatility will 

reduce (increase), for a given perception of market disequilibrium, the willingness of 

speculators to enter the market. The term 𝑆𝑖𝑡𝐶   can take any value in the [0;1] 

interval depending on the sign of coefficient  𝛾𝐶 as |𝑁 − 𝑟𝑓𝑡−𝑖| ranges from 0 

(when   𝑁 = 𝑟𝑓𝑡−𝑖) to  . Large deviations of 𝑟𝑓𝑡−𝑖 from normal value will bring about 

a decline (increase) in the number of chartists when 𝛾𝐶 is negative (positive). The 

absolute value of 𝛾𝐶 matters too. The higher the synchronization of traders’ reaction 

to price deviations from their normal level (a symptom of herding behaviour), the 

                                                           
4 If a1 is negative, negative feedback traders/contrarians stabilize the market. 
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larger is the value of 𝛾𝐶. On the contrary, a low absolute value of this coefficient will 

reflect idiosyncratic reactions of traders to price disequilibria, possibly due to 

differing degrees of risk aversion.  

The impact of the rate of change of the USD nominal trade weighted exchange rate 

on the behaviour of chartists is measured by coefficient 𝑎1∗. Its sign is expected to be 

negative, as a USD appreciation will lead to a reduction in dollar denominated oil 

prices and vice-versa for a USD depreciation. A shift in the VOX index too will affect 

the demand of chartists. Its impact on oil prices is measured by coefficient 𝑎1∗∗. A 

negative sign means that an increase (decrease) in financial uncertainty will bring 

about a decrease (increase) in oil prices. This coefficient is assumed to account for 

the impact of the assessment of financial risk outlook on chartists. As pointed out by 

Zhang et al. (2017), free movements of investment funds tend to swarm in and out 

of the oil market. An increase in stock market uncertainty will bring about an 

outflow of funds from oil contracts and therefore produce a decline in their price.            

Alongside feedback traders, we posit the existence of professional (institutional) 

investors, labelled here fundamentalists, who exploit their oil market expertise for 

portfolio diversification purposes. As such, their behaviour is influenced by both 

futures and cash returns, as discussed below. Their demand of futures contracts at 

time t is given by 

 𝐷𝑡𝐹 = 𝑎2𝑆𝑗𝑡𝐹(𝑁 − 𝑟𝑓𝑡) + 𝑎2∗𝑟𝑈𝑆𝐷,𝑡 + 𝑎2∗∗𝐷𝑉𝑂𝑋𝑡 (4) 

 

Fundamentalists react to deviation of the futures return from its equilibrium value N 

as defined above. The coefficient 𝑎2 indicates how fundamentalists’ beliefs about 

market prices affect their behaviour. If the coefficient 𝑎2 takes on a positive value, 

this indicates that the majority of fundamentalists believes that the price will revert 
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to its equilibrium value. This will lead them to buy if 𝑁 > 𝑟𝑓𝑡 and to sell in the 

opposite case. If the coefficient 𝑎2  takes on a negative value, fundamentalists, 

disbelieving in the mean-reverting nature of the price, will sell if 𝑁 > 𝑟𝑓𝑡 and buy in 

the opposite case.5 In all cases, empirical findings suggest that fundamentalists 

enter or exit the market depending on their perception of oil price misalignment in 

the spot market, whereas chartists respond to futures prices as seen above. 

Fundamentalists base their investment strategies on more sophisticated scenarios, 

which necessarily include the evaluation of cash oil markets and of their underlying 

fundamental drivers. Consequently, we model the transition function 𝑆𝑗𝑡𝐹 as follows   

 

𝑆𝑗𝑡𝐹 = [1 + 𝑒𝑥𝑝 {−𝛾𝐹 (|𝑀 − 𝑟𝑐𝑡−𝑗| 𝜎𝑟𝑐𝑡−𝑗2⁄ )}]−1          𝑗 = 0,1, … , 𝑝   (5) 

 

Where M is the normal (equilibrium) return of oil cash contracts, which is defined as 

the following m-periods moving average of current and past cash oil returns 𝑀 = ∑ 𝑟𝑐𝑡−𝑘 𝑚⁄𝑚−1𝑘=0 .6  The value of the delay parameter j is determined empirically. The 

component |𝑀 − 𝑟𝑐𝑡−𝑗| 𝜎𝑟𝑐𝑡−𝑗2     ⁄ is a signal to noise ratio, synthesizing the dynamics of 

the oil spot market. Here too, the term 𝑆𝑗𝑡𝐹   can take any value in the [0; 1] interval 

depending on the sign of coefficient 𝛾𝐹 as |𝑀 − 𝑟𝑐𝑡−𝑗| ranges from 0 (when   𝑀 = 𝑟𝑐𝑡−𝑗) 
to  . Large deviations of 𝑟𝑐𝑡−𝑗 from normal value will bring about a decline (an 

increase) in the number of fundamentalists when 𝛾𝐹 is negative (positive). Here too 

oil market participants are assumed to be affected by USD dollar exchange rate 

shifts and by changes in stock market price uncertainty, as quantified by shifts in 

the VOX implied volatility S&P100 index. The corresponding impacts on futures oil 

prices are measured by coefficients 𝑎2∗ and 𝑎2∗∗ . 
                                                           
5
 See Chia et al. (2014). 

6 In our empirical analysis it is assumed that m = n = 12.  
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Hedgers base their decisions on the return of the hedging position and on its 

variance. As equation (6) indicates, the return to the hedging position 𝑟𝐻𝑡 is a linear 

combination of the returns of the cash and futures prices  

 𝑟𝐻𝑡 = 𝑟𝑐𝑡 − 𝛽𝑟𝑓𝑡=(𝑐𝑡 − 𝑐𝑡−1) − 𝛽(𝑓𝑡 − 𝑓𝑡−1)  (6) 

 

Where 𝛽 is the hedging ratio. 

The variance of the portfolio revenue by unit of product is obtained: 

 𝜎𝑟𝐻𝑡2 = 𝜎𝑟𝑐𝑡2 + 𝛽2𝜎𝑟𝑓𝑡2 − 2𝛽𝜎𝑟𝑐𝑡𝜎𝑟𝑓𝑡𝜌𝑟𝑐𝑡𝑟𝑓𝑡     (7) 

 

Where 𝜎𝑟𝑐𝑡2  is the variance of the cash return, 𝜎𝑟𝑓𝑡2  the variance of the futures return,  𝜌𝑟𝑐𝑡𝑟𝑓𝑡 is the linear correlation coefficient between the two returns and is equal to 

(𝜎𝑟𝑐𝑡𝑟𝑓𝑡 𝜎𝑟𝑐𝑡⁄ 𝜎𝑟𝑓𝑡). The optimum hedge ratio 𝛽∗is derived from the first order condition 

of the hedging position variance minimization and reads as  

 

𝛽∗ = 𝜎𝑟𝑐𝑡𝜎𝑟𝑓𝑡𝜌𝑟𝑐𝑡𝑟𝑓𝑡𝜎𝑟𝑓𝑡2    (8) 

 

Therefore, the optimum hedge ratio depends on the covariance between the 

changes in futures and cash prices and on the variance of the futures price changes. 

