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Abstract

Markov regime-switching (MRS) models, also known as hidden Markov models (HMM),

are used extensively to account for regime heteroskedasticity within the returns of

financial assets. However, we believe this paper to be one of the first to apply such

methodology to the time series of cryptocurrencies. In light of Molnár and Thies (2018)

demonstrating that the price data of Bitcoin contained seven distinct volatility regimes,

we will fit a sample of Bitcoin returns with six m-state MRS estimations, with m ∈

{2, ..., 7}. Our aim is to identify the optimal number of states for modelling the regime

heteroskedasticity in the price data of Bitcoin. Goodness-of-fit will be judged using

three information criteria, namely: Bayesian (BIC); Hannan-Quinn (HQ); and Akaike

(AIC). We determined that the restricted 5-state model generated the optimal estima-

tion for the sample. In addition, we found evidence of volatility clustering, volatility

jumps and asymmetric volatility transitions whilst also inferring the persistence of

shocks in the price data of Bitcoin.
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1 Introduction

Cryptocurrencies are digital “assets”1 motivated to act as a medium of exchange, sup-
posedly outside the influence of any government or central bank. They are based upon
high-level cryptography that is applied to not only secure and verify transactions, but
to also modulate the creation of additional coins from a finite issue. As more coins are
“mined”, the remaining coins become more costly to decrypt, thereby providing an arti-
ficial scarcity and driving a perceived value based upon rarity and cost. The genesis of
the cryptocurrency gold rush can be traced back to the seminal paper published under the
pseudonym Satoshi Nakamoto in 2008. Various individuals have either been accused of
being the elusive Nakamoto, or have stood up to pronounce “I’m Nakamoto”. However,
mystery still surrounds the true identity of the individual, or group, who first proposed
a peer-to-peer (P2P) transactional system based upon the Blockchain distributive-ledger
technology. The first cryptocurrency born out of Nakamoto’s paper was Bitcoin in 2009.
Since then thousands of other cryptocurrencies have been launched, with the current total
capitalisation of the cryptocurrency market at over US$202.5 billion2.

These pseudo-currencies have not been far from the headlines over the past year due to the
exceptional bubble, and subsequent crash, in the price of Bitcoin towards the end of 2017.
Since then, the value of Bitcoin, and many other cryptocurrencies, have drifted slowly lower
through most of 2018. However, as Mark Twain expressed “History does not repeat itself,
but it often rhymes.” We have seen this all before, in the bubble and crash of Bitcoin in
2013. Retail investors will lick their wounds as a result of the most recent crash but they
will probably not learn their lessons. In addition, crytocurrencies have also made headlines
with respect to crypto exchanges being hacked, assets being stolen3 and in some cases the
exchange itself collapsing into bankruptcy4. The systematic and systemic risk surrounding
these unregulated instruments cannot be ignored. The U.S. Securities and Exchange Com-
mission (SEC) has warned of a possible inability to “pursue bad actors or recover funds”5

due mostly to the decentralised and unregulated nature of the cryptocurrency marketplace.

1A number of papers have been written on whether cryptocurrencies are a method of exchange (currency)
or an investment vehicle (asset), see Kubát (2015).

2Total capitalisation of the cryptocurrency market stands at US$202, 513, 161, 701. Available at: www.
coinmarketcap.com. Last accessed: 12:00 UTC, 16th September 2018.

3In 2018 alone, the exchange Bithumb was hacked for approximately £31 million, whilst the Coincheck ex-
change suffered a hack in the region of £408 million. Available at: www.coindesk.com/bithumb-exchanges-
31-million-hack-know-dont-know/. Last accessed: 9th September 2018.

4The exchange Youbit was hacked for a second time in 2017 with the theft of 17% of total assets, resulting
in the exchange declaring bankruptcy. Available at: www.coindesk.com/south-korean-bitcoin-exchange-
declare-bankruptcy-hack/. Last accessed: 9th September 2018.

5Available at: www.sec.gov/news/public-statement/statement-clayton-2017-12-11. Last accessed: 16th
September 2018.
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In addition, the UK’s Financial Conduct Authority (FCA) issued advice on the risks of
investing in cryptocurrencies6, citing: leverage; charges; funding costs; price transparency;
and price volatility as the the major risks associated with trading such instruments. Whilst
the authors of this paper do not promote investment in the current unregulated crypto
market, we do expect that regulated cryptocurrencies will appear in the future, supported
by the benefits of Blockchain for verifying the provenance of digital-assets.

Regime change in financial markets

Campbell et al. (1997) argued that for financial time series, the assumption of constant
volatility over some period of time was statistically inefficient and logically inconsistent.
This was due to the fact that such time series tended to demonstrate volatility cluster-
ing, i.e. large (small) returns were typically followed by large (small) returns. This was
one of three stylised facts often quoted when discussing financial time series, that were
first stated by Mandelbrot (1963a,b and 1967). The other two facts presented were the
heteroskedasticity of variance and the non-normal leptokurtic distribution of financial as-
set returns. An additional stylised characteristic exhibited by financial time series is the
“leverage effect”. This term evolved over time but its etymological roots can be found in
Black (1976) and refers to the asymmetric phenomena of negative returns presenting higher
volatility than positive returns of the same magnitude. Reasons proposed for the presence
of volatility clustering and the heteroskedasticity of variance in financial time series include:
dependence on the rate of information arrival to the market (Lamoureux and Lastrapes,
1990); errors in the learning processes of economic agents (Mizrach, 1990); and the artifi-
cial nature of a calendar timescale in lieu of a perceived operational timescale (Stock, 1990).

The manifestation of these stylised facts in financial markets, was that such markets tended
to change their behaviour in a sudden manner. The duration for which the new behaviour
persists was generally unknown ab intra. Ang and Timmermann (2012) stated that regime
switching models were able to capture sudden changes in the price dynamics of financial
assets, where such changes arose as a result of the aforementioned inherent stylised char-
acteristics. They continued; whilst regime switching models could be used to identify past
categorical delineations in time series data, where regimes were found econometrically, they
could also be used for ex-ante forecasting and optimising portfolio choice in real-time. In
addition, Ang and Timmermann stated that regime switching models were able to accom-
modate jumps in financial time series, by simply considering each jump as a special regime
that is exited in the immediately following instance. Given the published work of Molnár
and Thies (2018) into the price volatility of Bitcoin, we expect to see evidence of such
volatility jumps in the results of our MRS estimations.

6Available at: www.fca.org.uk/news/news-stories/consumer-warning-about-risks-investing-cryptocurrency-
cfds. Last accessed: 16th September 2018.
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The first application of a regime switching model can be found in Hamilton (1989). The
model related to the business cycle moving from states of expansion to recession and back
again around a long-term trend. Since then, regime change models have been applied
to a variety of financial applications including equities by Pagan and Sosssounov (2003).
Meanwhile, Sims and Zha (2006) fitted U.S. data to a multivariate regime-switching model
for monetary policy. They used a four-state regime-switching model with time-varying
coefficients to capture changes in policy rule. They found their model’s fit to be superior
to all other models compared that also permitted dynamic coefficients.

