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Abstract 

The present paper investigates persistence and dependence of Bitcoin on other popular 

alternative coins. We employ fractional integration approach in our analysis of persistence 

while a more recent fractional cointegration technique in VAR set-up, proposed by Johansen 

and co-authors is used to investigate dependency of the paired variables. Having segregated 

the series into periods before crash and those after the crash as determined by Bitcoin pricing, 

we obtain results of interests. Higher persistence of shocks is expected after the crash due to 

speculations in the mind of cryptocurrency traders, and more evidences of non-mean 

reversions, implying chances of further price fall in cryptocurrencies. Cointegration analysis 

between Bitcoin and alternative coin exists during both periods, with weak correlation observed 

mostly in the post-crash period. We hope the findings will serve as guide to investors in 

cryptocurrency.  
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1. Introduction 

Cryptocurrency, a digital currency that uses cryptography to ensure its security, is becoming 

popular as another alternative source of investment globally. The introduction of this new 

investment option is a result of failure of financial agencies such as central banks and the 

government to control economic activities, particularly after the 2008/09 crash in stock markets 

and 2010/2013 European sovereign debts (Balcilar et al., 2017). Instead, marketers and 

portfolio managers have lost quite much interests in stocks and other volatile assets. Despite 

the fact that cryptocurrency is yet to be accepted by government, still its popularity as a mean 

of investment and exchange continues to grow. Another noticeable trading strategy about 

cryptocurrency is that it is traded throughout the seven calendar days in the week, unlike stocks 

and other assets that are traded only in five business days and in non-public holidays. 

 The first cryptocurrency is the Bitcoin and it is the most valuable and highly capitalized 

(Corbet et al., 2018). This cryptocurrency was introduced in 2009. Since the inception, there 

was a calm increase in the price, even till 2012 when the price fluctuated around $12.0. In the 

early 2013, the price tripled, and at the end of 2013, the price of Bitcoin had skyrocketed to 

around $750. The pricing was steadily maintained at low increase for up to 2 years after and it 

skyrocketed again till it reached around $19,000 before it crashed. Currently, as at 25 

November 2018, a Bitcoin was valued at $4141.0. Still, investors and financial expert see 

cryptocurrency as alternative to other assets that can be traded. As alternative to Bitcoin, there 

are other cryptocurrency such as Ethereum, Litecoin, Ripple, Dash, etc. Actually, there are 

2074 cryptocurrency types as at 28 November 2018 (see Cointelegraph, 2018) of which 

Ethereum is next highly priced to Bitcoin. 

 As a result of the growth in cryptocurrency industry, and its global interest by traders 

and those interested in knowing more about it, it is of interest by financial time series expert to 



study its time dependent property, particularly how Bitcoin pricing relates to pricing of other 

cryptocurrency known as altcoin.1   

 In this paper, we investigate price dynamics of other cryptocurrency types to movement 

in price of Bitcoin by means of fractional cointegration technique. This technique allows one 

to first determine the order of integration of each time series x and y in the cointegrating test. 

The fractional orders, which are expected to be homogeneous, that is each time series is I(d) 

where d is the common fractional integration parameter. We estimate these orders via semi-

parametric estimation approach using Geweke and Porter-Hudak (GPH) (see Robinson, 1995a) 

and Exact Local Whittle (ELW) estimation method (see Robinson, 1995b). Then, we consider 

Fractional Cointegrating Vector AutoRegressive (FCVAR) model, which allows for multiple 

of time series to come into the cointegrating matrix at the same time. In our case, it is bivariate; 

that is we consider Bitcoin price series with each of the other altcoin price series. This model 

allows to examine the long run equilibrium process, since it actually gives the stationary model 

linking both series together. The FCVAR strategy is recently proposed in Johansen and Nielsen 

(2012, 2014).  

 The rest of the paper is structured as follows: we conduct extensive literature review on 

modelling cryptocurrency in Section 2 of the paper. In Section 3, we present our dataset and 

conduct some preliminary analysis such as the descriptive statistics and cross correlation 

matrices. In section 4, we present FCVAR statistical framework, including fractional 

persistence estimation via semi-parametric approaches. We also presents the results of the 

analysis obtained here. Finally in Section 5, we conclude the paper. 

  
 
 
  

                                                           
1 Altcoin means alternative to Bitcoin 



2. Literature Review 

The literature on virtual, digital or crypto-currencies is fast gaining popularity among 

researchers, both in the academia and in industries, such as, the banking and information 

technology (IT), among others. These virtual currencies, which are based on cryptographic 

proofs, built on the blockchain technology (Cheung et al., 2015) are fast becoming fiat 

currencies, as evidenced by their wide range of usage, which include means of payment for 

research grants by the UK government; stockpiling of cryptocurrency (specifically, Bitcoin) by 

IT companies in defence of ransomware; intra- and inter-bank transactions (e.g., the People’s 

Bank of China, Bank of Canada, Monetary Authority of Singapore, among others); investment 

or hedging strategies/options or diversification opportunities (Yi et al., 2018; Liu, 2018; Zhang 

et al., 2018; Borri, 2018; among others).  

