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Abstract

This article is concerned with frequency-domain analysis of dynamic linear models

under the hypothesis of rational expectations. We develop a unified framework for

conveniently solving and estimating these models. Unlike existing strategies, our

starting point is to obtain the model solution entirely in the frequency domain. This

solution method is applicable to a wide class of models and permits straightforward

construction of the spectral density for performing likelihood-based inference. To

cope with potential model uncertainty, we also generalize the well-known spectral

decomposition of the Gaussian likelihood function to a composite version implied by

several competing models. Taken together, these techniques yield fresh insights into

the model’s theoretical and empirical implications beyond what conventional time-

domain approaches can offer. We illustrate the proposed framework using a prototyp-

ical new Keynesian model with fiscal details and two distinct monetary-fiscal policy

regimes. The model is simple enough to deliver an analytical solution that makes the

policy effects transparent under each regime, yet still able to shed light on the empir-

ical interactions between U.S. monetary and fiscal policies along different frequencies.
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1 Introduction

In a collection of influential papers, Lucas and Sargent (1981) and Hansen and Sargent (1991)

pioneered a research program on the so-called rational expectations econometrics, which aims to

integrate dynamic economic models with econometric methods for the purpose of formulating

and interpreting economic time series. At the core of this program lies Lucas’ (1976) insight

that sophisticated feedback relations exist between economic policy and the behavior of ratio-

nal agents. Consequently, disentangling these relations is a prerequisite to conducting reliable

econometric policy evaluation. Yet despite the tight link it promises between theory and estima-

tion, rational expectations modelling at its early stage posed keen computational challenges to

characterizing the concomitant cross-equation restrictions because they typically constrain the

vector stochastic process of observables in a very complicated manner.

Subsequently, a variety of time-domain solution techniques had been proposed to solve linear

rational expectations models, allowing for a numerical characterization of the cross-equation re-

strictions even for high-dimensional systems [Blanchard and Kahn (1980), Uhlig (1999), Klein

(2000), Sims (2002)]. Meanwhile, dynamic stochastic general equilibrium (DSGE) models had

reached a level of sophistication that rendered it a useful tool for quantitative macroeconomic

analysis in both academia and policymaking institutions. Lending credence to these develop-

ments and the continued improvement in model fit, it had become nearly standard practice to

estimate these models in the time domain using likelihood-based econometric procedures [Leeper

and Sims (1994), Ireland (1997), Smets and Wouters (2007), An and Schorfheide (2007)].

While time-domain methods provide a popular framework for confronting theory with data, it

necessarily precludes the additional insights into a model’s cross-frequency implications that a

spectral approach can complement. One compelling reason is that potential model misspecifica-

tion along certain frequencies may produce spillover effects onto the whole spectrum and therefore

contaminate statistical inference. As argued forcefully in Diebold et al. (1998), working in the

frequency domain, on the other hand, is especially useful in communicating the strengths and

weaknesses of a model over different frequency bands of interest.1 Such flexibility of assessing

model adequacy is difficult, if at all possible, to accomplish in the time domain. In light of the

value added by spectral methods, this paper develops a unified frequency-domain framework for

conveniently solving and estimating dynamic linear models under the hypothesis of rational ex-

pectations. Indeed, most of the techniques described below are rooted in the spirit of Hansen and

Sargent (1980) as well as many other early contributions to rational expectations econometrics.

Unlike existing strategies that solve the model uniformly in the time domain, our starting point

is to obtain the model solution entirely in the frequency domain. Whiteman (1983) outlined four

tenets underlying this solution principle that distinguishes it from other work on solving lin-

1Among others, see also Hansen and Sargent (1993), Watson (1993), Berkowitz (2001), and Cogley (2001) who
advocated frequency-domain analysis of dynamic economic models in the presence of misspecification.
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ear expectational difference equations: [i] exogenous driving process is taken to be zero-mean

linearly regular covariance stationary stochastic process with known Wold representation; [ii]

expectations are formed rationally and computed using the Wiener-Kolmogorov optimal predic-

tion formula; [iii] moving average solutions are sought in the space spanned by time-independent

square-summable linear combinations of the process fundamental for the driving process; [iv]

rational expectations restrictions are required to hold for all realizations of the driving process.

The above principle is general in that the exogenous driving process is assumed to only satisfy co-

variance stationarity, which lends itself well to solving a wide class of models, including dynamic

economies with incomplete information, e.g., Kasa (2000), or heterogeneous beliefs, e.g., Walker

(2007). Without much loss of generality, we present a simplified but more accessible version of

the solution algorithm from Tan and Walker (2015), who extended Whiteman’s (1983) principle

to the multivariate setting, and comb through its key steps with the aid of a generic univariate

example.2

By virtue of the moving average solution, it is straightforward to construct the spectral density

for performing likelihood-based inference. In particular, our econometric analysis is built upon

a well-known property due to Hannan (1970) that the Gaussian log-likelihood function has an

asymptotic linear decomposition in the frequency domain. In this vein, a number of authors

have utilized such property to estimate and evaluate small to medium scale DSGE models based

on the full spectrum or a set of preselected frequencies [Altug (1989), Christiano and Vigfusson

(2003), Qu and Tkachenko (2012a,b), Qu (2014), Sala (2015)]. A more challenging situation,

which oftentimes arises from the policymaking process, is that there can be several competing

models available to the researcher. To cope with potential model uncertainty, we also generalize

the spectral likelihood representation for a single model to a composite version implied by all

candidate models. To the best of our knowledge, this extension is novel in the literature, enabling

the relative importance of individual model to be assessed at each frequency. Together with the

spectral solution method, these techniques yield fresh insights into the model’s theoretical and

empirical implications beyond what conventional time-domain approaches can offer.

We illustrate the proposed framework using a prototypical new Keynesian model with fiscal

details and two distinct policy regimes. Each regime embodies a completely different mechanism

under which monetary and fiscal policy can jointly determine inflation and stabilize government

debt. The model is kept simple enough to admit an analytical solution that is useful in charac-

terizing the cross-equation restrictions and illustrating the complex interaction between policy

behavior and price rigidity under each regime. Yet it is still able to shed light on the empirical

2The criterion for model determinacy presented herein also corrects an important error in the version originally
derived in Tan and Walker (2015). More broadly, our algorithm falls under the theory of linear systems. A
related solution method can be found in Onatski (2006) and its generalization in Al-Sadoon (2018), who employ
the Wiener–Hopf factorization to deliver simple conditions for existence and uniqueness of both particular and
generic linear rational expectations models.
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interactions between U.S. monetary and fiscal policies along different frequencies. Our main

findings are twofold. First, the combination of policy regimes, sample periods, and band spectra

can generate markedly different posterior inferences for the model parameters. Second, in line

with Kliem et al. (2016a,b), relatively low frequency relations in the data play an important role

in discerning the underlying regime.

The rest of the paper is structured as follows. Section 2 describes the solution and econometric

procedures within a unified framework. Section 3 illustrates the proposed framework using a

simple monetary model for the study of price level determination. Section 4 concludes.

2 A Unified Framework

This section establishes the theoretical foundation of our frequency-domain approach and high-

lights its advantages vis-à-vis other popular time-domain approaches. While most of the ap-

paratus described herein have been proposed in various strands of the literature, we present a

unified framework for conveniently solving and estimating dynamic linear models under ratio-

nal expectations. To keep the exposition self-contained, Section 2.1 briefly outlines the solution

methodology and demonstrates its use via a simple univariate example. Section 2.2 derives

the spectral likelihood function implied by the state space representation of the model, which is

amenable to conducting classical or Bayesian inference based on selected band spectra of interest.

2.1 Solution Method We consider a general class of multivariate linear rational expecta-

tions models that can be cast into the canonical form of Tan and Walker (2015)

Et

«

m
ÿ

k“´n

ΓkL
kxt

ff

“ Et

«

l
ÿ

k“´n

ΨkL
kdt

ff

(2.1)

where L is the lag operator, i.e., Lkxt “ xt´k, xt is a p ˆ 1 vector of endogenous variables,

tΓkumk“´n and tΨkulk“´n are pˆ p and pˆ q coefficient matrices, and Et represents mathematical

expectation given information available at time t, including the model’s structure and all past

and current realizations of the endogenous and exogenous processes. Moreover, dt is a q ˆ 1

vector of covariance stationary exogenous driving process with Wold decomposition

dt “
8
ÿ

k“0

Akǫt´k ” ApLqǫt (2.2)

where ǫt “ dt ´ Prdt|dt´1, dt´2, . . .s, Prdt|dt´1, dt´2, . . .s is the optimal linear predictor for dt

conditional on knowing tdt´ku8
k“1

, and each element of
ř8

k“0
AkA

1
k is finite.
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We seek the solution to (2.1) in the Hilbert space generated by current and past shocks tǫt´ku8
k“0

xt “
8
ÿ

k“0

Ckǫt´k ” CpLqǫt (2.3)

where xt is taken to be covariance stationary. Throughout this section, we use a generic univariate

model below as an illustrative example to guide the reader through the key steps in deriving the

content of Cp¨q

Etxt`2 ´ pρ1 ` ρ2qEtxt`1 ` ρ1ρ2xt “ dt (2.4)

where |ρ1| ą 1 and 0 ă |ρ2| ă 1. The dimensions of this model are p “ q “ 1 with nonzero

coefficient matrices Γ´2 “ 1, Γ´1 “ ´pρ1 ` ρ2q, Γ0 “ ρ1ρ2, and Ψ0 “ 1.