The hedging model is extended by introducing a dynamic component. The 

performance of a portfolio is measured by its variance reduction with respect to the 

optimal percentage of hedging. Substituting 𝛽∗ in equation (7), we obtain  

 

𝜎𝑟𝐻𝑡2 = 𝜎𝑟𝑐𝑡2 − (𝜎𝑟𝑐𝑡𝑟𝑓𝑡)2𝜎𝑟𝑓𝑡2 = 𝜎𝑟𝑐𝑡2 (1 − 𝜌𝑟𝑐𝑡𝑟𝑓𝑡2 )    (9) 
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Equation (10) describes the demand of futures contracts of a trader wishing to 

minimize the variance of her optimally hedged position  

 𝐷𝑡𝐻 = 𝑎3𝑆ℎ𝑡𝐻 𝜎𝑟𝐻𝑡2 +  𝑎3∗𝑟𝑈𝑆𝐷,𝑡 + 𝑎3∗∗𝐷𝑉𝑂𝑋𝑡    (10) 

 

An increase in the minimum portfolio variance (9) may be due to a rise in the 

variability of cash price changes and/or to a decrease in the correlation between the 

cash and futures returns. The overall impact of hedgers’ trading is nonlinear and 

given by 𝑎3𝑆ℎ𝑡𝐻  where 𝑆ℎ𝑡𝐻  is assumed to measure the fraction of the set of hedgers 

entering the market at time t, fraction which, in turn, will depend upon market 

conditions. The structure of the hedgers transition function is analogous to that, 

which governs the behavior of fundamentalists. Indeed both categories of agents 

respond to deviations of cash prices from their perceived equilibrium value M, even 

if with different speeds and obviously with different goals. Based on these 

considerations, the transition function 𝑆ℎ𝑡𝐻  is parameterized by the following logistic 

function, whose properties mirror those of equation (5) 

 𝑆ℎ𝑡𝐻 = [1 + 𝑒𝑥𝑝{−𝛾𝐻(|𝑀 − 𝑟𝑐𝑡−ℎ| 𝜎𝑟𝑐𝑡−ℎ2⁄ )}]−1         ℎ = 0,1, … , 𝑘   (11) 

 

The impact on hedgers’ futures demand of the USD exchange rate and of stock 

market uncertainty are quantified by coefficients  𝑎3∗ and 𝑎3∗∗ . 
Substituting equations (2), (4) and (10) in equation (1) we have the following 

futures prices relationship 

𝑟𝑓𝑡+1 = 𝜃1𝑆𝑖𝑡𝐶 𝑟𝑓𝑡 + 𝜃2𝑆𝑗𝑡𝐹(𝑁 − 𝑟𝑓𝑡) + 𝜃3𝑆ℎ𝑡𝐻 (𝜎𝑟𝑐𝑡2 − (𝜎𝑟𝑐𝑡𝑟𝑓𝑡)2𝜎𝑟𝑓𝑡2 ) +  𝜃4𝑟𝑈𝑆𝐷,𝑡 + 𝜃5𝐷𝑉𝑂𝑋𝑡 + 𝑒𝑓𝑡+1    (12) 
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Where 𝜃1 = 𝛼𝑎1 , 𝜃2 = 𝛼𝑎2, 𝜃3 = 𝛼𝑎3, 𝜃4 = 𝛼(𝑎1∗ + 𝑎2∗ + 𝑎3∗) and 𝜃5 = 𝛼(𝑎1∗∗ + 𝑎2∗∗ + 𝑎3∗∗) 
 

Equation (12) relates futures returns to their previous period values, to the 

deviation of these values from their long run equilibrium N, and to the past 

variability of the optimally hedged positions of oil traders and oil producers. 

Economic theory posits that spot and futures prices are jointly determined for any 

given commodity (Stein 1961). Our investigation thus includes two equations 

accounting, respectively, for the behavior of spot and futures price returns together 

with their covariance.  The conditional mean equation for 𝑟𝑐𝑡 is modelled as an error 

correction relationship (Equation 13), where spot prices adjust to futures prices, 

which play the price discovery role. In the long run, indeed, a cointegration 

relationship between cash and futures prices holds and plays the role of attractor for 

the short-run cash price adjustments. 

 𝑟𝑐𝑡+1 = 𝑏0 + ∑ 𝑏1z𝑟𝑐𝑡−𝑧𝑛𝑧=0 + ∑ 𝑏2w𝑟𝑓𝑡−𝑤𝑚𝑤=0 + 𝜃(𝑐𝑡 − 𝜆𝑓𝑡) + 𝑒𝑐𝑡+1   (13) 

 

2.2. The empirical model 

 

     

Futures and cash price rates of return are conditionally heteroskedastic when data 

are sampled with a weekly frequency – as we do in this paper – and a GARCH 

approach is used to model the second moments that enter equation (12). Equation 

(14), the empirical counterpart of equation (13) above, parameterizes the 

conditional mean of the cash returns whereas equation (15), the counterpart of 

equation (12), illustrates futures pricing by hedgers and speculators.  



12 

 

We adapt the model set out above to the bubble-like environment, by including a 

slope dummy 𝐷𝐵𝑡   in equation (15), which is equal to 1 over the bubble period and 0 

otherwise, enabling us to assess the different reaction of the three categories of 

agents. We identify the bubble period using the approaches of Zhou and Sornette 

(2009) and of Phillips et al. (2011) and find that it spans the 2007-2009 years as 

we discuss in more detail in Section 3. 