Regime switching models have also been applied to non-financial scenarios. Smith, Sola
and Spagnolo (2000) used a discrete state regime-switching model to estimate the tran-
sition probabilities of a simple four-state model. The model aimed to emulate the arms
race between Turkey and Greece over the period 1958–1997. The four states represented
whether each country chose a high or low share of military expenditure, with pay-offs
assumed to match those of the Prisoner’s dilemma. They found that translating a rela-
tive simple two-by-two game theory exercise into an empirical model was a complicated
process, requiring 19 free parameters. Although the number could be reduced by making
basic assumptions with regard to the strategy of each player. Similarly, we will examine
the transition probabilities within the unrestricted MRS estimations used in this paper and
make the basic assumption that near-zero values are indeed zero values. To do so we will
fit transition restriction matrices when required. This will decrease the complexity of the
estimation process and purportedly increase the goodness-of-fit of the results.

Chang et al. (2017) proposed a new approach to modelling regime switching. Their model
incorporated an autoregressive latent factor that determined regimes dependent on whether
some threshold level was breached. As opposed to previous models, they permitted the
latent factor to be endogenous with the innovations of the observed sequence rather than
exogenous; which would otherwise have transformed their approach back into the conven-
tional Markov regime-switching model.

Markov regime-switching models

Markov regime-switching (MRS) models, or hidden Markov (HMM) models, assume that
an observed process is motivated by an unobserved state process. Such models are a special
form of dependent mixture model, consisting of two parts: a parameter process that sat-
isfies the Markov property; and a state-dependent process, that results in the distribution
of specific observations being dependent only on the current state and not on previous ob-
servations or states (Langrock et al., 2016). The mathematical grounding of these models
was first developed by Baum and Petrie (1966). They used a Markov process to simulate
the hidden sequence by which an observed sequence was generated; whilst using maximum
likelihood (ML) methodology to estimate the unknown parameters of the transition and
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observation probability matrices. The computation of the likelihood, LT , of T sequential
observations (x1, x2, x3, ..., xT ) for an m-state Markov regime switching model should re-
quire TmT operations. However, the derivation of a convenient formula for the likelihood of
such models requiring only Tm2 operations can be found in Langrock et al. (2016). They
additional stated that, HMMs are perfectly suited to handling data that is overdispersed
and serial dependent.

Four years after Baum and Petrie first published on HMMs, Baum et al. (1970) published
a paper demonstrating the solution for a single observation sequence. They recommended
the application of such models for capturing stock market behaviour and weather forecast-
ing. However, it was a further 13 years before a solution for multiple observation sequences
was published by Levinson et al. (1983). To do so, they had to develop the “left-to-right
HMM” and also assume independence between each observation sequence.

Almost two decades later, the restrictive assumption of independence in the multiple ob-
servation sequences’ framework was dropped by Li et al. (2000). In doing so, they also
identified two types of multiple observation sequences, namely: the uniform dependence
observation sequences and the independence observation sequences. A year later, Ghahra-
mani (2001) set out an extensive tutorial linking HMMs and Bayesian Networks, thereby
enabling new generalisations of MRS models using: multiple unobservant state variables;
and combined continuous and discrete variables.

Over the last decade, MRS models have been applied to the time series of more traditional
financial assets, including: forecasting stock prices (Hassan and Nath, 2005); applications in
foreign exchange (Idvall and Jonsson, 2008); forecasting S&P daily prices within a equity-
selection strategy (Lajos, 2011); predicting regimes in inflation indexes (Kritzman, Page
and Turkington, 2012); analysing trends in equity markets (Kavitha, Udhayakumar and
Nagarajan, 2013); and selecting stocks based on predicting future regimes (Nguyen and
Nguyen, 2015). However, we believe this paper to be one of the first to use MRS method-
ology to account for regime heteroskedasticity in the price volatility of cryptocurrencies.

A fool’s errand

Since 2009, interest in cryptocurrencies has experienced exponential growth, buoyed by the
changing demographics of society with respect to the acceptance of disruptive innovation
in financial technology (FinTech). As such, efforts into modelling the conditional moments
of the flagship cryptocurrency Bitcoin have been extensive. There have been numerous
studies published into finding the optimal single-regime generalised autoregressive condi-
tional heteroskedasticity (GARCH) model for Bitcoin. These include: Glaser et al. (2014)
and Gronwald (2014), who declared the linear GARCH model was superior; Bouoiyour
and Selmi (2015) and Dyhrberg (2016a), who claimed that it was the Threshold GARCH
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(TGARCH) variant that was optimal; whilst Katsiampa (2017) found that both the long-
run and short-run memory elements of the Component GARCH (CGARCH) variant made
it optimal for modelling the conditional variance of Bitcoin.

The simplifying assumption that a single-regime GARCH model is suitable for capturing
the price risk of a cryptocurrency is simply ill-founded. Regime heteroskedasticity has been
shown to be present in the time series of many financial asset returns, including Bitcoin by
Molnár and Thies (2018). They utilised a Bayesian change point model to detect structural
changes in the cryptocurrency and then categorised partitions of the entire time series into
one of seven volatility regimes. Bauwens et al. (2010, 2014) shown that if single-regime
GARCH models were applied to time series that contained structural breaks, then the
estimates tended to be biased and the forecasts inferior. Therefore, searching for the opti-
mal single-regime GARCH variant for Bitcoin may well have been a fool’s errand for the
authors mentioned previously.

The pressure to publish has led many authors to present poorly conceived papers into
the optimal single-regime GARCH variant for estimating and forecasting the conditional
variance of cryptocurrencies. For examples, see Katsiampa (2017) or Chu et al. (2017).
Notwithstanding her apparent confusion between daily growth rates and daily log returns,
Katsiampa identified the Component GARCH (CGARCH) variant as optimal for the es-
timation of the conditional variance of Bitcoin. This finding was under the ill-conceived
assumption of conditionally normally distributed innovations. However, given the funda-
mental definition of the GARCH model, Sun and Zhou (2014) stated that the distribution
of innovations fits hand-in-glove with the conditional distribution of future returns. In ad-
dition, Bai et al (2003) stated that the resultant kurtosis associated with the assumption
of Gaussian innovations, tended to significantly underestimate the observed kurtosis.

