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Abstract

I study how trading motives in asset markets affect equilibrium outcomes and welfare. I

focus on two types of trading motives – informational and allocational. I show that while a fully

separating equilibrium is the unique equilibrium when trading motives are known, multiple

equilibria exist when trading motives are unknown. Moreover, forcing traders to reveal their

trading motives may harm welfare. I also use this model to study how an asset market may exit

a fire sale equilibrium and how government programs may eliminate private information and

improve agents’ welfare.
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1 Introduction

Traders in asset markets trade for various reasons. In this paper I consider two types of motives,

“allocational” and “informational”. The allocational motive refers to trading for liquidity needs,

and the informational motive refers to trading on private information.1 For example, in the used

car market a car owner may wish to sell because she needs money to purchase other goods and

services, or because the car is a lemon. In the first case the motive is allocational, in that the trade

is mutually beneficial. In the second case the motive is informational, in that the total surplus from

the trade is zero and the owner only sells to take advantage of her private information on quality.

In the above example, two trading motives arise from two dimensions of private information –

agents’ liquidity needs and car quality. In this paper, I propose a model where there are two assets

– a liquid and safe asset (fruit) and an illiquid and risky asset (tree). There are two sources of

private information: liquidity needs and tree quality. I will use this model to answer the following

questions: How do trading motives determine the market equilibrium? Are both trading motives

always present when both dimensions of private information exist? Would forcing traders to reveal

their motives improve welfare? Are there government programs that eliminate information frictions

and improve trades welfare? How can this framework be applied to some well-known phenomena

of the asset markets, for example the fire sales?

To understand the role played by trading motives, I first study a benchmark model where

only the tree quality is private information and therefore only the allocational motive exists in

equilibrium. I show that there exists a unique separating equilibrium in which sellers with different

quality trees offer different prices and quantities for sale. Next, I assume that liquidity needs are also

private information. I show that, depending on the distribution of tree quality, multiple equilibria

exist, and in some equilibria some sellers pool to offer the same price and quantity. There are three

main findings.

First, sellers with different quality trees and motives pool only when both liquidity needs and

tree quality are private information. For sellers with liquidity needs, not selling trees means less

liquidity available for consumption. Hence, there is an opportunity cost to holding trees, and this

holding cost lowers the private value of the trees. As a result, sellers with trees of different common

value may share similar private value. Because of the similar preferences, sellers with low quality

trees can always successfully mimic the behavior of sellers with high quality trees. Consequently,

different types of sellers pool in equilibrium.

Second, it is possible that only the allocational motive exists even when both dimensions

of private information are present. The reason is that, since information-motivated sellers share

the same private value of the assets with the buyers, the price must be higher than the common

1These two concepts are first coined by Vayanos (2001). There are other potentially interesting trading motives.
Duffie (2011) shows that some banks in federal funds market trade to take advantage of their higher contact rates
compared to other less active banks. In Yoon (2017) agents trade in OTC market to learn the price information on
their assets.
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value for the sale to be profitable to the sellers. Liquidity-motivated sellers, on the other hand,

are willing to sell at prices lower than the common value because they gain from satisfying their

liquidity needs. If buyers’ profit (which is determined by the relative number of sellers) is high

enough, tree prices in the market will be too low to attract information-motivated sellers. As a

result, information-motivated sellers do not participate in the asset market because they cannot

profit from their private information.

Third, more information needs not be better. If traders were forced to reveal their trading

motives, this may harm welfare. If motives are known, information-motivated sellers will not be able

to sell since other agents know they only trade to pass on lemons, and the separating equilibrium

will be the only equilibrium. But separation is costly since sellers ration to signal their quality. If

motives remain hidden, there may exist pooling of sellers, which increases trading volume. The

downside of pooling is that now sellers with high quality trees have to subsidize the other sellers. I

show that the benefit from selling more can outweigh the cost of subsidizing, and therefore welfare

can be improved in the pooling equilibrium. Similar conclusions about the ambiguous effect of

more information on welfare can also be found in models with financial assets serving as media

of exchange (Andolfatto, 2010; Andolfatto et al., 2014; Dang et al., 2017). In those models, the

disclosure of asset quality generates excessive volatility in prices and limits the assets’ roles in

transactions, whereas in my model the disclosure of motives increases the signaling cost and lowers

the trading volume.

This paper belongs to the literature that studies competitive search equilibria in environments

with private information.2 It is closely related to the recent literature on two-dimensional private

information in asset markets that consists of asset quality and sellers’ preferences (Williams, 2016;

Chang, 2018; Guerrieri and Shimer, 2018). Similar pooling of sellers can be found in Chang (2018),

and like this paper, the main results build on the existence of such pooling. However, Williams

(2016) shows that there always exists a fully-separating equilibrium if one drops the assumption

of indivisible assets in Chang (2018) to allow partial retention of assets. Then it is unclear why

pooling of sellers would necessarily emerge in equilibrium given the empirical evidence on partial

retention.3

A major difference between this paper and Williams (2016) and Chang (2018) is that the

holding cost is endogenous and the roles of buyers and sellers arise endogenously. I endogenize the

holding cost by adding a goods market that opens after the asset market.4 Agents who want to

consume in the goods market then try to sell their illiquid assets in the asset market. Moreover, I

allow agents to decide whether to be a buyer and/or a seller. In equilibrium, some sellers are also

2Guerrieri et al. (2010) are the first to propose a model where agents with private information search for matches
with principles who use contracts to screen hidden types. Building on Guerrieri et al. (2010), Guerrieri and Shimer
(2014) assume there is one-dimensional private information in asset quality and show that prices and trading proba-
bilities are important signaling devices in equilibrium.

3Partial retention of assets can be found in the divestitures, venture capital, IPOs, SEOs, and mortgage-backed
security pools (Williams, 2016).

4Geromichalos and Herrenbrueck (2016) and Jacquet (2018) have similar environments.
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buyers, and some assets are not on the market. Under this setup, I show that even though assets

are perfectly divisible and partial retention is allowed, an equilibrium with partial pooling is the

unique equilibrium when some sellers’ private value of assets is similar enough.

There are several other important differences between this paper and the existing literature.

First, Guerrieri and Shimer (2018) impose relatively weak restrictions on off-equilibrium beliefs

and focus on the welfare comparisons of the resulting multiple equilibria. In this paper, I instead

employ two widely-used equilibrium refinement methods, the Intuitive Criterion (Cho and Kreps,

1987) and the Undefeated Equilibrium (Mailath et al., 1993), to test that the main welfare result

is robust to different restrictions on off-equilibrium beliefs.

Second, Chang (2018) focuses on a type of semi-pooling equilibrium that exhibits some em-

pirical features of a “fire sale”. That is, in the semi-pooling equilibrium, some distressed sellers

sell quickly at a highly depressed price. However, in Chang (2018), buyers enter the asset market

after paying an entry cost. The zero profit condition dictates that buyers’ search value is always

constant and equal to the entry cost. I instead assume a fixed supply of buyers. When sellers’

desire to sell increases as they become more distressed, a fixed supply allows buyers’ share of the

surplus to increase. The increase in buyers’ surplus drives down the asset price and prompts low

quality sellers with no liquidity needs to stop selling, breaking the fire sale equilibrium. I use the

model to show how an asset market can “exit” a fire sale equilibrium as economic fundamentals

change.

Third, compared to those three papers, my setup makes it easy to incorporate a government

to the environment. In particular, I consider two government programs, an asset purchase program

and a collateralized lending program. I show that it is possible for both programs to eliminate

private information and improve agents’ welfare. However, if the economy is hit with an unforeseen

aggregate shock to asset quality or if there is not enough collateral, the programs may either become

infeasible or fail to reduce information frictions.

The rest of the paper is organized as follows. Section 2 describes the physical environment.

Section 3 solves a model with known trading motives. Section 4 returns to the full model with

unknown trading motives and conducts welfare analysis. Section 5 studies the fire sale equilibria and

how the asset market may exit a fire sale equilibrium. Section 6 discusses government interventions

that may improve agents’ welfare. Section 7 concludes the paper.

2 Model Environment

The economy has two assets, lasts for three periods, and has three types of agents. The two assets

are fruit and trees.5 The three periods are the “AM”, the “GM” and the “FM”, which are short

5The naming is meant to convey that the fruit is portable and safe (no uncertainty in quality) compared to trees.
Therefore, the fruit is assumed to be the medium of exchange. Neither fruit nor trees are perishable because they
both last three periods.
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for asset market, goods market and fruit market. There is a continuum of agents who participate

in the AM and FM. I refer to them as the “consumers”. The consumers who also participate in

the GM are the “shoppers”, otherwise they are the “non-shoppers”. There is also a continuum of

“producers” who participate in the GM and FM. There is no discounting between periods.

At the beginning of the AM, all consumers are endowed with b units of fruit and a units of trees.

Both fruit and trees are perfectly divisible. Next, an idiosyncratic consumption shock is realized.

The shock happens with probability α. Consumers who receive the shock become “shoppers” and

meet producers bilaterally with probability one in the GM. Upon meeting a producer, a shopper

makes a take-or-leave it offer to purchase the GM good from the producer. The rest of the consumers

become “non-shoppers” and do not participate in the GM. Shoppers possess a utility function u(c)

where c is the amount of GM good consumed. I assume u′(.) > 0, u′′(.) < 0 and u′(b) > 1. The

disutility incurred from producing c units of GM good is c. Because of anonymity and lack of record

keeping, credit arrangements are not possible and producers only accept fruit as payment. In the

FM, trees produce fruit, and consumers and producers consume fruit that is either brought from

previous periods or from the trees they own.6 All agents receive f units of utility from f units of

fruit consumed. To summarize, a shopper’s utility is given by u(c) + f . A non-shopper’s utility is

given by f . And a producer’s utility is given by −c+ f .

After the consumption shock but before the GM opens, an idiosyncratic shock to tree quality

is also realized. The two shocks are independent of each other. A tree of quality δ generates δ units

of fruit in the FM. I assume there are J different types of quality and δ1 < δ2 < ... < δJ . Define

J = {δj}
J
j=1. The probability of δ = δj is ∆j . Also I assume both the consumption shock and the

quality shock are private information in the AM. That is, consumers do not know whether others

are shoppers or non-shoppers, and they do not know the quality of others’ trees.

After the shocks are realized, an asset market opens and consumers trade fruit and trees. A

consumer who wants to sell trees (the “sellers”) posts a price-quantity pair (ψ, s) where ψ is the

price of the tree in terms of fruit, and s is the quantity of trees they want to sell. I call each

price-quantity pair (ψ, s) a “location”. Consumers who want to buy trees (the “buyers”) observe all

the price-quantity pairs and also the buyer-seller ratio (θ) of each location before they decide where

to buy. The meetings in the AM are bilateral. The probability of meeting a seller in a location

with tightness θ is q(θ) = min{θ−1, 1} and the probability of meeting a buyer is p(θ) = min{θ, 1}.

Consumers can also choose not to sell or buy any trees. I assume sellers can commit to the price-

quantity pair (ψ, s) they post.

I summarize the sequence of events in the following figure.

6Since there is no discounting between periods and any consumers may become shoppers, the fruit is not consumed
before the GM. Hence, it is without loss of generality to assume that fruit is only consumed in the FM.
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AM GM FM

Endowment:
fruit and trees

Consumption shock

Quality shock

Asset trade
between consumers

Shoppers buy from
producers

Trees produce fruit

Consumers and producers
consume fruit

Figure 1: Model environment – sequence of events

3 A Benchmark Model: Trading Motives Known

In this benchmark model I assume the consumption shock is public information. There is only

one dimension of private information – the quality of trees. To characterize the equilibrium, it is

convenient to discuss first the GM and the FM. Suppose shoppers enter GM with the m̃ units of

fruit. Then a shopper solves the following problem

max
c
u(c) − ℓ (3.1)

s.t. − c+ ℓ ≥ 0 (3.2)

ℓ ≤ m̃ (3.3)

where c is the amount of GM good purchased and ℓ is the amount of fruit transferred to the

producers. The first constraint is the producer’s participation constraint. Recall that ℓ units of

fruit generate ℓ units of utility in the following FM. The second constraint is shopper’s resource

constraint. The shopper cannot spend more than what she brings to the GM. Let c(m̃) be the

solution to the above problem conditional on m̃. Then it is easy to see that c(m̃) = min{m̃, c∗}

where u′(c∗) = 1.

Recall that I assume u′(b) > 1. That is, the fruit endowment is not large enough for shoppers

to achieve the efficient level of consumption. Then, since all consumers have utility linear in fruit

in the FM but shoppers have higher value for fruit in the GM, shoppers will want to sell trees

in exchange for fruit. In addition, since shoppers value fruit more than non-shoppers, sellers will

always be shoppers and buyers will be non-shoppers.7

Now turn to consumer’s problem in the AM. Let Ψ be the set of price-quantity pairs (ψ, s)

posted in the equilibrium. A seller with quality δ trees solves the following problem

max
(ψ,s)∈Ψ∪∅

p(θ(ψ, s))[u(c(b+ ψs)) − c(b+ ψs) − δs] + (1 − p(θ(ψ, s)))[u(b) − b] (3.4)

7This is no longer true if consumers do not know whether others are shoppers or non-shoppers. See Section 4.