 𝑟𝑐𝑡 = 𝑑0 + ∑ 𝑑cz𝑟𝑐𝑡−𝑧𝑛𝑧=1 + ∑ 𝑑fw𝑟𝑓𝑡−𝑤𝑚𝑤=1 + 𝜁(𝑓𝑡−1 − 𝜆0 − 𝜆1𝑐𝑡−1) + 𝜈𝑐𝑡   (14) 𝑟𝑓𝑡 =𝑔0 + (𝑔1 + 𝑏1𝐷𝐵𝑡−1)𝑆𝑖𝑡−1𝐶 𝑟𝑓𝑡−1 + (𝑔2 + 𝑏2𝐷𝐵𝑡−1)𝑆𝑗𝑡−1𝐹 (𝑁 − 𝑟𝑓𝑡−1) + (𝑔3 + 𝑏3𝐷𝐵𝑡−1)𝑆ℎ𝑡−1𝐻 ℎ𝑟𝐻𝑡−12 +𝑔4𝑟𝑈𝑆𝐷,𝑡−1 + 𝑔5𝐷𝑉𝑂𝑋𝑡−1 + 𝜈𝑓𝑡    (15) 

𝑆𝑖𝑡−1𝐶 = [1 + 𝑒𝑥𝑝 {−𝛾𝐶 (|𝑁 − 𝑟𝑓𝑡−1−𝑖| ℎ𝑟𝑓𝑡−1−𝑖2⁄ )}]−1
  (16) 

𝑆𝑗𝑡−1𝐹 = [1 + 𝑒𝑥𝑝 {−𝛾𝐹 (|𝑀 − 𝑟𝑐𝑡−1−𝑗| ℎ𝑟𝑐𝑡−1−𝑗2⁄ )}]−1
 (17) 

𝑆ℎ𝑡−1𝐻 = [1 + 𝑒𝑥𝑝{−𝛾𝐻(|𝑀 − 𝑟𝑐𝑡−1−ℎ| ℎ𝑟𝑐𝑡−1−ℎ2⁄ )}]−1
 (18) 

𝜈𝑡 = [𝜈𝑐𝑡𝜈𝑓𝑡]   (19) 

𝜈𝑡|Ω𝑡−1~𝑁(0, 𝐻𝑡)  (20) 𝐻𝑡 = ∆𝑡𝑅∆𝑡    (21) 

𝑅 = [ 1 𝜌𝑟𝑐𝑟𝑓𝜌𝑟𝑐𝑟𝑓 1 ]   (22)     ∆𝑡= [ℎ𝑟𝑐𝑡 00 ℎ𝑟𝑓𝑡]  (22’)  

ℎ𝑟𝑐𝑡2 = 𝜔𝑐 + 𝛼𝑐𝜈𝑟𝑐𝑡−12 + 𝛽𝑐ℎ𝑟𝑐𝑡−12     (23)      ℎ𝑟𝑓𝑡2 = 𝜔𝑓 + 𝛼𝑓𝜈𝑟𝑓𝑡−12 + 𝛽𝑓ℎ𝑟𝑓𝑡−12   (23’) 

ℎ𝑟𝐻𝑡−12 = (ℎ𝑟𝑐𝑡−12 − (ℎ𝑟𝑐𝑡−1𝑟𝑓𝑡−1)2ℎ𝑟𝑓𝑡−12 )  (24) 
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Our empirical model allows for a complex characterization of the interaction among 

different categories of economic agents, who react to deviations of market prices 

from their equilibrium values, in ways, which can be stabilizing or destabilizing.  

If 𝑔1 is positive (negative), chartists (contrarians) destabilize (stabilize) the market, 

acting as positive (negative) feedback traders.7 If 𝛾 (𝛾𝐶 in equation (16)) is positive 

(negative), the relative number of feedback traders, present in the market, grows 

(declines) with the deviation of 𝑟𝑓𝑡−1−𝑖  from its moving average value 𝑁.  

Turning to fundamentalist speculators, the negative value of 𝑔2 deserves specific 

comment. Fundamentalists may indeed believe that the persistence in the 

misalignment between the equilibrium and the current rate of return on futures 

contracts will last for some time and persist to buy (sell) if  𝑟𝑓𝑡 > 𝑁  (𝑟𝑓𝑡 < 𝑁). This is a 

symptom of the failure of the price signaling process during periods of turbulence 

and is consistent with fundamentalists destabilizing the market, their traditional 

stabilizing behaviour being associated with a positive value of 𝑔2. As for the negative 

sign of 𝛾 (𝛾𝐹 in Equation (17)), Shleifer and Vishny (1997) explain it by the wariness 

of fundamentalists to enter the market if trades based on their own forecasts turn 

out to be persistently incorrect. In this case, a growing disequilibrium between the 

cash return and its equilibrium value will bring about a decline in the number of 

fundamentalists active in the market.  

Coming to hedgers, the following considerations apply. As Cifarelli (2013, p.161) 

explains, an increase in 𝜎𝑟𝑐𝑡2  can be produced either by an increase or a decrease in 

crude oil prices. As Equation (9) indicates the hedged portfolio variance 𝜎𝑟𝐻𝑡2  depends 

on the variance of cash prices 𝜎𝑟𝑐𝑡2  and on the squared correlation coefficient between 

cash and futures prices 𝜌𝑟𝑐𝑡𝑟𝑓𝑡2 . Whenever – as is the case in our estimates – 

correlation between the two prices is stable over time, hedgers will react to changes 

                                                           
7 The standard justification for the presence of contrarians is that some feedback traders may believe 
that prices have overshot a reasonable equilibrium value (Wan and Kao, 2009). 
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in cash prices only. Coefficient 𝑔3 is expected to be negative if in the previous 

period(s) the cash price rate of change is positive and positive if in the previous 

period(s) the cash price rate of change is negative. Long positions in commodities 

(by producers) are associated with short positions in futures contracts, whereas 

short positions in commodities (by e.g. traders or consumers) are associated with 

long positions in futures contracts. If the commodity cash price rises (falls), the 

producer is likely, in the subsequent time period, to increase (reduce) his planned 

future sales. In order to hedge against future spot price declines he is going to raise 

(decrease) his hedging position by selling more (less) futures contracts. The futures 

price will fall (rise) and the coefficient of the hedged position variability 𝑔3 will be 

negative (positive). The behavior of either traders or consumers causes the same 

sign shifts. If the commodity price declines (rises) traders will face, in the following 

period, an increase (decrease) in demand and increase (reduce) their short 

positions commitments in the cash market, and in order to hedge against futures 

price rises, will raise (cut) their long positions in the futures market bringing about a 

futures price increase (decrease).  

  

3. Empirical results 

 

The paper uses weekly data in order to measure the impact of the financial crisis on 

the dynamics of futures oil pricing. Our sample spans the time interval from 2 

January 2003 to 12 January 2016 and includes two major cycles, terminated by 

abrupt downswings in 2009 and in 2015. We analyze in this paper futures oil price 

dynamics over the full sample and in order to investigate its peculiar properties, 

over the highly controversial 2003-2009 time period. The oil spot price Ct is the WTI 

spot price FOB (US dollars per barrel), the futures oil price Ft is provided by the EIA 
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database.8 Figure 1 exhibits the series themselves and summary statistics of the 

rates of returns over the full sample and the second sub-sample are set out in Table 

1. Figure 1 depicts oil cash and futures prices in levels (left-hand panels) and in first 

log-differences (right-hand panels). Price levels provide visual insights into the 

bubble-like price behaviour, which our analysis tries to explain. Leaving out the 

“Great Moderation”, our sample period is characterized – from 2005 to mid 2008 - 

by a positive trend, interrupted by a sharp spike, followed by an equally outsized 

downswing.  

