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Abstract 
We develop a mathematical model useful to describe the stochastic dynamics and return distribution 

of the stock indexes of world’s main economies (USA, Eurozone, UK and Japan) and of the main 

emerging markets (China, Brazil, and México) incorporating risk factors as: idiosyncratic volatility, 

market volatility, and regime-switching volatility. It is assumed that the returns of the stock indexes 

are driven by fractional Brownian motions combined with Poisson processes and modulated by 

Markov chains. To do that, we calibrate Jump-GARCH models and estimate Markov regime-

switching stochastic volatility models. The proposed models properly describe the stochastic 

dynamics of the returns of the stock indexes under study during 1994-2017. The main empirical 

finding is that the USA stock market stays in high volatility most of the time and presents more 

jumps than other indexes, and that Brazil stock market has the biggest intensity of jumps during 

1994-2017. The outcome supports the hypothesis of long-term memory of stock markets. 

 
JEL Classification: N20, B23, C02. 
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Resumen 
Esta investigación desarrolla un modelo matemático útil para describir la dinámica estocástica y la 

distribución de los rendimientos de los índices bursátiles de las principales economías del mundo 

(EE.UU. Zona Euro, Reino Unido y Japón) y de los mayores mercados emergentes (China, Brasil y 

México) mediante la incorporación de factores de riesgo como: volatilidad idiosincrática, 

volatilidad del mercado y volatilidad de cambio de régimen. Se supone que los rendimientos de los 

índices bursátiles son conducidos por movimientos fraccionales brownianos combinados con 

procesos de Poisson y modulados por cadenas de Markov. Para lograr este objetivo se calibran 

modelos Jump-GARCH y se estiman modelos de volatilidad estocástica de cambio de régimen 

markoviano. Los modelos propuestos describen adecuadamente la dinámica estocástica de los 

rendimientos de los índices bursátiles bajo estudio durante 1994-2017. Los principales hallazgos 

empíricos reflejan que el mercado de capitales de EE.UU. se mantiene en alta volatilidad la mayor 

parte del tiempo y presenta más saltos que los otros índices y el mercado accionario de Brasil  

presenta grandes saltos con mayor intensidad. El resultado sostiene la hipótesis de memoria de largo 

pazo en el mercado de capitales. 

 
Clasificación JEL: N20, B23, C02. 

Palabras clave: rendimiento de índices de acciones, movimiento fraccional browniano, cambio de régimen 

markoviano, procesos de salto. 
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1. Introduction 
Over a long period of time, numerous studies on the stochastic dynamics and return 

distribution of stock market have emerged; however, there are still irregularities and 

stylized facts that need to be elucidated and explained. At present, the evolution of the 

stock market indexes follow complex dynamics coming from intricate global investment 

strategies, being necessary the generation of models with more sophisticated tools. Most of 

the available models in the specialized literature can be broadly classified in two large 

groups: models seeking to explain the fundamental value of stocks and models describing 

stock prices (Krause, 2001). In the latter, recent investigations have been focused on 

volatility of aggregate stock markets through cross-section analysis (Ang, 2004). Some 

other studies have included stochastic calculus to model stock returns and time-varying 

volatility. For example, Christoffersen et al. (2009) build up a two-factor stochastic 

volatility model useful to generate time-varying correlation. In the same line, Johnson 

(2002) develops a stochastic volatility model with time-varying correlation between returns 

and volatility. Also, An et al. (2014) use cross-section analysis of option volatilities to 

forecast stock returns. Finally, López-Herrera et al. (2009) study the long-term dependence 

on returns and volatilities. 

Some other studies focus on return distributions with time-varying moments. In this 

regard, Carr and Wu (2007) propose a stochastic skew model for foreign exchange rates; 

Pham and Touzi (1996) explore the stochastic volatility on equilibrium state prices; 

Durham and Park (2012) stress on stochastic volatility in stock returns and found that 

return distributions have time-varying skewness and kurtosis; finally, Harvey and Siddique 

(1999) examine time-varying skewness through a GARCH model, and suggest that the 

relation between skewness and variance of stock returns is linked to the seasonal variations 

in the conditional moments.   