6



where θ(ψ, s) is the market tightness at location (ψ, s). In words, (3.5) says that if a seller meets

a buyer at location (ψ, s), which happens with probability p(θ(ψ, s)), the seller obtains ψs units of

fruit from the buyer, and together with the endowment b they allow c(b+ψs) amount of consumption

in the following GM. In exchange, the seller transfers s units of trees to the buyer, which costs the

seller δs amount of consumption in the FM. With probability 1 − p(θ(ψ, s)), the seller does not

meet a buyer and consumes c(b) = b amount of consumption in the following GM. A seller can

always choose “∅”, which means they do not participate in the AM. I will show later that it is never

optimal for sellers to acquire more fruit than what they need to achieve c∗. Hence, in equilibrium

c(b+ ψs) = b+ ψs. Use this result to simplify the above equation and obtain

v∗
1,j = max

(ψ,s)∈Ψ∪∅
p(θ(ψ, s))[u(b+ ψs) − u(b) − δjs]. (3.5)

where v∗
1,j is the search value of sellers with quality δj trees. Next, buyers in the AM solve the

following problem

v∗
0 = max

(ψ,s)∈Ψ∪∅
q(θ(ψ, s))s

J∑

j′=1

γ(ψ, s; δj′)(δj′ − ψ) (3.6)

where γ(ψ, s; δj′) is the buyer’s belief on the probability of tree quality in location (ψ, s) being δj′

and
∑J
j′=1 γ(ψ, s; δj′) = 1. In words, (3.6) says that if a buyer meets a seller at location (ψ, s), with

probability γ(ψ, s; δj′) the trees have quality δj′s. Then the buyer receives s units of trees, which

will give her δj′s units of fruit in the FM. In return, the buyer gives the seller ψs units of fruit. v∗
0

is the buyer’s search value in the AM. Now we are ready to define the equilibrium in the AM.

Definition 3.1 A competitive equilibrium in the AM is a set Ψ of price-quantity pairs (ψ, s), a

vector {v∗
1,j}

J
j=1, a scalar v∗

0, functions θ : Ψ → [0,∞] and γ : Ψ × J → [0, 1], and an accumulative

distribution function F : Ψ → [0, 1] that satisfy

(1) Seller’s and buyer’s optimal behavior: for all j ∈ J , v∗
1,j satisfies equation (3.5); v∗

0 satisfies

equation (3.6);

(2) Equilibrium beliefs: for all j ∈ J and for all (ψ, s) ∈ Ψ, γ(ψ, s; δ) satisfies Bayes Rule:

γ(ψ, s; δ) = E[δ|(ψ, s)];

(3) Active markets: for all (ψ, s), (ψ, s) ∈ Ψ only if it solves the maximization problem in (3.6)

and it is feasible: ψs ≤ b and s ≤ a;

(4) Aggregate consistency: for all j ∈ J and for all (ψ, s) ∈ Ψ,

∆j =

∫

Ψ
γ(ψ, s; δj)dF (ψ, s) and

α

1 − α
=

1
∫

Ψ θ(ψ, s)dF (ψ, s)
;

and

(5) No profitable deviations: there does not exist S ⊂ J and (ψ, s, θ) ∈ R
3
+ such that (ψ, s) is
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feasible and

p(θ)[u(b+ ψs) − u(b) − δjs] > v∗
1,j for some j ∈ S, (3.7)

p(θ)[u(b+ ψs) − u(b) − δj′s] < v∗
1,j′ for all j′ ∈ J \S, (3.8)

q(θ)s
∑

j′∈S′

γ(ψ, s; δj′)(δj′ − ψ) ≥ v∗
0 for all S′ ⊂ S (3.9)

where γ(ψ, s; δ) satisfies the Bayes’ Rule.

Condition (1) says that sellers and buyers must choose optimally which location to sell or buy

trees. Condition (2) puts restrictions on buyer’s beliefs – they have to satisfy the Bayes’ Rule given

sellers’ strategies. Condition (3) ensures that Ψ represents the set of “active” markets – it rules

out the price-quantity pairs that are optimal for sellers under some function θ but not optimal

for buyers and therefore are not posted in equilibrium. Condition (4) guarantees that the beliefs

are consistent with the actual supply of trees, and that market tightness is consistent with actual

supply of sellers and buyers.

Condition (5) is the Intuitive Criterion (Cho and Kreps, 1987; Rocheteau, 2008). It says that

for any sequential equilibrium to exist, there must not exist an off-equilibrium offer (ψ, s) that

makes at least one seller in set S strictly better off but makes everyone in J \S strictly worse off,

and is accepted by buyers given any belief system that puts no weights on sellers in J \S.

I solve the equilibrium in detail in Appendix A. I summarize the results in the following

Proposition.

Proposition 3.1 There exists a unique competitive equilibrium in the AM. In the equilibrium

sellers with δj post (ψj , sj) where sj ≤ sj−1, ψj > ψj−1 and θj ≤ θj−1 for all j.

In Appendix A, I show that in general, shoppers do not sell all the trees they have. This

marks a stark difference from asset market models with constant holding costs: sellers here care

about both the prices and how much they have to sell, since sellers’ liquidity needs decrease with

the amount of liquidity they receive. If sellers’ desire to sell does not vary with the trading volume,

they will always sell all the trees.8 This finding also implies that sellers actually sell less when the

price is high, because a high price decreases the amount of trees that needs to be sold to satisfy

certain liquidity needs.

Another noteworthy finding is that a fully separating equilibrium is the only equilibrium. This

is not surprising as the Intuitive Criterion often rules out pooling equilibria. The reason is that the

sellers with high quality trees have higher marginal cost of selling since they are giving up more

FM consumption. Suppose, in any pooling equilibria, a high quality seller deviates by reducing

the quantity they sell by a small amount, and the buyers can be kept at least as well off as before

8Section 3 of Williams (2016) describes exactly this situation.
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as long as the decrease in quantity is offset by the increase in quality. Then, suppose some seller

with lower quality trees tries to mimic this behavior. While the loss from selling less is the same

for both sellers – they receive less fruit and consume less in the GM – the benefit from selling less

is strictly larger for the high quality seller. Then, it is always possible for the high quality seller to

find an offer that only benefits her and is acceptable by the buyers. This violates condition (5) of

Definition 3.1.

While the Intuitive Criterion has been widely used in the signaling literature,9 some have

criticized its logical foundation (Mailath et al., 1993). The essence of the criticism is that if some

sellers can deviate to become better off while convincing the buyers that they are the only ones

to benefit, these sellers will always deviate in equilibrium. Then, the original equilibrium should

not serve as the basis for comparison. In practice, the Intuitive Criterion tends to rule out pooling

equilibria even when such equilibria are arguably more “realistic”. For example, if there was only

small amount of low quality trees in the economy, the Intuitive Criterion would still rule out any

pooling equilibria. Since in this case the price distortion in a pooling equilibrium is likely to be

smaller than the signaling cost in a fully separating equilibrium, all agents may be made better off

by switching to a pooling equilibrium.

One solution to this problem is to use the Undefeated Equilibrium proposed by Mailath et al.

(1993). A sequential equilibrium is undefeated if there does not exist another sequential equilibrium

where at least some agents are strictly better off. Some recent papers (Bajaj, 2018; Madison, 2018)

use this concept to endogenously select pooling and separating equilibria.

I choose the Intuitive Criterion instead of the Undefeated Equilibrium for two reasons. First,

equilibrium characterization under the Undefeated Equilibrium depends heavily on the quality

distribution (see Section 4.3). Without making strong assumptions about the distribution, the

equilibrium characterization is not tractable. Second, the purpose of this and the following section

is to highlight the role played by trading motives in shaping the equilibrium outcome, and it is

achieved by comparing the separating equilibrium that exists when motives are known, with the

pooling equilibrium that exists when motives are unknown. That is, I do not seek to find all

“reasonable” equilibria in either case but the mechanism that allows the pooling equilibrium to

exist.10

9See Riley (2001) for a review. In context similar to this paper where assets serve as direct or indirect median of
exchange, it has been used by Nosal and Wallace (2007), Rocheteau (2008, 2011) and Madison (2018).

10However, when conducting welfare analysis, it is important to consider other reasonable equilibria, and therefore
I also use the Undefeated Equilibrium to refine the equilibrium (see Section 4.3).
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4 The Full Model: Trading Motives Unknown

4.1 One Extension to the Model Environment

In this section I assume agents do not know whether other agents are consuming or not in the

GM. When agents’ identities are known, there is no incentive to trade if a shoppers meets another

shopper or if a non-shopper meets another non-shopper. However, if agents’ identities are unknown,

it is possible for some agents to take advantage of this private information. For example, a non-

shopper with low quality trees can go to the locations with high prices to sell, even though she

has no liquidity needs. The trading motives are therefore no longer apparent. It could be either

“allocational” if shoppers are selling or “informational” if the non-shoppers are selling.

To accommodate agents’ “informational” motive, I modify the model to allow agents to sell

and buy trees at the same time. However, agents can only trade with fruit and trees they bring

to the AM – they cannot use the fruit/trees they acquire from the market to trade again. None

of the conclusions in Section 3 are affected by this modification because no agent buys and sells at

the same time when trading motives are known.

I now rewrite consumer’s problem in the AM to reflect the changes in environment. Shoppers’

search value is given by

v∗∗
1,j = v∗

1,j + ṽ∗
1. (4.1)

where

v∗
1,j = max

(ψ,s)∈Ψ∪∅
p(θ(ψ, s))[u(b+ ψs) − u(b) − δjs] (4.2)

and

ṽ∗
1 = max

(ψ,s)∈Ψ∪∅
q(θ(ψ, s))



s
J∑

j′=1

γ(ψ, s; δj′)δj′ + u(b− ψs) − u(b)



 . (4.3)

v∗
1,j is shoppers’ search value in the AM when they sell optimally and ṽ∗

1 is their search value when

they buy optimally. The interpretation of (4.2) is the same as (3.5). (4.3) says that if a shopper

meets a seller at location (ψ, s), with probability γ(ψ, s; δj′) the trees have quality δj′s. Then the

shopper receive s units of trees, which will give her δj′s units of fruit in the FM. Note that the

purchase will reduce her DM consumption by ψs.

Non-shoppers’ search value is given by

v∗∗
0,j = v∗

0 + ṽ∗
0,j . (4.4)
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where

v∗
0 = max

(ψ,s)∈Ψ∪∅
q(θ(ψ, s))s

J∑

j′=1

γ(ψ, s; δj′)(δj′ − ψ) (4.5)

and

ṽ∗
0,j = max

(ψ,s)∈Ψ∪∅
p(θ(ψ, s))s[ψ − δj ]. (4.6)

Then v∗
0 is non-shoppers’ search value when they buy optimally and ṽ∗

0,j is their search value when

they sell optimally. The interpretations are similar to (4.2) and (4.3). Now I define the competitive

equilibrium in the AM.

Definition 4.1 A competitive equilibrium in the AM is a set Ψ of price-quantity pairs (ψ, s), vec-

tors {v∗∗
1,j}

J
j=1 and {v∗∗

0,j}
J
j=1, functions θ : Ψ → [0,∞] and γ : Ψ × J → [0, 1], and an accumulative

distribution function F : Ψ → [0, 1] that satisfy

(1) Shopper’s and non-shopper’s optimal behavior: for all j ∈ J , v∗∗
1,j satisfies equation (4.1) and

v∗∗
0,j satisfies equation (4.4);

(2) Equilibrium beliefs: for all j ∈ J and for all (ψ, s) ∈ Ψ, γ(ψ, s; δ) satisfies Bayes Rule:

γ(ψ, s; δ) = E[δ|(ψ, s)];

(3) Active markets: for all (ψ, s), (ψ, s) ∈ Ψ only if it solves the maximization problem in (4.4)

and it is feasible: ψs ≤ b and s ≤ a;

(4) Aggregate consistency: for all j ∈ J and for all (ψ, s) ∈ Ψ,

∆j =

∫

Ψ
γ(ψ, s; δj)dF (ψ, s) and

α

1 − α
=

1
∫

Ψ θ(ψ, s)dF (ψ, s)
;

and

(5) No profitable deviations: there does not exist S ⊂ J and (ψ, s, θ) ∈ R
3
+ such that (ψ, s) is

feasible and

v1,j(ψ, s, θ) > v∗
1,j for some j ∈ S, (4.7)

v1,j(ψ, s, θ) < v∗
1,j and ṽ0,j(ψ, s, θ) < ṽ∗

0,j for all j ∈ J \S, (4.8)

q(θ)s
∑

j′∈S′

γ(ψ, s; δj′)(δj′ − ψ) ≥ v∗
0 for all S′ ⊂ S (4.9)

where γ(ψ, s; δj′) satisfies Bayes Rule. v1,j(ψ, s, θ) and ṽ0,j(ψ, s, θ) are given by

v1,j(ψ, s, θ) = p(θ)[u(b+ ψs) − u(b) − δjs]

and

ṽ0,j(ψ, s, θ) = p(θ)s[ψ − δj ].
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Condition (5) is similar to the condition (5) in Definition 3.1. It is also the Intuitive Criterion.