As pointed out in the recent literature, a defining characteristic of bubble dynamics 

is the super-exponential behavior of prices. In order to detect it, we perform both 

the D-test of Zhou and Sornette (2009) and the SADF (supremum right-tail ADF) 

bubble test of Phillips et al. (2011).9 We find that our series conform with this 

behaviour from January 2007 to July 2008. The tests we are using here indentify 

the shorter super-exponential price upswing, which ends in June 2008, i.e. the first 

part of the bubble only. In the empirical estimates we use the entire bubble, which 

includes also the 2008-2009 downswing, in our dummy time interval. The bubble 

dummy 𝐷𝐵𝑡, therefore, takes a value of 1 over the longer  12 January 2007 - 13 

February 2009 time interval. 

 

 

 

 

                                                           
8 Futures contract 1 expires on the third business day prior to the 25th calendar day of the month 
preceding the delivery month. If the 25th calendar day of the month is a non-business day, trading 
ceases on the 3rd business day prior to the business day preceding the 25th calendar day. Contract 3 
corresponds to the second successive delivery month following contract 1.  
9 The test results are set out in the appendix. 
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Figure 1. Oil spot and futures prices and rates of return  
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differences are always stationary, as shown by ADF test statistics, non-normally 

distributed and affected by nonlinearities.  

 

        

Table 1. Descriptive statistics 

 02/01/2003 – 12/01/2016 02/01/2003 – 29/12/2009 

 Spot price return 𝑟𝑐𝑡  

Futures contract 

1 return 𝑟𝑓1𝑡 

Futures contract 

3 return 𝑟𝑓3𝑡 

Spot price return 𝑟𝑐𝑡  

Futures contract 

1 return 𝑟𝑓1𝑡 

 

Futures contract 

3 return 𝑟𝑓3𝑡 

Mean 0.0001 0.0015 0.0003 0.0024 
 

 0.0024 
 

 0.0026 
 

Std. dev. 0.0424 0.0402 0.0365 0.0479 
 

 0.0446 
 

 0.0398 
 

Skewness -0.4680 -0.4635 -0.3939 -0.6728 
 

-0.6638 
 

-0.5565 
 

Kurtosis 8.6338 4.6288 4.3949 8.2117 
 

 4.2909 
 

 3.9708 
 

JB 751.3448 

[0.000] 

99.5258 

[0.000] 

72.7132 

[0.000] 

435.7910 

[0.000] 

 51.5757 

[0.000] 

 32.8132 

[0.000] 

AR1 16.753 

[0.000] 

14.645 

[0.000] 

29.954 
 

[0.000] 

      7.2194 

[0.007] 

         14.472 

[0.000] 

      15.861 

[0.000] 

AR5 28.214 

[0.000]
 

22.022 

[0.000] 

       39.545 

[0.000] 

  17.941 

[0.003] 

      21.522 

[0.001] 

23.113 

[0.000] 

ARCH1 115.270 

[0.000] 

       63.395 

[0.000] 

37.663 

[0.000] 

  69.367 

[0.000] 
 

      45.072 

      [0.000] 
 

29.491 

[0.000] 

ARCH5 267.560 

[0.000] 

     213.470 

[0.000] 

       114.70 

0[0.000] 

    159.750 

[0.000] 
 

      162.00 

         [0.000] 

94.582 

[0.000] 

ADF 

(c, n) 

-22.2835 

(no c, 1) 

[0.000] 

-12.855 

(no c, 2) 

[0.000] 

-12.892 

(no c, 2) 

[0.000] 

-9.189 

(no c, 2) 

[0.000] 

       -15.426 

       (no c, 0) 

        [0.000] 
 

-15.253 

(no c, 0) 

[0.000] 
 

BDS2    8.1306                               

[0.000] 

 

 
 

 8.3545 

[0.000] 

6.8262 

[0.000] 

5.9710 

[0.000] 

 6.5189 

[0.000] 

 4.24045 

[0.000] 

 
Notes. Probability values in square brackets; JB: Jarque-Bera normality test; ARk: Ljung-Box test statistic for k-th 
order serial correlation of the time series; ARCHk: Ljung-Box test statistic for k-th order serial correlation of the 
squared time series; ADF(c, n): Augmented Dickey Fuller unit root test statistic, with a constant term and nth order 
autoregressive component; BDSk: test statistic, with embedding dimension k, of the null that the time series, 
filtered for a first order autoregressive structure, is independently and identically distributed. 
 

Indeed, the BDS test statistics of Brock et al. (1987) strongly reject, with 

embedding dimension 2, the null hypothesis that the rates of returns, filtered for 

first order serial dependence are iid. (Analogous results are obtained for the 

unfiltered returns, with embedding dimensions varying from 2 to 6). From a 

qualitative point of view, the properties of the data, which span the sub-sample 

(2003-2009), are analogous to the full sample ones.  
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3.1 Empirical analysis over the full sample  

 

The full sample estimates (02/01/2003 – 12/01/2016) of the model can be found in 

Table 2. The parameterization of equation (15) is justified by the strategy set out in 

Teräsvirta (1994). At first, the lag of the autoregressive futures log difference is 

selected using the Akaike Information Criterion: a one-week lag provides the best 

fit. A test of linearity against the non-linear parameterization of equation (15) is 

performed following the procedure of Luukkonen at al. (1988), as modified by Wan 

and Kao (2009). The transition functions (16), (17) and (18) are replaced in 

equation (15) by a third order Taylor series approximation. The following auxiliary 

equation is estimated   𝑟𝑓𝑡 = 𝜋0 + 𝜋1𝑟𝑓𝑡−1 + 𝜋2𝑟𝑓𝑡−1𝑦𝑡−1−𝑖 + 𝜋3𝑟𝑓𝑡−1𝑦𝑡−1−𝑖2 + 𝜋4𝑟𝑓𝑡−1𝑦𝑡−1−𝑖3 + 

+𝜇1(𝑁 − 𝑟𝑓𝑡−1) + 𝜇2(𝑁 − 𝑟𝑓𝑡−1)𝑥𝑡−1−𝑗 + 𝜇3(𝑁 − 𝑟𝑓𝑡−1)𝑥𝑡−1−𝑗2 + 𝜇4(𝑁 − 𝑟𝑓𝑡−1)𝑥𝑡−1−𝑗3 + 

