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Abstract 

 

In this paper we present a testing procedure for fractional orders of integration in the context 
of non-linear terms approximated by Fourier functions. The procedure is a natural extension 
of the linear method proposed in Robinson (1994) and similar to the one proposed in Cuestas 
and Gil-Alana (2016) based on Chebyshev polynomials in time. The test statistic has an 
asymptotic standard normal distribution and several Monte Carlo experiments conducted in 
the paper show that it performs well in finite samples. Various applications using real life 
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G7 countries are presented at the end of the paper. 
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1. Introduction 

The classical Dickey-Fuller (DF, Dickey and Fuller, 1979) unit root test has been the 

foundation for various unit root tests in the literature, recently. The DF test is developed on 

the assumption that the underlying time series process is linear and the hypothesis of a unit 

root [I(1)] is tested against the alternative of series being I(0) in such a linear time series 

framework. Meanwhile, in reality, it is uncommon to have linear time structured series, 

particularly in economic and financial research where time series often possess anomalies 

such as regime switch, breaks, jumps and heteroscedasticity. Thus, the classical DF unit root 

test (and other unit root tests such as Phillips and Perron, 1988; Elliot et al., 1996; etc.) lack 

power in this regard against, for example, trend stationary alternatives (De Jong et al., 1992), 

structural breaks (Campbell and Perron, 1996), regime switching (Nelson et al., 2001), etc. 

Moreover, the restriction of I(1)/I(0) alternatives is also too restrictive since time series could 

be I(d) where d is any real number, either an integer value or a fraction, and this explanation 

has more meaningful policy implications in economics and finance. For example, d = 0 

implies (covariance) stationarity, d = 1 implies nonstationarity. For the fractional case, -0.5 < 

d < 0.5 means the series is stationary and invertible, 0 < d < 0.5 implies the series is 

stationary mean reverting and possesses long memory, and lastly, 0.5 ≤ d < 1 is mean 

reverting nonstationary range for the series. These make fractional unit root testing more 

appealing compared to classical unit root testing. In fact, many authors such as Diebold and 

Rudebusch (1991); Hasslers and Wolters (1994) and Lee and Schmidt (1996) have shown the 

extremely low power of standard unit root methods under this type of alternative. Thus, there 

is the need to embrace fractional unit root testing in both linear and non-linear frameworks.  

 The first attempt to introduce fractional integration in DF-type models is in the 

fractional testing procedure of Dolado, Gonzalo and Mayoral (2002). The testing model does 

not include an augmentation component that controls the whitening of the random process in 
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the model. Other non-linear unit root tests also applied the DF model. Due to the appealing 

interpretation of the results in the I(d) case, it is straightforward to combine the Fourier 

function in sine and cosine functions of time (see Enders and Lee, 2012a; 2012b) in a 

fractional testing framework.  The Fourier function can capture breaks of unknown form even 

if the time series do not show any periodic behaviour. The approach works better than when 

using dummy variables for describing breaks, irrespective of whether the breaks are 

instantaneous or smooth. The polynomial allows for smooth trends similar to those of the 

smooth transition regression dynamics in Granger and Teräsvirta (1993). Thus, the realization 

of non-linear unit root testing will mimic the expectation of Leybourne, Newbold and Vougas 

(1998) and Kapetanios, Shin and Snell (2003), which are the first non-linear unit root 

methods in asymmetric and symmetric smooth transition regression frameworks, 

respectively.  

 Unit root tests based on smooth transition regression are expected to lack power since 

the implementation requires the estimation of a considerable number of autoregressive 

parameters. Also, the framework assumes a single gradual break with a known date and 

functional form (Enders and Lee, 2012a), though the break dates and the number of breaks 

are unlikely to be known.1 Thus, such tests are not powerful, as many parameters need to be 

estimated. Also, Becker, Ender and Hurn (2004) stated that if the number of breaks in a time 

series is unknown, a test of structural change that uses even a single trigonometric component 

can have greater power than the Bai and Perron (2003) multiple structural breaks test.2 

Around such a single frequency, fractional frequencies can be obtained in order to obtain a 

good Fourier approximation just as in the Fractional Frequency Flexible Fourier Function 

(FFFFF) with multiple smooth breaks for the DF unit root test proposed in Omay (2015). 

                                                           

1 Becker, Enders and Lee (2006), Enders and Lee (2012a,b) and Rodrigues and Taylor (2012) suggested using a 

single frequency component for the Fourier function in the detection of smooth breaks since higher frequencies 
lead to over-filtration.  
2 The unit root test proposed by Becker, Enders and Lee (2006) and Ender and Lee (2012a) is used when the 

break dates and the precise form of the breaks are unknown.  
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This author found that the small sample properties of the FFFFF-DF perform better than that 

of its integer frequency Fourier counterpart. 