Step 1: transform the time-domain system (2.1) into its equivalent frequency-domain repre-

sentation. To this end, we define νt (ηt) as a vector of expectational errors satisfying νt`k ”

dt`k ´ Etdt`k (ηt`k ” xt`k ´ Etxt`k) for all k ą 0, which can be evaluated with (2.2)–(2.3) and

the Wiener-Kolmogorov optimal prediction formula

νt`k “ L´k

˜

k´1
ÿ

i“0

AiL
i

¸

ǫt, ηt`k “ L´k

˜

k´1
ÿ

i“0

CiL
i

¸

ǫt

Substituting the above expressions and (2.2)–(2.3) into (2.1) gives

ΓpLqCpLqǫt “

#

ΨpLqApLq `
n

ÿ

k“1

«

Γ´kL
´k

˜

k´1
ÿ

i“0

CiL
i

¸

´ Ψ´kL
´k

˜

k´1
ÿ

i“0

AiL
i

¸ff+

ǫt

where ΓpLq ”
řm

k“´n ΓkL
k and ΨpLq ”

řl

k“´n ΨkL
k. Define the z-transform of tCku8

k“0
(anal-

ogously to any sequence of coefficient matrices) as Cpzq ”
ř8

k“0
Ckz

k, where z is a complex

number. Since the above equation must hold for all realizations of ǫt, its coefficient matrices are

related by the z-transform identities

znΓpzqCpzq “ znΨpzqApzq `
n

ÿ

t“1

n
ÿ

s“t

pΓ´sCt´1 ´ Ψ´sAt´1q z
n´s`t´1 (2.5)

Specifically, the z-transform of the generic model (2.4) becomes

r1 ´ pρ1 ` ρ2qz ` ρ1ρ2z
2sCpzq “ z2Apzq ` r1 ´ pρ1 ` ρ2qzsC0 ` C1z

Appealing to the Riesz-Fischer Theorem [see Sargent (1987), p. 249–253], the square-summability

(i.e., covariance stationarity) of tCku8
k“0

implies that the infinite series in Cpzq converges in the
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mean square sense that limjÑ8

ű

|
řj

k“0
Ckz

k ´ Cpzq|2 dz
z

“ 0, where
ű

denotes counterclockwise

integral about the unit circle, and Cpzq is analytic at least inside the unit circle. This requirement

can be examined by a careful factorization of znΓpzq in the next step.

Step 2: apply the Smith canonical factorization to the polynomial matrix znΓpzq

znΓpzq “ Upzq´1

¨

˚

˚

˚

˚

˚

˝

1
. . .

1
śr´

k“1
pz ´ λ´

k q

˛

‹

‹

‹

‹

‹

‚

looooooooooooooooooooooomooooooooooooooooooooooon

Spzq

¨

˚

˚

˚

˚

˚

˝

1
. . .

1
śr`

k“1
pz ´ λ`

k q

˛

‹

‹

‹

‹

‹

‚

V pzq´1

looooooooooooooooooooooomooooooooooooooooooooooon

T pzq

where we factorize all roots inside the unit circle, λ´
k ’s, from those outside, λ`

k ’s, and collect them

in the polynomial matrix Spzq. Moreover, both Upzq and V pzq are p ˆ p polynomial matrices

with nonzero constant determinants.3 Regarding the generic model (2.4), we have λ´
1

“ 1{ρ1,

λ`
1

“ 1{ρ2, Upzq “ 1{ρ1, and V pzq “ 1{ρ2.

Step 3: examine the existence of solution. A covariance stationary solution exists if the free

coefficient matrices C0, C1 . . . , Cn´1 in (2.5) can be chosen to cancel those problematic roots in

Spzq. To check that, multiply both sides of (2.5) by Spzq´1 to obtain

T pzqCpzq “

¨

˚

˚

˚

˚

˚

˚

˝

U1¨pzq
...

Upp´1q¨pzq

1
śr´

k“1
pz´λ´

k
q
Up¨pzq

˛

‹

‹

‹

‹

‹

‹

‚

«

znΨpzqApzq `
n

ÿ

t“1

n
ÿ

s“t

pΓ´sCt´1 ´ Ψ´sAt´1q z
n´s`t´1

ff

where Uj¨ is the jth row of Upzq. These identities are valid for all z on the open unit disk except

at the singularities λ´
k ’s. But since Cpzq must be analytic for all |z| ă 1, this condition places

the following restrictions on C0, C1 . . . , Cn´1

Up¨pλ
´
k q

«

pλ´
k qnΨpλ´

k qApλ´
k q `

n
ÿ

t“1

n
ÿ

s“t

pΓ´sCt´1 ´ Ψ´sAt´1q pλ´
k qn´s`t´1

ff

“ 0 (2.6)

3The Smith factorization is available in MAPLE or MATLAB’s Symbolic Toolbox. It decomposes any square
polynomial matrix P pzq as UpzqP pzqV pzq “ Λpzq using elementary row and column operations, where Λpzq “
diagpλ1pzq, . . . , λrpzqq is diagonal and λipzq’s are unique monic scalar polynomials such that λipzq is divisible by
λi´1pzq. To simplify the exhibition, we assume that all roots are distinct. See Tan and Walker (2015) for the
general case that allows for the possibility of repeated roots.
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Stacking the restrictions in (2.6) over k “ 1, . . . , r´ yields

¨

˚

˚

˚

˝

Up¨pλ
´
1

qrpλ´
1

qnΨpλ´
1

qApλ´
1

q ´
řn

t“1

řn

s“t Ψ´sAt´1pλ´
1

qn´s`t´1s
...

Up¨pλ
´
r´qrpλ´

r´qnΨpλ´
r´qApλ´

r´q ´
řn

t“1

řn

s“t Ψ´sAt´1pλ´
r´qn´s`t´1s

˛

‹

‹

‹

‚

looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

A

“ ´

¨

˚

˚

˚

˝

Up¨pλ
´
1

q
řn

s“1
Γ´spλ

´
1

qn´s ¨ ¨ ¨ Up¨pλ
´
1

qΓ´npλ´
1

qn´1

...
. . .

...

Up¨pλ
´
r´q

řn

s“1
Γ´spλ

´
r´qn´s ¨ ¨ ¨ Up¨pλ

´
r´qΓ´npλ´

r´qn´1

˛

‹

‹

‹

‚

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

R

¨

˚

˚

˚

˝

C0

...

Cn´1

˛

‹

‹

‹

‚

looomooon

C

Apparently, the solution exists if and only if the column space of R spans the column space of A,

i.e., spanpAq Ď spanpRq. This space spanning condition holds for the generic model (2.4) with

A “ ρ´3

1
Apρ´1

1
q and R “ r´ρ´2

1
ρ2, ρ

´2

1
s, though there are infinitely many choices of C “ rC 1

0
, C 1

1
s1

satisfying A “ ´RC, which can be confirmed by checking the uniqueness condition below.

Step 4: examine the uniqueness of solution. In order for the solution to be unique, we must

be able to determine tCku8
k“0

from the restrictions imposed by A “ ´RC. Since V pzq is of full

rank, this is equivalent to determining the coefficients tDku8
k“0

of Dpzq ” V pzq´1Cpzq. From the

inversion formula we have

Dk “
1

2πi

¿

Dpzqz´k´1dz

“ sum of residues of Dpz´1qzk´1 at roots inside unit circle

where

Dpz´1qzk´1 “

¨

˚

˚

˚

˚

˚

˚

˝

U1¨pz
´1qzk´1

...

Upp´1q¨pz
´1qzk´1

1
śr´

k“1
pz´1´λ´

k
q

śr`

k“1
pz´1´λ`

k
q
Up¨pz

´1qzk´1

˛

‹

‹

‹

‹

‹

‹

‚

¨

«

z´nΨpz´1qApz´1q `
n

ÿ

t“1

n
ÿ

s“t

pΓ´sCt´1 ´ Ψ´sAt´1q z
´pn´s`t´1q

ff

Note that only the last row of Dpz´1qzk´1 has roots inside unit circle at 1{λ`
k ’s. It can be shown
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that C0, C1 . . . , Cn´1 affect Dk’s only through the following common terms

Up¨pλ
`
k q

n
ÿ

t“1

n
ÿ

s“t

Γ´sCt´1pλ
`
k qn´s`t´1 (2.7)

Stacking the expressions in (2.7) over k “ 1, . . . , r` yields

¨

˚

˚

˚

˝

Up¨pλ
`
1

q
řn

s“1
Γ´spλ

`
1

qn´s ¨ ¨ ¨ Up¨pλ
`
1

qΓ´npλ`
1

qn´1

...
. . .

...

Up¨pλ
`
r`q

řn

s“1
Γ´spλ

`
r`qn´s ¨ ¨ ¨ Up¨pλ

`
r`qΓ´npλ`

r`qn´1

˛

‹

‹

‹

‚

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

Q

¨

˚

˚

˚

˝

C0

...