A more straightforward approach would be to assume Student’s t-distributed innovations,
since the distribution possesses thicker tails than the Gaussian distribution, especially when
the degrees of freedom are low. However as Shaw (2018) stated, the Student’s t-distribution
does not possess a moment generating function (MGF). Therefore, applying Student’s t-
distributed innovations within a risk-neutral framework for financial engineering purposes,
could result in a call option that possessed infinite value (Shaw, 2018). Similarly, Shaw
argued that the lack of an MGF for the skewed generalised error distribution (SGED) in
certain circumstance meant that this was also a poor solution to the issue of identifying an
accurate and robust fix for the assumption of the distribution of innovations. Concluding,
Shaw demonstrated that the innovations of a simple single-regime linear GARCH(p, q)
model, with p, q ∈ {1, ..., 5}, for six major cryptocurrencies including Bitcoin, were indeed
conditionally non-normally distributed. This was achieved by applying a Kolmogorov-type
non-parametric test to eliminate the possibility of Gaussian innovations.
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Markov regime-switching GARCH models

Hamilton and Susmel (1994), as motivation for developing their hybrid MRS and ARCH
model (SWARCH), stated that the ARCH model provided relatively poor forecasts. Their
aim was to address the spurious high persistence issues that arose from using ARCH mod-
els on samples that contained distinct volatility regimes. They argued that being able
to model regime switching along with conditional heteroskedasticity, would allow for the
capture of changes in the factors that affect volatility and overall reflect the changing na-
ture of market conditions. Over the past two decades, MRS-GARCH models have been
used to estimate the conditional variance of more traditional financial returns time series,
including: stock index returns in Marcucci (2005); commodity returns in Alizadeh et al.
(2008); stock returns in Henry (2009); and exchange-rate returns in Wilfling (2009).

In recent days, Ardia et al. (2018) released a research note that combined the MRS and
GARCH methodologies under the framework of conditionally non-normally distributed in-
novations for Bitcoin [Regime changes in Bitcoin GARCH volatility dynamics. Finance

Research Letters. Available online: 10th August 2018]. Whilst they were able to identify
the 2-regime MRS-GARCH model as superior to the single-regime version within the com-
parative frame of forecasting value-at-risk (VaR), they limited their research to the 2- and
3-state MRS-GARCH models. A major issue with 2-state MRS models is that they do not
allow for volatility jumps; transitions can only occur between the two adjoining states and
not to additional disjoint states as is the case with higher dimensional MRS models.

As such, we recoil from the myopic pursuit of identifying the optimal single-regime GARCH
variant for Bitcoin for the reasons already stated above, see A fool’s errand.
Instead, and in response to Ardia et al. (2018) and Molnár and Thies’ (2018) papers,
we fit six m-state Markov regime switching (MRS) models, with m ∈ {2, ..., 7},
to the price data of Bitcoin, in order to identify the optimal number of states
for modelling the cyrptocurrency’s regime heteroskedasticity. We will use max-
imum likelihood (ML) for fitting the models and goodness-of-fit between the estimations
will be judged using three negated information criteria, namely: Bayesian (BIC); Hannan-
Quinn (HQ); and Akaike (AIC).

Following on: Section 2 introduces the data; Section 3 presents the models; Section 4 states
the results; and Section 5 concludes.
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2 Data

For our analysis of the cryptocurrency Bitcoin, we elected to use the daily closing prices
of the Bitcoin Coindesk Index for our data. The data is available to the public at www.
coindesk.com/price. The sample accessed was from 22nd April 2014 to 31st May 2018.
As such, the data from the 1st June 2018 to 28th September 2018 can be used for future
research as an out-of-sample data set for the evaluation of the forecasting properties of
the optimal model within both VaR and ES frameworks. However, an examination of the
runtimes for the higher-state estimations identified, see Section 4.7 Estimation runtimes,
meant that an academically-rigorous forecasting exercise for the seven MRS models was
beyond both the programming skills of the authors and the scale of this paper.

Since Bitcoin is traded seven days a week, the data set contained 1,501 observations. The
data was plotted to check for outliers and the date stamp of each observation was examined
for any repetition within the set. To limit the impact of outliers in our data, we examined
the daily returns of the sample within a logarithmic framework. Using the downloaded
closing price data, as measured at 00:00 UTC each day, daily log returns were found by
taking the natural logarithm of the ratio of two consecutive closing prices. The new sample
set of log returns contained 1,500 observations. Table 1 presents the summary statistics
for the sample of daily log returns for Bitcoin. A kurtosis value of 8.284923 indicated
the presence of non-normal leptokurtic behaviour. Figures 1, 2 and 3 (overleaf) illustrate
respectively: the daily closing price; the daily log returns; and the frequency distribution
of daily log returns for the Bitcoin Coindesk Index sample.

Table 1. Summary statistics for Bitcoin (23rd April 2014 to 31st May 2018)

Statistic Daily log returns

Observations 1,500

Mean 0.001825

Median 0.001820

Maximum 0.226412

Minimum -0.247132

Std.Dev. 0.038714

Skewness -0.281471

Kurtosis 8.284923

VaR 1% (loss) 11.6309%

VaR 5% (loss) 6.4756%
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Figure 1. Daily closing price, Bitcoin Coindesk Index (22nd April 2014 to 31st May 2018)

Figure 2. Daily log returns, Bitcoin Coindesk Index (23rd April 2014 to 31st May 2018)

Figure 3. Frequency distribution of daily log returns (23rd April 2014 to 31st May 2018)
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Jarque-Bera (JB) and the more powerful Kolmogorov-Smirnov (KS) tests were applied
and the null hypotheses of a normally distributed sample were strongly rejected at the 1%
significance level for both tests. The unit root tests, Augmented Dickey-Fuller (ADF) and
Phillips-Peron (PP), were conducted and the null hypotheses of a unit root in the returns
were rejected in both tests at the 1% significance level, indicating that stationarity was
present. The results of the tests on the sample are presented in Table 2.

Table 2. JB, KS, ADF and PP test results for Bitcoin (23rd April 2014 to 31st May 2018)

Test Score (significance)

Jarque-Bera 1,765.457***

KS 0.44861***

ADF -38.22321***

PP -38.22714***

* significance at 10% level, ** significance at 5% level and *** significance at 1% level.

Table 3 states the number of positive and negative observations within the sample as well
as the mean of the positive and negative observations. The values indicated that there
were 124 fewer negative observations in our sample. This was expected given Bitcoin in-
creased in value by 1, 345.57% over the interval sampled (US$484.43 on 22nd April 2014
to UD$7, 487.19 on 31st May 2018). However, the overall skewness of the sample was neg-
ative, see Table 1. This suggested that the magnitude of the fewer daily losses must have
exceeded those of the more frequent daily gains. A fact that is reinforced by comparing
the mean of the positive observations with the mean of the negative observations in Table
3. These facts suggests the presence of the asymmetric volatility phenomenon (AVP) or
leverage effect, in the price data of Bitcoin.