 In this paper, we propose a fractional unit root test with non-linear smooth trend 

functions using the Fourier series approximation. The testing procedure is based on fractional 

integration, implementing Robinson’s (1994) framework and extending it to the non-linear 

case for this particular approximation. 

 The rest of the paper is structured as follows: Section 2 describes the model and the 

test statistic. Section 3 is devoted to the analysis of the statistical properties of the test statistic 

in a finite sample experiment by using Monte Carlo simulations. Section 4 contains various 

empirical applications, while Section 5 concludes the paper. 

 

2. Model and Test Statistic 

2.1 Non-linear trends 

We consider the model, 

  ,    1,2,...t ty f t x t   ,       (1) 

where ty  is the observed (univariate) time series,  f t  is the smooth trend Fourier function 

or other smooth polynomials or functions in time t ; tx  is the fractionally integrated process, 

given by, 

 1 ,    1,2,...
d

t tL x u t         (2) 

where d  is the fractional unit root parameter; L  is the lag operator (i.e., Lkxt = xt-k), and ut is 

the white noise process, though it can be easily extended to any type of I(0) process, 

including, thus, the stationary and invertible ARMA-class of models. Initially, we assume 

that the function  f t  is of the following form: 
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     

1 1

sin 2 cos 2 ;     2;   1,2,...
n n

k k

k k

f t t kt T kt T n T t     
 

      
   (3) 

where   is the intercept, and   is the coefficient of the linear trend, t ; k  and k  measure, 

respectively, the amplitude and displacement of the sinusoidal component of the deterministic 

term; n is the number of frequencies in the approximation, k  is a particular frequency set 

initially equal to 1, 2, …. n, and T  is the number of observations. Clearly, if λk = γk = 0 for 

all k, the process is linear in time, and traditional fractional unit root tests apply here (see, 

Robinson, 1994; Tanaka, 1999; Dolado et al., 2002; etc.). The significance of at least one of 

(λk, γk) implies a non-linear unit root. The presence of many frequency components involves 

degrees of freedom which could lead to overfitting and loss of power if the correct value of k  

is not precisely determined. In this sense, the value of k may not necessarily be restricted to 

an integer value, and fractional numbers can also be considered as in Omay (2015) and 

Omay, Gupta and Bonaccolto (2017). Then, equation (3) can be replaced by: 

    ,...,2,1,2/,/2cos/2sin)(
11




tTnTtjTtjttf k

n

k
kk

n

k
k 

   (4) 

where jk  = 1, 2, …, n can be fractional values and jk = k in the case of integer numbers. As 

noted in Becker, Enders and Hurn (2004), structural shifts can be captured by the low 

frequency components of a series since breaks shift the spectral density function towards 

zero, though the higher frequency components of the series are likely to be associated with 

parameter variation. Also, n  might be large in order to be viewed as an application of 

Gallant’s (1981) Flexible Fourier Form (FFF) to modelling f(t).3 In the case of a single 

frequency component, i.e., n = 1, 

       1 1sin 2 cos 2 ;     2;   1,2,...f t t t T t T n T t           .  (5) 

                                                           

3 See other papers such as Davies (1987), Gallant and Sonza (1991) and Bierens (1997). 
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Similarly to Schmidt and Phillips (1992), it is straightforward to devise a score-based test 

statistic with limiting distribution that depends on the frequency, k. In the fractional case, to 

determine the best frequency, the data-driven procedure of Davies (1987) can be used. This is 

a grid search-regression method based on (5) where frequencies are set from say 0.2 to 5 with 

an increment of 0.2 as well. Then, we obtain a specific  1,...,lj i k  corresponding to the 

minimum sum of square residuals in (5). Since lj  is unknown in a real sense, it is suggested 

in Enders and Lee (2012a,b) that the precise value of lj  be estimated with the least squares 

method, and the estimator be used in the subsequent analysis as in the fractional integration 

framework in our own case.   

 As mentioned in Leybourne, Newbold and Vougas (1998) and Kapetanios, Shin and 

Snell (2003) and Enders and Lee (2012a), unit root tests based on Logistic Smooth Transition 

Autoregression (LSTAR) and Exponential Smooth Transition Autoregression (ESTAR) 

breaks lack power compared to smooth breaks induced by flexible Fourier polynomials. Also, 

Fourier polynomials allow for increments in the number of frequencies in order to control for 

higher non-linearities.  

 By using (3), (4) or (5) in the framework of fractional integration in (2) using 

Robinson (1994) described below, we can obtain, simultaneously the fractional unit root 

order of integration and the parameters of the smooth Fourier function, along with the rest of 

the parameters in the model.  