Cn´1

˛

‹

‹

‹

‚

looomooon

C

Therefore, the solution is unique if and only if the knowledge of RC can be used to pin down

QC, which is tantamount to verifying whether the column space of R1 spans the column space

of Q1, i.e., spanpQ1q Ď spanpR1q.4 This space spanning condition fails for the generic model (2.4)

with Q “ r´ρ´1

2
, ρ´1

1
ρ´1

2
s and R “ r´ρ´2

1
ρ2, ρ

´2

1
s due to ρ1 ‰ ρ2.

The above solution methodology is attractive for several reasons. First, whenever the solution

exists and is unique, its analytical form can be expressed as

CpLqǫt “ pLnΓpLqq´1

«

LnΨpLqApLq `
n

ÿ

t“1

n
ÿ

s“t

pΓ´sCt´1 ´ Ψ´sAt´1qL
n´s`t´1

ff

ǫt (2.8)

Such moving average representation leads directly to the impulse response function—the pi, jqth

element of Ck, denoted Ckpi, jq, measures exactly the response of xt`kpiq to a shock ǫtpjq. By

linking the Wold representation of the exogenous process to the endogenous variables, (2.8)

also captures all multivariate cross-equation restrictions imposed by the hypothesis of rational

expectations, which Hansen and Sargent (1980) refer to as the “hallmark of rational expectations

models”. Second, as advocated in Kasa (2000) and many others, models featuring dynamic signal

extraction and infinite regress in expectations are more conveniently handled in the frequency

domain. By circumventing the problem of matching an infinite sequence of coefficients in the time

domain, our analytic function approach offers a tractable framework for the theoretical analysis

of dynamic economies with incomplete information. Finally, unlike autoregressive solutions in

the time domain, the moving average form of (2.8) allows for straightforward construction of the

spectral density that provides the basis for performing likelihood-based inference over different

frequency bands, which we elaborate in the next section.

4In practice, checking the space spanning criteria for existence and uniqueness and calculating the unknown
coefficient matrix C can be achieved by applying the singular value decompositions of A, R, and Q. See Tan and
Walker (2015) for computational details.
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2.2 Econometric Method This section adopts the Bayesian perspective on taking dynamic

macroeconomic models to the data. Our econometric analysis, including both parameter estima-

tion and model evaluation, centers around a frequency-domain likelihood function implied by the

linear rational expectations model (2.1). To that end, consider the following linear state space

model parameterized by a vector of unknown parameters θ

yt “ ZθpLqxt ` ut, ut „ Np0,Ωθq (2.9)

xt “ CθpLqǫt, ǫt „ Np0,Σθq (2.10)

where the measurement equation (2.9) links an h ˆ 1 vector of demeaned observable variables

yt to the model’s (possibly latent) endogenous variables xt subject to a vector of measurement

errors ut, and the transition equation (2.10) corresponds to the moving average solution to the

model. Moreover, put, ǫtq are mutually and serially uncorrelated at all leads and lags, and Npa, bq

denotes the Gaussian distribution with mean vector a and covariance matrix b.

We will subsequently derive the likelihood function associated with (2.9)–(2.10) and generalize

it to a composite version when the underlying model space is taken to be incomplete—none

of the models under consideration corresponds to the true data generating process. The latter

approach has the flavor of linear prediction pools in the time domain that have been explored

recently to assess the joint predictive performance of multiple macroeconomic models [Waggoner

and Zha (2012), Negro et al. (2016), Amisano and Geweke (2017)].

2.2.1 Single Model To begin with, suppose (2.10) is the only reduced form model available

to the researcher. Then the model-implied spectral density matrix for the observables yt can be

conveniently formulated as

Sθpwq “
1

2π

“

Zθpe
´iwqCθpe

´iwqΣθCθpe
iwq˚Zθpe

iwq˚ ` Ωθ

‰

(2.11)

where w P r0, 2πs denotes the frequency, i2 “ ´1, and the asterisk p˚q stands for the conjugate

transpose.5 Let Y1:T be a matrix that collects the sample for periods t “ 1, . . . , T with row

observations y1
t. For any stationary Gaussian process yt, it can be shown that the log-likelihood

5Without the inclusion of measurement errors, the spectral density matrix becomes singular for DSGE models
with a small number of shocks and a larger number of observables, as is the case in Section 3.3. The conventional
information matrix, though easily obtainable in the frequency domain, does not exist under singularity. This
invalidates the well-known rank condition of Rothenberg (1971) for local identification of the unknown parameters.
Qu and Tkachenko (2012b) derived simple frequency-domain identification conditions applicable to both singular
and nonsingular DSGE models.
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function has an asymptotic counterpart in the frequency domain [Hannan (1970), Harvey (1989)]:

ln ppY1:T |θq “ ´
1

2

T´1
ÿ

k“0

skt2 ln 2π ` lnrdetpSθpwkqqs ` trpSθpwkq´1Ipwkqqu (2.12)

where wk “ 2πk{T for k “ 0, 1, . . . , T ´ 1, and detp¨q and trp¨q denote the determinant and trace

operators, respectively. In addition, the sample spectrum (or periodogram) Ipwq is independent

of θ and given by Ipwq “ ypwqyp´wq1{p2πT q, where ypwq “
řT

t“1
yte

´iwt is the discrete Fourier

transform of Y1:T . In light of the excessive volatility of Ipwq, we follow Christiano and Vigfusson

(2003) and compute its smoothed version Ĩpwq by taking a centered, equally weighted average

Ĩpwkq “
ř

3

j“´3
Ipwk`jq{7. For diagnostic purposes, we also incorporate pre-specified indicators

sk in (2.12) that takes value 1 if frequency wk is included and value 0 otherwise.6 This allows

one to estimate and evaluate the model based on various frequency bands of interest.

From a computational perspective, since the summands in (2.12) are symmetric about π over

the range r0, 2πs, there is no need to compute almost twice as many likelihood ordinates as are

necessary. Also, the spectral density matrix (2.11) is the only part of the likelihood function

that depends on θ and usually very easy to evaluate. The periodogram, on the other hand,

is evaluated only once. These features lead to quite rapid calculations involved in an iterative

estimation procedure even for high-dimensional systems.

2.2.2 Composite Model In many situations, especially the policymaking process, there can

be several competing models available to the researcher, giving rise to the natural question of

model selection or composition. While Bayesian model averaging provides a useful way to ac-

count for model uncertainty, it operates under an implicit assumption that the underlying model

space is complete—one of the models under consideration is correctly specified. An important

consequence, as shown by Geweke and Amisano (2011), is that the full posterior weight will be

assigned to whichever model that lies closest (in terms of the Kullback-Leibler divergence) to

the true data generating process as T Ñ 8. But more realistically, say, a prudent policymaker

may view each model as misspecified along some aspects of the reality and therefore base her

policy thinking beyond the implications from any single model. Recognizing the possibility of

potential model misspecification over certain band spectrum, this section attempts to generalize

the log-likelihood function (2.12) from the premise of an incomplete model space.

To make the idea concrete, suppose the expanded model space consists of two reduced form

models, each of which is intended to fit a common set of observables yt and can be represented

6This is justified by the fact that components of (2.12) formed over disjoint frequencies correspond to processes
that are mutually orthogonal at all lags.
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in the linear state space form

yt “ ZθjpLqxj,t ` uj,t, uj,t „ Np0,Ωθjq

xj,t “ CθjpLqǫj,t, ǫj,t „ Np0,Σθjq

where j P t1, 2u denotes the model index and θj parameterizes model j. Let Sθjpwq be the

spectral density matrix implied by model j and consider the following log-likelihood function

ln ppY1:T |θ1, θ2, tskuT´1

k“0
q “ ´

1

2

T´1
ÿ

k“0

skt2 ln 2π ` lnrdetpSθ1pwkqqs ` trpSθ1pwkq´1Ipwkqqu

´
1

2

T´1
ÿ

k“0

p1 ´ skqt2 ln 2π ` lnrdetpSθ2pwkqqs ` trpSθ2pwkq´1Ipwkqqu (2.13)

which generalizes its single-model version (2.12) in two major aspects. First, rather than dis-

carding the log-likelihood ordinates at some frequencies, we allow both candidate models to bear

directly on mutually exclusive and collectively exhaustive frequencies. Second, the assignment

of model-dependent log-likelihood ordinate to each frequency is now driven by a set of latent

model-selection variables tskuT´1

k“0
whose values are inferred from the data. By virtue of the

symmetry of (2.13) about π, we require that sk “ sT´k for k “ 1, 2, . . . , T {2 ´ 1.7

The composite log-likelihood function (2.13) corresponds to its time-domain state space model

(2.9)–(2.10) defined by θ “ rθ1
1
, θ1

2
s1 and

ZθpLq “
´

BpLqZθ1pLq pIh ´ BpLqqZθ2pLq
¯

, CθpLq “

¨

˝

Cθ1pLq 0p

0p Cθ2pLq

˛

‚

xt “

¨

˝

x1,t

x2,t

˛

‚, ǫt “

¨

˝

ǫ1,t

ǫ2,t

˛

‚, ut “ ZθpLq

¨

˝

u1,t

u2,t

˛

‚

where Ih is an h ˆ h identity matrix, 0p a p ˆ p zero matrix, and BpLq a “random filter” that

satisfies

Bpe´iwq “

$

&

%

s0Ih, w “ 0

skIh, w P pwk´1, wks Y pwT´k´1, wT´ks

for k “ 1, 2, . . . , T
2
. Note that the set of coefficient matrices tbju

8
j“´8 for Bp¨q can be determined

via the inversion formula bj “ 1

2π

ş

2π

0
Bpe´iwqeiwjdw for all integers j and bj “ b´j. In the special

case of BpLq “ Ih or BpLq “ 0h, (2.13) reduces to (2.12) so that only one model survives.