+𝛿1ℎ𝑟𝐻𝑡−12 + 𝛿2ℎ𝑟𝐻𝑡−12 𝑥𝑡−1−ℎ + 𝛿3ℎ𝑟𝐻𝑡−12 𝑥𝑡−1−ℎ2 + 𝛿4ℎ𝑟𝐻𝑡−12 𝑥𝑡−1−ℎ3  

+𝜏1𝑟𝑈𝑆𝐷,𝑡−1 + 𝜏2𝐷𝑉𝑂𝑋𝑡−1 + 𝜖𝑡  
where,     𝑥𝑖𝑡−𝑘 =  |𝑀 − 𝑟𝑐𝑡−1−𝑘|,    𝑘 =  𝑗, ℎ    and   𝑦𝑡−𝑖 =  |𝑁 − 𝑟𝑓𝑡−1−𝑖| 
 

We test linearity against STAR modeling - for various values of i, j and h - 

performing LM tests of the null hypothesis 𝐻0: 𝜋2 =  𝜋3 =  𝜋4 = 𝜇2 = 𝜇3 = 𝜇4 = 𝛿2 = 𝛿3 =𝛿4 = 0.  We have also tested linearity against STAR modeling for chartists, 

fundamentalists and hedgers in isolation. That is, we have performed the following 

LM tests of the null hypotheses 𝐻0𝐶: 𝜋2 =  𝜋3 =  𝜋4 = 0; 𝐻0𝐹: 𝜇2 = 𝜇3 = 𝜇4 = 0;  and 𝐻0𝐻: 𝛿2 = 𝛿3 = 𝛿4 = 0. For the values of the delay parameters of the first row of Tables 2 
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and 3, the Teräsvirta Non-linearity Test (TNT) statistics uniformly reject 𝐻0, 𝐻0𝐶 and 𝐻0𝐻 in the case of the full-sample estimates and fail to reject 𝐻0𝐹 only, in the case of 

fundamentalists operating with the three month futures contract. Our non-linear 

parameterization is thus convincingly justified by the data and the time-varying 

fractions of chartists, fundamentalists and hedgers in equation (15) are 

parameterized using equations (16), (17) and (18).10 

The overall quality of fit of the model is satisfactory. The estimated parameters are 

significantly different from zero and our GARCH model captures the conditional 

heteroskedasticity of the residuals.11 The usual misspecification tests indicate that 

the standardized residuals 𝜂𝑡 are always well behaved; for each system 𝐸[𝜂𝑡] = 0,  𝐸[𝜂𝑡2] = 1  and 𝜂𝑡2 is serially uncorrelated. The BDS2 tests, moreover, fail to reject the 

null that the standardized residuals are iid. The nonlinearities detected in the return 

time series of Table 1 are filtered away by the model.  

The main results emerging from the estimates reported on Table 2 may be 

summarized as follows. First, we find evidence that both feedback traders and 

fundamentalists exert a price destabilizing effect over the whole sample, captured 

by the coefficients 𝑔1 and 𝑔2, in the case of Fut-1 and also in the case of Fut-3 as far 

as feedback traders are concerned. The bubble exacerbates the destabilizing 

behaviour of fundamentalists (i.e. hedge funds), as the highly significant negative 

value of coefficient 𝑏2 indicates, while dampening the effect of feedback trading, as 

the negative sign of the coefficient 𝑏1 suggests. In the same way, during the bubble 

and particularly for the Fut-1 contract, hedgers stabilize the market as we explain in 

detail at the end of section 2. Overall, our estimates indicate that market 

                                                           
10

 The Taylor procedure allows us to reject the alternative ESTAR parameterization of the transition 

function. For the sake of parsimony these tests are not reported here. It should be noticed that 
rejection of the 𝐻0𝐶 , 𝐻0𝐹  and 𝐻0𝐻 hypotheses implies also the rejection of the hypotheses that chartists, 
fundamentalists and hedgers fail to affect the behavior of the futures contracts rates of change, 
justifying, in this way, the three-agent model parameterization of our paper. 
11 The t-ratios reported in the tables are based on the robust quasi-maximum likelihood estimation 
procedure of Bollerslev and Wooldridge (1992). 
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participants trust price signals coming from the 3-month compartment, while not 

relying in the same way on the 1-month contract.  

Table 2. Full sample estimates: 02/01/2003 – 12/01/2016  

Fut1 Fut3 
m = 1, n = 3 i=0, j=2, h=8 m = 1, n = 3 i=0, j=1, h=11 𝑟𝑐𝑡 𝑟𝑓𝑡 𝑟𝑐𝑡  𝑟𝑓𝑡 𝑑0 1.079 

(51.146) 

𝑔0 0.232 

(10.512) 
  𝑑0 0.242     

(13.535)   
𝑔0 0.175      

(9.990)   
  𝑑c1 -0.059 

(-9.840) 

𝑔1 0.295  

(21.814) 
𝑏1 -0.047   

(-1.734) 
𝑑c1 -0.1204 

(-13.647)   
𝑔1 0.238     

(26.463)   
𝑏1 -0.069 

 (-3.678)   𝑑c2 -0.000 

(-0.056) 

𝑔2 -0.117       

(-8.310) 
𝑏2 -0.082     

(-2.951) 
𝑑c2 -0.012   

(-1.052)  
𝑔2 0.019      

(1.603)   
𝑏2 -0.177 

(-6.206)   𝑑c3 -0.027 

(-4.301) 

𝑔3 1.171  

(3.196) 
𝑏3 -2.197     

(-3.711) 
𝑑c3 -0.023     

(-2.005)   
𝑔3 0.050      

(3.007)   
𝑏3 -0.040 

 (-1.295)   𝑑f1 0.243 

(41.093) 

𝛾𝐶 
i = 0 

-0.460 

(-4.751) 
𝑔4 -0.091 

(-3.471) 
𝑑f1 0.364     

(39.037)   
𝛾𝐶 

i = 0 
1.800      

(4.547)   
𝑔4 -0.220 

(-3.773)   𝜁 0.644 

(53.360) 

𝛾𝐹 
j = 8 

-0.370 

(-2.399) 
𝑔5 -0.014     

(-1.743) 
𝜁 0.047      

(5.245)   
𝛾𝐹 

j = 8 
1.974    

(1.811)   
𝑔5 -0.057 

 (-4.331)   𝜆0 0.013 

(39.932) 

𝛾𝐻 
h = 8 

-6.425     

(-2.383) 
  𝜆0 -0.006     

(-1.628)   
𝛾𝐻 

h = 4 
1.267      

(2.244)   
  𝜆1 1.000 

(12778.9) 

    𝜆1   1.006    

(148.414)   
    𝜌𝑟𝑐𝑟𝑓 0.986 

(3713.0) 

LLF -2427.50   𝜌𝑟𝑐𝑟𝑓 0.962  

(275.294)   
LLF -2724.74   𝜔𝑐 0.681 

(47.488) 

𝜔𝑓 0.711     

(57.352) 
  𝜔𝑐 0.682    

(31.669)   
𝜔𝑓 0.474     

(30.543) 
  𝛼𝑐 0.096    

(126.050) 

𝛼𝑓 0.091    

(98.641) 
  𝛼𝑐 0.107     

(58.611)   
𝛼𝑓 0.079     

(47.881)   
  𝛽𝑐 0.853    

(827.629) 

𝛽𝑓 0.855    

(774.673) 
  𝛽𝑐 0.845    

(298.518)   
𝛽𝑓 0.877    

(257.354)   
  

T.N.T. 