 

2.2 The set-up in Robinson (1994) 

The Robinson (1994) fractional integration framework considers the following model, 

,...,2,1,  txzy tt

T

t     (6) 

,...,2,1,);(  tuxL tt    (7) 
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where yt is the observed time series; β is a (kx1) vector of unknown parameters, and zt is a k-

vector of exogenous regressors or deterministic terms that may include for example, a linear 

time trend in case of zt = (1, t)T; xt is described by means of equation (7), where the function 

ρ adopts the following form: 


h

j

d

r

dd

t
jLLwLLxdL

3

2)cos21()1()1();( 21




  (8) 

for any given h, for any given distinct real numbers wj, j = 3, …. h on the integral (0, π), and 

for any given real numbers, dj, j = 1, 2, …., h.  

The specification in (8) is a very general formulation that permits us to consider one 

or more integer or fractional roots of arbitrary order anywhere on the unit circle in the 

complex plane. If the (hx1) vector d is formed by integer values, we face with many models 

of interest, such as the standard unit root case (when h = 1 and d1 = 1), the I(2) case as in 

Johansen et al. (2010) (if h = 1, and d1 = 2), seasonal unit roots of the form advocated by 

Dickey, Hasza and Fuller (DHF, 1984) and Hyllerberg, Engle, Granger and Yoo (1990), (if h 

= 3, wr = 0, d1 = d2 = d3 = 1), cyclical I(1) behaviour such as in Bierens (2001) and Kunst 

(2001) (if d1 = d2 = 0, and d3 = 1), etc. However, d can also include fractional values, and 

then, the function in (7) and (8) permits us to study the classical I(d) models as in Baillie 

(1996), Gil-Alana and Robinson (1997), Abritti et al., 2016, and others (if h = 1 and d is 

fractional); seasonal I(d) models (Gil-Alana and Robinson (2001), Gil-Alana, 2002; Bisognin 

and Lopes, 2009, etc.) (if h = 3 and d1, d2 and d3 are fractional) and cyclical I(d) (Gil-Alana, 

2001) (with d1 = d2 = 0, and d3 fractional).44 

 In Robinson (1994), he tested the null hypothesis: 

 odd      (9) 

                                                           

44
 Multiple (fractional) cyclical structures (Ferrara and Guegan, 2001, Sadek and Khotanzad, 2004, and Gil-

Alana (2007) can also be examined if d1 = d2 = 0 with j > 3. 
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for any real-value vector do, in the set-up given by (6) – (8), and he showed that his test 

statistic follows asymptotically a 
2

h -distribution. Moreover, he also showed that his test is 

the most efficient one in the Pitman sense against local departures of the null (see, Robinson, 

1994).55 

 For the purpose of the present work, we simplify the model in Robinson (1994) and 

assume that h = 1 in (8), so that we have a scalar order of integration d. Moreover, in most of 

the empirical applications conducted based on Robinson (1994), zt in (6) is supposed to be a 

linear time trend, i.e., zt = (1, t)T.66 Thus, under the null hypothesis (9), Robinson’s (1994) 

set-up becomes: 

      ,...,2,1,)1(,10  tuxLxty tt

d

tt
o  (10) 

where the errors are assumed to be white noise or weakly autocorrelated processes in turn. 

The above two equations can be written in a single one as 

                   ...,2,1,1 *

1

*

0

*  tuty tttt   ,   (11) 

where :)1(*

t

d

t yLy o  :1)1(1*

t

d

t
oL  ,)1(*

t

d

t tLt o  and given that ut is I(0) by 

construction, we can estimate β0 and β1 in (10) (or (11)) by standard OLS methods, such that 

the estimated residuals are then 

       ...,2,1,ˆ1ˆˆ *

11

*

0

*  ttyu tttt  , 

and the functional form of the test statistic is given by: 

,ˆˆ'ˆ
ˆ

ˆ 1

4
aAa

T
R 

     (12) 

where T is the sample size, and 

                                                           

55 That means that if the test is directed against local alternatives of the form: Ha: d = do + δ/(T)0.5, the limit 

distribution is χ2(ω) with a non-centrality parameter ω that is optimal under Gaussianity of ut. 
66 See Gil-Alana (2005), Gil-Alana and Moreno (2012), Gil-Alana and Hjuibens (2018), etc. 
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j
j

1
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;      
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
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



1T
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T

2
)ˆ(ˆ
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
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




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








 


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1
**

')()(ˆ)'(ˆ)(ˆ)'(ˆ)()'()(
2ˆ

j j
jj

j
jjjj

j
jj

T
A 

; 