Following the origination and introduction of the Bitcoin in 2009 by the 

“pseudonymous” Satosh Nakamoto, more than 2,000 different cryptocurrencies (extract from 

CoinMarketCap website on Nov. 28, 2018) have been developed. This is however not 

surprising, given the observed popularisation of cryptocurrencies, catalysed by recent 

innovations. Thus, in reliance on, and in conformity to the recent innovations, the transfer of 

these virtual currencies, without any intervention from the prevailing governments and/or 

monetary authorities, is not only made feasible but also easy (Dwyer, 2015). These virtual 

currencies all have similar features in some respect, however; Bitcoin differs, in terms of 

design, from all others, with the former designed to function as a global digital currency 

(CoinDesk, 2016; Zhang et al., 2018). This informs the prominence of Bitcoin related studies 

in extant literature, over the other alternatives (see Ciaian et al., 2017; Cheah et al., 2018). 

Wallace (2011) notes that it is partly due to its usage on websites where purchases of some 

legal goods can be done anonymously. Consequently, studies involving two or more 

https://www.sciencedirect.com/science/article/abs/pii/S1544612318303593#!


cryptocurrencies adopt the Bitcoin as a reference or benchmark currency (see Ammous, 2018; 

Koutmos, 2018; among others).  

Koutmos (2018) finds high degrees of contagion risk emanating from 

interdependencies among the eighteen (18) major cryptocurrencies therein considered, which 

is suggestive that the cryptocurrencies are becoming more integrated. The author’s results 

further reveals steady rise in return and volatility spillovers over time, with Bitcoin being a 

dominant contributor. However, these spillovers are time-varying in nature, exhibiting certain 

dimension of uncertainty about the future these digital currencies. In the same vein, Baur and 

Dimpfl (2018) show that volatility associated with cryptocurrencies (the 20 largest by market 

capitalization) is increased more by positive than negative shocks, a departure from the equity 

market stance. However, in another research, Yi et al. (2018) applied the spillover index 

approach to examine both static and dynamic volatility connectedness among eight typical 

cryptocurrencies. Their results revealed that their connectedness fluctuates cyclically and 

showed an obvious rise trend. In their analysis, they further construct a volatility connectedness 

network linking 52 cryptocurrencies using VARs, and they found out that the 52 

cryptocurrencies are tightly interconnected with cryptocurrencies with high market 

capitalization (e.g., Bitcoin, Litecoin and Dogecoin) propagating large volatility shocks, while 

small-cap cryptocurrencies are more likely to receive volatility shocks from others. 

Borri (2018), while estimating the conditional tail-risk for four prominent 

cryptocurrencies (bitcoin, ether, ripple and litecoin) using CoVaR, observed high exposure of 

these cryptocurrencies to tail-risk within the cryptomarket; however, in relation to other global 

assets (equity market or gold), these cryptocurrencies are not exposed to tail-risk. The returns 

on these cryptocurrencies are not only highly correlated but exhibit idiosyncratic risk, which 

can be significantly reduced. The portfolio of these currencies (see also, Brauneis and Mestel, 

2018), rather than individual currencies, offer better risk-adjusted and conditional returns, 

https://www.sciencedirect.com/science/article/abs/pii/S1544612318300990#!
https://www.sciencedirect.com/science/article/abs/pii/S1544612318300990#!


hence, their attractive returns and inherent hedging properties when included in investors’ 

portfolios. Bouri et al. (2018) show evidence of gradual erosion of the dominance of bitcoin by 

other alternative cryptocurrencies and multi-directional co-explositivity behaviour. 

Cryptocurrencies are further observed to exhibit seasonality (Kaiser, 2018); persistence 

(Caporale et al., 2018); Granger causality (Bouri et al., 2018)  

Cheah et al., (2018) studied the dynamic interdependence under a fractionally co-

integrated VAR framework, while modelling the cross-market bitcoin prices as long-memory 

processes in the individual markets and system of markets. The authors find bitcoin markets to 

be fractionally co-integrated, with uncertainty negatively affecting the co-integration 

relationship, as well as characterized by non-homogeneous informational inefficiency. Also, in 

an empirical study, Ciaian et al. (2017) examined and found interdependencies between bitcoin 

and sixteen alternative virtual currencies (altcoin) markets in the short- and long-run. A 

stronger bitcoin-altcoin price relationship is observed in the short-run, compared to the long-

run, however, in the long-run, macro-financial indicators tend to better determine the altcoin 

price formation than bitcoin. 

 

3. Data and Pretests  

The data used in this paper was extracted from an open source cryptoasset analytics database, 

Coin Metrics (https://coinmetrics.io/data-downloads/), on the 29th November, 2018. The data 

comprise prices for 13 core samples of cryptocurrencies, spanning between 7 August 2015 and 

28 November 2018, collected on a daily frequency and amounting to a total of 1,210 data 

points. The investigated cryptocurrencies include Bitcoin, Dash, Digibyte, Doge, Ethereum, 

Litecoin, Maidsafecoin, Monero, Nem, Ripple, Stellar, Verge and Vertcoin, selected based on 

data availability, high pricing and capitalization.  

https://www.sciencedirect.com/science/article/pii/S0165176518300582#!