Notice that in (4.7) I require any profitable deviation to at least benefit some shoppers. This is

because deviations that only benefit non-shoppers will not be exploited in the equilibrium. If they

are exploited, non-shoppers will expose their identity and will not be able to trade.

4.2 The Competitive Equilibria in the AM

To characterize the competitive equilibria, I first state some properties that any equilibrium must

satisfy.

Lemma 4.1 Shoppers do not purchase trees in the AM. That is, v∗∗
1,j = v∗

1,j.

A shopper can purchase trees from either another shopper or a non-shopper. If the trees were

worth buying, it would mean that the increase in FM consumption offsets the decrease in GM

consumption. If the asset seller were another shopper, she would keep the trees themselves. If the

seller were a non-shopper, since a shopper values fruit more than a non-shopper, the non-shopper

would never sell the trees at a price low enough for the shopper, which means the trees must be of

low quality. Hence, shoppers would never buy trees.

Lemma 4.2 There does not exist a fully-separating equilibrium where non-shoppers sell trees.

If it is profitable for non-shoppers to sell trees, the price must be higher than the trees’ common

value, δ. But then the price will not be acceptable to either shoppers or other non-shoppers. Hence,

no one will knowingly buy trees from non-shoppers, and the non-shoppers will always try to pool

with shoppers.

Next, consider the possibility of sellers pooling in equilibrium. Denote the set of sellers that

pool in equilibrium as Sp.

Lemma 4.3 (1) Sp may not be empty; and

(2) let δ̄p =
∑

j∈Sp δj∆j be average tree quality of set Sp. Then all sellers in Sp with δj < δ̄p are

non-shoppers.

I explain the second point first. Since non-shoppers only sell their trees at prices higher than their

common value, the sales have to be subsidized by the shoppers. Hence, non-shoppers never sell in

a pool where the average quality is lower than theirs. The following corollary is derived directly

from Lemma 4.3. It says that there are always non-shoppers with high quality trees who do not

sell in the equilibrium because all prices posted by shoppers are too low.

Corollary 4.1 There exists a δn < δJ such that non-shoppers with δ > δn do not sell in the

equilibrium.

12



Now back to the first point of Lemma 4.3. It says the Intuitive Criterion does not rule out

pooling equilibria. Recall that when motives are known, high quality sellers can always separate

themselves from low quality sellers because the marginal (opportunity) cost of selling trees is strictly

higher for sellers with higher quality trees. This is still true since utility is linear in fruit consumption

for all consumers. However, when motives are unknown, some of the low quality sellers are non-

shoppers and they have lower marginal benefits of selling. Consider the following preferences of a

high quality shopper and a low quality non-shopper.

Shopper’s preference: Us(ψ, s, δj) = u(b+ ψs) − u(b)
︸ ︷︷ ︸

marginal benefit: ψu′(b+ψs)>ψ

− δjs
︸︷︷︸

marginal cost: δj>δ̄p

Non-shopper’s preference: Un(ψ, s, δj′) = ψs
︸︷︷︸

marginal benefit: ψ

− δj′s
︸︷︷︸

marginal cost: δj′<δ̄p

First note that in equilibrium shoppers generally acquire less than what is needed to achieve the

efficient level of consumption.11 That is, b+ ψs < c∗ where u′(c∗) = 1. Then, the marginal benefit

of selling is strictly larger for the shoppers since u′(b + ψs) > 1. As a result, as long as δj′ is not

too small compared to δj , shoppers’ preferences for fruit vs trees (Us(ψ, s, δj)) can be very similar

to non-shoppers’ preferences for fruit vs trees (Un(ψ, s, δj′)). In other words, although the the

common value of the trees of is different, the shoppers and non-shoppers have similar private value.

Consequently, it is possible that any offers that make the shoppers strictly better off will also make

the non-shoppers better off. As a result, the difference in marginal cost is no longer sufficient for

separation and the non-shoppers and shoppers pool in equilibrium.

To further characterize the competitive equilibria, one needs to make assumptions concerning

the distributions of tree quality and consumer types. In what follows, I first describe an equilib-

rium with full separation and only shoppers as sellers. Only one trading motive arises from two

dimensions of private information because non-shoppers cannot profit from the private information

on tree quality.

Proposition 4.1 For all δ1 > 0, there exists an α(δ1) such that as long as α > α(δ1), the unique

competitive equilibrium in the AM is a fully separating equilibrium where only shoppers sell trees.

To understand the proposition, first note that in equilibrium buyers’ search value, v∗
0, increases with

α.12 A high v∗
0 then decreases tree prices, making selling trees less attractive to the non-shoppers.

If α is high enough, all the prices posted by the shoppers will be too low to be profitable for δ1

non-shoppers and hence all non-shoppers. Note that non-shoppers cannot post a different price

without being identified as non-shoppers since no other sellers have the incentive to deviate.

11This is because sellers either face the signaling cost in a separating equilibrium or the price distortion in a
pooling equilibrium (except for those with the lowest quality trees). Hence they never choose to acquire enough fruit
for efficient consumption.

12See Proposition A.3 in Appendix A for more details.
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To characterize the types of equilibria where sellers pool, more assumptions concerning quality

distribution and consumer type distribution are needed. To keep the analysis tractable, for the rest

of this section I restrict my attention to the case where there are only two types of quality (J = 2).

For simplicity, I also assume that trade in the asset market is not constrained by the quantity of

fruit and trees possessed by the consumers.13

4.3 A Special Case: J = 2

Let the two types of quality be δ1 (low type) and δ2 (high type). Let ∆1 = ∆ and ∆2 = 1 − ∆ be

the proportions of δ1 (low quality) and δ2 (high quality) trees. Define δ̄ = ∆(1−α)δ1+(1−∆)αδ2

∆(1−α)+(1−∆)α to be

the average quality if δ1 non-shopper and δ2 shoppers pool. Also I assume u(c) = log(c).

To characterize the equilibrium, I look for collections of a 4-tuple (δ1, δ2,∆, α) that allow

seller pooling to exist. Denote these sets as C’s, differentiated by their superscripts.14 The next

proposition shows the existence of a “semi-pooling” equilibrium in which all non-shoppers buy

trees and all the shoppers sell trees. δ1 non-shoppers both sell and buy trees, and they pool with

δ2 shoppers. The equilibrium is illustrated in Figure 2.

Proposition 4.2 There exists Cp ⊂ R
2
++ × (0, 1)2 such that for all (δ1, δ2,∆, α) ∈ Cp, there exists

a unique competitive equilibrium where δ1 shoppers offer (ψ1, s1), and δ2 shoppers and δ1 non-

shoppers offer (ψ2, s2). s1 = m∗

δ1
and ψ1 = δ1 where u′(b + m∗) = 1. s2 = m′

δ2
and ψ2 = δ̄ where

u′(b+m′) = δ2

δ̄
. Furthermore, θ1 = θ2 = 1 and v∗

0 = 0.15

In the proof (Appendix B) I show that for the semi-pooling equilibrium to exist, we need the

difference between δ1 and δ2 to be small. Recall that for the pooling equilibrium to exist, the

overall preferences of δ1 non-shopper and δ2 shoppers have to be similar. If δ1 is too small, the

difference in marginal cost of selling will be too large to be offset by the difference in marginal

benefit of selling. Then there may exist offers that only benefit δ2 shoppers, and the semi-pooling

equilibrium cannot exist because condition (5) of Definition 4.1 is violated.

13In Appendix A I solve a more general case without this assumption.
14Detailed descriptions of these sets can be found in Appendix B.
15I look for equilibria with v

∗
0 = 0 because they can be solved analytically (see the proof in Appendix B). A

semi-pooling equilibrium with v
∗
0 > 0 exists but has to be solved numerically. See Section 5.
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Shoppers Non-shoppers

High

type

(δ2)

Low

type

(δ1)

Sell at

(ψ2, s2)

Buy

Sell at

(ψ1, s1)

Buy; and

sell at (ψ2, s2)

Figure 2: Illustration of the semi-pooling equilibrium

It is then interesting to know how consumers’ welfare in the semi-pooling equilibrium compares

with the fully separating equilibrium in Section 3. If the fully separating equilibrium implies higher

welfare, forcing consumers to reveal their identities as shoppers and non-shoppers may be beneficial.

The following proposition states that if we maintain the assumptions in Proposition 4.2, the high

type (δ2) shoppers are always worse off when the trading motives are unknown, while the low type

(δ1) shoppers are unaffected.

Proposition 4.3 Suppose the assumptions in Proposition 4.2 holds so a semi-pooling equilibrium

exists. Then compared to the fully separating equilibrium where trading motives are known, high

type shopper’s search value (v∗
1,2) is always smaller and low type shopper’s search value (v∗

1,1) is

unchanged.

While the result is not surprising, it is also not completely obvious. Low type shoppers are unaf-

fected because no other sellers compete with them in either case. For high type shoppers, because

pooling with low type non-shoppers lowers average tree quality, they have to post a lower price.

However, the lower price may also allow the high type shoppers to sell more because they now do

not need to ration as much to prevent low type shoppers from deviating. That is, trading volume

(ψ2s2) may be higher when trading motives are unknown. The proposition simply says that the

first force is stronger, and therefore high type shopper’s search value is smaller.

However, this is not the whole picture. While high type shoppers are made worse off, low type

non-shoppers are made better off because their share of the surplus is zero in the fully separating

equilibrium. Now, since the consumption shock is random, all consumers can be shoppers or non-

shoppers. Hence, we should measure welfare with consumers’ expected search value in the AM
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before the two shocks are realized. Define

v∗
p = α∆v∗

1,1(p) + α(1 − ∆)v∗
1,2(p) + (1 − α)∆ṽ∗

0,1(p)

and

v∗
s = α∆v∗

1,1(s) + α(1 − ∆)v∗
1,2(s)

where the letters in the brackets mean “semi-pooling equilibrium” (p) and “separating equilibrium”

(s). Recall that v∗
1,j is δj shopper’s search value and ṽ∗

0,1 is low type non-shopper’s search value.

Then, v∗
p is consumers’ expected search value in a semi-pooling equilibrium and v∗

s is consumers’

expected search value in a separating equilibrium. The next proposition says it is possible that v∗
p

is larger than v∗
s .

Proposition 4.4 There exists Cw ⊂ Cp such that for all (δ1, δ2,∆, α) ∈ Cw, there exist a semi-

pooling equilibria and a corresponding separating equilibrium where v∗
p > v∗

s . That is, hidden trading

motives may improve welfare.

In the proof (Appendix B) I show that, for the proposition to hold, δ1 (low type) must not be too

large relative to δ2 (high type). This is because in the fully separating equilibrium, the smaller

δ1 is, the more high type shoppers have to ration to prevent low type shoppers from deviating.

Therefore, when δ1 is not too large, the semi-pooling equilibrium permits higher trading volume

for high type shoppers. Now since v∗
0 = 0 (see Proposition 4.2), buyers’ share of the surplus is zero.

Then, the sum of δ2 shoppers’ and δ1 non-shoppers’ search value must equal to the total surplus,

which increases with the trading volume. That is, it must be that

α(1 − ∆)v∗
1,2(p) + (1 − α)∆ṽ∗

0,1(p) > α(1 − ∆)v∗
1,2(s).

Since v∗
1,1(p) = v∗

1,1(s) (see Proposition 4.3), we have v∗
p > v∗

s . Proposition 4.3 and 4.4 show that

while ex post high type shoppers prefer no private information on trading motives, ex ante it can

be welfare-improving to have unknown trading motives.

So far I have only used the Intuitive Criterion to refine the equilibrium. The Intuitive Criterion

keeps the analysis tractable, making it easy to demonstrate the mechanism that induces seller to

pool. However, it is inadequate for welfare analysis because the Intuitive Criterion may have ruled

out reasonable equilibria that offer higher welfare to consumers. In the next proposition, I refine

the equilibrium using the Undefeated Equilibrium (Mailath et al., 1993) and show that the above

conclusion still holds. Recall that a sequential equilibrium is undefeated if there does not exist

another sequential equilibrium where at least some agents are strictly better off.

Proposition 4.5 There exists Cu ⊂ Cw such that for all (δ1, δ2,∆, α) ∈ Cu, there exist a semi-

pooling equilibrium and a corresponding separating equilibrium that are both undefeated and have

the property that v∗
p > v∗

s .
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That is, for some (δ1, δ2,∆, α), both the separating equilibrium and the semi-pooling equilibrium

are undefeated. This is equivalent to stating that both equilibria are Pareto dominant in their

respective environments. Hence, the conclusion that the semi-pooling equilibrium may improve

welfare is robust to alternative refinements.