7We implicitly assume that T is even. The adjustment when T is odd is straightforward.
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At a conceptual level, the unobserved indicators tskuT´1

k“0
can be simply treated as additional

unknown parameters from the Bayesian point of view. This motivates a full Bayesian proce-

dure to estimate the model based on the idea of data augmentation [Tanner and Wong (1987)].

Specifically, we assume for convenience that pθ1, θ2, tskuT´1

k“0
q are a priori independent and sample

from their joint posterior distribution ppθ1, θ2, tskuT´1

k“0
|Y1:T q with the following Gibbs steps:

1. Simulate model 1’s parameters θ1 from

ppθ1|Y1:T , θ2, tskuT´1

k“0
q9ppY1:T |θ1, θ2, tskuT´1

k“0
qppθ1q

using the Metropolis-Hastings algorithm, where ppY1:T |θ1, θ2, tskuT´1

k“0
q is given by (2.13).

2. Like step 1, simulate model 2’s parameters θ2 from ppθ2|Y1:T , θ1, tskuT´1

k“0
q.

3. Simulate the indicator sk from

ppsk “ j|Y1:T , s´k, θ1, θ2q9ppY1:T |θ1, θ2, tskuT´1

k“0
qppsk “ jq

for k “ 0, . . . , T {2, where s´k “ ps0, . . . , sk´1, sk`1, . . . , sT´1q. The normalizing constant of

this kernel function is the sum of its values over sk “ 0, 1.

The above cycle is initialized at some starting values of pθ1, θ2, tskuT´1

k“0
q and then repeated a

sufficiently large number of times until the posterior sampler has converged. Based on the draws

from the joint posterior distribution, one can compute summary statistics such as posterior means

and probability intervals.

3 Application to a New Keynesian Model

As an example, we illustrate the proposed framework using a prototypical new Keynesian model

with fiscal details and two distinct monetary-fiscal policy regimes. This serves to keep the

illustration simple and concrete, but it should be emphasized that these techniques are widely

applicable for more richly structured models, which we leave for future research. Going forward,

Section 3.1 presents a linearized version of the model. Section 3.2 derives its analytical solution

in the frequency domain that proves useful in characterizing the cross-equation restrictions and

understanding the policy transmission mechanisms under each regime. Section 3.3 documents

how the empirical performance of each regime varies across different frequency bands.

3.1 The Model We consider a textbook version of the new Keynesian model presented

in Woodford (2003) and Gaĺı (2008) but augmented with a fiscal policy rule. The model’s

essential elements include: a representative household and a continuum of firms, each producing

a differentiated good; only a fraction of firms can reset their prices each period; a cashless
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economy with one-period nominal bonds Bt that sell at price 1{Rt, where Rt is the monetary

policy instrument; primary surplus st with lump-sum taxation and zero government spending so

that consumption equals output, ct “ yt; a monetary authority and a fiscal authority.

Let x̂t ” lnpxtq ´ lnpxq denote the log-deviation of a generic variable xt from its steady state

x. It is straightforward to show that a log-linear approximation to the model’s equilibrium

conditions around the steady state with zero net inflation leads to the following equations

Dynamic IS equation: ŷt “ Etŷt`1 ´ σpR̂t ´ Etπ̂t`1q (3.1)

New Keynesian Phillips curve: π̂t “ βEtπ̂t`1 ` κŷt (3.2)

Monetary policy: R̂t “ απ̂t ` ǫM,t (3.3)

Fiscal policy: ŝt “ γb̂t´1 ` ǫF,t (3.4)

Government budget constraint: b̂t “ R̂t ` β´1pb̂t´1 ´ π̂tq ´ pβ´1 ´ 1qŝt (3.5)

where σ ą 0 is the elasticity of intertemporal substitution, 0 ă β ă 1 is the discount factor, κ ą 0

is the slope of the new Keynesian Phillips curve, πt “ Pt{Pt´1 is the inflation between periods

t ´ 1 and t, and bt “ Bt{Pt is the real debt at the end of period t.8 pǫM,t, ǫF,tq are exogenous

policy shocks that are mutually and serially uncorrelated with bounded supports. Equations

(3.1)–(3.3) form the key building blocks of the standard new Keynesian model, (3.4) is the

model analog to many surplus-debt regression studies that aim to test for fiscal sustainability,

and (3.5) is the log-linearized version of the government’s flow budget identity, 1

Rt

Bt

Pt
` st “ Bt´1

Pt
.

Taken together, (3.1)–(3.5) constitute a system of linear expectational difference equations in

the variables tŷt, π̂t, R̂t, ŝt, b̂tu, whose model dynamics lie at the core of most monetary DSGE

models in the literature.

3.2 Analytical Solution An essential feature of this model is that all possible interactions

between monetary and fiscal policies that are consistent with a uniquely determined price level

must conform to the following relationship ubiquitous in any dynamic macroeconomic model

with rational agents

b̂t´1 ´ π̂t “ ´β

8
ÿ

k“0

βk
Etr̂t`k ` p1 ´ βq

8
ÿ

k“0

βk
Etŝt`k, @t (3.6)

where b̂t´1 is predetermined in period t and r̂t`k “ R̂t`k ´ Et`kπ̂t`k`1 denotes the ex-ante real

interest rate. The above intertemporal equilibrium condition can be obtained by substituting

(3.1) into (3.5) and iterating forward. Reminiscent of any asset pricing relation, (3.6) simply

states that the real value of government liabilities at the beginning of period t, b̂t´1 ´ π̂t, stems

8For analytical clarity, we assume that the monetary authority does not respond to output deviations.
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from the present value of current and expected future primary surpluses. But importantly, it

also makes clear two distinct financing schemes of government debt—surprise inflation and direct

taxation, which are the key to understanding how policy shocks are transmitted to influence the

endogenous variables in the subsequent analysis.

To simplify the exhibition, we substitute the policy rules (3.3)–(3.4) for pR̂t, ŝtq in the model

and solve the remaining trivariate linear rational expectations system using the frequency-domain

solution method in Section 2.1.9 See the Online Appendix A for derivation details. Suppose

a covariance stationary solution to the reduced model is of the form xt “
ř8

k“0
Ckǫt´k, where

xt “ rŷt, π̂t, b̂ts
1, ǫt “ rǫM,t, ǫF,ts

1, and each element of
ř8

k“0
CkC

1
k is finite. In what follows, we fully

characterize the model solution in two regions of the policy parameter space that imply unique

bounded equilibria due to Leeper (1991).10 It is easy to verify that the Smith decomposition for

this model gives rise to the following roots

λ1 “
γ1 `

a

γ2

1
´ 4γ0

2γ0
, λ2 “

γ1 ´
a

γ2

1
´ 4γ0

2γ0
, λ3 “

β

1 ´ γp1 ´ βq

where γ0 “ p1 ` ασκq{β and γ1 “ p1 ` β ` σκq{β. These roots also arise as the reciprocals of

the eigenvalues from the reduced model viewed as a system of difference equations in pŷt, π̂t, b̂tq.

3.2.1 Regime-M One region, α ą 1 and γ ą 1, produces active monetary and passive fiscal

policy or regime-M, yielding the conventional monetarist/Wicksellian perspective on inflation

determination. Regime-M assigns monetary policy to target inflation and fiscal policy to stabilize

debt—central banks can control inflation by systematically raising nominal interest rate more

than one-for-one with inflation (i.e., the Taylor principle) and the government always adjusts

taxes or spending to assure fiscal solvency. Given that 0 ă λ2 ă λ1 ă 1 ă λ3 under this regime,

we can write output, inflation, and real debt as linear functions of all past and present policy

shocks with unambiguously signed coefficients. In particular, output follows

ŷt “ C0p1, 1q
looomooon

ă0

ǫM,t (3.7)

inflation follows

π̂t “ C0p2, 1q
looomooon

ă0

ǫM,t (3.8)

9An equivalent time-domain derivation can be found in Leeper and Leith (2015).
10These characterizations draw partly on Tan (2017), but see also Leeper and Li (2017) for a similar analysis

based on a flexible-price endowment economy. Here we restrict pα, γq P r0,8q ˆ r0,8q because negative policy
responses, though theoretically possible, make little economic sense.
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and real debt follows

b̂t “
8
ÿ

k“0

C0p3, 1q

ˆ

1

λ3

˙k

loooooooomoooooooon

ą0

ǫM,t´k `
8
ÿ

k“0

C0p3, 2q

ˆ

1

λ3

˙k

loooooooomoooooooon

ă0

ǫF,t´k (3.9)

where the contemporaneous responses are given by

C0 “

¨

˚

˚

˚

˝

´ σ
1`ασκ

0

´ σκ
1`ασκ

0

β`σκ

βp1`ασκq
β´1

β

˛

‹

‹

‹

‚

To the extent that fiscal shocks do not impinge on the equilibrium output and inflation, the

analytical impulse response functions (3.7)–(3.9) immediately point to the familiar “Ricardian

equivalence” result—a deficit-financed tax cut leaves aggregate demand unaffected because its

positive wealth effect will be neutralized by the household’s anticipation of higher future taxes

whose present value matches exactly the initial debt expansion.