 

7.124 

[0.000] 

C F H 

4.629 

[0.003] 

C 

8.201 

[0.000] 

F 

2.895 

[0.034] 

H 

T.N.T.  6.444 

[0.000] 

C F H 

4.220 

[0.006] 

C 

1.442 

[0.229] 

F 

14.373 

[0.000] 

H 

  

𝜂𝑐𝑡 = 𝜈𝑐𝑡 √ℎ𝑟𝑐𝑡2⁄          𝜂𝑓𝑡 = 𝜈𝑓𝑡 √ℎ𝑟𝑓𝑡2⁄      𝜂𝑐𝑡 = 𝜈𝑐𝑡 √ℎ𝑟𝑐𝑡2⁄   𝜂𝑓𝑡 = 𝜈𝑓𝑡 √ℎ𝑟𝑓𝑡2⁄    𝐸[𝜂𝑐𝑡] -0.080 𝐸[𝜂𝑓𝑡] -0.075  𝐸[𝜂𝑐𝑡] -0.063 𝐸[𝜂𝑓𝑡] -0.056   𝐸[𝜂𝑐𝑡2 ] 1.025 𝐸[𝜂𝑓𝑡2 ] 1.018  𝐸[𝜂𝑐𝑡2 ] 1.029 𝐸[𝜂𝑓𝑡2 ] 1.022   

Sk. -0.583 Sk. -0.489  Sk. -0.559 Sk. -0.490   

Kurt. 1.164 Kurt. 0.946  Kurt. 1.199 Kurt. 1.143   

ARCH1 0.084   

[0.772] 
ARCH1 0.214   

[0.644] 
 ARCH1 0.169 

 [0.681] 

ARCH1 0.055   

[0.814] 

  

ARCH2 1.843   

[0.398] 

ARCH2 1.168   

[0.557] 

 ARCH2 2.194    

[0.334] 
ARCH2 1.474   

[0.479] 

  

AR1 1.961   

[0.161] 
AR1 3.875   

[0.049] 
 AR1 1.172 

[0.279] 

AR1 1.424   

[0.234] 

  

AR2 
 

3.563   

[0.168] 

AR2 
 

5.207   

[0.074] 

 AR2 
 

3.445 

[ 0.179] 

AR2 4.043   

[0.132] 
  

JB 76.758 

[0.000] 
JB 52.154 

[0.000] 
 JB 76.169 

[0.000] 
JB 64.052 

[0.000] 
  

BDS2  0.3250 

 [0.745] 
 

BDS2  0.5336 

[0.594] 
  

 
 

 BDS2  0.2078 

[ 0.835] 
 

BDS2 -0.0832 

[0.934] 
  

  

 
Notes. Probability values in square brackets; Sk.: Skewness; Kurt: Excess Kurtosis; JB: Jarque-Bera normality test; 
ARk: Ljung-Box test statistic for k-th order serial correlation of the time series; ARCHk: Ljung-Box test statistic for 
k-th order serial correlation of the squared time series; T.N.T.: Teräsvirta (1994) test of nonlinearity applied to the 
chartists’ (C), fundamentalists’ (F) and hedgers’ (H) transition functions and to the three transition functions 
simultaneously (C F H). BDSk: test statistic, with embedding dimension k, of the null that the standardized 
residuals are independently and identically distributed. 

 

Indeed the three LSTAR dynamics γ-coefficient are always positive and significant in 

the case of Fut-3 and negative in the case of Fut-1. Coefficient  
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𝑔4 estimates are negative for both contracts and capture the well-known negative 

impact of a USD appreciation on oil prices. The negative sign of the  𝑔5 coefficient is more relevant and disproves the hypothesis that a greater stock 

market perception of risk resulted in an outflow of financial funds into commodity 

investment. Indeed, the opposite seems to have been the case, the latter occurring 

in spite of rise in financial market uncertainty.  

Figures 2 and 3 provide a graphical assessment of the effects on futures returns of 

the different degree of consensus of chartists (left panel), fundamentalists (middle 

panel) and hedgers (right panel) with respect to deviations of price from perceived 

equilibrium and of trust in this perception. As discussed above, these deviations 

bring about an increase (decline) in the number of market participants, and thus in 

the absolute value of the impact on the futures rate of return, depending upon the 

positive (negative) sign of the estimated ϒ coefficient, the absolute value of which 

(i.e. degree of consensus) being reflected in the slope of the curves.12 The impact of 

the bubble is relevant and brings about a shift in the pattern of the graphs (see the 

dots in the circles) and corresponds - in response to a growing deviation of the rates 

of return from their normal values - to a decrease in the destabilizing behaviour of 

chartists and to an increase in the destabilizing behaviour of fundamentalists. The 

case of the hedgers is more complex, since they become stabilizers in the case of 

the Fut-1 contract only. 

 

                                                           
12

 Each graph contains a scatter plot of the impact of each group of agents on futures returns 

(regression coefficient multiplied by the value of the LSTAR transition function) and the deviations of 
the transition variable from its equilibrium value. We report the former on the vertical axis and the 
latter on the horizontal one. For the sake of clarity, we have interpolated the scatter plots using local 
first order polynomial regressions with bandwidth based on the nearest neighbor approach. The local 
regressions are performed on a sub sample selected according to the Cleveland (1993) procedure and 
involves about 100 evaluation points. Tricube weights are used in the weighted regressions used to 
minimize the weighted sum of squared residuals. The bandwidth span of each local regression is set to 
0.3. 
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Figure 2. Impact of speculators and hedgers on 1-month futures rates of 

return and deviations from long-term equilibrium  
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As shown in Figure 2, which applies to Fut-1 returns, the price destabilizing impact 

of chartists weakens during the bubble for any given deviation of futures returns 

from perceived normal values (left-panel). On the contrary, fundamentalists 

strongly destabilize the market during the bubble (mid-panel), overshadowing the 

price-moderating effect of hedging (right-panel).   