Another factor that has been relevant in examining returns dynamics is the volatility 

of volatility.
1
 Some studies have demonstrated that the variance risk premium depends on 

volatility of volatility. For instance, Das and Sundaram (1999) examine the volatility of 

volatility and the correlation between the innovations in asset pricing. Also, Durham and 

Park (2012) develop a mixed jump-diffusion process on options with volatility of volatility 

(cf. Ang et al., 2006).   

An important characteristic of stock markets is the presence of unexpected and 

sudden jumps. In this regard, Martijn et al. (2015) suggest, by using cross-section analysis, 

that stock returns have high sensitivity to jumps and volatility risks. Moreover, Du and 

Kapadia (2011) argue that the index VIX has a critical degree of bias related to jumps. 

Also, Branger et al. (2007) propose an equilibrium model with jumps and stochastic 

volatility to describe the dynamic behaviour of stock returns. In the same line, Heston 

(1993) deals with Poisson jumps through a stochastic volatility model with returns affected 

by three factors: diffusive volatility shocks, diffusive price shocks, and price jumps. 

Finally, Bates (2008) examines investors’ behaviour about how they treat extreme events 

and common events related to jumps of stock returns. These authors treat jumps and 

diffusion risks separately (cf. Johnson, 2002).  

                                                           
1
 Volatility of volatility is a measure of volatility expect of the n-day forward price of the volatility and this 

drive nearby volatility options price. 



There are also other studies addressing options and futures markets as Garland et al. 
(2012). These authors develop a stochastic volatility model to assess several characteristics 

that are consistent with variation in the shape of return distributions by including regime-

switching to feature random changes in the volatility of volatility, leverage effect, and jump 

intensity. Santa-Clara and Yan (2010) present a model of option prices when the volatility 

of the diffusion shocks and the intensity of the jumps change over time and show that 

diffusive volatility and jump intensity capture the ex-ante risk assessed by investors of the 

S&P500 index options. Moreover, Vallejo and Venegas-Martínez (2017) model the 

dynamics of asset prices with time-inhomogeneous Markov chains and applying fractional 

Brownian motion with multiple Poisson jumps (cf. Venegas-Martínez, 2001 and 2008). 

 The above investigations have highlighted the importance of including the effect of 

the volatility, volatility of volatility, and jumps and regime-switching on stock returns. This 

paper contributes to the current literature by extending previous investigations in a model 

that includes risk factors as idiosyncratic volatility, market volatility, and volatility of 

volatility. To do that, we use fractional Brownian motion combined with jump processes 

and modulate volatility with Markov chains. In order to calibrate the proposed model, we 

estimate a Jump-Garch model, a Markov regime-switching model, and the corresponding 

Hurst coefficient.    

This paper is organized as follows: section 2 presents the proposed stochastic model 

of stock index returns; section 3 describes the data and defines the endogenous and 

exogenous variables; section 4 calibrates the proposed model; finally, section 4 provides 

the conclusions.  

  

2. Modelling Stock Index Returns 
This section presents the theoretical background of fractional Brownian motion combined 

with Poisson process modulated with Markov switching-regime stochastic volatility. Most 

of the empirical studies suggest that market volatility varies over time and stocks with high 

sensitivities to both jump and volatility risks have low expected returns (Cremers et al. 
2015). Durham and Park, (2012) propose a Markov regime-switching model of both 

volatility of volatility and jump intensity to determine the skewness and kurtosis of stock 

returns. Also, Vallejo-Jiménez and Venegas-Martínez (2017) develop a model that explains 

the dynamics of asset prices that are driven by multiple jumps, fractional Brownian motion, 

and Markov regime switching.
2
  

 In our multifactor risk model returns are driven by a fractional Brownian motion 

combined with Poisson jumps and modulated by Markov regime switching aligned ( as a 

particular case) with Durham and Park (2012):                            (1)                               (2) 

                                                           
2
 See also Christoffersen et al. (2009) and Ang et al. (2006).   

 



                 (3) 

where     is a dependent variable determining the dynamics of the stock index return,        and        are independent fractional Brownian motions,   is the Hurst parameter,   

is the annual mean of returns,     is a Poisson jumps,    is the idiosyncratic volatility, E is 

the regime state (low volatility an high volatility),    is the volatility state,     is the 

volatility of volatility, a is the speed adjustment parameter, b in the long run mean, and    , 
i =1, 2, are mean jump sizes.