As noted in Figure 1, we observed a great crash in cryptocurrency at the end of 2017 

(17 December), where Bitcoin reached an all-time high of $19,475.8 before crashing down 

from the next day following, and other cryptocurrencies responded to the crash within one 

month, that is till end of January 2018. As observed on the graph, Litecoin and Vertcoin 

responded to the crash in Bitcoin price faster than other cryptocurrency. The vertical line then 

divide the sample into sample before crash and sample after the crash. 

INSER FIGURE 1 ABOUT HERE 

Next, we look at the statistical distribution of the cryptocurrency prices, first, for the 

full sample period and then, for sub-samples - periods before and after the global 

cryptocurrency crash of 2017/18, separately, given in Table 1. The essence of the three different 

sample is to see if the observed statistical properties are not dependent on the sample periods 

chosen. In all three sample periods considered, we find Bitcoin to be the most valuable 

cryptocurrency with average price of $3596.6 for the full sample, $1495 before crash and 

$8194 after crash, while Doge is the least valuable cryptocurrency with prices $0.001, $0.002 

and $0.002 for sample before crash, after crash and full sample, respectively, when compared 

to the other cryptocurrencies considered in this study. Cryptocurrency prices seem to be more 

volatile after the crash compared to the prices before the crash as observed in higher standard 

deviation values in the sample observed after crash. This is however, expected as the crash 

increases speculations in the cryptocurrency market. We also find the cryptocurrencies to be 

leptokurtic in all three considered sample periods except for Ethereum and Monero in the 

periods after crash, while all the cryptocurrencies are found to be positively skewed and 

consequently non-normal, as expected of price series.  

INSERT TABLE 1 ABOUT HERE 

 As part of the pretests, we investigate linear dependency by means of cross correlations 

and correlogram. Cross-correlation analysis is used to analyse the lead-lag relationships 



between two time series of interests. This is achieved by using the cross-correlation matrices 

(CCM). The cross-covariance matrix is given as, 

Γ𝑖 = 𝐶𝑜𝑣(𝑧𝑡, 𝑧𝑡−𝑖) = 𝐸[(𝑧𝑡 − 𝜇)(𝑧𝑡−𝑖 − 𝜇)′]     (1) 

where 𝑧𝑡 = (𝑧1𝑡, 𝑧2𝑡) is a 2-dimensional time series vector of consisting of two time series 

variables of Bitcoin and other cryptocurrency, 𝜇 is the mean of each time series. Following 

Tsay (2014), univariate linear correlations are symmetric while cross correlations are 

asymmetric for lead and lags. The autocovariances of lead  i  and lag  i  are identical, 

since negative-lag cross-covariance matrix is obtained by taking the transpose of the positive-

lag cross-covariance matrix. The lag i  CCM is obtained as 

𝜌𝑖 = 𝐷−1Γ𝑖𝐷−1 = [𝜌𝑖𝑗(𝑖)]     (2) 

where 𝐷 = 𝑑𝑖𝑎𝑔(𝜎1, … , 𝜎𝑘) is the diagonal matrix of the standard deviations of the time series. 

For 0i  , equation (2) obtains the contemporaneous correlations, while for 0i  , 
i

  gives the 

linear dependence of 𝑧𝑡 and 𝑧𝑡−𝑖, prior to period 𝑡. Therefore, cryptocurrency is said to lead 

Bitcoin at lag i  provided  𝜌𝑖 is significantly different from zero. If the two series are 

interchanged, then Cryptocurrency is said to lag Bitcoin. Details about CCM analysis and its 

cut off bounds are given in Tsay (2014). Table 4 presents the results of the linear dependency 

for samples before crash, after crash and for the full sample. We present results for no lag (i=0), 

i=1,20 and 30, where these are in days. It is observed that correlations decayed slowly and the 

cut-off bounds are very low implying long lags for significant correlations. Meanwhile, all 

correlations presented in Table 4 are significant. We have considered up to lag 30 in order to 

investigate the effect of Bitcoin price shocks on cryptocurrency after 30 trading days. There is 

no clear judgment on the extent of dependencies before crash compared to after crash samples, 

since in some cases, correlations before crash are higher, while in other cases correlation after 

crash are higher. But in each case, correlations decrease slowly. Dash, Litecoin, Monero and 



Vertcoin present high correlations with Bitcoin at lag 0 compared to other cryptocurrencies, 

while Digibyte and Doge present low correlations in the pre-crash sample.  

INSERT TABLE 2 ABOUT HERE 

  
4. Fractional Cointegrating VAR model 

Granger’s cointegration definition is not restricted to unit integration as applied in the classical 

Augmented Dickey-Fuller (ADF) test (Engle and Granger, 1987), and due to the introduction 

of fractional integration, the scope of cointegration has been widened (see Cheung and Lai, 

1993; Gil-Alana, 2003).  