 

Figure 3. Impact of speculators and hedgers on 3-month futures rates of 

return and deviations from long-term equilibrium  

 

.08

.10

.12

.14

.16

.18

.20

.22

.24

-20 -10 0 10 20

N-rf(t-1-i)

im
p

a
c
t 
o

f 
c
h

a
rt

is
ts

-.20

-.16

-.12

-.08

-.04

.00

.04

-30 -20 -10 0 10 20 30

M-rc(t-1-j)

im
p

a
c
t 
o

f 
fu

n
d

a
m

e
n

ta
lis

ts

.00

.01

.02

.03

.04

.05

.06

-20 -10 0 10 20 30 40

M-rc(t-1-h)

im
p

a
c
t 
o

f 
h

e
d

g
e

rs

 

Coming to Fut-3 returns, we obtain qualitatively analogous results (see Figure 3) in 

the case of chartists and fundamentalists, who both contribute to price 
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destabilization during the bubble. This effect is augmented but marginally by 

hedgers. 

3.2 Robustness analysis 

 

The inclusion of observations from the second 2009-2016 cycle, with its own specific 

characteristics, may introduce new factors that alter the behavioural reaction of the 

agents and affect our bubble investigation. In order to focus on the interpretation of 

the latter, we restrict the sample to the first cycle, which spans the 2 January 2003 

30 December 2009 time period, and we obtain surprisingly similar results. This 

finding suggests that our analysis identifies a specific thread of the oil price 

dynamics, over the 2007-2009 time interval, which is independent of the sample 

length. 

The quality of fit of the estimates set forth in Table 3 is highly satisfactory, all the 

coefficients are significant at the standard levels of significance and a perusal of the 

usual tests finds no evidence of model misspecification. Feedback traders and 

fundamentalists tend to destabilize prices since, for both contracts, coefficient 𝑔1 
and 𝑔2 estimates take, respectively, positive and negative values. Here too the 

bubble brings about differing results. Feedback traders become contrarians (𝑏1 is 

large and negative), a fact that may reflect their fear of impeding price collapse. On 

the other hand, the destabilizing behaviour of fundamentalists becomes more 

incisive (𝑏2 is large and negative). Hedgers, as in the full sample estimates, tend to 

stabilize prices during the bubble upswing, since coefficient 𝑏3 estimates are large 

and negative. As for the gamma estimates, the only difference between the full 

sample and first period estimates, is that feedback traders in the Fut-1 sub-market 

tend to trust price dynamics, and – the  𝛾𝐶  estimates being positive - enter the 

market for large deviations of current from equilibrium futures prices. 
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Table 3. Sub-sample estimates: 02/01/2003 – 30/12/2009 

Fut1 Fut3 
m = 1, n = 3 i=0, j=2, h=8 m = 1, n = 3 i=0, j=0, h=9 𝑟𝑐𝑡 𝑟𝑓𝑡 𝑟𝑐𝑡  𝑟𝑓𝑡 𝑑0 2.754 

(81.619) 

𝑔0 0.596 

(18.212) 

  𝑑0 1.960 

(46.576) 

𝑔0 0.464 

(17.363) 

  𝑑c1 0.071 

(9.116) 

𝑔1 0.082 

(8.185) 

𝑏1 -0.159 

(-9.450) 

𝑑c1 -0.114 

(-15.498) 

𝑔1 0.127 

(12.303) 

𝑏1 -0.038 

(-1.891) 𝑑c2 -0.002 

(-0.161) 

𝑔2 -0.177 

(-9.949) 

𝑏2 -2.286 

(-9.916) 

𝑑c2 -0.018 

(-1.632) 

𝑔2 -0.121 

(-16.750) 

𝑏2 -0.090 

(-4.337) 𝑑c3 -0.031 

(-3.042) 

𝑔3 0.804 

(2.996) 

𝑏3 -1.579 

(-3.679) 

𝑑c3 -0.046 

(-3.031) 

𝑔3 0.068 

(2.956) 

𝑏3 -0.136 

(-4.265) 𝑑f1 0.075 

(9.603) 

𝛾𝐶 
i = 0 

0.844 

(1.667) 

𝑔4 -0.073 

(-2.132) 

𝑑f1 0.350 

(44.011) 

𝛾𝐶 
i = 0 

0.663 

(3.312) 

𝑔4 -0.307 

(-4.533) 𝜁 0.885 

(58.523) 

𝛾𝐹 
j = 2 

-0.118 

(-1.64) 

𝑔5 -0.036 

(-2.991) 

𝜁 0.070 

(76.405) 

𝛾𝐹 
j = 8 

2.534 

(2.406) 

𝑔5 -0.073 

(-3.031) 𝜆0 0.012 

(31.928) 

𝛾𝐻 
h = 8 

-2.076 

(-2.375) 

  𝜆0 0.042 

(18.850) 

𝛾𝐻 
h = 4 

0.891 

(21.560) 

  𝜆1 1.003 

(10447) 

    𝜆1 1.044 

(242.507) 

    𝜌𝑟𝑐𝑟𝑓 0.985 

(2473.20) 

LLF -1398.36   𝜌𝑟𝑐𝑟𝑓 0.956 

(225.045) 

LLF -1555.82   𝜔𝑐 0.763 

(29.836) 

𝜔𝑓 0.915 

(32.406) 
  𝜔𝑐 0.674 

(46.147) 

𝜔𝑓 0.506 

(10.315) 

  𝛼𝑐 0.119 

(103.096) 

𝛼𝑓 0.125 

(82.551) 

  𝛼𝑐 0.130 

(34.922) 

𝛼𝑓 0.091 

(30.147) 

  𝛽𝑐 0.838 

(585.933) 

𝛽𝑓 0.823 

(452.889) 

  𝛽𝑐 0.833 

(239.087) 

𝛽𝑓 0.868 

(156.270) 

  

T.N.T. 

 

6.683 

[0.000] 

C F H 

5.512 

[0.001] 

C 

6.962 

[0.000] 

F 

3.677 

[0.012] 

H 

T.N.T.  3.553 

[0.000] 

C F H 

0.978 

[0.403] 

C 

2.232 

[0.084] 

F 

5.365 

[0.001] 

H 

 

𝜂𝑐𝑡 = 𝜈𝑐𝑡 √ℎ𝑟𝑐𝑡2⁄          𝜂𝑓𝑡 = 𝜈𝑓𝑡 √ℎ𝑟𝑓𝑡2⁄      𝜂𝑐𝑡 = 𝜈𝑐𝑡 √ℎ𝑟𝑐𝑡2⁄   𝜂𝑓𝑡 = 𝜈𝑓𝑡 √ℎ𝑟𝑓𝑡2⁄    𝐸[𝜂𝑐𝑡] -0.084 𝐸[𝜂𝑓𝑡] -0.084  𝐸[𝜂𝑐𝑡] -0.061 𝐸[𝜂𝑓𝑡] -0.056   𝐸[𝜂𝑐𝑡2 ] 1.003 𝐸[𝜂𝑓𝑡2 ] 1.004  𝐸[𝜂𝑐𝑡2 ] 1.028 𝐸[𝜂𝑓𝑡2 ] 1.032   