This anticipated backing of government debt also eliminates any fiscal consequence of mone-

tary policy actions, freeing the central bank to control inflation. Take for instance a monetary

contraction that aims to reduce inflation. Given sticky prices, a higher nominal interest rate

translates into a higher real interest rate, which makes consumption today more costly relative

to tomorrow. As a result, both output in (3.7) and inflation in (3.8) fall. But the higher real

rate also raises the household’s real interest receipts and hence the real principal in (3.9). As

the household feels wealthier and demands more goods, price levels are bid up, counteracting

the monetary authority’s original intention to lower inflation. This wealth effect, however, is

unwarranted under the fiscal financing mechanism of regime-M because any increase in govern-

ment debt now necessarily portends future fiscal contraction. If nothing else, it is such fiscal

backing for monetary policy to achieve price stability that delivers Milton Friedman’s (1970)

famous dictum that “inflation is always and everywhere a monetary phenomenon.”

Another desirable outcome that appropriate fiscal backing affords the central bank to ac-

complish is greater macroeconomic stability. Because the initial impacts of monetary shock,

|C0p1, 1q|, |C0p2, 1q|, and |C0p3, 1q|, are decreasing in α, and the decay factor of fiscal shock,

1{λ3, is decreasing in γ, a more aggressive monetary stance, in conjunction with a tighter fiscal

discipline, can effectively reduce the volatilities of output, inflation, and government debt.

3.2.2 Regime-F A second region, 0 ď α ă 1 and 0 ď γ ă 1, consists of passive monetary

and active fiscal policy or regime-F, producing the fiscal theory of the price level [Leeper (1991),

Woodford (1995), Cochrane (1998), Davig and Leeper (2006), Sims (2013)]. In contrast to
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regime-M, policy roles are reversed under this alternative regime, with fiscal policy determining

the price level and monetary policy acting to stabilize debt. Without much loss of generality, we

consider the special case of an exogenous path for primary surpluses, i.e., γ “ 0. This profligate

fiscal policy requires that monetary authority raise the nominal rate only weakly with inflation

to prevent debt service from growing too rapidly. It follows that 0 ă λ2 ă λ3 “ β ă 1 ă λ1.

Analogous to regime-M, we can write output, inflation, and real debt as linear functions of all

past and present policy shocks with unambiguously signed coefficients. In particular, output

follows

ŷt “ C0p1, 1q
looomooon

ă0

ǫM,t `
8
ÿ

k“1

C0p1, 1q

„

1

λ1

´
β ´ λ2

βλ2pβ ´ 1 ` σκq

 ˆ

1

λ1

˙k´1

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

ą0

ǫM,t´k

`
8
ÿ

k“0

C0p1, 2q

ˆ

1

λ1

˙k

loooooooomoooooooon

ă0

ǫF,t´k (3.10)

inflation follows

π̂t “ C0p2, 1q
looomooon

ą0

ǫM,t `
8
ÿ

k“1

C0p2, 1q

„

1

λ1

´
λ2 ´ β

βλ2

 ˆ

1

λ1

˙k´1

loooooooooooooooooooomoooooooooooooooooooon

ą0

ǫM,t´k

`
8
ÿ

k“0

C0p2, 2q

ˆ

1

λ1

˙k

loooooooomoooooooon

ă0

ǫF,t´k (3.11)

and real debt follows

b̂t “
8
ÿ

k“0

C0p3, 1q

ˆ

1

λ1

˙k

loooooooomoooooooon

ą0

ǫM,t´k `
8
ÿ

k“0

C0p3, 2q

ˆ

1

λ1

˙k

loooooooomoooooooon

ă0

ǫF,t´k (3.12)

where the contemporaneous responses are given by

C0 “

¨

˚

˚

˚

˝

σλ2

2
pβ´1`σκq

λ2´β
´ p1´βqσrpσκ`βqλ2´βs

λ2´β

´
σκλ2

2

λ2´β

σκλ2p1´βq
λ2´β

β`σκ

p1`ασκqλ1

β´1

λ1

˛

‹

‹

‹

‚

The analytical impulse response functions (3.10)–(3.12), together with the intertemporal equilib-

rium condition (3.6), highlight a violation of “Ricardian equivalence”—unlike regime-M, expan-

sions in government debt, due to either monetary contraction or fiscal expansion, will generate
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a positive wealth effect which in turn transmits into higher inflation and, in the presence of

nominal rigidities, higher real activity.

Indeed, this non-Ricardian nature stems from a fundamentally different fiscal financing mech-

anism underlying the fiscal theory; while regime-M relies primarily on direct taxation, regime-F

hinges crucially on the debt devaluation effect of surprise inflation. For example, consider the

effects of a monetary contraction. With sticky prices, a higher nominal interest rate raises the

real interest rate, inducing the household to save more in the current period. Thus, output falls

initially in (3.10). The higher real rate also raises the real interest payments and hence the real

principal in (3.12), making the household wealthier at the beginning of the next period. How-

ever, because future primary surpluses do not adjust to neutralize this wealth effect, aggregate

demand increases in the next period, which pushes up both output in (3.10) and inflation in

(3.11). More importantly, as evinced by (3.6), inflation must rise in the current as well as fu-

ture periods to devalue the nominal government debt so as to guarantee its sustainability. This

wealth effect channel triggers exactly the same macroeconomic impacts under a fiscal expansion.

Given exogenous primary surpluses, (3.6) suggests that a deficit-financed tax cut shows up as

a mix of higher current inflation and a lower path for real interest rates, which in turn leads

to higher output. Through devaluation, the higher inflation again ensures that the government

debt remains sustainable. The above policy implications should make it clear that inflation is

fundamentally a fiscal phenomenon under regime-F.

Lastly, the role of inflation in stabilizing government debt under regime-F is also evident in

that both the extent, |C0p2, 1q| and |C0p2, 2q|, and the decay factor, 1{λ1, of the policy effects

on inflation are increasing in α—a hawkish monetary stance not only amplifies the inflationary

impacts of higher debt but makes these impacts more persistent as well, thereby reinforcing the

fiscal theory mechanism.

3.3 Empirical Analysis As the previous section makes clear, regimes M and F imply starkly

different mechanisms for inflation determination and debt stabilization. It is therefore a prereq-

uisite to identify the prevailing regime in order to make appropriate policy choices. While the

popular surplus-debt regressions are subject to potential simultaneity bias that may produce mis-

leading inferences about fiscal sustainability, testing efforts based on general equilibrium models,

on the other hand, find nearly uniform statistical support for regime-M in the pre-crisis U.S. data

[Traum and Yang (2011), Leeper et al. (2017), Leeper and Li (2017)].11 This consensus emerged

even from periods of fiscal stress during which monetary policy appears to lose control over in-

flation. As pointed out by Schorfheide (2013), however, DSGE models are typically misspecified

11Li et al. (2018) assessed the identification role of credit market imperfections in discerning the underlying
regime. They found that adding financial frictions to a richly structured DSGE model improves the relative statis-
tical fit of regime-F, to the extent that it can fundamentally alter the regime ranking found in the literature. See
also Li and Tan (2018) for a more comprehensive (time-domain) exploration under both complete and incomplete
model spaces.
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with respect to certain low-frequency features of the data, and it was not until recently that aca-

demic attention has been paid to the empirical implications of each regime for the low-frequency

relationship between measures of fiscal stance and inflation [Kliem et al. (2016a,b)].

In the frequency-domain context, formal regime comparison and selection along specific fre-

quencies can be made possible by estimating marginal likelihoods and Bayes factors based on

the corresponding spectral likelihood function. To that end, we first assume a complete model

space and estimate each regime-dependent model over two sets of frequency bands:

1. Full band: we set sk “ 1 for all frequencies wk “ 2πk{T , k “ 1, 2, . . . , T ´ 1.12 This is

approximately tantamount to estimating the model in the time domain;

2. High-pass: we successively remove more frequencies from the low end of the spectrum by

setting sk “ 1 for frequencies wk ě 2π{32, wk ě 2π{20, and wk ě 2π{4, corresponding

to cycles with periods no longer than 32 quarters (8 years), 20 quarters (5 years), and 4

quarters (1 year), respectively. Similar to Sala (2015), these high-pass bands are partly

overlapping in order to keep enough data points in the estimation.