Table 3. Summary statistics for the positive and negative return subsamples

Test Score (significance)

Total obs. 1,500

Positive obs. 812

Mean positive obs. 0.025149

Negative obs. 688

Mean negative obs. -0.025702

The following section introduces the methodology applied in this paper.
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3 Methodology

Markov regime-switching (MRS) models, or hidden Markov (HMM) models, assume that
an observed process is motivated by an unobserved state process. Such models are a special
form of dependent mixture model, consisting of two parts: a parameter process that satis-
fies the Markov property; and a state-dependent process, that results in the distribution of
specific observations only depending on the current state and not on previous observations
or states (Langrock et al., 2016). For simplicity we assume the error terms in our regression
models are iid normally distributed and conditional on the current regime and that the
Markov model possesses constant probabilities, such that Ht−1 is a constant.

3.0.1 Regime probabilities

The first-order Markov assumption necessitates the probability of being in a specific state
depends on the the previous state:

P (st = j | st−1 = i) = pij(t)

Where pij(t) is time-invariant, so:

pij(t) = pij , ∀t

As such, for an m-state model, we can construct an m x m transition matrix, p(t), where
the entry pij(t) corresponds to the transition probability from state i to state j at time t:

p(t) =

















p11(t) p12(t) · · · p1m(t)

p21(t) p22(t) · · · p2m(t)
...

...
. . .

...

pm1(t) pm2(t) · · · pmm(t)

















Within the transition probability matrix, each row specifies a complete set of conditional
probabilities, as such a separate multinomial specification is generated for each row:

pij(Ht−1, γi) =
e(H

′

t−1
γij)

∑m
γ=1 e

(H′

t−1
iγ)

Where i ∈ {1, ...,m} and j ∈ {1, ...,m}.
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3.0.2 Likelihood evaluation and filtering

The necessity for a Markov switching model to have the state at time t be dependent on
the previous state at time t− 1, creates a serious issue in the estimation of the parameters
for the mixture model. Consider the pdf of a basic 2-state mixture model:

P(St = 0) · pdf(Xt | (St = 0)) + P(St = 1) · pdf(Xt | (St = 1))

This can be rewritten as:

p · pdf(Xt | (St = 0)) + (1− p) · pdf(Xt | (St = 1))

The probability of observing Xt is not dependent on any other observation of X, i.e. Xt−1.
However, the Markov switching model requires knowledge of the previous unobserved inter-
val’s state. This necessity for Markov switching models means that the above expressions
are insufficient for the maximum-likelihood estimation. Hamilton (1994) solved this issue
by making the following substitutions:

P(St = 0) = P(St−1 = 0 | {Xt−1, ..., X1}) · p+ P(St−1 = 1 | {Xt−1, ..., X1}) · (1− q)

P(St = 1) = P(St−1 = 0 | {Xt−1, ..., X1}) · (1− p) + P(St−1 = 1 | {Xt−1, ..., X1}) · q

Hamilton then stated that the above expressions can be solved by calculating:

P(St−1 = 0 | {Xt−1, ..., X1})

from:

P(St−2 = 0 | {Xt−2, ..., X1})

As such, Hamilton demonstrated that the likelihood function of Xt can be recursively
calculated from Xt−1. However, the process must be specified at time 0. That is, the
initial regime probabilities must be specified.
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3.0.3 Initial regime probabilities

The Markov regime-switching filter requires populating the filtered regime probabilities at
time 0. This can be achieved in one of four ways:

• supplying known regime probability values (user specified);

• assuming equally likely regimes at the outset (uniform);

• estimate the probabilities as if they were parameters themselves (estimated); or

• assume the values are functions of the parameters that generate the transition matrix
(ergodic solution).

For simplicity we used the last option for the initial regime probabilities due to the other
three options being either unlikely (uniform) or not possible (user supplied). However, the
ergodic solution can lead to arbitrary initialisations for time-varying transition probabili-
ties, which was not an issue for this paper.

3.0.4 Probability transition smoothing

In estimating the probability transitions, we opted to apply a smoothing technique that
uses all of the information in the sample, IT , and not just the information that preceded
period t and the observation at time t itself, It:

P(St = 0 | {XT , ..., X1})

instead of just:

P(St = 0 | {Xt, ..., X1})

Hamilton (1989) referred to the function used to produced smoothed probability transitions
as a “full-sample smoother”. However, this function requires (T 2/2) + 1 computations
per set of observations from time 1 to time T . Five years later, Kim (1994) set out a
simpler method than the one used by Hamilton that reduced the number of computations
required from T 2 to 2T . This revision was based upon the fact that smoothed and ex-post

probabilities are equal for the last observation, as such a recursive formula could be applied:

P(St = 0 | XT ) = P(St = 0 | Xt) ·

(

p00
P(St+1 = 0 | XT )

P(St+1 = 0 | Xt + 1)
+ p10

P(St+1 = 1 | XT )

P(St+1 = 1 | Xt + 1)

)

The improved estimates for the smoothed regime transitions are a result of the Markov
transition probabilities connecting the likelihood of observations from different instances.
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3.0.5 Transition probability diagrams

Traditionally, transition probability diagrams have been looped or longitudinal in nature
to express the interconnectivity of different states within a process. However, the states
referenced in this paper not only possess a categorical delineation but also an ordered de-
lineation; low-to-high volatility regimes via a variable number of transitions. As such, we
developed a column transition probability diagram in order to more intuitively represent
the ordinal nature of the volatility regimes examined. As a result, volatility jumps, which
involve a transition away from one state to another that is neither directly above nor below
itself can be identified more easily in the proposed vertically-orientated transition proba-
bility diagram.

In addition, we communicate the magnitude of a probability transition by not only stating
the value next to the corresponding transition, but also adjusting the weight of the stroke
used for each individual transition in proportion to the magnitude of the transition proba-
bility. An example of both diagram styles mapping the same fictitious process can be seen
below. It is more clearly illustrated in the vertically-orientation representation, that the
process permits jump transitions from State 4 to both States 1 and 2.

Traditional loop orientation Proposed vertical orientation
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3.0.6 Transition restriction matrices

Once an initial unrestricted m-state MRS estimation was complete, we investigated the
resultant transition probability matrix. If we found transition probability values that were
near-zero in the unrestricted estimation, for example 3.26E-09, then we would re-estimate
the model but in a restricted manner by applying an m x m transition restriction ma-
trix. For all near-zero entries in the transition probability matrix, we placed a zero in the
corresponding entry in the transition restriction matrix. The remainder of the entries in
the transition restriction matrix were designated NA, indicating that the corresponding
transitions probabilities were free to be determined via the restricted estimation. The only
caveat of the transition restriction matrix is that each row contains a full set of conditional
probabilities, as such each row must sum to one (1) in order for the transition restriction
matrix to be correctly specified. Therefore, a row of near-zero values and one non-near-zero
value would need to be specified using a one (1) rather than an NA for the non-near-zero
entry, since the single non-near-zero entry is no longer free to be estimated, but instead
must take the value one (1).