 The standard form of fractional persistence is given as  

 1
d

t t
L y x        (3) 

where 
t

y  is the time series under investigation, that is cryptocurrency price in this case and 
t

x  

is the fractionally differenced series expected to be covariance stationary. The exponent 

number d is the fractional persistence parameter that can assume any real number (including 

thus integer and fractional values), L is the lag-operator that is Lyt = yt-1. 
2 By expanding the 

polynomial  1
d

L  in (3) binomially, we have the expansion,  
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As observed in (4), it is obvious to see that parameter d plays a very important role in 

determining the degree of association between time series t
y  and its lagged values. The values 

                                                           
2Fractional persistence is synonymous to fractional integration originally introduced in Granger and Joyeux (1980) 
and Hosking (1981). 



of fractional d has appealing economic meaning which unit root d lacks. If 0 < d < 0.5 with 

upper bound not approaching 0.5, the process is stationary long memory with persistent 

autocorrelations. If d lies in the confidence interval 0.5 < d< 1 with upper bound not 

approaching 1, the time series process is no longer covariance stationary but mean reverting. 

Though, persistence increased compared to long memory case and also, shocks to the series 

tends to disappear in the long run. If 1d  , the time series is non-stationary non-mean reverting, 

implying that the effect of the shocks on the series persists indefinitely. Thus, the higher the d 

value, the more the persistence of shocks on the time series. 

 A survey of different fractional cointegration estimation methods is given in Gil-Alana 

and Hualde (2009). Meanwhile, each method requires the determination of fractional 

integration order d1 and d2 of time series 1t
y  and 2t

y , respectively. Specifically in this paper, 

we applied semi-parametric approaches of Geweke and Porter-Hudak (GPH) and Exact 

Maximum Local Whittle (ELW) estimation methods to estimate integration order of the series 

(see Robinson (1995a,b). The methods are developed in the frequency domain which uses 

Fourier functions and ordinates of periodogram that can be varied. Thus, the methods allow 

one to obtain robust results to those ordinate numbers.      

 Once integration order is determined, we next determine cointegration by employing 

the Fractionally Cointegrated Vector Autoregression (FCVAR) model, proposed in Johansen 

(2008), and applied in Johansen and Nielsen (2010; 2012; 2016). The FCVAR methodology is 

a built up on the unit CVAR model of Johansen (2005) that assumed unit root for the time 

series to be cointegrated which is too restrictive and opposes Granger’s assertion. The FCVAR 

allows the flexibility of any integration orders, in stationary or nonstationary fractional 

integration range. The methodology allows for more than two variables to be cointegrated, thus 

it makes it appealing approach compared to other fractional cointegration method in the 

literature.  



 Given a (k + 1)-dimensional vector of time series  ,  1,2,...,
t

y t T , each of fractional 

integration order d. By setting    , and using the lag operator differencing 1t t
Ly y  , one 

obtains, 
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k

i

t t i t t
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where   and   are matrices of constant and regressors in the long run equation. By replacing 

the difference and lag operator   and 1L    in (5) as in unit root with their fractional unit 

root counterparts, b  and 1
b b

L   , respectively, we have, 
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with d b

t t
y x

  , equation (4) becomes: 
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where d  is the fractional operator, b is the cointegrating factor and b
L  is the fractional lag 

operator. The d-b (with b > 0) is the degree of fractional cointegration, that is the fractional 

integration order of t
x   which is expected to be lower compared to that of t

x  itself for 

fractional cointegration in VAR framework to exist. The elements of t
x   gives the 

cointegrating relationships in the system, where k determines the number of long-run 

equilibrium relationships, i.e. the cointegration or co-fractional rank. ,...,
i k

     governs the 

short-run dynamics. The coefficients in matrix   represent the speed of adjustment towards 

equilibrium for each of the variables in response to shocks. For the estimation of FCVAR 

model, reference is made to the Matlab programming code of Nielsen and Popiel (2018) that 



estimates the model using Maximum Likelihood Estimation (MLE) approach.3 Meanwhile, the 

authors noted the case of 0 < b < 0.5 as the case of weak cointegration, while strong 

cointegration is obtained when 0.5 < b < d. The asymptotic distributions in each case are found 

in Johansen and Nielsen (2012). 