3
 

 

A Markov regime-switching process (Hamilton, 2005) is a nonlinear time series 

model that integrates multiple structures to shows the behaviour of a state variable in 

different regimes. The probabilities of switching from state    to state    are given by the 

following transition matrix                        

The fractional Brownian motion     is defined on a fixed probability space with its 

augmented filtration (                                                                           The Hurst coefficient   is used as a measure of long-term memory of time series. 

It describes the irregularity of the motion, predict the stock return and reflect the 

autocorrelation on returns. It is worth mentioning that if               is not a 

semimartingale (Mandelbrot and Van Ness, 1968). In this case:
4
 

 

H = ½, the process is Brownian motion or Wiener process 

H > ½,  the increments are positively correlate (long memory) 

H < ½,  the increments are negatively correlated (mean reverting). 

 

Regarding our proposal, it is important to point out that Cajueiro and Tabak (2005) 

find that the Hurst coefficient on Brazilian stock market is time-varying; Jamdee and Los 

(2005) show that European options have long memory and are dependent on volatility; and 

Bender (2000) suggest that the law of one price holds in a market where the stock is driven 

by fractional Brownian motion. 

We review briefly the ARCH model, which is useful to explain the trend of large 

residuals to cluster together (Engle, 1982). The ARCH model is given by:                        (3) 

where     is the conditional variance,   and   are unknown parameters, and       is the lag 

of the random error term. In the GARCH model the variance term depends of the lagged 

variance as well as the lagged square residuals. It allows evaluate different type of 

persistence in volatility (Bollerslev, 1986). The GARCH model is represented by: 

                                                           
3
 Other papers dealing with jump-diffusion processes are Venegas-Martínez (2000) and (2001) and Venegas-

Martínez and González-Aréchiga (2000).   
4
 Duncan and Pasik-Duncan (1991) introduce an integration theory named Wick-Itô-Skorohod integral for 

fractional Brownian motion. 



                                                   (4) 

where     is the conditional variance,   and   and   are unknown parameters,       is the 

lag of the random deviation term,       is the lag of the variance,   is the component of the 

influence of random deviation in the previous period,   is the component of the variance in 

the previous period, and      is the level of persistence. 

 On the other hand, the Jump-GARCH model is an alternative for modelling the 

dynamics of stock indexes when sudden and unexpected jumps occur (Chen, Lin and Lin, 

2013). In this case, two stochastic innovations,      and     ,  capture the dynamic of the 

return with no jump and jump, respectively. The innovations       and      are independent 

and satisfies:  

                    (5) 

The first innovation means that market stay normal (no jump), thus                                   (6) 

and                  .     (7) 

The second innovation describes the unexpected jump, hence:                                                         (8) 

and                           (9) 

where    stands for the dynamics of the return,    is the jump component,      is the jump 

size,    is the jump intensity,   is the component of jump intensity, and    denotes the 

number of jumps. The Poisson process    with intensity parameter   satisfies:                                         (10)                                        .   (11) 

Hence,                                           .   (12) 

Then,                          (13)               .    (14) 

 
3. Data Description 
Our proposal captures and describes the dynamics of the stock index returns under study. 

The data for USA (S&P 500), Eurozone (EuroStoxx50), United of Kingdom (FTSE100), 

Japan (Nikkei), China (Hang Seng), México (IPC) and Brazil (Bovespa) were obtained 



from Bloomberg and includes daily returns of each stock index. The USA is considered as a 

benchmark since it is the world largest economy and it has the biggest financial market.
5
 

The sample period of our analysis begins on January 1994 and ends on December 

2017. The purpose of this study is to capture in our proposal the dynamics of stock market 

indexes in and out crises periods. The most relevant events are the bubble dot com in 2001, 

the subprime mortgage recession in 2008, the Eurozone debt crisis in 2011, the Brexit in 

June 2016, and the power takeover of president Trump in December 2016. The 

idiosyncratic volatility is represented by the deviation standard. The market volatility is 

calculated through the VIX index, which is a measure of 30 days expected volatility of the 

U.S. stock market, calculated from real-time mid quote prices of S&P500 call and put 

options index (CBOE). Finally, the volatility of volatility is the square return of measure by 

the VIX index. The parameters for Markov regime switching, Jump-GARCH, and the Hurst 

coefficient are calculated by different econometric techniques. 

