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Abstract

We consider robust inference for an autoregressive parameter in a station-

ary linear autoregressive model with GARCH innovations. As the innovations

exhibit GARCH, they are by construction heavy-tailed with some tail index κ.

This implies that the rate of convergence as well as the limiting distribution of

the least squares estimator depend on κ. In the spirit of Ibragimov and Müller

(“t-statistic based correlation and heterogeneity robust inference”, Journal of

Business & Economic Statistics, 2010, vol. 28, pp. 453-468), we consider test-

ing a hypothesis about a parameter based on a Student’s t-statistic based

on least squares estimates for a fixed number of groups of the original sam-

ple. The merit of this approach is that no knowledge about the value of κ nor

about the rate of convergence and the limiting distribution of the least squares

estimator is required. We verify that the two-sided t-test is asymptotically a

level α test whenever α ≤ 5% for any κ ≥ 2, which includes cases where the

innovations have infinite variance. A simulation experiment suggests that the

finite-sample properties of the test are quite good.
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1 Introduction

We consider, as in Zhang and Ling (2015) (ZL hereafter), the AR(p) model,

yt =
p
∑

i=1

φiyt−i + εt, (1.1)

where εt follows a general GARCH(1,1) (GGARCH) process, proposed by He and

Teräsvirta (1999),

εt = ηtht, hδ
t = b(ηt−1) + c(ηt−1)h

δ
t−1, (1.2)

with (ηt : t ∈ Z) an i.i.d. process, δ > 0, and b, c : R → R+ such that P (hδ
t > 0) = 1

and c(0) < 1. The objective of this paper is to consider a robust method for testing

a hypothesis about an element of the vector φ := (φ1, ..., φp)′ ∈ R
p. Our test exploits

the asymptotic properties of the OLS estimator for φ given by

φ̂ =





n
∑

t=p+1

Yt−1Y
′

t−1





−1



n
∑

t=p+1

Yt−1yt



 , (1.3)

where Yt = (yt, ..., yt−p+1)
′ and n is the length of the sample. Suppose that we want

to test H0 : φi = φi,0 for some i = 1, ..., p against the alternative φi 6= φi,0. What

complicates inference in the model is that (under suitable conditions) the distribu-

tion of εt is regularly varying with some tail index κ > 0. As recently demonstrated

by ZL, the value of κ determines the rate of convergence as well as the limiting

distribution of the (suitably scaled and normalized) OLS estimator. Specifically,

the limiting distribution is given by the distribution of some function of a stable

random vector with index κ/2 ∧ 2. We note that the tail index may be estimated,

by e.g. a Hill estimator, but even for a known κ ∈ (0, 4) the limiting distribution

of the OLS estimator is only partly known, in the sense that the parameters of the

limiting stable distributions are stated in terms of limiting point processes, see e.g.

Davis and Hsing (1995), Davis and Mikosch (1998), and Mikosch and Stărică (2000).

As pointed out by Lange (2011, Remark 3), we do not have an expression for the

dispersion parameters or for the dependence structure of the stable vector. Impor-

tantly, our test is robust in the sense that we are able to make inference about φi

without requiring any knowledge about (or estimation of) the index κ, the limiting

distribution, or the rate of convergence of the OLS estimator.

We show that, under suitable conditions, each element of the OLS estimator

has a mixed Gaussian distribution. This property allows us to apply a two-sided t-
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statistic based on a fixed number of groups of the sample, as considered by Ibragimov

and Müller (2010, 2016) and Ibragimov et al. (2015, Chapter 3.3). Specifically, we

split our original sample of size n into a fixed number, q ≥ 2, of equi-sized groups

(yt : t = 1 + (i − 1)⌊n/q⌋, ..., i⌊n/q⌋), i = 1, ..., q, where ⌊x⌋ denotes the integer part

of x ∈ R. For each group we obtain the OLS estimator for φ,

φ̂(j) =





j⌊n/q⌋
∑

t=p+1+(j−1)⌊n/q⌋

Yt−1Y
′

t−1





−1



j⌊n/q⌋
∑

t=p+1+(j−1)⌊n/q⌋

Yt−1yt



 , j = 1, ..., q, (1.4)

and let

Xj := (φ̂i

(j) − φi,0), j = 1, ..., q, (1.5)

in order to obtain the t-statistic based on q “observations”,

τφi=φi,0
=

√
q

X̄

sX

, (1.6)

where X̄ := q−1∑q
j=1 Xj and s2

X := (q − 1)−1∑q
j=1(Xj − X̄)2. Let Tq−1 be a random

variable with a Student’s t-distribution with q −1 degrees of freedom, and let cvq(α)

satisfy P (|Tq−1| > cvq(α)) = α for some α ≤ 2Φ(−
√

3) = 0.08326..., where Φ(·) is

the cdf of the standard normal distribution. We show that whenever κ ≥ 2 (which

is the region of the tail index for which the OLS estimator is consistent for φ),

lim supn→∞ P (|τφi=φi,0
| > cvq(α)) ≤ α under H0. Hence the two-sided group-based

t-test - that does not require any knowledge about κ, the rate of convergence, or

the limiting distribution of φ̂(j) - is asymptotically a level α test for any choice of

α ≤ 0.08326..., which includes the most commonly used α = 5%. A simulation study

shows that the robust group-based test has attractive finite-sample size and power

properties, superior to those of alternative HAC-based and (infeasible) asymptotic

tests. We are not aware of any other robust methods with appealing finite-sample

properties in the context of AR-GARCH models that do not require any knowledge

or estimation of κ, the rate of convergence, or the asymptotic distribution.