 The results of fractional integration are presented in Tables 3 and 4 for GPH and ELW 

estimation methods, respectively. Cryptocurrencies are prices and as expected, prices are 

assumed to be non-stationary. For both GPH and ELW, after varying the results for different 

bandwidth, m, we obtained consistent results for Tm (m = 0.6, 0.7). Results based on GPH 

approach are presented in Table 3. For corresponding bandwidth, the persistence estimated for 

sample before price crash are lower than those obtained for samples after price crash. We 

observe evidences of mean reversion during pre-crisis period in almost all the cryptocurrency 

except in Maidsafecoin and Vertcoin. During this period, low persistence are observed in the 

case of Litecoin, Ripple and Verge. Based on post-crash samples, evidence of mean reversion 

is found in few cases. Mean reversions are only found in Bitcoin and Litecoin. Due to the fact 

that cryptocurrencies are in the downward price trend currently, higher persistence after the 

crash implies the possibility of further drop in prices. Results found here support the conclusion 

of other authors on bull and bear financial markets who found that during post-crash market 

(bear), volatility is always higher than during pre-crisis (bull) market (Maheu and McCurdy, 

2000; Gomez et al., 2004; Gonzalez et al, 2005; Yaya et al., 2015; Gil-Alana et al., 2018). This 

is due to market speculations by the traders and portfolio managers. By looking at the results 

rendered by ELW Gaussian semi-parametric approach presented in Table 3, we also found 

persistence after the price crash to be higher than persistence before the price crash across all 

cryptocurrency.     

                                                           
3 We are grateful to the following program contributors: Morten Orregaard Nielsen and Michal Ksawery Popiel 
both of Queen’s University for making freely available the FCVAR Matlab code; Jurgen A. Doornik and Marius 
Ooms for the OxMetrics-ARFIMA code. 



 INSERT TABLES 3 & 4 ABOUT HERE 

 Since I(d=1) is confirmed in the results above, next we investigate long run 

relationships between Bitcoin and any other cryptocurrency during pre-crisis, post crisis and 

for the full sample. The results are given in Table 5. In each case, 3 was selected as the 

appropriate lag length k on the basis of standard information criteria, and since pour case is 

bivariate, cointegrating rank test is not considered since rank is expected to be 1. We have 

results for the joint fractional persistence parameter for the paired variables (Bitcoin and 

cryptocurrency), estimates of cointegrating factor, resulting fractional persistence for the long 

run equation (d-b) and parameters of the long run equation in squared brackets. Starting with 

results for pre-crash period, for the joint fractional parameter d, we obtain consistent results 

with those obtained in Tables 3 and 4. We observe both strong (b > 0.5) and weak cointegration 

(b < 0.5), and in each b < d indicating fractional cointegration. In the sample before crash, 

evidence of weak cointegration is only found for cointegration with each of Dash and Vertcoin, 

while in sample after crash, weak cointegration is found for more cases, that is in cointegration 

of Bitcoin with Digibyte, Ethereum, Litecoin, Maidsafecoin, Nem, Ripple, Stellar, Verge and 

Vertcoin. By looking at the full sample, weak cointegration is observed in the case of Ethereum, 

Nem, Stellar, Verge and Vertcoin.  

INSERT TABLE 5 ABOUT HERE 

 

5. Conclusion 

We have considered persistence and dependence of Bitcoin with other cryptocurrency in 

this paper. The research focus is necessitated since market players find Bitcoin to drive 

other cryptocurrency, though Bitcoin is the most valuable and highly capitalized coin, 

taking about 40% of 2074 cryptocurrency market share (Cointelegraph, 2018). We included 

13 highly priced and data available cryptocurrency in our findings, equally sampled from 



7 August 2015 and 28 November 2018. Having identified late 2017 to early 2018 price 

crash in cryptocurrency, we divided the series into two subsamples. We found lesser price 

shock persistence in the pre-crash sample than in the post-crash sample with post-crash 

sample indicating more evidence of mean reversion due to further speculation of price fall. 

This is in support of assertions of researchers on bear and bull market that during post-crash 

market (bear), volatility is always higher than during pre-crisis (bull) market. (Maheu and 

McCurdy, 2000; Gomez et al., 2004; Gonzalez et al, 2005; Yaya et al., 2015; Gil-Alana et 

al., 2018). Evidence of cointegration between Bitcoin and each of other cryptocurrency is 

found in all cases, where cointegration is either weak or strong. Weak cointegration is 

observed in most cases in the post-crash sample. This further support evidence of price 

divergence from bitcoin and market disintegration. We cointegration observed also signal 

future market lows to market players.  

  The findings have policy implications to market players since the new regime 

of cryptocurrency dynamics calls for speculations, higher volatility and possible further 

downward price trend. An in-depth study on market efficiency of cryptocurrency is 

recommended. 
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Figure 1: Plots of Cryptocurrency pricing (US dollar/coin) 

 



Table 1: Descriptive Statistics 

 Full Sample  Before Crash  After Crash 

 Mean SD Skewness Kurtosis J-B  Mean SD Skewness Kurtosis J-B  Mean SD Skewness Kurtosis J-B 

N  N = 1210  N = 864  N = 346 

Bitcoin    3,596.646     3,961.201  1.28  4.21  403.81***     1,694.966     2,511.638  3.39  17.33    9,039.66***     8,293.962     2,705.482  1.65  5.68  260.16*** 

Dash       177.316        250.490  2.16  8.25    2,328.50***           86.769        153.752  2.64  11.04    3,325.57***        400.740        297.007  1.55  4.81  186.35*** 

Digibyte            0.013             0.018  2.10  9.53    3,042.74***             0.004             0.008  2.72  12.90    4,586.26***             0.035             0.019  2.35  9.89    1,002.92*** 