We consider two subsamples in the postwar U.S. data, separated by the appointment of Paul

Volcker as Chairman of the Federal Reserve Board in August 1979: pre-Volcker era, 1959:Q3–

1979:Q2; and post–Volcker era, 1984:Q1–2007:Q4.13 The set of quarterly observables includes:

per capita real output growth rate (YGR); annualized inflation rate (INF); annualized nominal

interest rate (INT); and surplus-to-debt ratio (SBR). The inclusion of SBR rather than debt-to-

output ratio or debt growth is motivated by Sims (2011) and Kliem et al. (2016a,b) as a natural

measure of fiscal stance. It represents net payments to bondholders through interest rates or

the retirement of outstanding debt and averages over time approximately to the net real interest

rate. See the Online Appendix B for details of the data construction. The demeaned observable

variables are linked to the model variables through the following measurement equations

¨

˚

˚

˚

˚

˚

˝

YGRt

INFt

INTt

SBRt

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

ŷt ´ ŷt´1

4π̂t

4R̂t

r̄
400

pŝt ` R̂t ´ b̂tq

˛

‹

‹

‹

‹

‹

‚

` ut, ut „ Np0,Ωq (3.13)

where r̄ “ 400p1{β ´ 1q is the annualized net real interest rate and Ω is a diagonal covariance

matrix.14 In conjunction with the model solution under each regime, this leads to the state space

12We exclude w0 “ 0 because the model becomes stochastically singular at frequency zero.
13Our full sample begins when the primary surplus data first became available and ends before the federal funds

rate nearly hit its effective lower bound.
14We set the square root of each diagonal element of Ω to 30% of the sample standard deviation of the

corresponding observable variable.
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Table 1: Prior Distributions of Model Parameters

Parameter Density Para (1) Para (2)

1{σ, relative risk aversion G 5.00 0.50

κ, slope of new Keynesian Phillips curve G 0.50 0.10

r̄, s.s. annualized net real interest rate G 0.50 0.25

α, interest rate response to inflation, regime-M G 1.50 0.50

α, interest rate response to inflation, regime-F B 0.50 0.10

γ, surplus response to lagged debt, regime-M G 1.50 0.50

100σM , scaled s.d. of monetary shock IG-1 0.40 4.00

100σF , scaled s.d. of fiscal shock IG-1 0.40 4.00

Notes: Para (1) and Para (2) refer to the means and standard deviations for Gamma (G) and
Beta (B) distributions; s and ν for the Inverse-Gamma Type-I (IG-1) distribution with density

ppσq9σ´ν´1 exp p´ νs2

2σ2 q. The effective prior is truncated at the boundary of the determinacy region.

form (2.9)–(2.10) whose likelihood function can be evaluated according to (2.12).

Table 1 summarizes the marginal prior distributions on the model parameters. For convenience,

we place a prior on the coefficient of relative risk aversion, 1{σ, that centers at a moderate value

of 5. The prior mean of κ implies a somewhat smaller degree of price stickiness than the range

of values typically found in the new Keynesian literature, and that of r̄ translates into a β value

of 0.998.15 The relatively informed priors on p1{σ, κ, r̄q are intended to help keep the posterior

estimates in economically plausible regions of the parameter space. To reflect the two policy

regimes, we specify two sets of priors on the policy parameters pα, γq, each of which places

nearly all probability mass on regions of the parameter space that deliver unique model solution

consistent with a regime. In particular, regime-M raises interest rate aggressively in response

to inflation (α ą 1) and adjusts taxes or expenditures sufficiently to stabilize debt (γ ą 1);

regime-F makes interest rate respond only weakly to inflation (0 ď α ă 1) and fiscal instrument

unresponsive with regard to debt (γ “ 0). Following standard practice, the standard deviation

parameters pσM , σF q, both scaled by 100, follow inverse-gamma type-I distribution with mean

0.5 and standard deviation 0.26.

For each model, we sample a total of 210, 000 draws from the posterior distribution using the

random-walk Metropolis-Hastings algorithm, discard the first 10, 000 draws as burn-in phase,

and keep one every 20 draws afterwards.16 The resulting 10, 000 draws form the basis for the

15Two common ways to introduce sticky prices into new Keynesian models are through Rotemberg’s (1982)
price adjustment costs and Calvo’s (1983) random price changes. It can be shown for both cases that κ depends
inversely on the degree of price stickiness. As κ Ñ 8, the model approaches to a flexible-price economy in which
ŷt “ 0 for all t.

16Diagnostics to check the convergence of Markov chains include graphical methods such as recursive means

19



tan: a frequency-domain approach to dynamic macro models

Table 2: Pre-Volcker Posterior Estimates

High-Pass (ď 5 Years) Full Band

Regime-M Regime-F Regime-M Regime-F

Para Mean 90% HPD Mean 90% HPD Mean 90% HPD Mean 90% HPD

1{σ 5.44 [4.54,6.29] 4.58 [3.81,5.35] 5.77 [4.88,6.64] 4.56 [3.80,5.36]

κ 0.29 [0.20,0.38] 0.72 [0.53,0.91] 0.20 [0.13,0.26] 0.74 [0.55,0.93]

r̄ 0.49 [0.11,0.84] 0.50 [0.13,0.88] 0.47 [0.11,0.82] 0.52 [0.12,0.89]

α 1.58 [1.00,2.15] 0.84 [0.76,0.93] 1.59 [1.00,2.18] 0.87 [0.80,0.94]

γ 1.61 [1.00,2.21] – – 1.55 [1.00,2.11] – –

100σM 0.40 [0.34,0.47] 0.27 [0.23,0.32] 0.52 [0.45,0.60] 0.27 [0.23,0.32]

100σF 0.49 [0.21,0.77] 0.50 [0.23,0.82] 0.49 [0.22,0.78] 0.49 [0.21,0.77]

Ave Ineff 2.8 2.6 3.9 1.9

Notes: The posterior means and 90% highest probability density (HPD) intervals [constructed as in Chen and
Shao (1999)] are computed using 10,000 posterior draws after thinning. The last row reports the average of

inefficiency factors defined as 1`2
řK

j“1
wpj{Kqρpjq, where we set the truncation parameter K “ 200 and weight

the autocorrelation function ρp¨q using the Parzen kernel wp¨q.

Table 3: Post-Volcker Posterior Estimates

High-Pass (ď 5 Years) Full Band

Regime-M Regime-F Regime-M Regime-F

Para Mean 90% HPD Mean 90% HPD Mean 90% HPD Mean 90% HPD

1{σ 1.04 [0.79,1.30] 3.98 [3.10,4.80] 2.53 [1.57,3.62] 3.88 [3.00,4.74]

κ 0.19 [0.10,0.26] 0.58 [0.42,0.75] 0.08 [0.04,0.11] 0.60 [0.42,0.76]

r̄ 0.49 [0.12,0.85] 0.50 [0.12,0.87] 0.56 [0.12,0.99] 0.49 [0.12,0.85]

α 1.71 [1.00,2.34] 0.83 [0.72,0.93] 1.62 [1.00,2.23] 0.84 [0.74,0.93]

γ 1.61 [1.00,2.20] – – 1.77 [1.00,2.46] – –

100σM 0.30 [0.24,0.35] 0.18 [0.15,0.21] 0.49 [0.43,0.56] 0.18 [0.15,0.21]

100σF 0.58 [0.20,0.86] 0.49 [0.21,0.78] 0.50 [0.21,0.80] 0.50 [0.21,0.79]

Ave Ineff 3.5 2.2 6.7 2.5

Notes: See Table 2.

plot and the separated partial means test proposed by Geweke (1992). We also compute the inefficiency factors
for the sequence of posterior draws for each parameter. In conjunction with a rejection rate of approximately 50%

20



tan: a frequency-domain approach to dynamic macro models

Table 4: Log Marginal Likelihood Estimates

Pre-Volcker Era Post-Volcker Era

Frequency Regime-M Regime-F ln BF Regime-M Regime-F ln BF

All ´955.20 ´695.11 ´260.09˚ ´924.05 ´837.00 ´87.05˚

(0.02) (0.01) (0.03) (0.02)

ď 8 Years ´749.85 ´589.74 ´160.11˚ ´659.89 ´576.60 ´83.29˚

(0.02) (0.02) (0.03) (0.02)

ď 5 Years ´626.12 ´519.85 ´106.27˚ ´334.69 ´292.73 ´41.96˚

(0.02) (0.03) (0.04) (0.19)

ď 1 Year ´67.25 ´69.37 2.12 ´44.59 ´55.03 10.44˚

(0.02) (0.02) (0.02) (0.02)

Notes: Marginal likelihood estimates with numerical standard errors in parentheses and Bayes factors (BF)
are reported in logarithm scale. Asterisk (˚) signifies decisive evidence in favor of the regime with superior
fit, corresponding to a log Bayes factor whose absolute value exceeds 4.6 based on Jeffreys’ (1961) criterion.

posterior inference. Two aspects of the posterior estimates are worth highlighting. First, the

combination of regime-dependent priors, sample periods, and band spectra generates markedly

different posterior inferences for some parameters reported in Tables 2–3. For example, regardless

of the frequency bands, a cross-regime comparison reveals that the estimated relative risk aversion

tends to be somewhat higher (lower) in regime-M over the pre-Volcker (post-Volcker) sample,

whereas its estimated slope of the new Keynesian Phillips curve turns out to be much smaller

over both samples, implying a significantly stronger degree of price stickiness. A flatter Phillips

curve also emerges in regime-M when estimated over the full spectrum in comparison to the

high-pass (ď 5 years) band because stronger-than-usual nominal rigidities are needed to account

for the lower frequency variations in the data. The estimated policy parameters, on the other

hand, remain comparable across frequency bands and sample periods for both policy regimes.