It is by now well-established that many economic and financial time series exhibit

heavy-tail behavior, large downfalls, nonlinear dependence, and volatility clustering,

see e.g. Loretan and Phillips (1994), Cont (2001), and Ibragimov et al. (2015) and

the references therein. Such features of the data may invalidate standard statistical

methods. Specifically, as mentioned, standard Gaussian-based
√

n-asymptotics of

the OLS estimator break down in the case of non-linearities and heavy-tailedness,

such as in the AR-GARCH model in (1.1)-(1.2), even in the case of finite variances

where κ ∈ (2, 4). The property that κ ∈ (2, 4), where variances are finite but
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fourth moments are infinite, are typically found in returns on stocks and exchange

rates in developed markets, whereas issues with infinite variances (κ ≤ 2) are more

prominent in such series in the case of emerging markets (Ibragimov et al., 2015,

Sections 1.2 and 3.2). Least squares estimation of the autoregressive parameters

in stationary AR models driven by heavy-tailed independent innovations has been

studied by Davis and Resnick (1986) and bootstrap-based inference has been con-

sidered by Davis and Wu (1997) and Cavaliere et al. (2016). In terms of dependent

heavy-tailed innovations, Mikosch and Stărică (2000), Lange (2011), and ZL have

investigated the properties of the least squares estimator. More recently, Cavaliere

et al. (2018) have considered bootstrap inference in non-stationary linear time series

with innovations driven by a heavy-tailed linear process.

In order to show that the two-sided t-test based on (1.6) is asymptotically valid,

we establish that the suitably scaled Xj, defined in (1.5), is asymptotically mixed

Gaussian and that Xj and Xk are asymptotically independent for j 6= k. Our

theoretical results are derived under conditions that are in line with the assumptions

in ZL under an additional restriction on ht. In particular, we assume that the

distribution of zt is symmetric and we impose a technical Assumption 2.4 (given

below) that holds in the case where ht does not depend on the sign of past values

of yt, i.e. in the absence of leverage effects.1

The remainder of the paper is organized as follows. In Section 2 we present the

asymptotic properties of the OLS estimator. In Section 3 we show that the two-

sided group-based t-test is asymptotically a level α test. Section 4 contains a short

simulation experiment where we investigate the finite-sample properties of the t-

test when testing for a zero-valued autoregressive coefficient in an AR(1)-ARCH(1)

model with potential infinite variance. Section 5 states sufficient conditions for

β-mixing for the process (1.1)-(1.2). This property is used for showing that the

group estimators in (1.5) are asymptotically independent. Section 6 provides some

concluding remarks.

Notation: We say that a random variable has a mixed Gaussian distribution

with median µ ∈ R, if it has pdf of the form,
∫∞

0 φ ((x − µ)/σ) dF (σ) , where φ(·)
is the standard normal pdf, and F (·) is an arbitrary cdf on R+ := {x ∈ R : x ≥ 0}.

A random vector Y is said to have a symmetric distribution if Y and −Y have the

same distribution. Unless stated otherwise, all limits are taken as the sample size

n tends to infinity, and “
w→” denotes convergence in distribution. For two functions

f, g : R → R+, f(x) ∼ g(x) if limx→∞ f(x)/g(x) = 1. With ‖·‖ the Euclidean norm,

1As kindly pointed out by a referee, the symmetry condition may not hold in the context of
financial stock returns, whereas it is typically found that foreign exchange rate returns are much
more symmetric, see e.g. Cont (2001).
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let Sp−1 = {x ∈ R
p : ‖x‖ = 1}. Lastly, for x ∈ R, sign(x) = 1 if x > 0, sign(x) = −1

if x < 0 and sign(x) = 0 if x = 0.

2 Properties of the OLS estimator

In this section we present the properties of the OLS estimator for φ in (1.3). We

make the following assumptions about the model in (1.1)-(1.2), in line with ZL.2

Assumption 2.1.

1. E[log(c(ηt))] < 0.

2. There exists a k0 > 0 such that E[(c(ηt))
k0 ] ≥ 1, E[(c(ηt))

k0 log+(c(ηt))] < ∞,

where log+(x) = max{0, log(x)}. Moreover, P (b(ηt) = 0) < 1, E[b(ηt)
k0 ] < ∞,

and E[|ηt|δk0 ] < ∞.

3. The distribution of ηt is symmetric and has a Lebesgue density that is strictly

positive on a neighborhood of zero, such that the conditional distribution of

log c(ηt) given {c(ηt) > 0} is non-arithmetic.

4. 1 −∑p
i=1 φiz

i 6= 0 for |z| ≤ 1.

Note that Assumptions 2.1.1-2 imply that there exists an almost surely unique,

strictly stationary, and ergodic solution to hδ
t = b(ηt−1) + c(ηt−1)h

δ
t−1, see e.g. Bu-

raczewski et al. (2016, Theorem 2.1.3). Due to the Kesten-Goldie theorem, see e.g.

Kesten (1973, Theorem 4), Assumptions 2.1.1-3 imply that there exists a unique

κ ∈ (0, δk0] such that E[(c(ηt))
κ/δ] = 1 and P (|ht| > x) ∼ c0x

−κ for some constant

c0 > 0 as x → ∞. Breiman’s lemma (see e.g. Lemma 4.2.(3) of Jessen and Mikosch,

2006) then ensures that P (|εt| > x) ∼ c0E[|ηt|κ]x−κ, see also Lemma 2.1 in ZL. By

the symmetry of ηt, the distribution of εt is symmetric and satisfies

P (εt > x) ∼ (c0/2)E[|ηt|κ]x−κ and P (−εt > x) ∼ (c0/2)E[|ηt|κ]x−κ.

Likewise (under Assumption 2.1), yt has a symmetric distribution, and by arguments

given in Lange (2011), yt has the same tail index as εt. In particular, Assumption 2.1

2Compared to assumptions H1-H3 in ZL, we have included some slightly stronger conditions.
We have added that P (b(ηt) = 0) < 1 and that the conditional distribution of log c(ηt) given
{c(ηt) > 0} is non-arithmetic, which appears to be required in order to apply Theorem 4 of Kesten
(1973) in the proof of Lemma 2.1 in the supplementary material to ZL.
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implies that the process in (1.1)-(1.2) has a strictly stationary and ergodic solution

satisfying

yt =
∞
∑

i=0

ϕiεt−i,

where the sum converges absolutely with probability one. We will assume through-

out that Assumption 2.1 is satisfied such that the process (yt) is stationary and

ergodic. Moreover, as in ZL, we assume that E[η2
t ] = 1 if κ ≥ 2. Lastly, note that

if κ > 2,

Σ := E[YtY
′

t ] exists and is positive definite, (2.1)

such that (n−p)−1∑n
t=p+1 Yt−1Y

′
t−1 = Σ+o(1) almost surely. Assumption 2.1 implies

the following result which is due to ZL.