Doge            0.002             0.002  1.99  8.51    2,329.23***             0.001             0.001  1.87  5.59  746.37***             0.005             0.002  1.94  8.44  642.81*** 

Ethereum       213.463        278.344  1.50  4.85  626.35***           85.086        134.939  1.61  4.70  475.26***        532.267        286.660  0.63  2.73    24.05*** 

Litecoin          47.745           65.205  1.88  6.42    1,302.31***           18.050           31.032  4.52  35.58  41,103.42***        121.076           68.613  0.90  3.22    47.39*** 

Maidsafecoin            0.234             0.209  1.33  5.34  634.79***             0.172             0.173  1.14  3.06  188.67***             0.389             0.210  1.94  6.41  384.33*** 

Monero          73.391           98.401  1.61  5.07  741.33***           26.819           47.882  3.02  14.17    5,801.52***        188.818           96.060  0.93  2.82    50.28*** 

Nem            0.143             0.245  3.36  17.29  12,569.11***             0.061             0.103  1.85  6.90    1,042.11***             0.347             0.353  2.07  7.07  485.64*** 

Ripple            0.256             0.408  3.15  17.67  12,851.29***             0.067             0.106  1.89  8.33    1,536.52***             0.725             0.493  2.73  12.09    1,622.25*** 

Stellar            0.093             0.145  1.71  5.72  962.24***             0.011             0.021  4.51  29.92  28,980.08***    0.30    0.12  1.81  6.58  374.29*** 

Verge            0.014             0.031  3.49  17.71  13,365.86***             0.001             0.002  2.50  11.65    3,592.12***    0.05    0.04  1.92  7.05  448.85*** 

Vertcoin            0.996             1.740  2.53  9.43    3,372.44***             0.511             1.364  4.01  19.94  12,637.17***    2.18    1.95  1.61  5.09  211.86*** 

 

 

  



Table 2: Cross Correlation estimates (Bitcoin, Cryptocurrency(-i) & (Bitcoin, 

Cryptocurrency(+i) ) 

Cryptocurrency 
 Full Sample Before Crash After Crash 

i Lag Lead Lag Lead Lag Lead 

Dash   0 0.9275 0.9275 0.9637 0.9637 0.9640 0.9640 
   1 0.9243 0.9268 0.9411 0.9376 0.9336 0.9480 
 20 0.8636 0.8651 0.6566 0.6256 0.5879 0.6046 
 30 0.8098 0.8054 0.5545 0.5560 0.3899 0.4371 
Digibyte   0 0.8383 0.8383 0.5488 0.5488 0.8070 0.8070 
   1 0.8302 0.8411 0.5316 0.5370 0.7801 0.8051 
 20 0.6991 0.8722 0.4590 0.3912 0.3659 0.5748 
 30 0.6367 0.8391 0.4586 0.3451 0.1941 0.2306 
Doge   0 0.8580 0.8580 0.6785 0.6785 0.7747 0.7747 
   1 0.8501 0.8605 0.6428 0.6604 0.7483 0.7682 
 20 0.7182 0.8793 0.4681 0.4434 0.3602 0.5257 
 30 0.6476 0.8519 0.4288 0.3832 0.1892 0.2166 
Ethereum   0 0.9065 0.9065 0.8862 0.8862 0.7969 0.7969 
   1 0.9007 0.9084 0.8695 0.8659 0.7676 0.7676 
 20 0.8181 0.9182 0.6992 0.6005 0.4251 0.4251 
 30 0.7784 0.9082 0.6359 0.5295 0.3052 0.6099 
Litecoin   0 0.9425 0.9425 0.9320 0.9320 0.9362 0.9362 
   1 0.9362 0.9440 0.8832 0.9080 0.9034 0.9110 
 20 0.8326 0.8980 0.5240 0.5724 0.5538 0.5920 
 30 0.7715 0.8589 0.4800 0.4963 0.3575 0.4638 
Maidsafecoin   0 0.8117 0.8117 0.7406 0.7406 0.8855 0.8855 
   1 0.8086 0.8102 0.7362 0.7259 0.8570 0.8745 
 20 0.7531 0.7716 0.6486 0.5346 0.4673 0.5692 
 30 0.7285 0.6623 0.6358 0.4731 0.3034 0.3108 
Monero   0 0.9620 0.9620 0.9751 0.9751 0.9401 0.9401 
   1 0.9568 0.9623 0.9511 0.9472 0.9061 0.9275 
 20 0.8614 0.9313 0.6104 0.6180 0.5276 0.6429 
 30 0.8081 0.8962 0.5319 0.5432 0.3537 0.4782 
Nem   0 0.8167 0.8167 0.8602 0.8602 0.8912 0.8912 
   1 0.8093 0.8200 0.8303 0.8437 0.8649 0.8900 
 20 0.6928 0.8288 0.6161 0.5645 0.5047 0.7043 
 30 0.6407 0.7779 0.5975 0.4960 0.3497 0.4476 
Ripple   0 0.8378 0.8378 0.7798 0.7798 0.8227 0.8227 
   1 0.8317 0.8405 0.7474 0.7611 0.8076 0.8216 
 20 0.6895 0.8954 0.6088 0.5230 0.4265 0.6064 
 30 0.6248 0.8509 0.5808 0.4598 0.2755 0.3511 
Stellar   0 0.8439 0.8439 0.8926 0.8926 0.6920 0.6920 
   1 0.8373 0.8466 0.8413 0.8610 0.6748 0.6855 
 20 0.6950 0.9108 0.3666 0.5030 0.3052 0.6759 
 30 0.6339 0.9115 0.3230 0.4353 0.2030 0.4508 
Verge   0 0.7682 0.7682 0.8701 0.8701 0.6920 0.6920 
   1 0.7602 0.7719 0.7715 0.8439 0.6748 0.6855 
 20 0.6310 0.8152 0.5924 0.5688 0.3052 0.6759 
 30 0.5575 0.7640 0.5756 0.4727 0.2030 0.4508 
Vertcoin   0 0.8862 0.8862 0.9418 0.9418 0.9709 0.9709 
   1 0.8874 0.8815 0.9247 0.9137 0.9390 0.9449 
 20 0.8587 0.7648 0.5578 0.5703 0.6050 0.5676 
 30 0.8287 0.6992 0.4852 0.5014 0.3926 0.4155 