Before I end this sub-section, there are a few things that need to be clarified. First, the condi-

tions found in this sub-section (Proposition 4.2-4.5) are sufficient but may not be necessary. Second,

depending on the parameter values, the following scenarios are also possible: (1) a semi-pooling

equilibrium is not undefeated; (2) a semi-pooling is undefeated but not welfare-improving; and (3)

a semi-pooling is undefeated and is welfare-improving compared to the separating equilibrium, but

the separating equilibrium is not undefeated. In these cases, the conclusions in this section do not

apply, and consumers may receive higher welfare if motives are known.16

5 Exiting Fire Sale Equilibria

In this section, I show how the asset market can “exit” the semi-pooling equilibrium discussed

in Section 4.3. Chang (2018) shows that such semi-pooling equilibrium is useful in explaining the

“fire sale” phenomenon. In particular, the semi-pooling equilibrium is able to generate the following

empirical features of a fire sale: (1) distressed sellers sell quickly at a highly discounted price; and

(2) an increase in the distress level leads to a larger price discount. One of the differences between

Chang (2018) and this paper is that Chang (2018) assumes free entry of buyers, while in this paper

the supply of buyers is fixed. With free entry, buyers’ search value in the asset market are always

constant and equal to the entry cost. But, if the supply of buyers is fixed, buyers’ search value

will respond to sellers’ desire to sell. In what follows, I show how buyers’ search value affects the

market equilibrium, and how the asset market may transition from a semi-pooling equilibrium to

a fully-separating equilibrium as economic fundamentals change.

I consider two variables: the relative quality of the low type sellers (δ1) and shoppers’ fruit

endowment (b), because they determine how shoppers’ private value of the assets compares to non-

shoppers’. I focus on two equilibrium outcomes – the price and the trading volume faced by high

type shoppers. Recall that the trading volume is the product of the price (ψ2) and quantity sold

(s2). δ1 is measured as a percentage of δ2. b is measured as a percentage of the quantity needed

for efficient consumption (c∗). The price ψ2 measured as a percentage of δ2. That is, 100% − ψ2

equals to the price discount on δ2 trees. The trading volume is measured as a percentage of the

efficient volume, which is equal to c∗ − b.

First, I fix b and vary δ1. Figure 3 shows that, as δ1 increases, the price in the semi-pooling

equilibrium increases because the quality in the pool improves. However, the increase in price is

16In the first and the second case, consumer do receive higher welfare when motives are known. To see this,
note that if the semi-pooling equilibrium is not undefeated, the only possible undefeated equilibrium is a pooling
equilibrium (a one-price equilibrium), and consumers are always better off if shoppers do not have to pool with δ1

non-shoppers. The second case is obvious.
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slower than the improvement in average quality because buyers’ search value (v0) also increases

with δ1 (Figure 4). That is, buyers are taking a bigger and bigger “cut” of the surplus, preventing

the improvement in price from keeping pace with the improvement in δ1. The result is a kink where

low type non-shoppers begin to leave the pooling market due to the low pooling price. As they

leave the pooling market, the price starts to increase faster and trading volume starts to decrease

to dissuade low type shoppers from deviating. Eventually, all low type non-shoppers will leave the

pooling market and only shoppers sell trees, an equilibrium described in Proposition 4.1. I refer to

this as the “exit” from the fire sale equilibria.
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Figure 3: Equilibrium as a Function of Low Type’s Quality (δ1)

Why does buyers’ search value, v∗
0, increase with δ1? As δ1 increases, the improvement in the

pooling price makes high type sellers want to sell more and hence demand a higher buyer-seller

ratio, which must be met with a higher v∗
0 to clear the market. Intuitively, a fixed supply of buyers

allows buyers’ “bargaining power” to increase as sellers’ desire to sell increases. Similarly, when

motives are known, the signaling cost decreases with δ1. Then the increase in high type sellers’

desire to sell allows buyers to demand more in trading.
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Figure 4: Buyers’ Search Value (v∗
0) as a Function of Low Type’s Quality (δ1)
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Next, I fix δ1 and vary b. As b decreases, shoppers’ holding cost increases and so is their desire

to sell. Consequently, v∗
0 increases (Figure 6), which drives down the price to a point where low

type non-shoppers begin to leave the pooling market (the kink in the figures). The improvement

in asset quality due to the exit of low type non-shoppers is offset by the increase in v∗
0, which

explains the flat part in the left panel of Figure 5. Once the low type non-shoppers finish exiting,

the decrease in price resumes. The trading volume increases, however, because the strong desire

to sell outweighs the losses from selling at low prices. At this point, the asset market has “exited”

the fire sale equilibria.
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Figure 5: Equilibrium as a Function of Fruit Endowment (b)
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Figure 6: Buyers’ Search Value (v∗
0) as a Function of Fruit Endowment (b)

To summarize, there are two forces that can lead the asset market out of a fire sale equilibrium.

First, if the quality difference is big or if the holding cost is small, high type shoppers’ private value

of assets will be sufficiently different from low type non-shoppers’. Then, the high type shoppers

will deviate. This is the force discussed in Section 4.3.17 Second, if the quality difference between

17This force does not show up here because in the first scenario δ1 is larger than 40% of δ2, and in the second
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assets is small or if the holding cost is big, high type shoppers’ desire to sell will be high, which

increases buyers’ search value and drives down the price to a point where it is no longer profitable

for low type non-shoppers to sell. Clearly, the second force does not exist if buyers’ search value is

fixed by a free entry condition.

6 Government Interventions

6.1 Before-shock Purchase

First I consider a government asset purchase program. Before the shocks are realized, the govern-

ment issues bonds to purchase all trees from consumers. Denote the bonds as D. The bonds can

be exchanged for fruit in the FM. The exchange rate is not state-contingent – one unit of bonds

is exchangeable for one unit of fruit. The bonds are perfectly divisible and recognizable, and they

cannot be counterfeited by agents. Hence, if the government can commit, the producers will treat

the bonds as regular fruit.

At what price will consumers be willing to sell their trees to the government? Let δ̄ =
∑J
j=1 ∆jδj be the post-shock average tree quality. Denote the price of trees in terms of bonds as

P . Then for the government to break even, we need P ≤ δ̄. Suppose P = δ̄ so the government

does not earn any profit. Every agent now holds D = δ̄ · a units of government bonds and b units

of fruit. For the simplicity of exposition, let us consider the case where b+D > c∗ where u′(c∗) = 1

so there are enough bonds and fruit for efficient consumption. Then the value of selling the trees

to the government compared to holding the original endowment (b, a) is

V c = u(b+m∗) − u(b) −m∗ (6.1)

where m∗ is given by u′(b+m∗) = 1. Consumers’ search value in the asset market is given by

V d = α
J∑

j=1

∆jv
∗∗
1,j + (1 − α)

J∑

j=1

∆jv
∗∗
0,j (6.2)

where v∗∗
1,j and v∗∗

0,j are defined by (4.1) and (4.4), respectively. With some algebra, we can rewrite

V d as

V d =
J∑

j=1

∆jp(θj)
[
u(b+mj) − u(b) −mj

]
(6.3)

where mj = ψjsj is the amount of fruit acquired by δj sellers, and p(θj) is the trading probability.

Then, unless mj = m∗ and p(θj) = 1 for all j, V d < V c. In general, mj < m∗, because sellers face

scenario b is smaller than 80% of c
∗ (see the figures). Given other parameter values, if δ1 is smaller or b is larger,

consumers’ private value of assets will be different enough that δ2 shoppers will deviate.
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either the signaling cost or the price distortion in the asset market. Since the benefit of consuming

close to b + m∗ is second-order but the signaling cost or the price distortion is first-order, agents

consume less than b+m∗. Hence, we have V d < V c and the program is strictly welfare-improving

for consumers if P = δ̄. There must then exist a P < δ̄ such that as long as P ≥ P , the consumers

will be willing to sell their trees.

Such program can also be offered by a private agency and financed by the agency’s debt, as

long as the agency can commit to repayment. The following punishment can be introduced to

guarantee repayment. Should the agency default, it is required to return all of the trees to their

owners. That is, the trees serve as collateral. Note that the agency has to return all trees because

otherwise it may default strategically on those with low quality trees.

Is it always a good idea to let a public or private agency purchase all the trees? For the asset

purchase program to work, the agency needs to know the average quality of the trees. However, for

buyers to participate in the asset market, this information is generally not required. For example,

in the semi-pooling equilibrium discussed in Section 4.3, buyers need only know the density of the

sellers that pool in equilibrium. In the fully-separating equilibrium discussed in Proposition 4.1,

no knowledge about the density of each type is needed. Hence, whether the program works or

not depends on what information is available in the market. Also, suppose that, on top of the

idiosyncratic shocks, there is an unforeseen aggregate shock that worsens the average tree quality.

Then the agency may not be able to commit to its debt. The asset market, however, can still

operate under such shocks. Hence, while it is possible for the asset purchase program to improve

welfare, it does not replace the asset market.

6.2 After-shock Lending

Now suppose the government can only intervene after the shocks are revealed. Hence, the gov-

ernment is subjected to the same information frictions – it cannot observe asset quality or trading

motives. I assume that the government can always borrow fruit from an outside economy at no

cost and then lend it to the consumers.18 The loans are offered before the asset market opens. To

obtain a loan from the government, the consumers have to post their trees as collateral. The loans

are paid back in the FM after the dividends from the trees are realized. If the consumers default,

the government can seize the dividends from the trees that are posted as collateral. Let the interest

rate be r so if a consumer borrows e units of fruit, she needs to payback (1 + r)e units in the FM.

For every unit of fruit borrowed the government requires d units of trees posted as collateral. The

government must break even after the FM.

Now consider a program featuring r = 0 and d = 1/δ1. Recall that I define δ1 to be the lowest

quality type. First, note that if a borrower with loan size e defaults in the FM, the government

18In a model with fiat money, a more natural assumption is that the central bank lends to liquidity-constrained
agents. To avoid adding another asset to the environment, I assume there is a market where the government can
borrow fruit but the consumers cannot. The conclusion is of course not affected by this detail.
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can seize edδ amount of fruit. Then as long as d ≥ 1/δ1, no borrowers will default. Second, if

r ≥ 0 and there is no incentive to default, the non-shoppers will not borrow from the government.

Third, if r = 0 then it is costless to borrow. Hence, the shoppers will borrow till they have enough

fruit for efficient consumption. That is, they will borrow c∗ − b where u′(c∗) = 1. This will require

(c∗ − b)/δ1 units of trees as collateral.

Then, a collateralized lending program can effectively eliminate all private information in the

market and help shoppers achieve the first best. One caveat is that the shoppers need to possess

at least (c∗ − b)/δ1 units of trees. When they do, private information concerning asset quality

and trading motives has no effect no welfare. But when they do not, it reduces the pledgeability

of high quality trees. Choosing r and d in this scenario is more tricky as the government now

faces a trade-off. It can lower d to increase the pledgeability of the trees, but it will also attract

the non-shoppers with low quality trees. More importantly, borrowers with low quality trees will

always default in the FM. To break even, the government will have to raise r. But then this will

prevent shoppers with high quality trees from consuming efficiently. The takeaway is that when

the economy has enough assets to serve as collateral, such a lending program can avoid information

frictions that exist in the decentralized market. But if the economy does not have enough assets,

the lending program will face the same information frictions as the decentralized market.

7 Conclusion

In this paper I study how trading motives affect equilibrium outcomes and welfare. I focus on

two types of trading motives – informational and allocational. I show that while a fully separating

equilibrium is the unique equilibrium when trading motives are known, multiple equilibria exist

when trading motives are unknown. Moreover, with unknown trading motives, there exists a semi-

pooling equilibrium that may improve welfare relative to the separating equilibrium with known

motives. I also use this model to study how the asset market can exit a fire sale equilibrium.

Lastly, I discuss two government programs, an asset purchase program and a collateralized lending

program, that may eliminate private information and improve agents’ welfare.
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Appendix A Proofs: Section 3

In this section I show how to solve the competitive equilibrium in the AM when motives are known.

Following Faig and Jerez (2006) and Guerrieri and Shimer (2014), I first take buyer’s search value

v∗
0 as given. I then endogenize v∗

0 to solve for the full equilibrium.

To solve the partial equilibrium where v∗
0 is given, I follow Guerrieri et al. (2010) and solve a set

of problems {P (δj)}
J
j=1 first. And then I prove any solution to {P (δj)}

J
j=1 is a partial equilibrium

and any partial equilibrium is a solution to {P (δj)}
J
j=1.

Let

v̄0 = u(ĉ) − u(b) − (ĉ− b)

be the total trade surplus if the trade in asset market helps the seller consumes efficient amount of

consumption in the following GM. For any j ∈ J and v0 ∈ [0, v̄0], problem P (δj) is given by

v1,j = max
θ,ψ,s

{min{θ, 1}[u(b+ ψs) − u(b) − δjs]} (A.1)

s.t. v0 ≤ min{θ−1, 1}s(δj − ψ) (A.2)

v1,j′ ≥ min{θ, 1}[u(b+ ψs) − u(b) − δj′s] for all j′ < j (A.3)

s ≤ a (A.4)

ψs ≤ b. (A.5)

The first constraint says the price-quantity pair, (ψ, s), must satisfy buyer’s participation constraint.