Theorem 2.2 (Theorem 2.1 of ZL). Under Assumption 2.1, let κ > 0 satisfy

E[(c(ηt))
κ/δ] = 1. Moreover, define

a(κ)
n :=































log(n) if κ = 2,

n1−2/κ if κ ∈ (2, 4),

(n/ log(n))1/2 if κ = 4,

n1/2 if κ > 4.

With φ̂ defined in (1.3) and φ0 the true value of φ,

1. if κ ∈ (0, 2),

(φ̂ − φ0)
w→ Σ−1

κ/2Z̃κ/2,

where Z̃κ/2 is a p-dimensional stable vector with index κ/2 and Σκ/2 is a p × p

matrix with elements containing stable variables with index κ/2,

2. if κ = 2,

a(κ)
n (φ̂ − φ0)

w→
(

∞
∑

l=0

ϕlϕl+|i−j|

)−1

i,j=1,...,p

Z1,

where
(

∑∞
l=0 ϕlϕl+|i−j|

)

i,j=1,...,p
is a p × p matrix and Z1 is a p-dimensional

stable vector with index one;

3. if κ ∈ (2, 4),

a(κ)
n (φ̂ − φ0)

w→ Σ−1Zκ/2,

where Zκ/2 is a p-dimensional stable vector with index κ/2 and Σ is given by

(2.1);
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4. if κ ≥ 4,

a(κ)
n (φ̂ − φ0)

w→ Σ−1N(0, A),

where A is some positive definite constant p × p matrix.

Remark 2.3. The limiting distribution for the case κ > 4 in the above theorem is not

stated in ZL, but is immediate by noting that (φ̂−φ0) = (
∑n

t=p+1 Yt−1Y
′

t−1)
−1(

∑n
t=p+1 Yt−1εt)

and by an application of a CLT for martingales to the quantity n−1/2∑n
t=p+1 Yt−1εt.

The above theorem states the rate of convergence of the OLS estimator as well

as its limiting distribution. Note that the estimator is inconsistent for κ ∈ (0, 2),

and we will throughout focus on the case κ ≥ 2, which includes the possibility that

εt has infinite variance (κ = 2).

In order to make inference based on the group-based two-sided t-test, it is es-

sential that each element of the limiting random vector Zκ/2 is mixed Gaussian for

κ ∈ [2, 4). In order to ensure this, we make the following assumption.

Assumption 2.4. For κ ∈ [2, 4), for any u ∈ S
p−1, sign(u′Yt−1) and ht are inde-

pendent.

Remark 2.5. The assumption is sufficient for Yt−1εt being symmetric, which is im-

portant for the proof of Lemma 2.6 below. The assumption imposes additional

restrictions on ht. In particular, the assumption holds in the case where ht does

not depend on the sign of lagged values of yt, and hence when there are no leverage

effects. As an example, consider the case where p = 1 and φ1 = 0 and where ht

has a GJR-type specification, h2
t = b + c−1(ηt−1<0)η

2
t−1h

2
t−1 where b, c− > 0. Here

ht depends on sign(ηt−1) = sign(yt−1), which violates Assumption 2.4. In a simula-

tion experiment in Section 4, we consider the size properties the group-based test

when Assumption 2.4 is violated. The simulations indicate that the assumption is

important in order for the test to control size.

We obtain the following lemma.

Lemma 2.6. Suppose that the assumptions of Theorem 2.2 and Assumption 2.4

hold. For κ ≥ 2, each marginal of the limiting distribution of a(κ)
n (φ̂ − φ0), stated in

Theorem 2.2, is mixed Gaussian with zero median.

Proof. Note that (φ̂ − φ0) = (
∑n

t=p+1 Yt−1Y
′

t−1)
−1(

∑n
t=p+1 Yt−1εt). For κ ∈ [2, 4) Zκ/2

is the weak limit of the suitably scaled
∑n

t=p+1 Yt−1εt. Note that Yt−1εt = Yt−1htηt.

For any u ∈ S
p−1 and any x ∈ R, P (u′Yt−1ht ≤ x) = P (|u′Yt−1|ht ≤ x, sign(u′Yt−1) =

1) + P (−|u′Yt−1|ht ≤ x, sign(u′Yt−1) = −1), as the events {sign(u′Yt−1) = 1} and

{sign(u′Yt−1) = −1} are disjoint, P (u′Yt−1 = 0) = 0, and ht is strictly positive
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almost surely. Under Assumption 2.1 Yt−1 is symmetric, which by Zuo and Ser-

fling (2000, Lemma 2.1) implies that u′Yt−1 is symmetric. Hence, |u′Yt−1| and

sign(u′Yt−1) are independent. The symmetry of u′Yt−1 and Assumption 2.4 im-

ply that P (u′Yt−1ht ≤ x) = P (|u′Yt−1|ht ≤ x)P (sign(u′Yt−1) = 1)+P (−|u′Yt−1|ht ≤
x)P (sign(u′Yt−1) = −1) = P (|u′Yt−1|ht ≤ x)/2 + P (−|u′Yt−1|ht ≤ x)/2. By

similar arguments, we obtain that P (−u′Yt−1ht ≤ x) = P (|u′Yt−1|ht ≤ x)/2 +

P (−|u′Yt−1|ht ≤ x)/2, and we conclude that u′Yt−1ht is symmetric, which implies

that Yt−1ht is symmetric by Zuo and Serfling (2000, Lemma 2.1). Since Yt−1ht and

ηt are independent and since ηt is symmetric, we have that Yt−1εt is symmetric,

and hence that Zκ/2 has a symmetric stable distribution. By Samorodnitsky and

Taqqu (1994, Theorem 2.1.2),
(

∑∞
l=0 ϕlϕl+|i−j|

)−1
Z1 and Σ−1Zκ/2 have symmetric

marginals. The result then follows by noting that any univariate symmetric stable

distribution is mixed Gaussian (Samorodnitsky and Taqqu, 1994, Proposition 1.3.1)

with zero median. For κ ≥ 4 the result is immediate.