Note: Bartlett standard error bounds for correlations are given by ±2/sqrt(N), where N is 864, 346 and 1210 for 
before crash sample, after crash sample and full sample, respectively. Thus, standard error bounds are ±0.068, 
±0.108 and ±0.057, respectively. All correlations are significant in that case. 



Table 3: Fractional integration estimation based on GPH log-periodogram regression 

Cryptocurrency 

Full 

Sample 
 

 
Before 

Crash 
 

 
After 

Crash 
 

0.6

m
d T  0.7

m
d T  0.6

m
d T  0.7

m
d T  0.6

m
d T  0.7

m
d T  

Bitcoin 1.141*** 1.128***  0.767*** 0.890***  0.808*** 0.776*** 

Dash 1.318*** 1.137***  0.874*** 0.847***  0.940*** 1.108*** 

Digibyte 0.874*** 0.862***  0.792*** 0.980***  1.045*** 0.979*** 

Doge 0.949*** 0.885***  0.896*** 0.818***  1.039*** 0.909*** 

Ethereum 1.238*** 0.980***  0.795*** 0.778***  0.991*** 0.983*** 

Litecoin 0.996*** 1.068***  0.492*** 0.623***  0.858*** 0.846*** 

Maidsafecoin 1.019*** 1.041***  1.043*** 0.874***  1.165*** 1.006*** 

Monero 1.147*** 1.063***  0.770*** 0.824***  0.953*** 0.939*** 

Nem 1.149*** 1.031***  0.644*** 0.813***  1.087*** 1.105*** 

Ripple 0.835*** 0.951***  0.654*** 0.551***  1.246*** 1.205*** 

Stellar 1.141*** 0.970***  0.688*** 0.692***  0.845*** 1.008*** 

Verge 0.869*** 0.900***  0.592*** 0.500***  1.136*** 1.059*** 

Vertcoin 1.122*** 1.230***  0.924*** 0.953***  0.877*** 0.915*** 
Note: m is the number of bandwidth, while T is the sample size. *** indicates significance of persistence 
parameter at 5% level. In bold, evidence of mean reversion, while unbold, evidence of non-mean reversion. 

 



Table 4: Fractional integration estimation based on ELW log-periodogram regression 

Cryptocurrency 
Full Sample 

 
Before Crash  

 

After Crash 
0.6

m
d T  0.7

m
d T  0.6

m
d T  0.7

m
d T  0.6

m
d T  0.7

m
d T  

Bitcoin 1.078*** 1.102***  0.762*** 0.896***  0.800*** 0.773*** 

Dash 1.216*** 1.026***  0.884*** 0.849***  0.924*** 1.003*** 

Digibyte 0.923*** 0.885***  0.777*** 0.917***  1.071*** 0.972*** 

Doge 0.990*** 0.946***  0.857*** 0.814***  1.075*** 0.906*** 

Ethereum 1.227*** 0.969***  0.815*** 0.803***  0.999*** 0.981*** 

Litecoin 0.900*** 0.986***  0.512*** 0.617***  0.857*** 0.836*** 

Maidsafecoin 1.025*** 1.072***  1.009*** 0.889***  1.133*** 0.961*** 

Monero 1.103*** 1.029***  0.779*** 0.836***  0.926*** 0.905*** 

Nem 1.259*** 1.057***  0.706*** 0.853***  1.085*** 1.058*** 

Ripple 0.800*** 0.947***  0.684*** 0.616***  1.182*** 1.104*** 

Stellar 1.063*** 0.920***  0.743*** 0.732***  0.849*** 1.020*** 

Verge 0.861*** 0.917***  0.620*** 0.543***  1.083*** 0.985*** 

Vertcoin 1.077*** 1.090***  0.918*** 0.942***  0.877*** 0.886*** 

Note: m is the number of bandwidth, while T is the sample size. *** indicates significance of persistence 
parameter at 5% level. In bold, evidence of mean reversion, while unbold, evidence of non-mean reversion. 