It is very important when using transition restriction matrices, that the coefficients from
the original unrestricted estimation are retained as starting values for the following re-
stricted estimation. Otherwise when the restricted estimation is run, the allocation of each
volatility regime to a state will be done so in a pseudo-random manner. As such, the
restricted transitions identified in the transition restriction matrix will possibly no longer
correspond to the correct regime transitions in the subsequent restricted estimation.

3.1 Information criterion

In order to judge the goodness-of-fit of each single-regime model, three information criteria
were used, namely: the Bayesian Information Criterion (BIC), the Akaike Information
Criterion (AIC) and the Hannan-Quinn Information Criterion (HQC).

Bayesian BIC = kln
(

n
)

− 2ln
(

L(Θ̂)
)

Akaike AIC = 2k − 2ln
(

L(Θ̂)
)

Hannan-Quinn HQC = −2ln
(

L(Θ̂)
)

+ 2kln
(

ln(n)
)

Where Θ is a vector of unknown parameters, Θ̂ is the maximum likelihood estimates of
the vector of unknown parameters and k denotes the number of unknown parameters.
For reporting the goodness-of-fit in this paper, we negated the information criteria test
statistics. As a result, the highest score intuitively corresponds to the optimal model.

The following section presents the estimation results.
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4 Results

This section presents the results for the six m-state MRS estimations, with m ∈ {2, ..., 7}.
For each estimation, we state some or all of the following elements:

• the standard deviations for each state (volatility regime);

• an unrestricted transition matrix;

• a transition restriction matrix;

• a graphical representation of the transition probabilities;

• the probability transition graphs for each state; and finally

• the estimation’s goodness-of-fit scores (negated information criteria test statistics).

4.1 2-state MRS estimation results

The standard deviations of the High and Low volatility regimes for the 2-state estima-
tion are listed in Table 4, whilst Table 5 presents the transition probability matrix for the
model. The latter table indicates the presence of volatility clustering in the price
data of Bitcoin for the 2-state model, as demonstrated by the high likelihood for each
state to remain in the same state in the following interval. That is, a High (Low) volatility
observation is typically followed by a subsequent High (Low) volatility observation. Triv-
ially, there was no requirement for the 2-state model to be re-estimated with a transition
restriction matrix applied since none of the transition probabilities had near-zero values.

Table 4. Standard deviations for the volatility regimes (2-state MRS)

1 (High) 2 (Low)

0.054406 0.016122

Table 5. Unrestricted transition probability matrix (2-state MRS)

1 (High) 2 (Low)

1 0.927027 0.072973

2 0.062301 0.937699

A graphical representation of the transition probabilities presented in Table 5 can be found
overleaf in Figure 4. Recall that the thickness of the line for each transition is reflective of
the degree of probability for that transition to occur for the following observation.
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Figure 4. Unrestricted transition probability diagram (2-state MRS)

Figures 5 and 6 illustrate the probability transitions for the 2-state MRS estimation, note
the high probability of being in State 1 (High volatility regime) from September 2017 to
March 2018, a period which covered the bubble and subsequent crash in the price of Bitcoin.

Figure 5. High state estimation probability transition graph (2-state MRS)

Figure 6. Low state estimation probability transition graph (2-state MRS)

24



Table 6. Goodness-of-fit scores (2-state MRS)

-AIC -HQC -BIC

2-state MRS 4.067042 4.061763 4.052873

The optimal estimation will be selected based upon a goodness-of-fit comparison using three
information criteria, namely: Bayesian (BIC); Hannan-Quinn (HQ) and Akaike (AIC).
Table 6 presents the goodness-of-fit scores for the 2-state estimation. We have negated the
information criteria test statistics; as such the optimal model will be selected based upon
the highest goodness-of-fit scores.

4.2 3-state MRS estimation results

The standard deviations of the High, Medium and Low volatility regimes for the 3-state
estimation are presented below in Table 7, whilst Table 8 lists the transition probability
matrix for the model. Again, there is evidence of volatility clustering in the price
data of Bitcoin. In addition, the near-zero transition probability from the High state to
the Low state in Table 8, indicated that the model would need to be re-estimated using
a restrictive transition matrix. As such, a 3 x 3 matrix A was constructed with the A13

entry set to zero (0). All other transitions would be free to be re-estimated based on the
constraint that jumping from the High state to Low state was not permitted.

Table 7. Standard deviations for the volatility regimes (3-state MRS)

1 (High) 2 (Medium) 3 (Low)

0.061261 0.026304 0.010667

Table 8. Unrestricted transition probability matrix (3-state MRS)

1 (High) 2 (Medium) 3 (Low)

1 0.923720 0.076280 6.04E-14

2 0.047742 0.906351 0.045907

3 0.015154 0.057529 0.927317

Table 9 (overleaf) states the revised transition probabilities for the restricted 3-state MRS
model. As such, setting the probability of transitioning from the High to Low state to zero,
resulted in only a marginal change in the remaining unrestricted transition probabilities.
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Table 9. Restricted transition probability matrix (3-state MRS)

1 (High) 2 (Medium) 3 (Low)

1 0.923722 0.076278 0

2 0.047741 0.906352 0.045908

3 0.015153 0.057530 0.927317

Figure 7 is a graphical representation of the transition probabilities presented in Table 9.
The absence of a transition from the High state to the Low state as a result of applying the
transition restriction matrix, is clear to be seen. The diagram indicates that the volatility
of Bitcoin can ‘jump’ from the Low state to the High state, with a probability of 1.5153%.
However, for the volatility of Bitcoin to transition from the High regime to the Low regime,
it must first pass through the Medium regime in a two-step process, with an overall likeli-
hood of only 0.3502%. Thus, the sample exhibited an asymmetric tendency in the
transition of volatility between different regimes when fitted with the 3-state
MRS model.

Figure 7. Restricted transition probability diagram (3-state MRS)

Figures 8–10 illustrate the probability transitions for the 3-state MRS estimation. The most
notable feature is the very low probability of transitioning to the Low volatility regime in
the most recent 12 months pertaining to the bubble and subsequent crash (Figure 10).
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Figure 8. High state estimation probability transition graph (3-state MRS)

Figure 9. Medium state estimation probability transition graph (3-state MRS)

Figure 10. Low state estimation probability transition graph (3-state MRS)
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Table 10. Goodness-of-fit scores (3-state MRS)

-AIC -HQC -BIC

(unrestricted) 3-state MRS 4.128235 4.116358 4.096355

(restricted) 3-state MRS 4.129568 4.119011 4.101231

Table 10 confirms that the application of a transition restriction matrix to the 3-state MRS
estimation was the optimal decision. The resultant goodness-of-fit scores for the restricted
estimation were higher than the scores for the unrestricted estimation, for all three negated
information criteria.