 

,)ˆ;(log)(ˆ;
2

sin2log)( 





 juj

j

j g





             

where j = 2฀j/T, and the summation in * in the above equations is over all frequencies which 

are bounded in the spectrum.77 I(j) is the periodogram of ,ˆ
tu  and ̂ ,)(minarg 2

* 
 T

with T* as a suitable subset of the Rq Euclidean space. Finally, gu is a known function coming 

from the spectral density of ut: 

          
.),;(

2
)(

2




  uu gf
 

Note that these tests are parametric and, therefore, they require specific modelling 

assumptions about the short-memory specification of ut. In particular, if ut is a white noise, gu 

 1, whilst if it is an AR process of the form (L)ut = t, gu = (ei)-2, with 2 = V(t), with 

the AR coefficients being a function of .  

 In this context of h = 1, Robinson (1994) showed that: 

         ,,ˆ 2

1  TasR d     (13) 

where “→d” stands for convergence in distribution. Therefore, unlike in the case of other 

(unit root / fractional) procedures, this is a classical large-sample testing situation. If the test 

is carried out in the context of (10), the null Ho (9) will be rejected against the alternative Ha: 

d  do if R̂ >
2

,1  , with Prob (
2

1 >
2

,1  ) = . 

                                                           

77
 For this particular version of the tests of Robinson (1994), the spectrum has the singularity at the zero 

frequency, so, j runs from 1 to T-1. 
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2.3 The extension to the non-linear case 

In this section, we substitute the first equation in (10) by a non-linear deterministic form. In 

particular, we try (1) with the FFF approach of equation (3) (or equivalently its fractional 

formulation in (4)). Thus, the examined model under the null hypothesis (9) is now:  

,)1(,)/2(cos)/2(sin
11

tt

d

t

n

k

k

n

k

kt uxLxTtkTtkty o  



   (14) 

which becomes, 

         
...,2,1,cossin1

1

*

,

1

*

,

***  


txty t

n

k

tkk

n

k

tkkttt 
 ,              (15) 

under the appropriate transformation, with )/2(sin)1(sin*

, TtkL od

tk   and  

.)/2(cos)1(cos*

, TtkL od

tk    Thus, though the deterministic function in (4) is non-

linear, it becomes linear in parameters in (15) and the coefficients can be estimated by 

standard methods. Thus, the only change with respect to (12) is the specification of the 

estimated residuals which are now: 

          
...,2,1,cosˆsinˆˆ1ˆˆ

1

*

,
1

*

,

** 


ttyu
n

k
tkk

n

k
tkktttt 

,            (16)               

where  1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ, , ,..., , ,...,

T
T

n n      
is estimated by standard OLS methods, i.e., 

,ˆ

1

2*

1

**









T

t
t

T

t
tt

w

yw


 

with wt
* = (1t

*, tt
*, sin1t

*, …, sinnt
*, cos1t

*, …, cosnt
*)T. 

 We finish this section by presenting some simple realizations of the processes given 

by (14). For simplicity, we suppose α = β = 0, and start in Figure 1 with n = 1, and λ1 = γ1 = 

1. We consider two sample sizes, T = 100 and T = 500 and supposed that d takes the 
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following values: 0 (short memory), 0.25 (stationary long memory), 0.75 (nonstationary 

mean reverting process) and d = 1 (a unit root). 

[Insert Figures 1 - 3 about here] 

 We observe in Figure 1 that the non-linear structure is apparent in all cases with a 

somewhat cyclical pattern. If d = 0 or 0.25, the series remain stationary but as d increases to 

0.75 and 1 the series are clearly nonstationary. Across Figures 2 and 3, we still maintain n = 1 

but we allow now for fractional FFFs. We try with j1 = 0.5 (in Figure 2) and j1 = 1.5 (in 

Figure 3) for the same T- and d-values as in Figure 1. By using further unit values for k in the 

FFFs, that is extending n to 2 and 3 (k = 2 and k = 3) in Figures 4 and 5, we found patterns 

similar to those obtained for j1 = 1.5 in Figure 3. 