The second constraint requires that no sellers with quality worse than j have the incentive to deviate.

And the last two constraints are agents’ resource constraints.

The next proposition characterizes the solution to this set of problems. I find it convenient

to redefine the choice variables as (θ,m) rather than (θ, ψ, s) where m = ψs is the units of fruit

transferred in trade. I refer to m as the trade volume. I then calculate ψ and s from m. Before

stating the proposition, I define some variables that will be useful in describing the solution.

Let {(θj , ψj , sj)}
J
j=1 be the solution to {P (δj)}

J
j=1. Define mj ≡ ψjsj . Define m∗ be such that

u′(b+m∗) = 1 (A.6)

and m̄∗ be such that

u′(b+ m̄∗)(v0 + m̄∗) = u(b+ m̄∗) − u(b). (A.7)

Next, given v1,1, define m†
j for all j > 1 to be such that

v1,j−1 = u(b+m†
j) − (v∗

0 +m†
j)δj−1/δj − u(b) (A.8)
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and θ∗
j to be such that

v1,j−1 = θ∗
j [u(b+mj) − (v∗

0 +mj)δj−1/δj − u(b)]. (A.9)

Lastly, let

mj = min{δja− v0, b}, (A.10)

the highest amount of fruit sellers can acquire.

Proposition A.1 Assume v0 < v̄0. The unique solution {(θj , ψj , sj)}
J
j=1 to {P (δj)}

J
j=1 can be

divided into the following cases:

(1) m1 ≥ m∗. In this case we have θ1 = 1, m1 = m∗, and v1,1 = u(b+m∗) − (v0 +m∗) − u(b). For

all j > 1 such that m†
j > m̄∗, θj = 1 and mj = m†

j. For all j > 1 such that m†
j ≤ m̄∗, mj = m̄∗

and θj = θ∗
j ;

(2) m̄∗ ≤ m1 < m∗. In this case we have θ1 = 1, m1 = m1, and v1,1 = u(b+m1)− (v0 +m1)−u(b).

Again, for all j > 1 such that m†
j > m̄∗, θj = 1 and mj = m†

j. For all j > 1 such that m†
j ≤ m̄∗,

mj = m̄∗ and θj = θ∗
j ;

(3) m̄∗ > m1. In this case we have θ1 = 1, m1 = m1, and v1,1 = u(b+m1) − (v0 +m1) − u(b). For

all j > 1, mj = min{m̄∗,mj} and θj = θ∗
j .

In all cases, sj =
v0+mj

δj
and ψj =

mj

sj
=

mj

v0+mj
δj. sj ≤ sj−1 for all j > 1. ψj > ψj−1 for all j > 1.

θ1 = 1 and θj ≤ θj−1 for all j > 1. Lastly, v1,j−1 > v1,j for all j > 1.

Proof of Proposition A.1: Before solving the problem let me first prove a claim that will

simplify the problem. In what follows I refer to the constraint that involves j′ in problem P (δj) as

“constraint j′”.

Claim A.1: Constraint (A.2) binds for all j and that θj ≤ 1 for all j ≥ 2.

Proof. First it is easy to see that constraint (A.2) binds for j = 1 where constraint (A.3) disappears.

Next, suppose constraint (A.2) binds for all j′ = 2, ..., j − 1 and suppose the inequality is strict for

P (δj) with the solution being {ψj , sj , θj}. Now pick {ψ′, s′, θ′} such that

p(θj)(u(b+ ψjsj) − u(b) − δj−1sj) = p(θ′)(u(b+ ψ′s′) − u(b) − δj−1s
′)

v0 ≤ q(θ′)s′(δj − ψ′)

ψ′s′ = ψjsj

s′ < sj

θ′ < θj .
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Now let us check constraint (A.3). For any δj′ < δj−1, we have

p(θj)(u(b+ ψjsj) − u(b) − δj′sj) + p(θj)sj(δj′ − δj−1)

=p(θ′)(u(b+ ψ′s′) − u(b) − δj′s′) + p(θ′)s′(δj′ − δj−1).

Since s′ < sj and θ′ < θj , we have

p(θj)(u(b+ ψjsj) − u(b) − δj′sj) > p(θ′)(u(b+ ψ′s′) − u(b) − δj′s′)

so constraint (A.3) is still satisfied. But similarly we have

p(θ′)(u(b+ ψ′s′) − u(b) − δjs
′) > p(θj)(u(b+ ψjsj) − u(b) − δjsj),

a contradiction.

Next, I show that θj ≤ 1 for all j ≥ 2. Now suppose for some j we have θj > 1. Since (A.2)

binds for j, then let θ′ = 1 and we must have

q(θ′)sj(δj − ψj) = sj(δj − ψj) > v0 (A.11)

while all other constraints are satisfied and seller’s utility is unchanged. Hence (θ′, ψj , sj) is also

optimal. But this is a contradiction since constraint (A.2) does not bind. Q.E.D.

Now let us consider j = 1. First, define m̄ ≡ ψs. Then m̄ denotes the fruit transferred from

the buyer to the seller. Problem P (δ1) becomes

v1,1 = max
θ,m̄

{θ(u(b+ m̄) − (v0 + m̄) − u(b))} (A.12)

s.t. m̄ ≤ min{δ1a− v0, b} (A.13)

It is straightforward to formulate the solution: θ1 = 1 and m1 = min{m∗,min{δ1b− v0, b}} where

u′(b + m∗) = 1 and hence b + m∗ is the amount of real balances that supports efficient level of

consumption.

Next let us look at j = 2. It must be that constraint (A.3) binds. Suppose not, then problem

P (δ2) is the same as P (δ1) except for the difference in tree quality. Then j = 2 sellers will choose

m2 = m1 and θ2 = 1. But this is strictly better than what j = 1 sellers have: if they deviate they

receive u(b + m1) − (v0 + m1)δ1/δ2 − u(b) So it is a contradiction. Using the binding constraint
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(A.2) we can rewrite the problem as

v1,2 = max
θ,m̄

{θ(u(b+ m̄) − (v0 + m̄) − u(b))} (A.14)

s.t. v1,1 = θ(u(b+ m̄) − (v0 + m̄)δ1/δ2 − u(b)) (A.15)

v1,1 ≤ u(b+ m̄) − (v0 + m̄)δ1/δ2 − u(b) (A.16)

m̄ ≤ min{δ2a− v0, b} (A.17)

where I call constraint (A.16) the “feasibility” constraint. It is derived from the result that θ ≤ 1.

To solve this problem, for the moment let me ignore constraint (A.16) and the resource con-

straint. The problem becomes

max
m̄

{

u(b+ m̄) − (v0 + m̄) − u(b)

u(b+ m̄) − d1(v0 + m̄) − u(b)

}

(A.18)

where d1 = δ2/δ1. First order condition is given by

(1 − d1)[u′(b+ m̄)(v0 + m̄) − u(b+ m̄) + u(b)]

[u(b+ m̄) − d1(v0 + m̄) − u(b)]2
= 0. (A.19)

It is easy to check that the second derivative is always negative for m̄ ≥ 0. Also u′(b + m̄)(v0 +

m̄) − u(b+ m̄) + u(b) > 0 when m̄ = 0 and u′(b+ m̄)(v0 + m̄) − u(b+ m̄) + u(b) < 0 when m̄ → ∞.

Then there is a unique solution to equation (A.19), which is given by

u′(b+ m̄∗)(v0 + m̄∗) = u(b+ m̄∗) − u(b). (A.20)

Note m̄∗ ≤ c∗ − b with equality only when v0 = v̄0. That is, sellers in this case do not acquire

enough real balances to support efficient consumption in the GM.

Now let m2, m̄∗ and m†
2 be given by

m2 = min{δ2a− v0, b} (A.21)

u′(b+ m̄∗)(v0 + m̄∗) = u(b+ m̄∗) − u(b) (A.22)

v1,1 = u(b+m†
2) − (v0 +m†

2)δ1/δ2 − u(b). (A.23)

It is easy to see that constraint (A.16) puts a upper bound on m2. Constraint (A.17), on the other

hand, puts a lower bound on m2 because if m̄∗ < m†
2, constraint (A.17) will be violated. Then the

optimal amount of real balances acquired by the asset seller is given by

m2 = min{m2,max{m̄∗,m†
2}}, (A.24)

which concludes the solution to P (δ2).
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For cases where j > 2, the following claim gives the solution.

Claim A.2: Assume v0 < v̄0. For all j > 2, constraint (A.3) binds for j′ = j − 1 and is slack for

all the other j′’s.

Proof. The proof is long and I divide it into several cases.

Case 1: m1 ≥ m∗.

Subcase 1.1: max{m̄∗,m†
2} = m̄∗. In this case m2 = m̄∗ Let us start with j = 3 and proceed by

induction.

v1,3 = max
θ,m̄

{θ(u(b+ m̄) − (v0 + m̄) − u(b))} (A.25)

s.t. v1,1 ≥ θ(u(b+ m̄) − (v0 + m̄)δ1/δ3 − u(b)) (A.26)

v1,2 ≥ θ(u(b+ m̄) − (v0 + m̄)δ2/δ3 − u(b)) (A.27)

θ ≤ 1 (A.28)

m̄ ≤ min{δ3a− v0, b}. (A.29)

First, by the same reasoning in P (δ2), at least one of the two resource constraints must bind.

Now suppose constraint (A.26) binds but constraint (A.27) is slack. We can then substitute the

constraint into the objective function just like in P (δ2). It is easy to see that m̄∗ is still the optimal

because the solution to (A.20) is independent of δ1/δ3. It is feasible because by assumption sellers

and buyers can still afford it. In addition, θ3 given by binding constraint (A.26) is strictly less than

one since

u(b+ m̄∗) − (v0 + m̄∗)δ1/δ2 − u(b) < u(b+ m̄∗) − (v0 + m̄∗)δ1/δ3 − u(b)

so θ2 > θ3. However, constraint (A.27) is violated by (θ3, m̄
∗) because

v1,1 = θ2(u(b+ m̄∗) − (v0 + m̄∗)δ1/δ2 − u(b)) = θ3(u(b+ m̄∗) − (v0 + m̄∗)δ1/δ3 − u(b))

and θ2 > θ3 together imply

v1,2 = θ2(u(b+ m̄∗) − (v0 + m̄∗)δ2/δ2 − u(b))

= θ2(u(b+ m̄∗) − (v0 + m̄∗)δ1/δ2 − u(b)) + θ2(v0 + m̄∗)(δ1 − δ2)/δ2

= θ3(u(b+ m̄∗) − (v0 + m̄∗)δ1/δ3 − u(b)) + θ2(v0 + m̄∗)(δ1 − δ2)/δ2

= θ3(u(b+ m̄∗) − (v0 + m̄∗)δ2/δ3 − u(b)) + θ2(v0 + m̄∗)(δ1 − δ2)/δ2 + θ3(v0 + m̄∗)(δ2 − δ1)/δ3

< θ3(u(b+ m̄∗) − (v0 + m̄∗)δ2/δ3 − u(b))

where the third equality is because by assumption constraint (A.26) binds. Now suppose constraint

(A.27) binds but constraint (A.26) is slack, by similar arguments it is easy to see that all the

constraints are satisfied and θ3 is now given by binding constraint (A.27). Lastly, consider the case
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where both constraints bind. It is easy to see that this is not possible – at least one of them must

be slack. Hence we have established that only j′ = 2 constraint binds and the solution is given by

(θ3, m̄
∗) where θ3 solves

v1,2 = θ3(u(b+ m̄∗) − (v0 + m̄∗)δ2/δ3 − u(b)).