4.3 4-state MRS estimation results

Tables 11 and 12 respectively present the restricted standard deviations for the volatil-
ity regimes and the initial unrestricted transition probabilities estimated with the 4-state
MRS model. Due to a number of near-zero values in the transition probability matrix, we
constructed a transition restriction matrix B and re-estimated the 4-state MRS model. See
Table 13 (overleaf) for the revised restricted transition probabilities.

Table 11. Restricted standard deviations for the volatility regimes (4-state MRS)

1 (High) 2 (Medium) 3 (Low+) 4 (Low−)

0.063167 0.027787 0.017941 0.006103

Table 12. Unrestricted transition probability matrix (4-state MRS)

1 (High) 2 (Medium) 3 (Low+) 4 (Low−)

1 0.907850 0.092150 8.1E-129 6.0E-124

2 0.055149 0.914608 0.030243 3.8E-129

3 2.36E-78 4.90E-07 0.499295 0.500705

4 0.026147 0.049639 0.392787 0.531426

B =

















NA NA 0 0

NA NA NA 0

0 0 NA NA

NA NA NA NA
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Table 13. Restricted transition probability matrix (4-state MRS)

1 (High) 2 (Medium) 3 (Low+) 4 (Low−)

1 0.907860 0.092140 0 0

2 0.055150 0.914587 0.032631 0

3 0 0 0.499562 0.500438

4 0.026127 0.049749 0.392775 0.531349

As with the 2- and 3-state models, the 4-state MRS estimation also exhibited volatil-
ity clustering, although to a lesser degree for the lower volatility regimes. In addition,
we identified two volatility jumps in the 4-state model pertaining to an upward shock in
volatility; both from State 4 to States 1 and 2. In contrast, all of the volatility transition
that related to a decrease in volatility were identified solely as transitions between adjacent
states. As such, the 4-state model also demonstrated an asymmetric tendency in
the volatility transitions between regimes, in-line with the findings for the 3-state
model. Given the level of persistence in the two higher volatility regimes, any volatility
shocks from State 4 could have persisted for a number of subsequent intervals.

Figure 11. Restricted transition probability diagram (4-state MRS)
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Figure 12. High state estimation probability transition graph (4-state MRS)

Figure 13. Medium state estimation probability transition graph (4-state MRS)

Figure 14. Low+ state estimation probability transition graph (4-state MRS)
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Figure 15. Low− state estimation probability transition graph (4-state MRS)

Lastly for the 4-state MRS model, Table 14 presents the goodness-of-fit scores for both runs
of the model, namely: the unrestricted and restricted estimations. As can clearly be seen,
the unrestricted 4-state estimation generated inferior goodness-of-fit scores as compared to
the restricted estimation. As such, the application of a restrictive matrix to the 4-state
model was judged to be justified.

Table 14. Goodness-of-fit scores (4-state MRS)

-AIC -HQC -BIC

(unrestricted) 4-state MRS 4.144630 4.123516 4.087955

(restricted) 4-state MRS 4.151296 4.136781 4.112338

4.4 5-state MRS estimation results

Table 15 presents the restricted standard deviations for the volatility regimes of the 5-state
MRS estimation, whilst Table 16 presents the transition probabilities from the unrestricted
estimation of the model.

Table 15. Restricted standard deviations for the volatility regimes (5-state MRS)

1 (High) 2 (Medium+) 3 (Medium−) 4 (Low+) 5 (Low−)

0.061895 0.041963 0.017825 0.016564 0.005446
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Table 16. Unrestricted transition probability matrix (5-state MRS)

1 (High) 2 (Medium+) 3 (Medium−) 4 (Low+) 5 (Low−)

1 0.951512 0.048468 1.22E-07 1.94E-05 2.98E-09

2 3.73E-11 0.275730 0.724270 7.09E-09 1.08E-21

3 0.042213 0.370726 0.547947 0.039114 6.23E-26

4 0.010137 0.069137 6.97E-19 0.500808 0.419919

5 3.36E-07 6.89E-06 2.50E-09 0.469091 0.530902

Due to a number of near-zero values in the transition probability matrix presented in
Table 16, we constructed the transition restriction matrix C and re-estimated the 5-state
MRS model in a restricted manner. Table 17 lists the resultant restricted transition prob-
abilities, whilst Figure 16 (overleaf) illustrates these restricted transition probabilities.

C =























NA NA 0 0 0

0 NA NA 0 0

NA NA NA NA 0

NA NA 0 NA NA

0 0 0 NA NA























Table 17. Restricted transition probability matrix (5-state MRS)

1 (High) 2 (Medium+) 3 (Medium−) 4 (Low+) 5 (Low−)

1 0.951523 0.048477 0 0 0

2 0 0.270008 0.729992 0 0

3 0.042013 0.369916 0.548948 0.039123 0

4 0.010289 0.069118 0 0.499691 0.420901

5 0 0 0 0.469132 0.530868
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Figure 16. Restricted transition probability diagram (5-state MRS)

As with the previous estimations of the 2-, 3- and 4-state MRS models, the results of 5-
state MRS estimation indicated a degree of persistence in some of the states. Specifically,
States 1, 3 and 5 all indicated to varying degrees that an observation in either of these three
states would typically remain in that same state in the following interval. The estimation
indicated that the High volatility regime had a likelihood of 95.1523% to remain in the
High volatility regime in the proceeding interval. As such, the 5-state MRS model also
provided evidence to the presence of volatility clustering in the price data of
Bitcoin.
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As with the 2-, 3- and 4-state models, the 5-state MRS estimation also exhibited
volatility clustering, although to a lesser degree for the lower volatility regimes. In addi-
tion, we identified two volatility jumps in the 4-state model pertaining to an upward shock
in volatility; both from State 4 to States 1 and 2. In contrast, all of the volatility transition
that related to a decrease in volatility were solely identified as transitions between adjacent
states. As such, the 5-state model also demonstrated an asymmetric tendency in
the volatility transitions between regimes, in-line with the findings for the 3-state
model. Given the level of persistence in the two higher volatility regimes, any volatility
shocks from State 4 could have persisted for a number of subsequent intervals. Figures
17–22 follow on and illustrate the probability transitions for the 5-state MRS estimation.

Figure 17. High state estimation probability transition graph (5-state MRS)

Figure 18. Medium+ state estimation probability transition graph (5-state MRS)
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Figure 19. Medium− state estimation probability transition graph (5-state MRS)

Figure 20. Low+ state estimation probability transition graph (5-state MRS)

Figure 21. Low− state estimation probability transition graph (5-state MRS)
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Overall, the 5-state MRS estimate with a restrictive transition matrix resulted
in the highest goodness-of-fit scores for all estimations. The specific goodness-of-fit
scores for the 5-state model are presented in Table 18 (below).