[Insert Figures 4 - 5 about here] 

 

3. Monte Carlo simulations 

In this section, we examine different versions of the test described in Section 2 by means of 

Monte Carlo simulations. Initially, we assume that the Data Generating Process (DGP) is the 

following one, 

           
    ,)1(;

t
/2cos4.0/2sin6.0

t
y tt

d uxLxTtTt  
         (17) 

with d = 0, 0.25, 0.75 and 1. For this purpose, we generate Gaussian series using the routines 

GASDEV and RAN3 of Press, Flannery, Teukolsky and Vetterling (1986), using different 

sample sizes, T = 100, 300, 500 and 1000, and taking 10,000 replications for each case.88 We 

present the results of the test statistic   ,2/1ˆr̂ R  with R̂  given by (12) and with the 

residuals given by (16), for a nominal size of 5%, and consider one–sided alternatives of the 

form Ha: d > do  and  Ha: d < do. Thus, a one-sided 100α%-level of (9) against the alternative 

d > do will be given by the rule: 

                                                           

88
 The codes are available from the authors upon request. 
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 “ Reject Ho if  r̂  > zα”, 

where the probability that a standard normal variate exceeds zα is α. In the same way, an 

approximate one-sided 100α%-level of (9) against the alternative d < do will be given by the 

rule: 

“ Reject Ho if  r̂  < zα”. 

Across Table 1, we examine the size and the power properties of the test in the case of 

the model given by (17) with d = 0, 0.25, 0.75 and 1, and look at the rejection frequencies of 

r̂ with do = d - 0.5, d – 0.25, d, d + 0.25 and d + 0.5. Thus, for example, if the Data 

Generating Process (DGP) is such that xt in (17) follows an I(0) process, i.e., d = 0, we look 

at alternatives with d = -0.5, -0.25, 0, 0.25 and 0.50, and the values corresponding to do = 0 

(for example in the first table panel) will indicate the size of the test. Similarly for the rest of 

the panels with do = 0.25, do = 0.75 and do = 1.00. 

[Insert Table 1 about here] 

 The first thing we observe in Table 1 is that the size of the test is clearly biased in 

small samples. Thus, for example, if T = 100 and d = 0, if we direct the test against d > 0, the 

size of the test is 0.014; however, when directed against d < 0, the value is much higher, 

0.111. In both cases it is far from the theoretical size of 0.050. Nevertheless, as we increase 

the sample size, both numbers tend to approximate the theoretical 5% level, and when T = 

1000, the values are, respectively, 0.043 and 0.058. Very similar values were obtained when 

d changes from 0 to the alternative values (0.25, 0.75 and 1) in the three remaining table 

panels. If we focus now on the rejection frequencies we notice that the lower sizes associated 

to the (d > do) alternatives produce lower rejection frequencies, though even for the smallest 

sample size (T = 100), they are close to 1 if d = do ± 0.5. 

[Insert Table 2 about here] 
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 Table 2 is similar to Table 1 but including a linear time trend. Thus, the DGP that we 

consider now is: 

        
    ,)1(;

t
/2cos4.0/2sin6.05.01

t
y tt

d uxLxTtTtt  
     (18) 

and the results are fairly similar to those presented in Table 1, though with a larger bias in the 

size in finite samples, probably due to the over-parameterization of the model, but 

considerably improving as we increase the sample size. The same experiment was also 

conducted in non-Gaussian environments. In particular, we consider the case where ut in (17) 

and (18) is distributed with a Student-t distribution with 3 degrees of freedom. This 

distribution is of interest because it just satisfies the second moment condition required in the 

test, while the third moments do not exist. The results, though not reported, produced 

essentially the same type of conclusions, with a slight bias in the sizes with the small sample 

size (T = 100) but improving considerably as we increase the sample size. Similar evidence 

was obtained when multiple frequencies were employed. 

 

4. Empirical applications 

For the empirical analysis, we consider both cyclical and trend stationary cases. First, for 

cyclical series, we consider the US unemployment rate. Also, as applied in Omay et al. 

(2016), we considered US GNP per capita for the case of trend stationarity. Both time series 

were sourced from the FRED database of the Federal Reserve Bank of St Louis 

(https://www.stlouisfed.org/). The choice of unemployment of US is a result of its cyclical 

pattern, its hysteresis and its non-linearity has been already analysed in the literature 

(Furuoka, 2014; 2016). There have also been arguments on shocks to US real GDP whether 

the shocks have temporary or permanent effects, thus checking whether output of the US 

economy as measured by real GDP or GNP is trend stationary or difference stationary (Omay 

et al., 2016). All these reasons are behind our choice of these two initial datasets. Our results, 

https://www.stlouisfed.org/
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however, did not indicate any evidence of non-linearities of the form advocated in this work, 

and based on Fourier approximations. Because of that, in addition to these two datasets, we 

also employed the Purchasing Power Parity (PPP) of some G7 countries (as measured by 

GDP per Capita). These time series were sourced from the International Monetary Fund 

(IMF) website (www.imf.org).   

 

4a. US unemployment 

The time series refers to the monthly US civilian unemployment rate from January 1948 to 

August 2018 covering a total of 848 data points.99 The plot of the series is displayed in Figure 

6 and we clearly observe a cyclical pattern in its behaviour. 