3 Inference based on the t-statistic

We seek to test the hypothesis

H0 : φi = φi,0,

against φi 6= φi,0 for some i = 1, ..., p. This will be done by relying on a t-statistic

based on q ≥ 2 groups of the original sample. Specifically, let Xj and τφi=φi,0
be

defined as in (1.5) and (1.6), respectively. By Lemma 2.6, we have that a
(κ)
⌊n/q⌋Xj is

asymptotically mixed Gaussian, and, as will be shown below, a
(κ)
⌊n/q⌋Xj and a

(κ)
⌊n/q⌋Xk

are asymptotically independent for j 6= k. This motivates an application of the

following lemma due to Ibragimov and Müller (2010).

Lemma 3.1 (Ibragimov and Müller 2010, Theorem 1 and the comments thereafter).

Let (Zj : j = 1, ..., q) be a collection of q ≥ 2 independent mixed Gaussian variables

with zero median. Let

τ =
√

q
Z̄

sZ

, (3.1)

where Z̄ := q−1∑q
j=1 Zj and s2

Z := (q − 1)−1∑q
j=1(Zj − Z̄)2 > 0. With Tq−1 a

Student’s t-distributed random variable with degrees of freedom q − 1, let cvq(α)
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satisfy P (|Tq−1| > cvq(α)) = α. Then if α ≤ 5%,

P (|τ | > cvq(α)) ≤ P (|Tq−1| > cvq(α)) = α.

As pointed out by Ibragimov and Müller (2010), the result holds for α ≤
2Φ(−

√
3) = 0.08326... where Φ(·) is the cdf of the standard normal distribution.

Moreover, the result holds for q ∈ {2, ..., 14} if α ≤ 10% and q ∈ {2, 3} if α ≤ 20%.

Throughout we focus on the most commonly used case α ≤ 5%. Note that the idea

is to use the above lemma in an asymptotic sense, as the weak limit of τφi=φi,0
in (1.6)

is of the form (3.1); see Ibragimov and Müller (2010, Section 2.2) for a discussion of

the asymptotic applicability of the lemma.

The following lemma contains sufficient conditions for asymptotic independence

between the normalized group estimators, a
(κ)
⌊n/q⌋Xj and a

(κ)
⌊n/q⌋Xk for j 6= k.3

Lemma 3.2. Suppose that Assumption 2.1 holds and that the process (yt) is β-

mixing. With Xj defined in (1.5) and a(κ)
n defined in Theorem 2.2, for κ ≥ 2,

a
(κ)
⌊n/q⌋Xj and a

(κ)
⌊n/q⌋Xk are asymptotically independent for j, k = 1, .., q, with j 6= k.

Remark 3.3. The lemma relies on assuming that (yt) is β-mixing. The assumption is

used for making a coupling argument in the proof of Lemma 3.2 below, which might

be adapted to e.g. strongly mixing processes. We refer to Chapter 5 of Rio (2017)

for more details on mixing processes and coupling. In Assumption 5.1 in Section

5 we give sufficient conditions for β-mixing. These conditions impose additional

smoothness restrictions on the functions b and c driving ht in (1.2). We emphasize

that the conditions are sufficient, and may in some cases be relaxed. As an example,

consider the case δ = 1, p = 1 and φ = 0 where ht = b + γ|ηt−1|ht−1 = b + γ|yt−1|,
b, γ > 0. Then Assumption 5.1.2 in Section 5 is violated, as c(x) = γ|x| is not

differentiable. However, it can be shown that yt has a β-mixing stationary solution

for suitable values of γ, see e.g. Kristensen and Rahbek (2005, Section 2).

Proof. Without loss of generality we may assume that p = 1 and q = 2 such that

φ = φ1 and Yt−1 = yt−1. In light of the proof of Theorem 2.1 in ZL, it suffices to show

that ã−1
⌊n/2⌋

∑⌊n/2⌋
t=2 yt−1εt and ã−1

⌊n/2⌋

∑2⌊n/2⌋
t=2+⌊n/2⌋ yt−1εt are asymptotically independent,

where ãn = n2/κ if κ ∈ [2, 4), ãn =
√

n log(n) if κ = 4, and ãn =
√

n for κ > 4. Due

to the Cramér-Wold device, the asymptotic independence holds, if we show that for

any (k1, k2) ∈ R
2, k1ã

−1
⌊n/2⌋

∑⌊n/2⌋
t=2 yt−1εt+k2ã

−1
⌊n/2⌋

∑2⌊n/2⌋
t=2+⌊n/2⌋ yt−1εt

w→ k1Z
(1)
2/κ+k2Z

(2)
2/κ

where Z
(1)
2/κ and Z

(2)
2/κ are independent and identically distributed stable random

3Let (Xn : n ∈ N) and (Yn : n ∈ N) be two sequences of random vectors. Then Xn and Yn

are said to be asymptotically independent, if (Xn, Yn)
w→ (X, Y ) as n → ∞ and X and Y are

independent.
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variables with index κ/2 ∧ 2. Let ñ := ñ(n) be an increasing sequence of positive

integers satisfying ñ = o(n) as n → ∞. It holds that

ã−1
⌊n/2⌋

2⌊n/2⌋
∑

t=2+⌊n/2⌋

yt−1εt = ã−1
⌊n/2⌋

2+⌊n/2⌋+ñ
∑

t=2+⌊n/2⌋

yt−1εt + ã−1
⌊n/2⌋

2⌊n/2⌋
∑

t=3+⌊n/2⌋+ñ

yt−1εt

=: S(1)
n + S(2)

n .

Note that

S(1)
n =

ã⌊ñ⌋

ã⌊n/2⌋

ã−1
⌊ñ⌋

2+⌊n/2⌋+ñ
∑

t=2+⌊n/2⌋

yt−1εt.