Sk. -0.693 Sk. -0.569  Sk. -0.687 Sk. -0.538   

Kurt. 0.720 Kurt. 0.319  Kurt. 0.794 Kurt. 0.358   

ARCH1 0.257 

[0.612] 

ARCH1 0.488 

[0.485] 

 ARCH1 0.810 

[0.368] 

ARCH1 0.106 

[0.745] 

  

ARCH2 1.377 

[0.502] 

ARCH2 0.621 

[0.733] 

 ARCH2 2.185 

[0.335] 

ARCH2 0.336 

[0.845] 

  

AR1 2.314 

[0.128] 

AR1 3.558 

[0.059] 

 AR1 0.684 

[0.408] 

AR1 0.795 

[0.372] 

  

AR2 
 

3.292 

[0.193] 

AR2 
 

4.778 

[0.091] 

 AR2 
 

2.536 

[0.281] 

AR2 3.525 

[0.172] 

  

JB 37.8122 

[0.000] 

JB 21.233 

[0.000] 

 JB 38.294 

[0.000] 

JB 19.596 

[0.000] 

  

BDS2 -0.4635 

[0.643] 
 

BDS2 -0.0522 

 [0.958] 
 

 BDS2 -0.8707 

[0.384] 
  

BDS2 -0.9519 

[0.341] 
  

  

Notes. Probability values in square brackets; Sk.: Skewness; Kurt: Excess Kurtosis; JB: Jarque-Bera normality test; 
ARk: Ljung-Box test statistic for k-th order serial correlation of the time series; ARCHk: Ljung-Box test statistic for 
k-th order serial correlation of the squared time series; T.N.T.: Teräsvirta (1994) test of nonlinearity applied to the 
chartists’ (C), fundamentalists’ (F) and hedgers’ (H) transition functions and to the three transition functions 
simultaneously (C F H). BDSk: test statistic, with embedding dimension k, of the null that the standardized 
residuals are independently and identically distributed. 

 

The strong similarity of the full sample and first period results is also conducive to 

the conclusion that the financialisation of the oil market is a permanent, irreversible 
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phenomenon. The extension of the investigation to the second 2009 - 2016 cycle 

fails to weaken the quality of the system’s fit and does not alter its economic 

interpretation, the signs of the coefficients being almost always unchanged.  

 

4. Conclusions  

 

A recent and growing literature explains the bubble that characterized oil prices 

between 2007 and 2009 as the result of utility maximization by rational 

heterogeneous agents, interacting and possibly influencing each other. In this 

paper, we combine this approach with the HAM models of Westerhoff and Reitz and 

the LPPL model of Johansen et al. (2000), which combines a super-exponential 

pattern with bouts of negative feedback loops of price collapse. More precisely, our 

analysis, based on a flexible three-agent model, which controls also for exchange 

rate and equity market risk perception, attributes the bubble mostly to the 

destabilizing behaviour of fundamentalist speculators. Among these we include 

institutional investors, ETFs and hedge funds, as conventionally done in the 

literature. This reaction reinforces the standard price destabilizing effect caused by 

chartists. The extension of the sample to the post-bubble period (2009 – 2016)  

does not seem to invalidate our financial interpretation in spite of sharp and 

unexpected fluctuations in oil prices and a significant increase in the influence of 

geopolitical factors. Indeed, speculation plays a clear-cut destabilizing role over the 

entire sample period, due to the joint reaction of chartists and fundamentalists. Our 

results are thus in line with Zhang et al. (2017) among others.  
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Appendix on statistical bubble detection 

D-test of “super exponential” growth price behaviour (Zhou and Sornette, 2009) 

Let 𝐷 = (𝑅𝑀𝑆1−𝑅𝑀𝑆2)𝑅𝑀𝑆1  be a relative goodness of fit statistic 

where 𝑅𝑀𝑆1 and 𝑅𝑀𝑆2 denote the root-mean-square of the residuals of the following 

(log) price equation estimates log (𝑝𝑡 ) = 𝑎 + 𝑏𝑡 + 𝜀𝑡                                                                 (A.1) log (𝑝𝑡 ) = 𝑎 + 𝑏𝑡 + 𝑐𝑡2 + 𝜀𝑡                                                          (A.2) 

(A.1) is the standard geometric random walk and coincides with (A.2), if the null 

c=0 holds. For c>0, (A.2) parameterizes a price process growing super 

exponentially. The D statistic measures the relative difference of the improvement 

of the fits resulting from the additional quadratic term in (A.2). The larger is D the 

more probable is the rejection of the null c=0 and the relevance of the quadratic 

term, i.e. of the bubble model. Zhou and Sornette (2009, p. 872) suggest that the 

time series is not in a bubble regime if (1) D≤ 0.25, or (2) c is not positive. Over the 
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time periods set out in the table below the values of the D-test statistics are 

supportive of a super-exponential (Fut-1 and Fut-3 price) behaviour.  

Time period 1 December  2006 - 

28 June 2008 

12 January  2007 - 

13 February 2009 

1 January 2007 – 

31 October 2008 

1 January 2006 – 

1 May 2008 

D-statistic Fut-1 0.1781 0.7559 0.7146 0.3916 

D-statistic Fut-3 0.2739 0.6649 0.1396 0.3711 

 

 

SADF test (Phillips et al., 2011) of explosive behaviour (bubble) identification 
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Notes. Critical values obtained using a Montecarlo simulation with 1000 replications, initial window of 54 
observations and null model 𝑥𝑡 =  𝑑𝑇−𝜀 + 𝑥𝑡−1 + 𝑒𝑡, where it is assumed that d=1 and ԑ=1.  

 

Phillips et al. (2011) propose comparing each element of the estimated right-tail 

rolling ADF sequence to the corresponding right-tailed critical values of the standard 

ADF statistic to identify a bubble initiating at time T. The estimated origination point 

of a bubble is the first chronological observation, denoted by Tre , in which ADFr 

crosses the corresponding critical value from below, while the estimated termination 

point is the first chronological observation after Tre , denoted by Trf , in which ADFr 

crosses the critical value from above. Formally, the estimates of the bubble period 

(as fractions of the sample) are defined by 

re = inf (r : ADFr > 𝑐𝑣𝑟𝛽𝑡) 

r∈[r0,1] 

rf = inf (r : ADFr < 𝑐𝑣𝑟𝛽𝑡)  
r∈[re,1] 

where 𝑐𝑣𝑟𝛽𝑡  is the 100(1 − 𝛽𝑡 )% critical value of the standard ADF statistic based on 

[Tr ]  observations (see Caspi, 2017, p. 7, for more details). Both graphs suggest 

that the SADF statistics exceed the right-tail ADF critical values, rejecting thus the 
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null of unit root in favour of the explosive alternative, from the beginning of 2007 to 

the end of 2008, and corroborate in this way our bubble timing hypothesis. 

 

 