 We consider the model given by equation (14) with n = 1, assuming that xt is an I(d) 

process of the form as in (2), under the assumption that the I(0) disturbances ut are 

uncorrelated (white noise) and autocorrelated, in the latter case following the non-parametric 

approach of Bloomfield (1973).1010 Thus, under the null hypothesis (9), the model becomes: 

        
    ,)1(;

t
/2cos

1
/2sin

1t
y tt

d uxLxTtTtt  
     (18) 

and the estimated parameters, along with their corresponding t-values are reported in Table 3. 

In case of the differencing parameter d, we report the confidence band of the non-rejection 

values of d at the 5% level using the test described in Section 2.3. 

[Insert Figure 6 and Table 3 about here] 

We observe in Table 3 that under both specifications (white noise and Bloomfield-

autocorrelation), the estimated value of d is significantly higher than 1 but the estimated 

coefficients for the deterministic terms are all insignificantly different from zero. Thus, we do 

                                                           

99 A quarterly frequency version of the US unemployment rate was examined in Caporale and Gil-Alana (2007) 

and Gil-Alana and Caporale (2008). 
1010 This is a non-parametric specification in the sense that the model is only implicitly determined by its 

spectral density function. This model  of Bloomfield (1973) produces autocorrelations decaying exponentially 
fast as in the AR(MA) case. However, unlike that case, it is stationary across all its values and it accommodates 
extremely well in the context of fractional integration. (See, e.g., Gil-Alana, 2004). 

http://www.imf.org/


15 

 

not find any evidence supporting the FFF model with this data. Surprisingly, if we impose a 

priori that d = 0, the four coefficients become significant. However, that assumption is very 

unrealistic based on the estimated values of d. If we impose d = 1 (also rejected with our test) 

only the intercept becomes statistically significant. 

 

4b. US real GNP per capita 

This series is quarterly and spans from Q1 of 1947 to Q1 of 2018 covering a total of 285 (see 

Figure 7). 

[Insert Figure 7 and Table 4 about here] 

 Table 4 reports the estimates for the real GNP per capita data. We observe now that 

the estimated values of d are 1.26 under white noise and 1.11 with autocorrelation, and in the 

latter case, the I(1) hypothesis cannot be rejected. The intercept and time trend coefficients 

are now significant in both cases, but once again, we do not find any evidence of non-

linearities of the FFF form since the coefficients are both insignificant. As with the previous 

case, if we impose d = 0, the two non-linear terms become significant but we know this 

hypothesis has been rejected with the non-linear test. Estimating the model with d = 1, we 

obtain that the intercept and the time trend are again significant but not the non-linear terms. 

 

4.c A group of GDP per capita series 

In this third application, we use GDP per capita (PPP), annually, from 1960 to 2017, for the 

U.S., Canada, Japan and the U.K., and the results are reported in Table 5. 

 As in the previous cases, we report the estimated coefficients for the two cases of 

uncorrelated and autocorrelated (Bloomfield) errors. Starting with the case of white noise 

errors, the first thing we observe is that the unit root null hypothesis (i.e., d = 1) cannot be 

rejected for the cases of the U.S., Japan and the U.K., being this hypothesis rejected in favour 
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of d > 1 for Canada. We also observe that the two non-linear terms are statistically significant 

for the U.S.; one of the coefficients is significant in the case of Japan, and both coefficients 

are insignificant in the cases of Canada and the U.K.  

[Insert Table 5 about here] 

Imposing autocorrelated disturbances, the confidence intervals are extremely wide in 

case of the U.S. and Canada, observing also a substantial reduction in the degree of 

integration; for the U.S. neither the I(0) nor the I(1) hypotheses can be rejected and for 

Canada it is the I(1) null which cannot be rejected. For the other two countries the estimated 

values of d are very close to those based on white noise disturbances. Focussing now on the 

non-linear terms, this hypothesis can neither be rejected for the U.S. nor for either of the 

coefficients in the cases of Canada and Japan, while it is decisively rejected in the case of the 

U.K. 

