Logo
Munich Personal RePEc Archive

Confidence sets based on penalized maximum likelihood estimators

Pötscher, Benedikt M. and Schneider, Ulrike (2008): Confidence sets based on penalized maximum likelihood estimators.

Warning
There is a more recent version of this item available.
[thumbnail of MPRA_paper_9062.pdf]
Preview
PDF
MPRA_paper_9062.pdf

Download (175kB) | Preview

Abstract

The finite-sample coverage properties of confidence intervals based on penalized maximum likelihood estimators like the LASSO, adaptive LASSO, and hard-thresholding are analyzed. It is shown that symmetric intervals are the shortest. The length of the shortest intervals based on the hard-thresholding estimator is larger than the length of the shortest interval based on the adaptive LASSO, which is larger than the length of the shortest interval based on the LASSO, which in turn is larger than the standard interval based on the maximum likelihood estimator. In the case where the penalized estimators are tuned to possess the `sparsity property', the intervals based on these estimators are larger than the standard interval by an order of magnitude. A simple asymptotic confidence interval construction in the `sparse' case, that also applies to the smoothly clipped absolute deviation estimator, is also discussed.

Available Versions of this Item

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.