 

4. Empirical Analysis  
The estimation of the Markov regime-switching models describing the grade of volatility of 

the previous period of the returns of S&P500, Eurostoxx50, FTSE100, Nikkei, Hang Seng, 

IPC and Bovespa indexes are shown in Table 1. 

 

Table 1. Transition probabilities of the Markov Regime-Switching Model 

Probabilities S&P500 EuroStoxx50 FTSE100 IPC Bovespa Nikkei Hang Seng 

p11 0.41424 0.52744 0.54349 0.58354 0.56479 0.46037 0.48052 

p12 0.58576 0.47255 0.45650 0.41646 0.43521 0.53963 0.51949 

p21 0.29279 0.40675 0.50486 0.38694 0.44869 0.54721 0.37474 

p22 0.70721 0.59324 0.49513 0.61306 0.55131 0.45279 0.62526 

Source: own elaboration with Bloomberg data and E-views software 

  

Table 1 shows that the S&P500 has 70% of probability to stay in high volatility 

from one period to another, followed by the Hang Seng with 62%. While, IPC, Bovespa 

and FTSE100 has more probability to stay in low volatility more time than S&P500, 

EuroStoxx50, Nikkei and Hang Seng. For S&P500 is easy to transit to high volatility with 

58%, and just 29% of the time changed from high to low volatility. 

The following Figures show the returns of S&P 500, Eurostoxx50, FTSE100, 

Nikkei, Hang Seng, IPC and Bovespa indexes from 1994 to 2017, these reflect higher 

jumps on the most relevant economic event as bubbles, crises and politiques decisions 

around the world; see Figures 1 to 7. 
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 Investors of financial markets take often decisions on basis of Eurozone and UK economic data. 



Figure 1. Returns of S&P 500 (1994-2017) 

 
Source: own elaboration with Bloomberg data 

 

 

Figure 2. Returns of EuroStoxx50 (1994-2017)   

 
Source: own elaboration with Bloomberg data 

 

 

Figure 3. Returns of FTSE100 (1994-2017)   

 

Source: own elaboration with Bloomberg data 
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Figure 4. Returns of Nikkei (1994-2017)   

 
Source: own elaboration with Bloomberg data 

 

 

Figure 5. Returns of Hang Seng (1994-2017)   

 
Source: own elaboration with Bloomberg data 

 

 

Figure 6. Returns of IPC (1994-2017)   

 
Source: own elaboration with Bloomberg data 
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Figure 7. Returns of Bovespa (1994-2017)   

 
Source: own elaboration with Bloomberg data 

 

 

Table 2 shows the summary economic events that have had impact on the stock 

index returns. 

 

Table 2. Summary of Economic and Geopolitical Shocks (1994-2017) 
 

Event S&P500 EuroStoxx50 FTSE100 Nikkei 

Hang 

Seng IPC Bovespa 

Dot Com Bubble 
End of 2000 

and 2001 

2001 and 

beginning of 

2002 

Slightly 
From 2000 

to 2002 

First 

semester   

of 2000 

End of 2000 

and 2001 

Year 

2000 

Subprime Mortgage 

Recession 

End of 2008 

and 

beginning of 

2009 

End of 2008 

and beginning 

of 2009 

Second 

half of 

2008 

Year 2009 

From 

2008 to 

2009 

End of 2008 

and 

beginning of 

2009 

Year 

2009 

Eurozone Debt 

Crises 
Slightly 4T2011 Slightly 

Beginning 

of 2011 

Beginning 

of 2012 
Slightly Slightly 

Brexit Slightly June 2016 June 2016 
June of 

2016 
Slightly Slightly 

June 

2016 

Power takeover 

President Trump 
Slightly Slightly Slightly 

End of 

2016 
Slightly End of 2016 

End of 

2016 

Source: own elaboration. 