By Lemmas 3.2 and 3.3 of ZL, ã−1
⌊ñ⌋

∑2+⌊n/2⌋+ñ
t=2+⌊n/2⌋ yt−1εt = Op(1) for κ ∈ [2, 4]. By

a CLT for martingales the same property holds for κ > 4. Since ã⌊ñ⌋/ã⌊n/2⌋ =

o(1), we conclude that S(1)
n = op(1). Since (yt) is β-mixing it follows by a result

for exact coupling, see e.g. Theorem 5.1 of Rio (2017), that as ñ → ∞, S(2)
n =

ã−1
⌊n/2⌋

∑2⌊n/2⌋
t=3+⌊n/2⌋+ñ y⋆

t−1ε
⋆
t + op(1), where (y⋆

t : t ∈ Z) is a copy of (yt : t ∈ Z) and

independent of F⌊n/2⌋ := σ(yt : t ≤ ⌊n/2⌋). By Lemmas 3.2 and 3.3 of ZL (for the

case κ ∈ [2, 4]) and a CLT for martingales (for the case κ > 4),

k1ã
−1
⌊n/2⌋

⌊n/2⌋
∑

t=2

yt−1εt + k2ã
−1
⌊n/2⌋

2⌊n/2⌋
∑

t=2+⌊n/2⌋

yt−1εt

= k1ã
−1
⌊n/2⌋

⌊n/2⌋
∑

t=2

yt−1εt + k2ã
−1
⌊n/2⌋

2⌊n/2⌋
∑

t=3+⌊n/2⌋+ñ

y⋆
t−1ε

⋆
t + op(1)

w→ k1Z
(1)
2/κ + k2Z

(2)
2/κ.

Since (ε⋆
t : t ∈ Z) and

∑⌊n/2⌋
t=2 yt−1εt are independent, we conclude that Z

(1)
2/κ and Z

(2)
2/κ

are independent.

Note that by Lemmas 2.6 and 3.2 and an application of the continuous map-

ping theorem, with τφi=φi,0
defined in (1.6), τφi=φi,0

w→ τ :=
√

qZ̄/sZ where Z̄ :=

q−1∑q
j=1 Zj, s2

Z := (q − 1)−1∑q
j=1(Zj − Z̄)2 and (Zj : j = 1, ..., q) is a collec-

tion of independent, mixed Gaussian random variables with zero median. Hence,

lim supn→∞ P (|τφi=φi,0
| > cvq(α) = P (|τ | > cvq(α) ≤ P (|Tq−1| > cvq(α)) = α,

where the inequality holds by Lemma 3.1. We obtain the following theorem.

Theorem 3.4. Under the assumptions of Theorem 2.2 and Assumption 2.4, sup-

pose that κ ≥ 2, that (yt) is β-mixing, and that H0 is true. With Tq−1 a Stu-

dent’s t-distributed random variable with degrees of freedom q − 1, let cvq(α) satisfy
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P (|Tq−1| > cvq(α)) = α. With τφi=φi,0
defined in (1.6), if α ≤ 5%,

lim sup
n→∞

P (|τφi=φi,0
| > cvq(α)) ≤ α.

The theorem states that the usual two-sided t-test, based on a fixed number of

q ≥ 2 groups, is asymptotically a level α test for α ≤ 5%. The property holds for

any value of the tail index κ ≥ 2. We emphasize that the test is straightforward

to carry out in practice, it does not rely on any data-driven choices of number of

groups, and it does not require any knowledge about κ.

The group-based t-test is particularly useful for the cases where one expects that

the tail index κ ∈ [2, 4], such as in modelling of financial return data, as mentioned

in the introduction. An alternative to the group-based approach is subsampling,

which, however, is typically found to have rather poor finite-sample size and power

properties, see e.g. Ibragimov et al. (2015, Section 3.3) for simulation results for

inference for the mean (or location) of heavy-tailed (linearly) dependent time series

models. For the case κ > 4, alternative methods exist. These methods include t-

tests based on the least squares estimator and HAC-type standard errors, as well as

bootstrap methods, see e.g. Gonçalves and Kilian (2004, 2007). In the next section,

we investigate the finite-sample properties of the group-based t-test. The properties

of the test are compared to standard t-tests based on HAC standard errors as well

as to a test based on the asymptotic distribution of the OLS estimator.

4 Simulation experiment

In this section we consider the finite-sample properties of the t-test in a simulation

experiment. As a data-generating process (DGP), we use the following AR(1)-

ARCH(1),

yt = φyt−1 + εt, (4.1)

εt = ηtht, (4.2)

h2
t = 1 + γη2

t−1h
2
t−1, γ ≥ 0, (4.3)

ηt ∼ i.i.d.N(0, 1). (4.4)

The tail properties of εt have been studied in Embrechts et al. (2012, Chapters 8.4.2-

8.4.3). Specifically, whenever γ > 0 and E[log(γη2
t )] < 0, εt is regularly varying with

index κ > 0 satisfying E[(γη2
t )κ/2] = 1. If in addition |φ| < 1, the DGP in (4.1)-

(4.3) satisfies Assumption 2.1. Moreover, it can be shown that the DGP satisfies

11



Assumption 5.1 in the next section, which ensures that the stationary version of

the DGP is β-mixing, and hence that Theorem 3.4 applies. We investigate the

properties of the group-based t-test for testing the hypothesis H0 : φ = 0 for various

cases of tail heaviness at the 5% nominal level. Motivated by empirical findings

discussed in the introduction, we consider the tail indices κ = 2, 3, 4, corresponding

to γ = 1, π1/3/2, 3−1/2, respectively. We compute the empirical rejection frequencies

under the null hypothesis as well as under the alternative for φ = 0.01, 0.02, ..., 0.5.

Similar to the simulation experiments in Ibragimov et al. (2015, Chapter 3.3) we

choose q = 2, 4, 8, 16.