Second, the Bayes factors summarized in Table 4 suggest that changes to the frequency band to

which the model is fit can lead to a complete reversal of the regime ranking.17 For instance, while

both samples substantially favor regime-F over the full spectrum, removing more frequencies

from the low end of the spectrum continuously improves the relative statistical fit of regime-

M, to the extent that it can fundamentally alter the regime ranking when evaluated on the

highest pass (ď 1 year) band—regime-M fares almost “equally” well over the pre-Volcker sample

for each model, the low inefficiency factors suggest that the Markov chain mixes well. See Herbst and Schorfheide
(2015) for a detailed textbook treatment of Bayesian estimation of DSGE models.

17Log marginal likelihoods are approximated using the modified harmonic mean estimator of Geweke (1999)
with a truncation parameter of 0.5.
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Figure 1: Log likelihood differential and regime-M weight. Notes: The left vertical axis measures the
log likelihood of regime-M less that of regime-F (blue dashed line) at each frequency evaluated with
the posterior mean over the full spectrum. The right vertical axis measures the posterior mean of
regime-selection variable (red solid line).

but considerably better over the post-Volcker sample.18 This underscores the importance of

relatively low frequency relations in the data for identifying the underlying regime, which largely

corroborates the empirical findings of Kliem et al. (2016a,b).

Another look at how the empirical performance of each regime varies along different frequencies

can be achieved through the lens of an incomplete model space. In lieu of estimating individual

regime over pre-specified frequency bands, we next perform a joint estimation of both regimes

as well as all regime-selection variables tskuT´1

k“0
using the composite likelihood function (2.13)

and the Metropolis-Hastings-within-Gibbs algorithm outlined in Section 2.2.2. Our approach

thus affords a stronger voice to the data when assessing the relative importance of regimes M

and F at each frequency. Specifically, let sk take value one (zero) if regime-M (F) is selected

at frequency wk so that its expected value can be readily interpreted as regime-M’s importance

weight. In addition to the prior distributions in Table 1 for the composite model, we adopt an

agnostic prior view on sk, i.e., ppsk “ 0q “ ppsk “ 1q “ 1

2
.

Figure 1 delineates the estimated regime-selection variables (solid line) based on the posterior

draws over the full spectrum.19 It displays prima facie evidence of cross-frequency variations in

the relative importance of each regime—both samples predominantly prefer regime-F at frequen-

cies near the low end of the spectrum but assign increasing weights to regime-M towards the

18The uniform and overwhelming dominance of regime-F on the full band is primarily due to the inclusion of
fiscal data (i.e., SBR) in the estimation, which features more prominent lower frequency variations than other
aggregate variables.

19By symmetry Figure 1 only plots the range r0, πs.
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Table 5: Posterior Estimates of Composite Model

Pre-Volcker Post-Volcker

Regime-M Regime-F Regime-M Regime-F

Para Mean 90% HPD Mean 90% HPD Mean 90% HPD Mean 90% HPD

1{σ 4.77 [3.89,5.58] 4.67 [3.88,5.44] 2.89 [1.01,4.72] 4.37 [3.53,5.19]

κ 0.51 [0.34,0.66] 0.73 [0.54,0.92] 0.40 [0.17,0.61] 0.63 [0.46,0.81]

r̄ 0.50 [0.12,0.87] 0.52 [0.12,0.90] 0.50 [0.11,0.86] 0.49 [0.10,0.84]

α 1.76 [1.00,2.44] 0.82 [0.73,0.92] 1.73 [1.00,2.39] 0.73 [0.58,0.88]

γ 1.61 [1.00,2.21] – – 1.62 [1.00,2.23] – –

100σM 0.23 [0.17,0.29] 0.36 [0.27,0.44] 0.29 [0.19,0.39] 0.22 [0.16,0.27]

100σF 0.51 [0.22,0.81] 0.51 [0.21,0.82] 0.49 [0.21,0.76] 0.50 [0.20,0.77]

Ave Ineff 4.8 2.3 19.3 4.3

Notes: See Table 2.

high end. This pattern is by and large in line with a cross-regime comparison of the likelihoods

evaluated with the posterior mean over the full spectrum, whose log differentials (dashed line) at

each frequency are depicted in Figure 1. Regarding the parameter estimates reported in Table 5,

the data brings about on average modest updating on the priors, whereas the updating gets more

pronounced when the two regimes are estimated separately, most noticeably κ under regime-M.

Given the apparent evidence of cross-frequency regime uncertainty, these findings point to a

broader message that policymakers should routinely examine alternative monetary-fiscal policy

specifications in their policymaking process.

4 Concluding Remarks

This article contributes to the research program on rational expectations econometrics by de-

veloping a unified framework for conveniently solving and estimating dynamic macroeconomic

models in the frequency domain. Despite the popularity and continued dominance of time-domain

analysis, we argue that there remain several advantages of our approach on both theoretical and

empirical grounds. First, the z-transform solution method is applicable for solving a wide class

of models, including dynamic economies featuring signal extraction and infinite regress in ex-

pectations. Second, the moving average representation of the solution permits straightforward

construction of the spectral density for performing likelihood-based inference. Third, the spec-

tral decomposition of the Gaussian likelihood function is useful in assessing model adequacy over

different frequency bands of interest as well as identifying promising avenues for further model
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development. Finally, in the presence of potential model uncertainty, the generalized spectral

likelihood function implied by all candidate models allows the relative importance of individual

model to be evaluated at each frequency.

The proposed framework is applied to solve and estimate a simple new Keynesian model with

fiscal details and two distinct monetary-fiscal policy regimes. The closed-form solution derived

herein is useful in characterizing the cross-equation restrictions and illustrating the complex

interaction between policy behavior and price rigidity under each regime. Based on the postwar

U.S. data, we find strong evidence of cross-frequency variations in the importance weight of each

regime and that relatively low frequency relations in the data play an important role in discerning

the underlying regime. Nevertheless, it is still worthwhile to examine whether these empirical

findings carry over to a more richly structured DSGE model with low-frequency features, e.g.,

persistent long-run component in fiscal policy rule as in Sims (2012) and long-term nominal

debt as in Cochrane (1998), Sims (2013), and Leeper and Leith (2015). Another interesting

application is to take models with incomplete information or heterogenous beliefs to the data.

We defer these extensions to a sequel to this paper.

References

Al-Sadoon, M. M. (2018): “The Linear Systems Approach to Linear Rational Expectations

Models,” Econometric Theory, 34(3), 628–658.

Altug, S. (1989): “Time-to-Build and Aggregate Fluctuations: Some New Evidence,” Interna-

tional Economic Review, 30(4), 889–920.

Amisano, G., and J. Geweke (2017): “Prediction Using Several Macroeconomic Models,”

The Review of Economics and Statistics, 99(5), 912–925.

An, S., and F. Schorfheide (2007): “Bayesian Analysis of DSGE Models,” Econometric

Reviews, 26(2), 113–172.

Berkowitz, J. (2001): “Generalized spectral estimation of the consumption-based asset pricing

model,” Journal of Econometrics, 104(2), 269–288.

Blanchard, O. J., and C. M. Kahn (1980): “The Solution of Linear Difference Models

Under Rational Expectations,” Econometrica, 48(5), 1305–1311.

Calvo, G. A. (1983): “Staggered Prices in a Utility Maxmimizing Model,” Journal of Monetary

Economics, 12(3), 383–398.

Chen, M.-H., and Q.-M. Shao (1999): “Monte Carlo Estimation of Bayesian Credible and

HPD Intervals,” Journal of Computational and Graphical Statistics, 8(1), 69–92.

24



tan: a frequency-domain approach to dynamic macro models

Christiano, L., and R. Vigfusson (2003): “Maximum likelihood in the frequency domain:

the importance of time-to-plan,” Journal of Monetary Economics, 50(4), 789–815.

Cochrane, J. H. (1998): “A Frictionless View of U.S. Inflation,” in NBER Macroeconomics

Annual 1998, ed. by B. S. Bernanke, and J. J. Rotemberg, vol. 14, pp. 323–384. MIT Press,

Cambridge, MA.

Cogley, T. (2001): “A Frequency Decomposition of Approximation Errors in Stochastic Dis-

count Factor Models,” International Economic Review, 42(2), 473–503.

Davig, T., and E. M. Leeper (2006): “Fluctuating Macro Policies and the Fiscal Theory,”

in NBER Macroeconomics Annual 2006, ed. by D. Acemoglu, K. Rogoff, and M. Woodford,

vol. 21, pp. 247–298. MIT Press, Cambridge.

Diebold, F. X., L. E. Ohanian, and J. Berkowitz (1998): “Dynamic Equilibrium

Economies: A Framework for Comparing Models and Data,” The Review of Economic Studies,

65(3), 433–451.

Friedman, M. (1970): The Counter-Revolution in Monetary Theory. Institute of Economic

Affairs, London.
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Online Appendix

Appendix A: Model Solution To simplify the exhibition, we substitute the policy rules

(3.3)–(3.4) for pR̂t, ŝtq in the model and rewrite the remaining trivariate linear rational expecta-

tions system in the canonical form (2.1)
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(A.1)

where the solution xt “ CpLqεt to (A.1) is taken to be covariance stationary. Below we closely

follow the solution procedure laid out in Section 2.1 and the notations established therein to

derive the content of Cp¨q.