 

5. Concluding comments 

In this article, we have presented a new testing procedure for the potentially fractional order 

of integration in time series which follow non-linear deterministic terms which are 

approximated by Fourier functions. The method is a slight modification of the one proposed 

in Robinson (1994) for the non-linear case and follows the same line of research as in Cuestas 

and Gil-Alana (2016) for the case of the Chebyshev polynomials in time. As in Robinson 

(1994) and Cuestas and Gil-Alana (2016), the proposed test statistic has a standard N(0, 1) 

distribution and several experiments conducted via Monte Carlo show that it performs 

relatively well even with small samples. Several empirical applications conducted in the 

paper show evidence of non-linear structures in the case of the U.S. GDP per capita but not in 

case of the U.K.  
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 This paper can be extended in several directions. For example, other non-linear 

structures can be examined, such as discrete and continuous threshold models in time 

functions, that is, the Markov Switching (MS), Threshold Autoregressive (TAR) and Smooth 

Transition Autoregressive (STAR) models. In addition, asymmetry and symmetry of STAR 

models could be examined, still in the context of the Robinson’s (1994) set-up, though we 

need, in such cases, some a priori knowledge about certain parameters to maintain the linear 

structure in the parameters once the fractional integration polynomial is incorporated in the 

non-linear structure (see Caporale and Gil-Alana, 2007). Finally, the extension of the tests to 

the case where the singularity in the spectrum takes place at frequencies away from zero, 

such as in the seasonal and cyclical models, will also be examined in future papers. 
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Figure 1: Simple realization of the model in (14) with α = β = 0, n = 1, λ1 = γ1 = 1. 

T  =  100 T  =  500 
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Figure 2: Simple realization of the model in (14) with α = β = 0, n = 1, j1 = 0.5, λ1 = γ1 = 1 

T  =  100 T  =  500 
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Figure 3: Simple realization of the model in (14) with α = β = 0, n = 1, j1 = 1.5, λ1 = γ1 = 1 

T  =  100 T  =  500 
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Figure 4: Simple realization of the model in (14) with α = β = 0, n = 2, λk = γk = 1 

T  =  100 T  =  500 
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Figure 5: Simple realization of the model in (14) with α = β = 0, n = 3, λk = γk = 1 

T  =  100 T  =  500 
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Figure 6:  US monthly unemployment rate 
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Figure 7:  US real GNP per capita 
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Table 1: Rejection frequencies against one-sided alternatives with FFF model and k = 1 

do   =  0 

 do   >  0 do   <  0 

T d  =  -0.50 d  =  -0.25 d  =  0 d  =  0 d  =  0.25 d  =  0.50 

100 0.996 0.474 0.014 0.111 0.940 1.000 

300 1.000 0.991 0.024 0.099 1.000 1.000 

500 1.000 1.000 0.039 0.078 1.000 1.000 

1000 1.000 1.000 0.043 0.058 1.000 1.000 

do   =  0.25 

 do   >  0.25 do   <  0.25 

T d  =  -0.25 d  =  0. d  =  025 d  =  0.25 d  =  0.50 d  =  0.75 

100 0.978 0.479 0.014 0.113 0.930 1.000 

300 1.000 0.991 0.023 0.099 1.000 1.000 

500 1.000 1.000 0.037 0.076 1.000 1.000 

1000 1.000 1.000 0.042 0.058 1.000 1.000 

do   =  0.75 

 do   >  0.50 do   <  0.50 

T d  =  0.25 d  =  0.50 d  =  0.75 d  =  0.75 d  =  1.00 d  =  1.25 

100 1.000 0.507 0.018 0.105 0.917 1.000 

300 1.000 0.993 0.030 0.093 1.000 1.000 

500 1.000 1.000 0.041 0.074 1.000 1.000 

1000 1.000 1.000 0.046 0.055 1.000 1.000 

do   =  1.00 

 do   >  1.00 do   <  1.00 

T d  =  0.50 d  =  0.75 d  =  1.00 d  =  1.00 d  =  1.25 d  =  1.50 

100 0.986 0.579 0.020 0.102 0.922 1.000 

300 1.000 0.995 0.033 0.091 1.000 1.000 

500 1.000 1.000 0.042 0.070 1.000 1.000 

1000 1.000 1.000 0.047 0.054 1.000 1.000 

In bold the size of the test 
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Table 2: Rejection frequencies against one-sided alternatives with an intercept, a linear 