For comparison, we consider the performance of a two-sided t-test where φ is

estimated by OLS and the standard error is estimated using a HAC estimator, and

where the critical value is from the standard normal distribution. Specifically, and in

line with Ibragimov and Müller (2010, Section 3.1), we use a quadratic spectral esti-

mator with an automatic bandwidth selection (HAC-QA) as well as a prewhitened

variance estimator with a second stage automatic bandwidth quadratic spectral

kernel estimator (HAC-PW); see Ibragimov and Müller (2010, p.459) for additional

details and references. We emphasize, that the standard normal distribution is po-

tentially a poor approximation of the test statistics for the case κ ∈ [2, 4], in light of

Theorem 2.2 and since the consistency of HAC variance estimators is typically de-

rived for κ > 4. Lastly, we consider the performance of the asymptotic distribution

for a known κ, i.e., with φ̂ the OLS estimator and for a given n, we compare |a(κ)
n φ̂|

with its (approximate) limiting distribution (Asymp.); see Theorem 2.2. Note that

even for a known κ ∈ [2, 4) the limiting stable distributions stated in Theorem 2.2

are infeasible in the sense that the spectral measure (or dispersion parameter for the

case p = 1) of the distributions is hard to obtain from the DGP, as the distributions

are stated in terms of limiting point processes. Instead we determine the critical

values (at the 5 % nominal level) as the 95 percentile of 10,000 independent draws of

|a(κ)
n φ̂| for n = 50,000. All simulations are based on 10,000 Monte Carlo replications

and burn-in periods of 1,000 observations.

[Table 1 about here]

Table 1 contains the empirical rejection frequencies under H0 : φ = 0. Overall,

the rejection frequencies for the group-based t-test seem very reasonable for any

κ. The only situations with remarkable over-rejection are for the cases with 100

observations and 16 groups. One may note that in this case, the OLS estimator

within each group is based on six observations, and hence the underlying assump-

tions of asymptotic mixed Gaussian distributions and asymptotic independence of

12



the group estimators are potentially very poor approximations. Even for this case,

the robust test has better size properties than the HAC-QA and HAC-PW t-tests

that over-reject for κ = 2 as well as for all small sample sizes. This finding is in

line with the simulation results of Ibragimov and Müller (2010, Table 1) for AR

models with heavy-tailed linear dependent errors. The (infeasible) test based on

the asymptotic distribution is conservative for all values of κ and sample sizes. Fig-

ures 1-3 contain the size-corrected empirical power curves under the alternatives

φ = 0.01, 0.02, ..., 0.5. Unsurprisingly, the rejection frequency is increasing in φ and

n. Moreover, the empirical power is increasing in q, and we see that the test based

on two groups performs quite poorly, even for a large sample length. On the other

hand, the tests based on 8 and 16 groups seem to have quite good finite-sample power

properties, and in most cases better than those of the alternative tests. Lastly, the

empirical power seems to be slightly increasing in κ. The overall appealing finite-

sample properties of the group-based t-test are in line with the general theory on

efficiency of such tests, as discussed in detail in Ibragimov and Müller (2010, Section

4).

[Figure 1 about here]

[Figure 2 about here]

[Figure 3 about here]

As a robustness check, we consider the rejection frequencies of the tests when

the innovation ηt is asymmetric, such that the assumptions of Theorem 3.4 are

violated. We consider the DGP in (4.1)-(4.3) with ηt standardized skewed Student’s

t-distributed,

ηt ∼ i.i.d.SKST(0, 1, ξ, ν), (4.5)

as for instance considered in Giot and Laurent (2004).4

For the simulations, we choose ξ = 0.5 and ν = 50, such that the distribution

of zt is rather thin-tailed but highly asymmetric. We consider the cases κ = 2, 3, 4

for the tail index of εt. As γ = (E[|η|κ])−2/κ, we have that γ = 1 for κ = 2,

γ ≈ 0.70254 for κ = 3, and γ ≈ 0.5183 for κ = 4. We investigate the properties of

the group-based t-test as well as the HAC-based t-test. We leave out considering

4Specifically, ηt has a standardized skewed Student’s t-distribution with skewness parameter
ξ > 0 and degrees of freedom ν > 2, if it has density

f(x) =

{

2s
ξ+ξ−1 g[(sx + m)ξ] if x < −m/s,

2s
ξ+ξ−1 g[(sx + m)ξ−1] if x ≥ −m/s,
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the performance of the the t-test based on the asymptotic distribution of the OLS

estimator, as the limiting distributions stated in Theorem 2.2 are derived under the

assumption of symmetric ηt.

[Table 2 about here]

Table 2 contains the empirical rejection frequencies under H0 : φ = 0 with

asymmetric ηt. The size-properties are comparable to those reported in Table 1 for

the case of symmetric ηt. One may note that that the group-based t-tests seem

to slightly over-reject for q = 8, 16. The performance of the HAC-based tests is

qualitatively the same as in the symmetric case.

As a last robustness check, we consider the case where ht has the following

GJR-type specification,

h2
t = 1 + γ1(ηt−1<0)η

2
t−1h

2
t−1. (4.6)

As discussed in Remark 2.5, this specification of ht violates Assumption 2.4 as ht

depends on the sign of yt−1.
5 Similar to the previous simulations, we focus on the

tail indices κ = 2, 3, 4, corresponding to γ = 2, (4π)1/3/2, (2/3)1/2, respectively.

[Table 3 about here]

Table 3 contains the empirical rejection frequencies under H0 : φ = 0 and with

asymmetric ht given in (4.6). It is apparent that the group-based t-test severely

over-rejects for κ = 2, 3 and q = 4, 8, 16. The HAC-based tests do also seem to

perform quite poorly for these values of κ. For κ = 4 the rejection frequencies

are overall more reasonable, which is likely to be explained by the fact that the

limiting distribution of the suitably normalized OLS estimator is Gaussian, in light

where

m =
Γ
(

ν+1
2

)√
ν − 2

Γ
(

ν
2

)√
π

(ξ − ξ−1),

s =
√

(ξ2 + ξ−2 − 1) − m2,

g(x) =
Γ
(

ν+1
2

)

Γ
(

ν
2

)√

(ν − 2)π

(

1 +
x2

ν − 2

)

−( ν+1

2 )
,

with Γ(·) the Gamma function. By construction E[ηt] = 0 and E[η2
t ] = 1, and it holds that

ξ2 = P (ηt ≥ 0)/P (ηt < 0). The distribution is symmetric if ξ = 1, left-skewed if ξ < 1, and
right-skewed if ξ > 1.