First, transform the time-domain system (A.1) into its equivalent frequency-domain repre-

sentation. Appealing to the Wiener-Kolmogorov optimal prediction formula, we can evaluate

the vector of expectational errors as ηt`1 “ C0L
´1εt. Define ΓpLq ” Γ´1L

´1 ` Γ0 ` Γ1L and

substitute xt and ηt`1 into (A.1)

ΓpLqCpLqεt “ pΨ0 ` Γ´1C0L
´1qεt

which must hold for all realizations of εt. Therefore, the coefficient matrices are related by the

z-transform identities

zΓpzqCpzq “ zΨ0 ` Γ´1C0

where Cpzq needs to have only non-negative powers of z and be analytic inside the unit circle so

that its coefficients are square-summable by covariance stationarity.
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Second, apply the Smith canonical factorization to the polynomial matrix zΓpzq

zΓpzq “ Upzq´1

¨
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´ 4γ0

2γ0
, λ2 “

γ1 ´
a

γ2

1
´ 4γ0

2γ0
, λ3 “

β

1 ´ γp1 ´ βq

where γ0 “ p1 ` ασκq{β and γ1 “ p1 ` β ` σκq{β. The zero root arises whenever the model is

forward-looking, i.e., Γ´1 ‰ 0.20 The root λ3 emerges as the reciprocal of the eigenvalue from the

government budget constraint (3.5) viewed as a difference equation in b̂. To see where the pair of

roots pλ1, λ2q comes from, combine the dynamic IS equation (3.1) and the new Keynesian Phillips

curve (3.2) and substitute out ŷ to obtain a second order expectational difference equation for

inflation

Etπ̂t`2 ´
1 ` β ` σκ

β
Etπ̂t`1 `

1 ` ασκ

β
π̂t “ ´

σκ

β
ǫM,t

The eigenvalues governing the dynamics of this equation are exactly p1{λ1, 1{λ2q.

Lastly, examine the existence and uniqueness of solution. Under regime-M with α ą 1 and

γ ą 1, it follows that 0 ă λ2 ă λ1 ă 1 ă λ3. Collect the roots inside the unit circle in Spzq and

multiply both sides of the z-transform identities by Spzq´1

T pzqCpzq “

¨

˚

˚

˚

˝

U1¨pzq

U2¨pzq

1

zpz´λ1qpz´λ2q
U3¨pzq

˛

‹

‹

‹

‚

pzΨ0 ` Γ´1C0q

These identities are valid for all z on the open unit disk except for z “ 0, λ1, λ2. But since

Cpzq must be well-defined for all |z| ă 1, this condition places the following restrictions on the

unknown coefficient matrix C0

U3¨pzqpzΨ0 ` Γ´1C0q|z“0,λ1,λ2
“ 0

20Below we omit the restriction imposed by z “ 0 because it is unrestrictive.
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Stacking the above restrictions yields

´

¨

˝

λ2

1
λ3κpαβ´1q

p1`ασκqβ

λ2

1
λ3pαβ´1qpσκ`βq

p1`ασκqβ
´ λ1λ3pαβ´1q

1`ασκ
0

λ2

2
λ3κpαβ´1q

p1`ασκqβ

λ2

2
λ3pαβ´1qpσκ`βq

p1`ασκqβ
´ λ2λ3pαβ´1q

1`ασκ
0

˛

‚

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

R

C0 “

¨

˝

λ3

1
λ3σκpαβ´1q

p1`ασκqβ
0

λ3

2
λ3σκpαβ´1q

p1`ασκqβ
0

˛

‚

loooooooooomoooooooooon

A

Apparently, the solution exists because spanpAq Ď spanpRq is satisfied here. In order for the

solution to be unique, we must be able to pin down the terms

QC0 “ U3¨pλ3qΓ´1C0 “
´

λ3

3
κpαβ´1q

p1`ασκqβ

λ3

3
pαβ´1qpσκ`βq

p1`ασκqβ
´

λ2

3
pαβ´1q

1`ασκ
0
¯

C0

from the knowledge of RC0. This is tantamount to verifying spanpQ1q Ď spanpR1q, which is also

satisfied here. Now the unique solution can be computed as

¨

˚

˚

˚

˝

ŷt

π̂t

b̂t

˛

‹

‹

‹

‚

“ pLΓpLqq´1pLΨ0 ` Γ´1C0q

¨

˝

ǫM,t

ǫF,t

˛

‚

“

¨

˚

˚

˚

˝

C0p1, 1q C0p1, 2q

C0p2, 1q C0p2, 2q

C0p3, 1q 1

1´ 1

λ3
L

C0p3, 2q 1

1´ 1

λ3
L

˛

‹

‹

‹

‚

¨

˝

ǫM,t

ǫF,t

˛

‚

where the expression for C0 is given in Section 3.2.1.

Under regime-F with 0 ď α ă 1 and γ “ 0, it follows that 0 ă λ2 ă λ3 “ β ă 1 ă λ1. Collect

the roots inside the unit circle in Spzq and multiply both sides of the z-transform identities by

Spzq´1

T pzqCpzq “

¨

˚

˚

˚

˝

U1¨pzq

U2¨pzq

1

zpz´λ2qpz´λ3q
U3¨pzq

˛

‹

‹

‹

‚

pzΨ0 ` Γ´1C0q

These identities are valid for all z on the open unit disk except for z “ 0, λ2, λ3. But since

Cpzq must be well-defined for all |z| ă 1, this condition places the following restrictions on the

unknown coefficient matrix C0

U3¨pzqpzΨ0 ` Γ´1C0q|z“0,λ2,λ3
“ 0
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Stacking the above restrictions yields

´

¨

˝

λ2

2
κpαβ´1q

1`ασκ

λ2

2
pαβ´1qpσκ`βq

1`ασκ
´ λ2βpαβ´1q

1`ασκ
0

β2κpαβ´1q
1`ασκ

β2pαβ´1qpβ´1`σκq
1`ασκ

0

˛

‚

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

R

C0 “

¨

˝

σκλ3

2
pαβ´1q

1`ασκ
0

0 β2σκp1´βqpαβ´1q
1`ασκ

˛

‚

loooooooooooooooooomoooooooooooooooooon

A

Apparently, the solution exists because spanpAq Ď spanpRq is satisfied here. In order for the

solution to be unique, we must be able to pin down the terms

QC0 “ U3¨pλ1qΓ´1C0 “
´

λ2

1
κpαβ´1q

1`ασκ

λ2

1
pαβ´1qpσκ`βq

1`ασκ
´ λ1βpαβ´1q

1`ασκ
0
¯

C0

from the knowledge of RC0. This is tantamount to verifying spanpQ1q Ď spanpR1q, which is also

satisfied here. Now the unique solution can be computed as

¨

˚

˚

˚

˝

ŷt

π̂t

b̂t

˛

‹

‹

‹

‚

“ pLΓpLqq´1pLΨ0 ` Γ´1C0q

¨

˝

ǫM,t

ǫF,t

˛

‚

“

¨

˚

˚

˚

˚

˚

˝

C0p1, 1q
1´

β´λ2
βλ2pβ´1`σκq

L

1´ 1

λ1
L

C0p1, 2q 1

1´ 1

λ1
L

C0p2, 1q
1´

λ2´β

βλ2
L

1´ 1

λ1
L

C0p2, 2q 1

1´ 1

λ1
L

C0p3, 1q 1

1´ 1

λ1
L

C0p3, 2q 1

1´ 1

λ1
L

˛

‹

‹

‹

‹

‹

‚

¨

˝

ǫM,t

ǫF,t

˛

‚

where the expression for C0 is given in Section 3.2.2.

Appendix B: Data Set Unless otherwise stated, the following data are drawn from the

National Income and Product Accounts (NIPA) released by the Bureau of Economic Analysis.

All data in levels from NIPA are nominal values and divided by 4. The quarterly observable

sequences in the text are constructed as follows.

1. Per capita real output growth rate, YGR. Per capita real output is obtained by dividing

the gross domestic product (Table 1.1.5, line 1) by the civilian noninstitutional population

(series “CNP16OV”, Federal Reserve Economic Data, St. Louis Fed) and deflating using

the implicit price deflator for gross domestic product (Table 1.1.9, line 1). Growth rates

are computed using quarter-to-quarter log difference and converted into percentage by

multiplying by 100.

2. Annualized inflation rate, INF, is defined as the quarter-to-quarter log difference of the

implicit price deflator for gross domestic product (Table 1.1.9, line 1) and converted into
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percentage by multiplying by 400.

3. Annualized nominal interest rate, INT, corresponds to the effective federal funds rate

(Board of Governors of the Federal Reserve System) and is in percentage.

4. Surplus-to-debt ratio, SBR. Primary surplus is obtained by adding net lending or bor-

rowing (Table 3.2, line 48) and interest payments (Table 3.2, line 32). Government debt

corresponds to the market value of privately held gross federal debt (Federal Reserve Bank

of Dallas). The ratio is in percentage.
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