 

In order to estimate the parameters of the Jump-GARCH model, we compute the log 

likelihood, evaluate the log likelihood of a GARCH model on the residuals, examine the 

jumps, and transform the accumulated first and second moments. Table 3 shows the 

estimates of the parameters of the Jump-GARCH model by using maximum likelihood for 

the returns of the stock indexes S&P500, EuroStoxx50, FTSE100, Nikkei, Hang Seng, IPC 

and Bovespa. The calibration of parameters is as follows:   is the random deviation in the 

previous period is close to 0.10;    is the lag of the variance is close to 0.90;     means 

the persistence, it is more than 0.95, thus there is evidence of a GARCH effect;   indicates 

that jumps are related with negative movements on the price for developed economies; and   the size of a jump and Bovespa index has the highest jump intensity. The percentage of 

jumps (%J) is between and 47% and 52%, for S&P500 is 52%, and for Bovespa is 47%. 

-0.200000  

-0.100000  

 -    

 0.100000  

 0.200000  

 0.300000  



Finally, The mean (   of the return is the highest for IPC and the lowest for Nikkei during 

the period of study. 

 
 

Table 3. Estimation of fractional Brownian motion combined with Jump-GARCH 
 

 
 Statistically significant at 95% confidence level     

 Source: own elaboration with Bloomberg data 

 

5. Conclusions 
 
We have studied Jump-GARCH model and modulated Markov chains to describe the 

stochastic dynamics and return distribution of the stock indexes S&P500, EuroStoxx50, 

FTSE100, Nikkei, Hang Seng, IPC and Bovespa. The outcome supports the hypothesis of 

long-term memory of stock indexes, the irregularity of the motion, and the evidence of high 

volatility on stock market from 1994 to 2017. 

 

After calibrating our model, it can be seen that the stock indexes that have major 

probability to stay in high volatility are S&P500 with 70% and Hang Seng with 62%; 

while, IPC, Bovespa and FTSE100 have high probability to stay in low volatility, 58%, 

56% and 54%, respectively. The percentage of changes from high to low volatility from 

one period to another is just 29% for S&P500. Nikkei has the bigger change to move from 

high to low volatility but it does not stay for much time in low volatility. We found that 

S&P500 and Hang Seng are more volatile than other indexes. Moreover, from the GARCH 

estimation is observed that Bovespa and FTSE100 have the highest lag random deviation 

(0.1172); Hang Seng has the highest lag variance, 0.9213; Bovespa has the biggest size and 

intensity of jumps; however, S&P has more percentage of jumps in that period. Finally, the 

behaviour of the return of all indexes follows a fractional Brownian motion since the Hurst 

coefficient     is greater than 0.5. It means that the increments are positively correlated, 

and the series have long-term memory. 
 
 
 
 

PARAMETERS S&P500 EuroStoxx50 FTSE100 IPC Bovespa Nikkei Hang Seng

0.0002940 0.0001540 0.0004290 0.0004958 0.0002748 0.0000286 0.0001576

0.0001365 0.0002031 0.0001737 0.0002323 0.0006977 0.0002410 0.0002626

0.011684 0.014252 0.013178 0.015241 0.026414 0.015523 0.016204

0.556061 0.533003 0.542380 0.516423 0.560925 0.539031 0.535857

%J 52.59522 49.21371 50.42269 49.55913 47.35933 50.06818 50.05000

0.000638 0.000569 0.000498 0.000664 0.000982 0.000365 0.000533

-0.037814 -0.013797 -0.036261 0.087828 0.065490 -0.109516 0.042823

0.000001 0.000002 0.000003 0.000001 0.000016 0.000005 0.000002

0.094715 0.081803 0.117276 0.081836 0.117298 0.101665 0.071503

0.894829 0.911664 0.864243 0.917049 0.860306 0.880997 0.921362
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