5The specification in (4.6) violates Assumption 5.1.2 in Section 5, as c(x) = γ1(x<0)x
2 is not dif-

ferentiable. However, it can be shown that the Markov chain yt = (1 + γ1(ηt−1<0)η
2
t−1h2

t−1)1/2ηt =

(1 + γ1(yt−1<0)y
2
t−1)1/2ηt has a β-mixing stationary solution for the chosen values of γ.
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of Theorem 2.2. To conclude, the absence of leverage effects (i.e. that ht does not

depend on the lagged values of yt) appears to be important for the size-control of

the group-based t-test for κ ∈ [2, 4).

5 Sufficient conditions for β-mixing

We now state sufficient conditions for the process (yt) being β-mixing. This relies

on applying results for Markov chains, due to Meitz and Saikkonen (2008) (MS

hereafter). Define

Zt := (yt, .., yt−p, ht)
′ ∈ Z := R

p+1 × R++,

where R++ := {x ∈ R : x > 0}, and let g : R × R++ → R++ satisfy

g(ε, h) = [b(ε/h1/2) + c(ε/h1/2)hδ/2]2/δ. (5.1)

Noting that εt = yt − ∑p
i=1 φiyt−i, we have that ht = g(εt−1, ht−1). We define the

function h : Z → R++ such that ht = h(Zt−1) = g(yt−1 −∑p
i=1 φiyt−1−i, ht−1). Then

define the function F : Z × R → Z such that

Zt =























yt

yt−1

...

yt−p

ht























=























∑p
i=1 φiyt−i

yt−1

...

yt−p

h(Zt−1)























+























h1/2(Zt−1)ηt

0
...

0

0























= F (Zt−1, ηt). (5.2)

Clearly, (Zt) is a Markov chain on Z. In the following we show that the chain is

geometrically ergodic in the sense of Liebscher (2005, Definition 1). This ensures

that the stationary version of the chain is β-mixing. In addition to Assumption 2.1,

we make the following assumptions.

Assumption 5.1.

1. The distribution of ηt has a Lebesgue density which is positive and lower semi-

continuous on R.

2. The functions b, c ∈ C∞, i.e. all their derivatives are continuous on R. The

function b satisfies infx∈R b(x) > 0 and supx∈R b(x) < ∞. The function c

satisfies limx→∞ c(x) = ∞.
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3. If δ < 2, with ϕ̃ : R → R+ given by ϕ(x) = 22/δ−1c(x)2/δ, it holds that

ϕ(0) < 1. Moreover, there exists r > 0 such that E[ϕ̃(ηt)
r] < 1.

4. There exists x1 ∈ R such that b′(x1) = c′(x1) = 0. For any x2 ∈ R+ there

exists x3 ∈ R such that b′(x3) + c′(x3)x2 6= 0.

The above assumptions together with Assumption 2.1 yield the following result.

Theorem 5.2. Let Zt satisfy (5.2) for t = 1, 2, ... with some initial Z0 ∈ Z. Under

Assumptions 2.1 and 5.1, the Markov chain {Zt : t ∈ N0} is Q-geometrically ergodic.

If the chain is initiated from the invariant distribution, then it is β-mixing with

geometric decay.

Proof. The Q-geometric ergodicity follows by Theorem 1 of MS, provided that As-

sumptions 1-6 of MS hold. Assumption 1 of MS holds by Assumptions 2.1.2 and

5.1.1. Noting that the function f : Rp → R, introduced on p.455 in MS, corresponds

to f(x) = φ′x, we have that Assumption 2 of MS is satisfied. Moreover, Assump-

tion 3 of MS holds by Assumption 2.1.4 and Lemma 1 of MS. With g defined in

(5.1), we have by Assumption 5.1.2 that g is smooth (i.e. it belongs to C∞) and

that inf(ε,h)∈R×R++
g(ε, h) > 0. Hence, Assumption 4(a) of MS is satisfied. More-

over, by Assumption 5.1.2, for any h ∈ R++, limε→∞ g(ε, h) = ∞, which ensures

that Assumption 4(b) of MS is satisfied. With b := b(0) > 0 and c := c(0) < 1,

we have, in light of Assumption 5.1.2, that the sequence (hk : k = 1, 2, ...) defined

by hk = g(0, hk−1) converges to [a/(1 − b)]2/δ for any h0 ∈ R++. This gives that

Assumption 4(c) of MS is satisfied. For δ ≥ 2, g(h1/2ηt, h) ≤ b̄ + ϕ(ηt)h where

b̄ := supx∈R b(x)2/δ < ∞ and ϕ(x) = c(x)2/δ with ϕ(0) < 1, since c(0) < 1. Like-

wise, for δ < 2, g(h1/2ηt, h) ≤ b̃ + ϕ̃(ηt)h where b̃ := 22/δ−1 supx∈R b(x)2/δ < ∞ and

ϕ̃(x) = 22/δ−1c(x)2/δ with ϕ̃(0) < 1, by Assumption 5.1.3. Hence Assumption 4(d)

of MS is satisfied. Turning to Assumption 5 of MS, for the case δ ≥ 2, we have that

Assumption 2.2.1 and the fact that there exists κ > 0 such that E[(c(ηt))
κ/δ] = 1

imply that there exists r > 0 such that E[(c(ηt))
r2/δ] < 1. Hence Assumption 5 of

MS is satisfied if δ ≥ 2. If δ < 2, Assumption 5 of MS holds by Assumption 5.1.3.

Assumption 6 of MS holds by Assumption 5.1.4 and the comments on p. 460 of MS.

The β-mixing holds by Proposition 2 of Liebscher (2005).

6 Concluding remarks

We have considered a robust method for testing a hypothesis about an autoregressive

parameter in a general class of heavy-tailed AR-GARCH models. Importantly, the
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method does not require any knowledge or estimation of the tail-heaviness κ or any

knowledge of the rate of convergence or the asymptotic distribution of the (OLS)

estimators entering the test statistic. The method is found to have appealing finite-

sample size and power properties. We are not aware of any other robust methods

with such appealing finite-sample properties in the context of AR-GARCH models.