Now suppose that the claim holds for all j′ < j. For P (δj) we can rewrite constraint (A.3) as

v1,j−1 = θj−1(u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj−1 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−1/δj − u(b))

v1,j−2 = θj−1(u(b+ m̄∗) − (v0 + m̄∗)δj−2/δj−1 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−2/δj − u(b))

v1,j−3 = θj−2(u(b+ m̄∗) − (v0 + m̄∗)δj−3/δj−2 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−3/δj − u(b))

...

v1,j−k = θj−k+1(u(b+ m̄∗) − (v0 + m̄∗)δj−k/δj−k+1 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−k/δj − u(b))

...

v1,1 = θ2(u(b+ m̄∗) − (v0 + m̄∗)δ1/δ2 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δ1/δj − u(b))

Again, at least one of the j − 1 constraints must be binding. Let one of the binding constraints

be j′ ∈ {1, ..., j − 1}. Now suppose j′ < j − 1. We can substitute the constraint into the objective

function and m̄∗ will be the optimal solution. θj is given by

v1,j′ = θj′+1(u(b+ m̄∗) − (v0 + m̄∗)δj′/δj′+1 − u(b)) = θj(u(b+ m̄∗) − (v0 + m̄∗)δj′/δj − u(b))

and again θj < θj′+1. However, this implies that

v1,j′+1 = θj′+1(u(b+ m̄∗) − (v0 + m̄∗)δj′+1/δj′+1 − u(b))

= θj′+1(u(b+ m̄∗) − (v0 + m̄∗)δj′/δj′+1 − u(b)) + θj′+1(v0 + m̄∗)(δj′ − δj′+1)/δj′+1

= θj(u(b+ m̄∗) − (v0 + m̄∗)δj′/δj − u(b)) + θj′+1(v0 + m̄∗)(δj′ − δj′+1)/δj′+1

= θj(u(b+ m̄∗) − (v0 + m̄∗)δj′+1/δj − u(b)) + θj′+1(v0 + m̄∗)(δj′ − δj′+1)/δj′+1

+ θj(v0 + m̄∗)(δj′+1 − δj′)/δj

< θj(u(b+ m̄∗) − (v0 + m̄∗)δj′+1/δj − u(b)).

where again the third equality is because by assumption constraint j′ binds. That is, constraint

j′ + 1 is violated. Hence j′ = j − 1. This also implies that θj < θj−1. Lastly, if one reverses the

above arguments, together with the fact that θj < θj−1, it is easy to see that if the first constraint

is held at equality, the rest of the inequalities are strict. Note that θj is given by

v1,j−1 = θj(u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj − u(b)).
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Subcase 1.2: max{m̄∗,m†
2} = m†

2. In this case, m2 is given by

v1,1 = u(b+m2) − (v0 +m2)δ1/δ2 − u(b)

and θ2 = 1. Now let us check j = 3. The feasibility constraints are

u(b+m2) − (v0 +m2)δ1/δ2 − u(b) ≤ u(b+ m̄) − (v0 + m̄)δ1/δ3 − u(b) (A.30)

u(b+m2) − (v0 +m2)δ2/δ2 − u(b) ≤ u(b+ m̄) − (v0 + m̄)δ2/δ3 − u(b). (A.31)

Note that there can only be one constraint that binds and if one of constraints binds, the other

one must be slack and switch the direction of the inequality. Also, it must be constraint (A.31). If

constraint (A.30) binds, it will imply that

v1,1 = u(b+m2) − (v0 +m2)δ1/δ2 − u(b) < u(b+m3) − (v0 +m3)δ1/δ3 − u(b)

because m3 < m2. Then j = 1 sellers will deviate. Hence, we have θ3 = 1 and m3 = m†
3. For cases

where j > 3, suppose that for all j′ < j, the feasibility constraints satisfy that at least one of them

binds and it is constraint j − 1. Then we can write

u(b+mj−1) − (v0 +mj−1)δj−1/δj−1 − u(b) ≤ u(b+mj) − (v0 +mj)δj−1/δj − u(b)

u(b+mj−1) − (v0 +mj−1)δj−2/δj−1 − u(b) ≤ u(b+mj) − (v0 +mj)δj−2/δj − u(b)

u(b+mj−2) − (v0 +mj−2)δj−3/δj−2 − u(b) ≤ u(b+mj) − (v0 +mj)δj−3/δj − u(b)

...

u(b+mj−k+1) − (v0 +mj−k+1)δj−k/δj−k+1 − u(b) ≤ u(b+mj) − (v0 +mj)δj−k/δj − u(b)

...

u(b+m2) − (v0 +m2)δ1/δ2 − u(b) ≤ u(b+mj) − (v0 +mj)δ1/δj − u(b).

Again if constraint j′ < j − 1 binds, the constraint j′ + 1 will be violated. Hence if there are

constraints that bind, it must be the first constraint. Note in this case the rest of the constraints

are satisfied automatically. Then θj = 1 and mj = m†
j .

It is easy to see that when the feasibility constraint binds, m†
j < m†

j−1, and hence it is possible

that for some j ≥ 3, m†
j < m̄∗ and the feasibility constraint is slack at m̄ = m̄∗. Suppose j = 3.

Since m̄∗ ≤ m2, it is easy to show (by the same logic) that only constraint j = 2 binds. Next,

suppose Claim A.2 is true for all j′ < j and that the feasibility constraint binds for all P (δj′) with
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1 < j′ < j − k where 0 ≤ k < j − 3 but is slack for j − k ≤ j′ ≤ j. The incentive constraints are

v1,j−1 = θj−1(u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj−1 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−1/δj − u(b))

v1,j−2 = θj−1(u(b+ m̄∗) − (v0 + m̄∗)δj−2/δj−1 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−2/δj − u(b))

v1,j−3 = θj−2(u(b+ m̄∗) − (v0 + m̄∗)δj−3/δj−2 − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−3/δj − u(b))

...

v1,j−k−1 = θj−k(u(b+ m̄∗) − (v0 + m̄∗)δj−k−1/δj−k − u(b)) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−k−1/δj − u(b))

v1,j−k−2 = u(b+m†
j−k−1) − (v0 +m†

j−k−1)δj−k−2/δj−k−1 − u(b) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−k−2/δj − u(b))

...

v1,1 = u(b+m†
2) − (v0 +m†

2)δ1/δ2 − u(b) ≥ θ(u(b+ m̄) − (v0 + m̄)δ1/δj − u(b)).

It can be shown that, provided that m̄ = m̄∗, if any constraint j′ < j − 1 binds constraint j′ + 1

will be violated, and that if the first constraint binds the rest are satisfied automatically. To see

the first point, the only noteworthy constraint is constraint j − k − 2. Suppose it binds, first note

that m̄∗ < m†
j−k−1. Second, because m̄∗ ≥ m†

j , θj ≤ 1 if m̄ = m̄∗. Third, constraint j − k − 1 can

be written as

u(b+m†
j−k−1) − (v0 +m†

j−k−1)δj−k−1/δj−k−1 − u(b) ≥ θ(u(b+ m̄) − (v0 + m̄)δj−k−1/δj − u(b)),

which is violated if constraint j − k − 2 binds. The second point follows from previous arguments

in Subcase 1.1 and in this case.

Case 2: m̄∗ ≤ m1 < m∗.

Subcase 2.1: max{m̄∗,m†
2} = m̄∗. Since mj ≥ m1 for all j > 1, no sellers or buyers are resource

constrained. The solution then follows from Subcase 1.1.

Subcase 2.2: max{m̄∗,m†
2} = m†

2. Again no sellers or buyers will be resource constrained because

m̄∗ ≤ m†
2 < m1. This case then follows from Subcase 1.2.

Case 3: m̄∗ > m1.

Subcase 3.1: m1 = b. That is, sellers are constrained by the amount of cash carried by the buyers.

Because every buyer carries the same amount of cash, all transactions will be constrained. δ2 sellers

will choose m2 = b. For the rest of the problems {P (δj)}
J
j=3, at least one incentive constraint must

bind. It then follows from similar arguments that for all j > 2, only constraint j′ = j − 1 binds

and all the others are slack, and that all sellers choose mj = b. θj is given by

v1,j−1 = θj(u(b+ b) − (v0 + b)δj−1/δj − u(b)).

In what follows, denote δja− v0 as δ∗
j .

Subcase 3.2: m1 = δ1a − v0 and min{b, δ∗
J} = δ∗

J < m̄∗. In this case, all sellers are asset
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constrained because buyers bring enough fruit and sellers would want to choose m̄∗ but are limited

by δ∗
j . We need to check if constraint (A.3) is satisfied when sellers choose δ∗

j . Consider j = 3 first.

The incentive constraints are

θ2(u(b+ δ∗
2) − δ1a− u(b)) ≥ θ3(u(b+ δ∗

3) − δ1a− u(b)) (A.32)

θ2(u(b+ δ∗
2) − δ2a− u(b)) ≥ θ3(u(b+ δ∗

3) − δ2a− u(b)). (A.33)

Following the reasoning in previous proof, it is easy to see that the second constraint must bind

and the first is slack. We can then prove by induction that for all j > 3, only constraint j′ = j − 1

binds and all the others are slack. Sellers then choose mj = δ∗
j . θj is given by

v1,j−1 = θj(u(b+ δ∗
j ) − δja− u(b)).

Subcase 3.3: m1 = δ1a− v0 and there exists j > 1 such that δ∗
j ≥ m̄∗ but b < m̄∗. Again for all

j′ ≥ j, the sellers are cash constrained. It remains to show that incentive constraints hold when

sellers with δj choose b. The constraints are

v1,j−1 = θj−1(u(b+ δ∗
j−1) − δj−1a− u(b)) ≥ θj(u(b+ b) − (v0 + b)δj−1/δj − u(b))

v1,j−2 = θj−1(u(b+ δ∗
j−1) − δj−2a− u(b)) ≥ θj(u(b+ b) − (v0 + b)δj−2/δj − u(b))

v1,j−3 = θj−2(u(b+ δ∗
j−2) − δj−3a− u(b)) ≥ θj(u(b+ b) − (v0 + b)δj−3/δj − u(b))

...

v1,j−k = θj−k+1(u(b+ δ∗
j−k+1) − δj−ka− u(b)) ≥ θj(u(b+ b) − (v0 + b)δj−k/δj − u(b))

...

v1,1 = θ2(u(b+ δ∗
2) − δ1a− u(b)) ≥ θj(u(b+ b) − (v0 + b)δ1/δj − u(b)).

Suppose that constraint j′ < j − 1 is binding. First note that b + b < c∗. Next, we know that

v0 + b ≤ δja so (v0 + b)δj′/δj ≤ δj′a. Since b+ b > b+ δ∗
j′ , it must be that θj′+1 > θj . Then using

the same method as before we can show that constraint j′ + 1 is violated. Then only constraint

j − 1 binds. In the cases where the sellers are asset constrained for all P (δj′) with 1 ≤ j′ < j − k

where 0 ≤ k < j − 2 but is cash constrained for j − k ≤ j′ ≤ j, the proof is similar to Subcase 3.1

and 3.2. To summarize, for all j′ < j − k, we have mj′ = δ∗
j′ and θj′ is given by

v1,j′−1 = θj′(u(b+ δ∗
j′) − δj′a− u(b)).

For all j′ ≥ j − k, we have mj′ = b and θj′ is given by

v1,j′−1 = θj′(u(b+ b) − (v0 + b)δj′−1/δj′ − u(b)).

Subcase 3.4: m1 = δ1a − v0 and there exists j > 1 such that δ∗
j ≥ m̄∗ and b > m̄∗. We can just
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replace b with m̄∗ in the above case. Hence, for all j′ < j, we have mj′ = δ∗
j′ or s = a and θj′ is

given by

v1,j′−1 = θj′(u(b+ δ∗
j′) − δj′a− u(b)).

For all j′ ≥ j, we have mj′ = m̄∗ and θj′ is given by

v1,j′−1 = θj′(u(b+ m̄∗) − (v0 + m̄∗)δj′−1/δj′ − u(b)).

Q.E.D.

Lastly I prove the final claim in Proposition A.1. In all cases, sj =
v0+mj

δj
and ψj =

mj

sj
=

δj
mj

v0+mj
. Notice that because mj is weakly decreasing, sj is strictly decreasing except in Case 3

where sj = a because agents are asset constrained. For ψj , it is easy to see that if mj is constant

(either mj = m̄∗ or agents are cash constrained), ψj will be strictly increasing. When agents are

asset constrained in Case 3, sj = a and hence ψj must be strictly increasing as well. Also in Case

3 when agents go from asset constrained to cash constrained, because mj will be bigger and sj will

be smaller, ψj will also be bigger. We are then left with cases in Case 1 and 2 where mj decreases

in j as a result of binding feasibility constraint. First, in Subcase 1.2, by Claim A.2 we have

u(b+ ψ1s1) − u(b) − δ1s1 = u(b+ ψ2s2) − u(b) − δ1s2.

Since we have shown that s2 < s1, then it must be that ψ2 > ψ1, otherwise the right hand side

would be smaller since the right hand side increases in s2 and ψ2. Similar for other cases where

the feasibility constraint binds. Now suppose the feasibility constraint binds for j − 1 but not for

j. Again by Claim A.2 we have

u(b+ ψj−1sj−1) − u(b) − δj−1sj−1 = θj [u(m+ ψjsj) − u(b) − δj−1sj ].

Because θj ≤ 1, we must have

u(b+ ψj−1sj−1) − u(b) − δj−1sj−1 ≤ u(b+ ψjsj) − u(b) − δj−1sj

and hence ψj > ψj−1. Lastly, since

v1,j−1 = θj−1[u(+
¯
ψj−1sj−1) − u(b) − δj−1sj−1]

= θj [u(b+ ψjsj) − u(b) − δj−1sj ] > v1,j ,

we have v1,j−1 > v1,j for all j > 1. �

The next proposition shows the connection between {P (δj)}
J
j=1 and the partial equilibrium

defined in Definition 3.1. In short, any solution to {P (δj)}
J
j=1 is a partial equilibrium and any

partial equilibrium is a solution to {P (δj)}
J
j=1.
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Proposition A.2 (1) For any solution to {P (δj)}
J
j=1, for all j, let Ψ = {(ψj , sj)}

J
j=1 and θ(ψj , sj) =

θj; let γ(ψj , sj ; δ) = 1 if and only if δ = δj; let v∗
1,j = v1,j; and let F (ψj , sj) = ∆j. Then

{Ψ, {v∗
1,j}

J
j=1, θ(.), γ(.), F (.)} is a partial equilibrium;

(2) For any partial equilibrium, let (ψj , sj) be such that γ(ψ, s; δj) > 0 and let θj = θ(ψj , sj). Then

{(ψj , sj , θj)}
J
j=1 solves {P (δj)}

J
j=1.