Table 18. Goodness-of-fit scores (5-state MRS)

-AIC -HQC -BIC

(unrestricted) 5-state MRS 4.149319 4.116330 4.060765

(restricted) 5-state MRS 4.163990 4.145515 4.114400

4.5 Overfitted MRS estimation results

In light of a degradation in the unrestricted goodness-of-fit scores for the 6- and 7-state
models with respect to the 5-state model’s unrestricted estimation; coupled with the pres-
ence of absorbing states in the unrestricted estimation transition probabilities for the
6- and 7-state models; and the nonsensical probability transitions for the 7-state model,
we determined that both the 6- and 7-state unrestricted estimations were overfitting the
sample. As such, continuing to then fit a transition restriction matrix and re-estimate
the sample would only exacerbate the issues stated. Therefore, we discounted the 6- and
7-state models from any further consideration as optimal MRS models for capturing the
regime heteroskedastoicity of Bitcoin. The following two subsections present the results of
the unrestricted estimations for the 6- and 7-state models for completeness only.

4.5.1 6-state MRS estimation results

Tables 19 and 20 present the unrestricted standard deviations and transition probabilities
for the 6-state model. As can be seen in Table 20 (overleaf), State 5 was an absorbing
state for State 3, in that all transitions out of State 3 only transitioned to State 5. In
addition, State 4 was an absorbing state for State 1. The presence of absorbing states in
the estimation of an MRS model for a sufficiently large, non-linear time series indicated
overfitting of the sample. Figures 22 and 23 (overleaf) present the probability transitions
for the 6-state model’s unrestricted estimation and Figure 24 illustrates the unrestricted
transition probabilities for the 6-state model.

Table 19. Unrestricted standard deviations for the volatility regimes (6-state MRS)

1 (High+) 2 (High−) 3 (Med+) 4 (Med−) 5 (Low+) 6 (Low−)

0.067075 0.063763 0.028083 0.026809 0.012592 0.005661
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Table 20. Unrestricted transition probability matrix (6-state MRS)

1 (High+) 2 (High−) 3 (Med+) 4 (Med−) 5 (Low+) 6 (Low−)

1 ≈ 0 ≈ 0 ≈ 0 1.000000 ≈ 0 ≈ 0

2 ≈ 0 0.940486 0.059335 ≈ 0 ≈ 0 ≈ 0

3 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1.000000 ≈ 0

4 0.098229 0.036291 0.019440 0.831164 0.010623 0.004253

5 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.706646 0.293335

6 0.010289 ≈ 0 0.331971 0.042013 ≈ 0 0.620334

Figure 22. Probability transition graphs for States 1, 2 and 3 (6-state MRS)

Figure 23. Probability transition graphs for States 4, 5 and 6 (6-state MRS)
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Figure 24. Unrestricted transition probability diagram (6-state MRS)
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Table 21 presents the goodness-of-fit scores for the unrestricted 6-state MRS estimation.

Table 21. Goodness-of-fit scores (6-state MRS)

-AIC -HQC -BIC

(unrestricted) 6-state MRS 4.130433 4.082928 4.002916

4.5.2 7-state MRS estimation results

Tables 22 and 23 present the unrestricted standard deviations and transition probabilities
for the 7-state MRS estimation respectively. Evidence of the sample being overfitted was
immediately apparent in the transition probabilities. As can clearly be seen in the last
column of Table 23, none of the volatility regimes in the 7-state estimation transitioned
to State 7, not even State 7 itself. In addition, Figures 25–27 (overleaf) illustrate the
probability transitions for the 7-state model. Note the State 7 (Low−) probability tran-
sitions are fixed at zero (0) for the sample window, confirmation of the data being overfitted.

Table 22. Unrestricted standard deviations for the volatility regimes (7-state MRS)

1 (High+) 2 (High−) 3 (Med+) 4 (Med) 5 (Med−) 6 (Low+) 7 (Low−)

0.061895 0.041963 0.017825 0.016564 0.005446 0.005446 0.005446

Table 23. Unrestricted transition probability matrix (7-state MRS)

1 (High+) 2 (High−) 3 (Med+) 4 (Med) 5 (Med−) 6 (Low+) 7 (Low−)

1 0.950191 0.049305 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0

2 ≈ 0 ≈ 0 ≈ 0 1.000000 ≈ 0 ≈ 0 ≈ 0

3 0.019025 0.290815 0.536908 ≈ 0 0.153255 ≈ 0 ≈ 0

4 ≈ 0 ≈ 0 ≈ 0 0.550525 ≈ 0 0.444848 ≈ 0

5 0.157049 0.628382 ≈ 0 0.214568 ≈ 0 ≈ 0 ≈ 0

6 ≈ 0 ≈ 0 ≈ 0 0.444848 ≈ 0 0.550907 ≈ 0

7 ≈ 0 0.318544 ≈ 0 0.344241 0.336985 ≈ 0 ≈ 0

Figure 28 illustrates the transition probability matrix for the 7-state model. As can be seen
in Table 23 and Figure 28, State 4 was an absorbing state for State 2. The goodness-of-
fit scores for the model were as follows: -AIC 4.122400; -HQC 4.057740; and -BIC 3.948834.
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Figure 25. Probability transition graphs for States 1, 2 and 3 (7-state MRS)

Figure 26. Probability transition graphs for States 4, 5 and 6 (7-state MRS)

Figure 27. Probability transition graph for State 7 (7-state MRS)
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Figure 28. Unrestricted transition probability diagram (7-state MRS)

41



4.6 Goodness-of-fit results

Table 24 presents the amalgamated goodness-of-fit scores for the 2-state model and the
three completed restricted estimations, i.e. 3-, 4-, and 5-state models. As such, the
optimal model, as judged by the goodness-of-fit criteria, is unanimously the
restricted 5-state model.

Table 24. Restricted goodness-of-fit scores (m-state MRS, with m ∈ {2, ..., 5})

-AIC -HQC -BIC

2-state MRS 4.067042 4.061763 4.052873

(restricted) 3-state MRS 4.129568 4.119011 4.101231

(restricted) 4-state MRS 4.151296 4.136781 4.112338

(restricted) 5-state MRS 4.163990 4.145515 4.114400

Figure 29. Restricted goodness-of-fit scores versus number of states (-AIC, -HQC, -BIC)

For completeness, Table 25 (overleaf) lists the goodness-of-fit scores for all of the unre-
stricted estimations along with the 2-state model for comparative purposes. In addition,
we included the goodness-of-fit scores for the previously unmentioned 8-state model. This
model was included to confirm the downward trend in the unrestricted goodness-of-fit
scores as the estimations became overfitted for the higher state models (6- and 7-state
versions). For all of the models estimated in Table 25, only the 2-state model’s scores
should be considered as reflective of the optimal estimation for that model. Since the 3-
to 8-state models all required re-estimating using a transition restriction matrix. When
comparing like-for-like results between Tables 24 and 25, it is clear to see that the restricted
estimations outperformed the unrestricted estimations for all of the comparative models.
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Table 25. Unrestricted goodness-of-fit scores (m-state MRS, with m ∈ {2, ..., 8})