trend, and FFF with k = 1 

do   =  0 

 do   <  0 do   >  0 

T d  =  -0.50 d  =  -0.25 d  =  0 d  =  0 d  =  0.25 d  =  0.50 

100 0.935 0.358 0.007 0.132 0.952 1.000 

300 1.000 0.982 0.020 0.109 1.000 1.000 

500 1.000 1.000 0.031 0.090 1.000 1.000 

1000 1.000 1.000 0.038 0.067 1.000 1.000 

do   =  0.25 

 do   <  0.25 do   >  0.25 

T d  =  -0.25 d  =  0. d  =  025 d  =  0.25 d  =  0.50 d  =  0.75 

100 0.922 0.367 0.009 0.130 0.942 1.000 

300 1.000 0.984 0.020 0.109 1.000 1.000 

500 1.000 1.000 0.032 0.090 1.000 1.000 

1000 1.000 1.000 0.038 0.069 1.000 1.000 

do   =  0.75 

 do   <  0.50 do   >  0.50 

T d  =  0.25 d  =  0.50 d  =  0.75 d  =  0.75 d  =  1.00 d  =  1.25 

100 0.948 0.435 0.012 0.128 0.936 1.000 

300 1.000 0.988 0.022 0.103 1.000 1.000 

500 1.000 1.000 0.033 0.088 1.000 1.000 

1000 1.000 1.000 0.040 0.059 1.000 1.000 

do   =  1.00 

 do   <  1.00 do   >  1.00 

T d  =  0.50 d  =  0.75 d  =  1.00 d  =  1.00 d  =  1.25 d  =  1.50 

100 0.971 0.465 0.014 0.128 0.935 1.000 

300 1.000 0.990 0.023 0.103 1.000 1.000 

500 1.000 1.000 0.033 0.087 1.000 1.000 

1000 1.000 1.000 0.041 0.059 1.000 1.000 

In bold the size of the test 
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Table 3: Estimated parameters for the US unemployment rate 

ut d α β λ1 γ1 

White noise 
1.17 

(1.13,  1.21) 
3.775 
(1.19) 

0.002 
(0.11) 

-0.066 
(-0.02) 

-0.448 
(-0.14) 

Bloomfield 
1.46 

(1.34,  1.57) 
2.002 
(0.13) 

0.046 
(0.39) 

1.859 
(0.15) 

1.233 
(0.08) 

Imposing d = 0 

----- 0.00 
4.696 

(31.52) 

0.002 

(7.68) 

0.248 

(2.17) 

-0.720 

(-10.07) 

Imposing d = 1 

----- 1.00 
1.360 

(5.40) 

0.0001 
(0.12) 

-0.038 
(-0.15) 

-0.137 
(-0.55) 

In bold in column 3 – 7, significant coefficients. T-values in parenthesis. 

 

 

Table 4: Estimated parameters for the US real GNP per capita 

ut d α β λ1 γ1 

White noise 
1.26 

(1.16,  1.37) 
12830.11 

(4.64) 

144.16 

(2.47) 

-1452.05 
(-0.58) 

1409.40 
(0.51) 

Bloomfield 
1.11 

(0.90,  1.38) 
12603.14 

(8.11) 

148.95 

(5.45) 

-1364.34 
(-0.93) 

1604.15 
(1.04) 

Imposing d = 0 

----- 0.00 
11.765.14 

(71.01) 

149.90 

(137.53) 

-1310.02 

(-10.33) 

1682.71 

(21.19) 

Imposing d = 1 

----- 1.00 
9.609 

(261.41) 

0.004 

(8.74) 

-0.035 
(-0.98) 

0.046 
(-1.30) 

In bold in column 3 - 7, significant coefficients. T-values in parenthesis. 
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Table 5: GDP per capita series 

i)    White noise disturbances 

ut d α β λ1 γ1 

U.S.A. 
1.14 

(0.92,  1.43) 
8.207 

(175.70) 

0.051 

(13.24) 

-0.104 

(-2.53) 

-0.238 

(-5.57) 

Canada 
1.27 

(1.06,  1.57) 
7.939 

(36.95) 

0.047 

(2.20) 

-0.093 
(-0.50) 

-0.225 
(-1.11) 

Japan 
1.04 

(0.76,  1.42) 
6.841 

(33.75) 

0.076 

(5.31) 

-0.088 
(-0.49) 

-0.745 

(-4.18) 

U.K. 
1.21 

(0.75,  1.74) 
7.471 

(28.15) 

0.058 

(2.35) 

-0.305 
(-1.31) 

-0.273 
(-1.10) 

ii)   Autocorrelation (Bloomfield) 

ut d α β λ1 γ1 

U.S.A. 
0.71 

(-0.02,  1.26) 
8.196 

(346.04) 

0.052 

(54.99) 

-0.091 

(-4.70) 

-0.240 

(-14.49) 

Canada 
0.67 

(0.29,  1.39) 
7.893 

(92.79) 

0.055 

(16.97) 

-0.010 
(-0.15) 

-0.247 

(-4.31) 

Japan 
1.05 

(0.88,  1.22) 
6.848 

(33.09) 

0.076 

(5.13) 

-0.085 
(-0.48) 

-0.744 

(-4.07) 

U.K. 
1.20 

(0.96,  1.49) 
7.473 

(28.77) 

0.058 

(2.43) 

-0.304 
(-1.34) 

-0.275 
(-1.13) 

In bold in column 3 – 7, significant coefficients. T-values in parenthesis. 

 