Proof of Proposition A.2: Now I prove any solution to {P (δj)}
J
j=1 is a partial equilibrium

and any partial equilibrium is a solution to {P (δj)}
J
j=1. Note that because the above solution to

{P (δj)}
J
j=1 is unique, this proof implies that the partial equilibrium is unique.

Part 1: To show that the solution to {P (δj)}
J
j=1 is a partial equilibrium, I look for for a partial

equilibrium characterized by (θj , ψj , sj). For all j, let Ψ = {(ψj , sj)}
J
j=1 and θ(ψj , sj) = θj ; let

γ((ψj , sj); δ) = 1 if and only if δ = δj ; let v∗
1,j = v1,j ; and let F (ψj , sj) = ∆j .

Let us check Condition (1) to (5). Condition (2) to (4) hold by construction. Buyer’s optimal

behavior also holds because for all j, (ψj , sj , θ(ψj , sj)) offers utility v0 to buyers. We need to show

that Seller’s optimal behavior is satisfied and Condition (5) satisfied.

By construction, for all j and for all j′ < j, j′ will not deviate to j. We only need to prove

j′ > j will not deviate to j either. Let us proceed by induction. First note that from {P (δ)} we

have

v1,j = θj [u(b+ ψjsj) − u(b) − δjsj ] = θj+1[u(b+ ψj+1sj+1) − u(b) − δjsj+1]. (A.34)

Since θj ≥ θj+1 and sj ≥ sj+1 imply that θjsj ≥ θj+1sj+1, we have

θj [u(b+ ψjsj) − u(b) − δj+1sj ] < θj+1[u(b+ ψj+1sj+1) − u(b) − δj+1sj+1]

= v1,j+1. (A.35)

Now suppose for some j′ > j + 1, the above equation is also true for j′ − 1:

θj [u(b+ ψjsj) − u(b) − δj′−1sj ] < θj′−1[u(b+ ψj′−1sj′−1) − u(b− δj′−1sj′−1]. (A.36)

Again because θjsj ≥ θj′−1sj′−1 and δj′ > δj′−1, the following is also true

θj [u(b+ ψjsj) − u(b) − δj′sj ] < θj′−1[u(b+ ψj′−1sj′−1) − u(b) − δj′sj′−1]. (A.37)

Now apply (A.35) again to get

θj′−1[u(b+ ψj′−1sj′−1) − u(b) − δj′sj′−1] < θj′ [u(b+ ψj′sj′) − u(b) − δj′sj′ ]. (A.38)

Combine the last two inequalities to get

v1,j′ = θj′ [u(b+ ψj′sj′) − u(b) − δj′sj′ ] > θj [u(b+ ψjsj) − u(b) − δj′sj ] (A.39)
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which is what we want.

Now suppose there exists a set S that satisfies condition (3.7) to (3.9). Define

S∗ = {j ∈ S|condition (3.7) is true}

and let j∗ = minS∗. Now suppose there exists j ∈ S such that j < j∗, then set S\j also satisfies

condition (3.7) to (3.9). Therefore, without loss of generality I assume j∗ = minS. Now consider

the belief system that assigns all the weights to δj∗ : γ∗(ψ, s; δj∗) = 1. By assumption, (ψ, s) must

be accepted under γ∗. Then we have a contradiction: δj∗ seller is strictly better off while not

violating any constraints in P (δj).

Part 2: In this part I show that any equilibrium defined by Definition 3.1 is a solution to

{P (δj)}
J
j=1. Aggregate consistency implies that for all j there exists (ψ, s) such that γ(ψ, s; δj) > 0.

Denote such (ψ, s) as (ψj , sj). Let θj = θ(ψj , sj). I first show that (ψj , sj , θj) satisfies constraints

(A.2) to (A.5) for all j. Then I show that {(ψj , sj , θj)}
J
j=1 solves {P (δ)}.

First, note that Buyer’s optimal behavior and Active markets together imply that

v0 = q(θj)sj(δj − ψj)

for all j and that resource constraints are satisfied. That is, constraint (A.2), (A.4) and (A.5) are

satisfied.

Next, Equilibrium beliefs and Seller’s optimal behavior imply that

v∗
1,j = min{θj , 1}[u(b+ ψjsj) − u(b) − δjsj ]

and that

v∗
1,j ≥ min{θj′ , 1}[u(b+ ψj′sj′) − u(b) − δjsj′ ] for all j′.

Hence, constraint (A.3) is satisfied as long as v1,j = v∗
1,j .

Lastly, I prove that v1,j = v∗
1,j for all j. That is, {(ψj , sj , θj)}

J
j=1 is a solution to {P (δ)}. Let

us proceed by induction. First, it is easy to see that v1,1 = v∗
1,1. Next, suppose v1,j′ = v∗

1,j′ for

all j′ < j. Now suppose v1,j > v∗
1,j . That is, some (ψ, s, θ) satisfies the constraints of P (δj) and

delivers higher utility to sellers. That is,

v∗
1,j < min{θ, 1}[u(b+ ψs) − u(b) − δjs] (A.40)

v0 ≤ min{θ−1, 1}s(δ − ψ) (A.41)

v∗
1,j′ ≥ min{θ, 1}[u(b+ ψs) − u(b) − δj′s] for all j′ < j (A.42)

s ≤ a (A.43)

ψs ≤ m. (A.44)
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where (A.42) uses the induction assumption. Then there must exist (ψ′, s′, θ) such that

ψ′ < ψ, s′ < s (A.45)

v∗
1,j < min{θ, 1}[u(b+ ψ′s′) − u(b) − δjs

′] (A.46)

v0 ≤ min{θ−1, 1}s′(δ − ψ′) (A.47)

v∗
1,j′ > min{θ, 1}[u(b+ ψs) − u(b) − δj′s] for all j′ < j (A.48)

s′ ≤ a (A.49)

ψ′s′ ≤ m. (A.50)

Now let the off-equilibrium offer be (ψ′, s′, θ) and S = {j′′ ∈ J |j′′ ≥ j}. It is easy to see that

condition (3.7) to (3.9) are satisfied, violating condition (5). Hence, it must be that v1,j = v∗
1,j . �

Now I am ready to solve the full equilibrium in the AM where v0 is endogenized.

Proposition A.3 There exists a unique competitive equilibrium {Ψ, {v∗
1,j}

J
j=1, θ(.), γ(.), F (.), v∗

0}

for all α ∈ (0, 1).

Proof of Proposition A.3: Proposition A.1 and A.2 show that the partial equilibrium can be

divided into three cases: (1) m1 ≥ m∗, (2) m̄∗ ≤ m1 < m∗, and (3) m̄∗ > m1 where m∗, m̄1 and

m̄∗ are defined by (A.6), (A.10) and (A.7), respectively.

Case (1): let me repeat the equilibrium solution in this case. In this case we have θ1 = 1, m1 = m∗,

and v∗
1,1 = u(b + m∗) − (v0 + m∗) − u(b). For all j > 1 such that m†

j > m̄∗, θj = 1 and mj = m†
j .

For all j > 1 such that m†
j ≤ m̄∗, mj = m̄∗ and θj = θ∗

j . m
†
j is defined by (A.8) and θ∗

j is defined

by (A.9).

Let us first check m†
2. It is given by

u(b+m∗) − (v0 +m∗) − u(b) = u(b+m†
2) − (v0 +m†

2)δ1/δ2 − u(b). (A.51)

Taking full derivative to get (note m∗ should be regarded as a constant)

dm†
2

dv0
=

−1 + δ1/δ2

u′(b+m†
2) − δ1/δ2

< 0 (A.52)

since u′(b+m†
2) ≥ 1 by Proposition A.1. Similarly, for m†

3 we have

dm†
3

dv0
=

(u′(b+m†
2) − 1)

dm
†
2

dv
− 1 + δ1/δ2

u′(b+m†
3) − δ2/δ3

< 0. (A.53)
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It is easy to see that
dm

†
j

dv0
< 0 for all j such that m†

j > m̄∗. Now let us check m̄∗. We have

dm̄∗

dv0
=

−u′(b+ m̄∗)

u′′(b+ m̄∗)(v0 + m̄∗)
> 0. (A.54)

Next I turn to the biggest j such that m†
j ≤ m̄∗. If j > 1, we have

u(b+m†
j−1) − (v0 +m†

j−1) − u(b) = θ∗
j [u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj − u(b)]. (A.55)

Define θ∗
j (v0) to be

θ∗
j (v0) =

u(b+m†
j−1(v0)) − (v0 +m†

j−1(v0)) − u(b)

u(b+ m̄∗(v0)) − (v0 + m̄∗(v0))δj−1/δj − u(b)
. (A.56)

Take derivative and get

dθ∗
j (v0)

dv0
=



(u′(b+m†
j−1) − 1)

dm†
j−1

dv0
− 1



 [u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj − u(b)]

−

[

(u′(b+ m̄∗) − δj−1/δj)
dm̄∗

dv0
− 1

]

[u(b+m†
j−1) − (v0 +m†

j−1) − u(b)]

=A+B

where

A =



(u′(b+m†
j−1) − 1)

dm†
j−1

dv0



 [u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj − u(b)]

−

[

(u′(b+ m̄∗) − δj−1/δj)
dm̄∗

dv0

]

[u(b+m†
j−1) − (v0 +m†

j−1) − u(b)] < 0

and

B = − [u(b+ m̄∗) − (v0 + m̄∗)δj−1/δj − u(b)]

+ [u(b+m†
j−1) − (v0 +m†

j−1) − u(b)] ≤ 0.

B ≤ 0 because θ∗
j ≤ 1. Hence

dθ∗
j (v0)

dv0
< 0. If j = 1 then it is still true that A < 0. Now apply some
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minor modifications to (A.55) and we have

dθ∗
j+1(v0)

dv0
=

[

(u′(b+ m̄∗) − 1)
dm̄∗

dv0
− 1

]

θ∗
j [u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)]

+
dθ∗
j (v0)

dv0
[u(b+ m̄∗) − (v0 + m̄∗) − u(b)][u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)]

−

[

(u′(b+ m̄∗) − δj/δj+1)
dm̄∗

dv0
− 1

]

θ∗
j [u(b+ m̄∗) − (v0 + m̄∗) − u(b)]

=C +D

where

D = − θ∗
j [u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)]

+ θ∗
j [u(b+ m̄∗) − (v0 + m̄∗) − u(b)] < 0.

and

C =

[

(u′(b+ m̄∗) − 1)
dm̄∗

dv0

]

θ∗
j [u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)]

−

[

(u′(b+ m̄∗) − δj/δj+1)
dm̄∗

dv0

]

θ∗
j [u(b+ m̄∗) − (v0 + m̄∗) − u(b)]

+
dθ∗
j (v0)

dv0
[u(b+ m̄∗) − (v0 + m̄∗) − u(b)][u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)]

=
dm̄∗

dv0
θ∗
j (1 − δj/δj+1)[u′(b+ m̄∗)(v0 + m̄∗) − u(b+ m̄∗) + u(b)]

+
dθ∗
j (v0)

dv0
[u(b+ m̄∗) − (v0 + m̄∗) − u(b)][u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)]

=
dθ∗
j (v0)

dv0
[u(b+ m̄∗) − (v0 + m̄∗) − u(b)][u(b+ m̄∗) − (v0 + m̄∗)δj/δj+1 − u(b)] < 0

where the last equality is because of (A.7). We can then prove by induction that
dθ∗

j′ (v0)

dv0
< 0 for

all j′ > j.

Define

g(v0) ≡
J∑

j=1

θj(v0)∆j .

Let j(v0) be the biggest j such that m†
j ≤ m̄∗. Then j(v0) decreases with v0. Because for all j′ < j

we have θj′ = 1, and
dθ∗

j′ (v0)

dv0
< 0 for all j′ > j. Hence g(v0) is strictly decreasing in v0. When

v0 = 0, m̄∗ = 0 and hence θj = 1 for all j. When v0 = v̄0 we have θ1 ≤ 1 and θj = 0 for all j > 1.
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Now define α and ᾱ be such that

α

1 − α
=

1

g(0)
(A.57)

and

ᾱ

1 − ᾱ
=

1

g(v̄0)
. (A.58)

Let v0(α) be such that
α

1 − α
=

1

g(v0(α))
.

Then there exist a unique v0 that the market clearing condition is satisfied. It is given by

v0 =







0, if α < α;

v0(α), if α ∈ [α, ᾱ];

v̄0, if α > ᾱ.

(A.59)

When v0 = 0, buyers are indifferent between participating or not and hence the buyer-seller ratio

in each market when α < α is the sames when α = α. Some buyers simply do not participate in

the search market. Similarly, v0 = v̄0, sellers are indifferent between participating or not and hence

the buyer-seller ratio in each market when α > ᾱ is the sames when α = ᾱ. Some sellers do not

participate in the search market.