  



Table 5: Fractional Cointegration VAR of Bitcoin on each other Cryptocurrency  

Cryptocurrency 
Full Sample 

 
Before Crash 

 
After Crash 

d  b  d b  long-run equation d  b  d b  long-run equation d  b  d b  long-run equation 

Dash 
1.200 

(0.050) 
0.848 

(0.062) 
0.352 [1 , -14.0 , -964.6]  

1.200 
(0.093) 

0.173 
(0.023) 

1.027 [1 , -8.3 , -1.6]  1.200 
(0.052) 

0.517 
(0.036) 

0.683 [1 , -0.6 , -7191.9] 

Digibyte 
0.982 

(0.039) 
0.900 

(0.033) 
0.082 [1 , -260483.4 , -32.3]  

0.800 
(0.033) 

0.567 
(0.007) 

0.233 [1 , -115182.5 , -456.5]  0.800 
(0.126) 

0.291 
(0.019) 

0.509 [1 , -744302.9 , 6886.0] 

Doge 
1.017 

(0.033) 
0.900 

(0.037) 
0.117 [1 , -2035974.2 , 268.5]  

1.053 
(0.029) 

0.794 
(0.024) 

0.259 [1 , -498897.0 , -591.5]  1.082 
(0.085) 

0.729 
(0.085) 

0.353 [1 , -965040.2 , -3057.0] 

Ethereum 
0.800 

(0.199) 
0.346 

(0.142) 
0.454 [1 , -14.7 , -300.8]  

1.082 
(0.128) 

0.900 
(0.167) 

0.182 [1 , -9.1 , -399.6]  0.800 
(0.236) 

0.480 
(0.096) 

0.320 [1 , -6.2 , -4312.8] 

Litecoin 
1.200 

(0.053) 
0.668 

(0.069) 
0.532 [1 , -52.0 , -459.2]  

1.200 
(0.000) 

0.900 
(0.000) 

0.300 [1 , -67.1 , -315.6]  1.200 
(0.115) 

0.125 
(0.034) 

1.075 [1 , -33.1 , -668.0] 

Maidsafecoin 
1.126 

(0.032) 
0.852 

(0.035) 
0.274 [1 , -20401.7 , 893.2]  

0.950 
(0.043) 

0.900 
(0.033) 

0.050 [1 , -5629.2 , -106.1]  0.800 
(0.107) 

0.100 
(0.006) 

0.700 [1 , -50914.8 , 632.7] 

Monero 
1.028 

(0.070) 
0.900 

(0.116) 
0.128 [1 , -39.3 , -699.0]  

1.102 
(0.065) 

0.900 
(0.121) 

0.202 [1 , -27.6 , -508.7]  0.946 
(0.151) 

0.900 
(0.155) 

0.046 [1 , -26.1 , -3457.5] 

Nem 
1.200 

(0.035) 
0.100 

(0.003) 
1.100 [1 , -12158.5 , -1.9]  

0.800 
(0.033) 

0.703 
(0.019) 

0.097 [1 , -10974.8 , -458.0]  0.800 
(0.113) 

0.205 
(0.012) 

0.595 [1 , -51654.9 , 1678.9] 

Ripple 
0.800 

(0.036) 
0.539 

(0.013) 
0.261 [1 , -9916.0 , -594.8]  

1.200 
(0.038) 

0.418 
(0.014) 

0.782 [1 , -7608.8 , -37.0]  0.800 
(0.101) 

0.100 
(0.007) 

0.700 [1 , -31366.8 , 293.6] 

Stellar 
0.800 

(0.039) 
0.399 

(0.009) 
0.401 [1 , -23214.2 , -444.1]  

1.129 
(0.034) 

0.900 
(0.018) 

0.229 [1 , 54420.0 , -1189.6]  0.800 
(0.119) 

0.100 
(0.007) 

0.700 [1 ,   -28730.7 ,  -30.1] 

Verge 
0.910 

(0.036) 
0.487 

(0.014) 
0.423 [1 , -137162.3 , -961.2]  

1.007 
(0.024) 

0.900 
(0.008) 

0.107 [1 , -566015.2 , -605.4]  0.839 
(0.056) 

0.279 
(0.007) 

0.560 [1 , 5749.3 , -3749.8] 

Vertcoin 
1.200 

(0.033) 
0.381 

(0.013) 
0.819 [1 , -2003.9 , -60.2]  

1.200 
(0.040) 

0.176 
(0.009) 

1.024 [1 , -1236.9 , -2.1]  0.961 
(0.071) 

0.269 
(0.012) 

0.692 [1 , -706.9 , -2490.5] 

Note,  estimates of standard error are given in parentheses. 
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