-AIC -HQC -BIC

2-state MRS 4.067042 4.061763 4.052873

(unrestricted) 3-state MRS 4.128235 4.116358 4.096355

(unrestricted) 4-state MRS 4.144630 4.123516 4.087955

(unrestricted) 5-state MRS 4.149319 4.116330 4.060765

(unrestricted) 6-state MRS 4.130433 4.082928 4.002916

(unrestricted) 7-state MRS 4.122400 4.057740 3.948834

(unrestricted) 8-state MRS 4.102808 4.018355 3.876111

Figure 30. Unrestricted goodness-of-fit scores versus number of states (-AIC, -HQC, -BIC)

4.7 Estimation runtimes

We found that as the complexity of the model increased, the runtime required to complete
each estimation significantly increased in duration. This was due to the exponential in-
crease in the number of operations that needed to be completed in order to account for
the increased dimensionality due to each additional state. Table 26 (overleaf) presents
the mean score of five unrestricted estimations per m-state model, with m ∈ {2, ..., 8}.
Whilst the 2-state MRS estimation took only 90 seconds to complete, the 7- and 8-state
MRS estimations took well over an hour on average and almost two hours for the latter
estimation. In addition, it should be noted that the runtimes listed in Table 26 are only
for the initial unrestricted estimation. As such, the times presented do not account for the
determination and construction of a transition restriction matrix and the re-estimation for
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the sample using a restricted model for the 3-state or higher models. Whilst the complexity
of the restricted estimation is lower than that of the unrestricted estimation, due to the
fewer number of operations that need to be computed, we found the reduction in runtime
was only between 10− 20% that of the original unrestricted estimation.

In making the case for an optimal model, it could be argued that the difference in the
goodness-of-fit scores for the restricted 3-, 4- and 5-state estimations with respect to the
-BIC is negligible. However, the difference in runtime between the three models is sizable
in the context a 500-interval rolling forecast exercise. As such, the determination of an
optimal model independent of the runtime required to complete the necessary estimation
is myopic thinking. The runtimes presented in this paper, however were achieved using a
standard laptop processor working in isolation. A network of more powerful workstations
operating in unison would be able to complete said exercise in a much shorter timeframe.

Table 26. Runtimes (m-state MRS, with m ∈ {2, ..., 8})

Runtime (hr:min:sec)

2-state MRS 00:01:27.69

(unrestricted) 3-state MRS 00:05:12.74

(unrestricted) 4-state MRS 00:13:00.24

(unrestricted) 5-state MRS 00:25:29.11

(unrestricted) 6-state MRS 00:50:25.77

(unrestricted) 7-state MRS 01:27:11.08

(unrestricted) 8-state MRS 01:49:32.38

Figure 31. Unrestricted goodness-of-fit scores versus runtime (minutes) (-AIC, -HQC, -BIC)
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4.8 Persistence of volatility shocks

Motivated by the volatility jumps illustrated in the transition probability diagrams for
the 3-, 4- and 5-state restricted estimations, we reviewed the corresponding transition
restriction matrices:

A =











NA NA 0

NA NA NA

NA NA NA











B =

















NA NA 0 0

NA NA NA 0

0 0 NA NA

NA NA NA NA

















C =























NA NA 0 0 0

0 NA NA 0 0

NA NA NA NA 0

NA NA 0 NA NA

0 0 0 NA NA























Each of the three transition restriction matrices contained triangles of zero entries in their
off-diagonal upper corners, although only trivially in the case of the 3 x 3 matrix A. The
position of these zeroes indicated that transitions from higher volatility regimes to lower
volatility regimes tended to occur in an ordered manner without any jumps. However,
the presence of NA entries in the off-diagonal lower corners of these matrices, indicated
that volatility could not only increase in a sequentially ordered manner, but that volatility
could also jump transition from the lowest regimes to the highest regimes. The follow-
ing matrix entries correspond to volatility jumps in the above matrices: A31; B41; B42;
C31; C41; and C42. As such volatility shocks for Bitcoin, in the form of a jump from a
lower regime to a higher regime in a single transition, would require more than a single
subsequent interval to correct. In modelling the regime heteroskedasticity of the sample
using applying Markov regime-switching models, we have shown there exists a
persistence associated with the volatility shocks in the price data of Bitcoin.
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5 Conclusion

In light of Molnár and Thies (2018) demonstrating that the price data of Bitcoin contained
seven distinct volatility regimes, and in response to the recent paper by Ardia et al (2018),
who only fitted the 2- and 3-state MRS-GRACH models to the price data of Bitcoin; we fit-
ted a sample of Bitcoin returns with six m-state MRS estimations, with m ∈ {2, ..., 7}. Our
aim was to identify the optimal number of states for modelling the regime heteroskedas-
ticity in the price data of Bitcoin. In doing so, we found that the restricted 5-state
Markov regime-switching model attained the highest goodness-of-fit scores in
our comparative study. However, for each additional state over the simple 2-state model
that was estimated, there was an increased complexity in the form of transition restric-
tion matrices and a disproportionate marginal cost in the form of computational runtime.
Whilst we did attempt to fit both the 6- and 7-state models to our sample, in reference to
Molnár and Thies’ assertion; we found that the estimation results indicated overfitting of
the sample, in the form of absorbing states and a redundant regime (State 7).

By applying Markov regime-switching models to the sample, we also found evidence of:

• volatility clustering, high degree of persistence in the 2-, 3- and 4-state estimations;

• volatility jumps, non-sequential transitions in the 3-, 4- and 5-state estimations;

• asymmetric volatility transitions, presence of volatility steps and jumps for in-
creases in volatility, but only volatility steps for decreases in volatility; and

• shock persistence, presence of asymmetric volatility transitions, so that upward
shocks in the volatility of Bitcoin typically persisted beyond a single interval.

The estimation of conditional heteroskedasticity in the time series of Bitcoin returns with-
out any consideration for the evident regime heteroskedasticity, is certainly a fool’s errand.
As such, future research should consider extending Ardia et al.’s methodology to include
4- and 5-state MRS-GARCH versions for the modelling of the cryptocurrency’s price data.
In addition, the use of GARCH variants such as EGARCH and TGARCH should also be
considered within the framework of modelling regime heteroskedasticity using the Markov
switching methodology, i.e. MRS-EGARCH and MRS-TGARCH.

Cryptocurrencies are being viewed more and more as a store of value and not just by a few
feverish converts on a cryptocurrency message board. Increasing interest in cryptocurren-
cies necessitates a better understanding of the volatility dynamics of these instruments and
the pursuit of considered and robust risk management tools. As such, the results contained
within this paper will be useful to cryptocurrency stakeholders from an option pricing and
risk management perspective.
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