The theoretical results are derived under two symmetry conditions that impose

that the stationary distribution of the data-generating process is symmetric and

that essentially rule out leverage effects. An important direction for future research

is to combine the present approach with some symmetrization approach such that

the group-based t-test is valid under asymmetry. Specifically, this could be done

by obtaining an alternative estimator that (when suitably scaled and centered) is

asymptotically mixed Gaussian under asymmetry.
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κ = 2
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW Asymp.
100 0.0490 0.0575 0.0631 0.0839 0.1468 0.1436 0.0093
500 0.0461 0.0443 0.0473 0.0543 0.1352 0.1189 0.0243

1,000 0.0446 0.0436 0.0467 0.0493 0.1346 0.1113 0.0291
10,000 0.0403 0.0379 0.0416 0.0450 0.1267 0.1042 0.0396

κ = 3
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW Asymp.
100 0.0474 0.0565 0.0636 0.0832 0.1148 0.1115 0.0092
500 0.0475 0.0461 0.0501 0.0554 0.0843 0.0742 0.0251

1,000 0.0475 0.0450 0.0466 0.0479 0.0725 0.0623 0.0309
10,000 0.0480 0.0442 0.0444 0.0507 0.0607 0.0547 0.0394

κ = 4
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW Asymp.
100 0.0505 0.0585 0.0656 0.0848 0.1021 0.0996 0.0229
500 0.0510 0.0463 0.0508 0.0553 0.0678 0.0618 0.0375

1,000 0.0481 0.0462 0.0461 0.0506 0.0581 0.0528 0.0396
10,000 0.0498 0.0466 0.0488 0.0520 0.0522 0.0514 0.0477

Table 1: Empirical rejection frequencies for the t-test (q = 2, 4, 8, 16), the HAC-QA
t-test, the HAC-PW t-test, and the asymptotic test. The null hypothesis is φ = 0
in the AR(1)-ARCH(1) model in (4.1)-(4.4). The tests are done at the 5% nominal
level.
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Figure 1: Size-corrected empirical rejection frequencies for the t-test (q = 2, 4, 8, 16),
the HAC-QA t-test, the HAC-PW t-test, and the asymptotic test. The null hypoth-
esis is φ = 0 in the AR(1)-ARCH(1) model in (4.1)-(4.4), and the alternatives are
φ ∈ {0.01, 0.02, ..., 0.5}. Tail index, κ = 2.
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Figure 2: Size-corrected empirical rejection frequencies for the t-test (q = 2, 4, 8, 16),
the HAC-QA t-test, the HAC-PW t-test, and the asymptotic test. The null hypoth-
esis is φ = 0 in the AR(1)-ARCH(1) model in (4.1)-(4.4), and the alternatives are
φ ∈ {0.01, 0.02, ..., 0.5}. Tail index, κ = 3.
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Figure 3: Size-corrected empirical rejection frequencies for the t-test (q = 2, 4, 8, 16),
the HAC-QA t-test, the HAC-PW t-test, and the asymptotic test. The null hypoth-
esis is φ = 0 in the AR(1)-ARCH(1) model in (4.1)-(4.4), and the alternatives are
φ ∈ {0.01, 0.02, ..., 0.5}. Tail index, κ = 4.
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κ = 2
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW
100 0.0508 0.0560 0.0690 0.0857 0.1451 0.1421
500 0.0481 0.0460 0.0564 0.0614 0.1334 0.1177

1,000 0.0471 0.0448 0.0545 0.0618 0.1343 0.1154
10,000 0.0425 0.0370 0.0455 0.0544 0.1339 0.1089

κ = 3
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW
100 0.0497 0.0560 0.0696 0.0866 0.1144 0.1128
500 0.0484 0.0466 0.0559 0.0634 0.0857 0.0764

1,000 0.0494 0.0485 0.0565 0.0617 0.0783 0.0708
10,000 0.0470 0.0427 0.0476 0.0583 0.0604 0.0568

κ = 4
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW
100 0.0521 0.0557 0.0720 0.0888 0.1026 0.1017
500 0.0476 0.0485 0.0563 0.0627 0.0704 0.0663

1,000 0.0508 0.0494 0.0552 0.0626 0.0655 0.0637
10,000 0.0464 0.0479 0.0498 0.0555 0.0533 0.0511

Table 2: Empirical rejection frequencies for the t-test (q = 2, 4, 8, 16), the HAC-QA
t-test, and the HAC-PW t-test. The null hypothesis is φ = 0 in the AR(1)-ARCH(1)
model in (4.1)-(4.3),(4.5) with ξ = 0.5 and ν = 50. The tests are done at the 5%
nominal level.
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κ = 2
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW
100 0.0707 0.1016 0.0963 0.0941 0.1984 0.1958
500 0.0727 0.1478 0.1785 0.1875 0.2733 0.2434

1,000 0.0703 0.1518 0.2032 0.2372 0.2768 0.2455
10,000 0.0675 0.1445 0.2294 0.2902 0.2862 0.2546

κ = 3
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW
100 0.0540 0.0732 0.0746 0.0854 0.1198 0.1209
500 0.0580 0.0779 0.0871 0.0950 0.1208 0.1093

1,000 0.0560 0.0741 0.0895 0.0988 0.1074 0.0954
10,000 0.0540 0.0731 0.0949 0.1118 0.0998 0.0830

κ = 4
t-statistic (q)

n 2 4 8 16 HAC-QA HAC-PW
100 0.0509 0.0660 0.0688 0.0859 0.0972 0.1012
500 0.0534 0.0606 0.0652 0.0691 0.0783 0.0754

1,000 0.0499 0.0572 0.0648 0.0650 0.0699 0.0646
10,000 0.0508 0.0570 0.0616 0.0646 0.0622 0.0556

Table 3: Empirical rejection frequencies for the t-test (q = 2, 4, 8, 16), the HAC-QA
t-test, and the HAC-PW t-test. The null hypothesis is φ = 0 in the AR(1)-ARCH(1)
process in (4.1),(4.2),(4.4),(4.6). The tests are done at the 5% nominal level.
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