Case (2): Case (2) is similar to Case (1) except that, due to resource constraints, v̄0 cannot be

achieved. Furthermore, it matters whether δ1 is asset constrained or cash constrained. If δ1 is cash

constrained, define v̂0 = u(b+m1) −m1 − u(b). We then have

v0 =







0, if α < α;

v0(α), if α ∈ [α, α̂];

v̂0, if α > α̂.

(A.60)

where α̂ is defined by

α̂

1 − α̂
=

1

g(v̂0)
. (A.61)

If δ1 is asset constrained, we have to write m1 as m1(v0) and it decreases in v0. It is easy to

check that it is still true that
dm

†
2

dv0
< 0. Hence the proof in Case (1) still holds. Define v̂0 such that

u(b+ δ1a− v̂0) − δ1a− u(b) = 0.

v0 is given by (A.60).
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Case (3): We need to check each subcases (see the proof of Proposition A.1). In Subcase 3.1, we

have mj = b for all j. θj is given by

v1,j−1 = θj(u(b+ b) − (v0 + b)δj−1/δj − u(b)).

It is easy to check that dθ2

dv0
< 0. From there it is easy to show that

dθj

dv0
< 0 for all j > 2. Then in

this case, define v̂0 = u(b+ b) − b− u(b) and v0 is given by (A.60).

In Subcase 3.2 all sellers are asset constrained. θ2 is given by

θ2 =
u(b+ δ1a− v0) − δ1a− u(b)

u(b+ δ2a− v0) − δ1a− u(b)
(A.62)

and

dθ2

dv0
= − u′(b+ δ1a− v0)[u(b+ δ2a− v0) − δ1a− u(b)]

+ u′(b+ δ2a− v0)[u(b+ δ1a− v0) − δ1a− u(b)]

≤ − u′(b+ δ1a− v0)[u(b+ δ2a− v0) − δ1a− u(b)]

+ u′(b+ δ1a− v0)[u(b+ δ1a− v0) − δ1a− u(b)]

= − u′(b+ δ1a− v0)[u(b+ δ2a− v0) − u(b+ δ1a− v0)] < 0

Similarly

dθ3

dv0
=
dθ2

dv0
[u(b+ δ2a− v0) − δ2a− u(b)][u(b+ δ3a− v0) − δ2a− u(b)]

− u′(b+ δ2a− v0)θ2[u(b+ δ3a− v0) − δ2a− u(b)]

+ u′(b+ δ3a− v0)θ2[u(b+ δ2a− v0) − δ2a− u(b)]

≤
dθ2

dv0
[u(b+ δ2a− v0) − δ2a− u(b)][u(b+ δ3a− v0) − δ2a− u(b)]

− u′(b+ δ2a− v0)θ2[u(b+ δ3a− v0) − δ2a− u(b)]

+ u′(b+ δ2a− v0)θ2[u(b+ δ2a− v0) − δ2a− u(b)]

=
dθ2

dv0
[u(b+ δ2a− v0) − δ2a− u(b)][u(b+ δ3a− v0) − δ2a− u(b)]

− u′(b+ δ2a− v0)[u(b+ δ3a− v0) − u(b+ δ2a− v0)] < 0.

Then we can prove by induction that
dθj

dv0
< 0 for all j. Now define v̂0 such that

u(b+ δ1a− v̂0) − δ1a− u(b) = 0.

v0 is given by (A.60).
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In Subcase 3.3, for all j′ < j,
dθj′

dv0
< 0 by the above arguments. For θj , we have

θj =
θj−1[u(b+ δj−1a− v0) − δj−1a− u(b)]

u(b+ b) − (v0 + b) − u(b)
(A.63)

and

dθj
dv0

=
dθj−1

dv0
[u(b+ δj−1a− v0) − δj−1a− u(b)][u(b+ b) − (v0 + b) − u(b)]

− u′(b+ δ2a− v0)θ2[u(b+ b) − (v0 + b) − u(b)]

+ θ2[u(b+ δj−1a− v0) − δj−1a− u(b)]

≤
dθj−1

dv0
[u(b+ δj−1a− v0) − δj−1a− u(b)][u(b+ b) − (v0 + b) − u(b)]

− u′(b+ δ2a− v0)θ2[u(b+ δj−1a− v0) − δj−1a− u(b)]

+ u′(b+ δ2a− v0)θ2[u(b+ δj−1a− v0) − δj−1a− u(b)] < 0

where the second inequality is because u′(b+ δ2a−v0) > 1 and θj < θj−1. Then define v̂0 such that

u(b+ δ1a− v̂0) − δ1a− u(b) = 0.

v0 is given by (A.60).

Subcase 3.4 is similar to Subcase 3.3. Only difference is that for all j′ ≥ j, we have mj = m̄∗.

Then

dθj
dv0

=
dθj−1

dv0
[u(b+ δj−1a− v0) − δj−1a− u(b)][u(b+ m̄∗) − (v0 + m̄∗) − u(b)]

− u′(b+ δ2a− v0)θ2[u(b+ m̄∗) − (v0 + m̄∗) − u(b)]

+ θ2[u(b+ δj−1a− v0) − δj−1a− u(b)]

−
dm̄∗

dv0
[u′(b+ m̄∗) − 1]θ2[u(b+ δj−1a− v0) − δj−1a− u(b)]

which is the same as in Subcase 3.3 except for the last term. The last term is negative because
dm̄∗

dv0
> 0. Then define v̂0 such that

u(b+ δ1a− v̂0) − δ1a− u(b) = 0.

v0 is given by (A.60). �
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Appendix B Proofs: Section 4

Proof of Proposition 4.1: from the proof of Proposition A.1 and Proposition A.3 we know that

the if α ≤ 0.5, v∗
0 = 0 and the highest price in the fully separating equilibrium is given by δJ , in

which case non-shoppers will always try to sell trees. When α > 0.5, v∗
0 increases with α. While v∗

0

increases, the prices in asset market decrease. If α is big enough so that v∗
0 is high enough, markets

shutdown one by one starting from market δJ . For any δ1, for the fully separating equilibrium to

exist, we need mJ

v∗
0

+mJ
δj ≤ δ1 where δj is the highest quality asset market that is open. Such α

always exists since if v∗
0 = v̄0 = u(b + m∗) − u(b) − m∗ where u′(b + m∗) = 1,19 only δ1 market is

open, in which case δ1 non-shopper will not attempt to sell. Hence, for all δ1 there exists an α such

that the fully separating equilibrium is the unique equilibrium. �

Proof of Proposition 4.2: In this proof I restrict my attention to equilibria with v∗
0 = 0 since it

can be solved analytically. I first assume v∗
0 = 0. Later I show there exist conditions under which

it is true.

Since δ1 non-shoppers do not sell with δ1 shoppers, δ1 seller’s problem is the same as the com-

plete information case where the amount they sell either allow them to reach efficient consumption

or is constrained by resources.

To look for the semi-pooling equilibrium, I assume that δ2 shoppers cannot separate themselves

from δ1 non-shoppers. The δ2 shopper’s problem can be written as

v1,2 = max
θ,ψ,s

{min{θ, 1}[u(b+ ψs) − u(b) − δjs]} (B.1)

s.t. 0 ≤ min{θ−1, 1}s(δ̄ − ψ) (B.2)

v1,1 ≥ min{θ, 1}[u(b+ ψs) − u(b) − δ1s] (B.3)

where δ̄ = α∆2δ2+(1−α)∆1δ1

α∆2+(1−α)∆1
. It is easy to check that Claim A.1 from the proof of Proposition A.1

still applies here. Then, we can rewrite the problem as

v1,2 = max
θ,m̄

θ

[

u(b+ m̄) − u(b) − m̄
δ2

δ̄

]

(B.4)

s.t. v1,1 ≥ θ

[

u(b+ m̄) − u(b) − m̄
δ1

δ̄

]

(B.5)

θ ≤ 1. (B.6)

19This is the case where trade in asset market is not resource constrained. v̄0 < u(b + m
∗) − u(b) − m

∗ if trade in
asset market is resource constrained.
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Let the m̄† and m̄‡ be defined by

v1,1 = u(b+ m̄†) − u(b) − m̄† δ1

δ̄
(B.7)

u′(b+ m̄‡) =
δ2

δ̄
. (B.8)

Let m2 be the solution to the above problem. Note that m̄‡ is the unconstrained maximizer.

m2 = m̄‡ if and only if constraint (B.5) is slack. Substitute in v∗
0 = 0 and we have

m2 = min{m̄†, m̄‡}

and θ2 = 1.

Next, I look for conditions under which δ2 shoppers cannot achieve separation. Consider

(θ′,m′) such that

θ′
[

u(b+m′) − u(b) −m′
]

> v1,2 = u(b+m2) − u(b) −m2
δ2

δ̄
. (B.9)

That is, (θ′,m′) makes δ2 shoppers strictly better off. Next, consider

θ′m′ − θ′m′ δ1

δ2
> ṽ0,1 = m2 −m2

δ1

δ̄
. (B.10)

That is, (θ′,m′) also makes δ1 non-shoppers strictly better off. For the semi-pooling equilibrium to

exist, we need (B.10) to be true for all (θ′,m′) that satisfy (B.9). Now consider the set M defined

by

M = {(θ,m)|θ
[
u(b+m) − u(b) − (v0 +m)

]
= v1,2}.

That is, for any (θ,m) ∈ M, the δ2 shoppers are indifferent between it and (θ2,m2). Notice that the

left hand sides of (B.9) and (B.10) both strictly increase in θ′ and m′. Then, if for all (θ,m) ∈ M

we have θm− θm δ1

δ2
≥ ṽ0,1, it must be true that any (θ,m) that makes δ2 shoppers better off will

make δ1 non-shopper better off. Note that for all (θ,m) ∈ M we have

θ =
v1,2

u(b+m) − u(b) −m
. (B.11)

Substitute it into (B.10) to get

v1,2

[

m−m δ1

δ2

]

u(b+m) − u(b) −m
≥ m2 −m2

δ1

δ̄
. (B.12)

Now define g(m) =
v1,2

[

m−m
δ1

δ2

]

u(b+m)−u(b)−m , the left hand side of expression (B.12). Next, take the derivative
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of g(m) to get

g′(m) ∝

(

1 −
δ1

δ2

)
[

−u′(b+m)m+ u(b+m) − u(b)
]

> 0. (B.13)

To see why g′(m) > 0, note that the expression in the square bracket is strictly increasing in m

and it is equal to 0 when m = 0. Hence, g′(m) > 0 for all m > 0. This means that when checking

if expression (B.12) is true, we need only consider (1,m⋄) ∈ M where m⋄ is given by

u(b+m⋄) − u(b) −m⋄ = v1,2 (B.14)

because ∀m such that (θ,m) ∈ M, m⋄ < m. Now define δ⋄
1 to be such that

m⋄

(

1 −
δ⋄

1

δ2

)

= m2

(

1 −
δ⋄

1

δ̄

)

. (B.15)

Then for all δ1 > δ⋄
1 , we have

m⋄

(

1 −
δ1

δ2

)

> m2

(

1 −
δ1

δ̄

)

. (B.16)

Next, define δ‡
1 to be such that

v1,1 = u(b+m‡) − u(b) −m‡ δ
‡
1

δ̄
. (B.17)

Note that δ‡
1 < δ̄. Then for all δ1 > δ‡, constraint (B.5) is slack. This is important because now

m2 = δ‡ and it does not depend on δ1.

Let me summarize the above findings. Fix b, δ2, δ̄. Given b, v1,1 is pinned down. Now suppose

δ1 ≥ δ‡, we have m2 always given by the unconstrained optimization in (B.4), which pins down m2

and v1,2 given δ2, δ̄ and b. Next, suppose δ1 ≥ δ⋄
1 , and then (B.10) is always true whenever (B.9) is

true. To put it in words, any deviation that makes δ2 shoppers strictly better off is going to make

δ1 non-shoppers strictly better off too. That is, the pooling of δ2 shoppers and δ1 non-shoppers

does not fail the test of the Intuitive Criterion.

The last thing left to be shown is that given δ1, δ2 and δ̄, there exists (α,∆) such that

α+ (1 − α)∆ ≤ 1 − α, where the left hand side is the measure of sellers and the right hand side is

the measure of sellers. The condition is sufficient for v∗
0 = 0 (see proof of Proposition A.3). First

rewrite it and get

α ≤
1 − ∆

2 − ∆
. (B.18)
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Next, note that δ̄ = α(1−∆)δ2+(1−α)∆δ1

α(1−∆)+(1−α)∆ . Rewrite it to get

α =
∆(δ̄ − δ1)

∆(δ̄ − δ1) + (1 − ∆)(δ2 − δ̄)
. (B.19)

Combine (B.18) and (B.19) to get

∆(δ̄ − δ1)

∆(δ̄ − δ1) + (1 − ∆)(δ2 − δ̄)
≤

1 − ∆

2 − ∆
. (B.20)

Rearrange to get

−(δ2 − δ̄)∆2 + (2δ2 − δ̄ − δ1)∆ − δ2 + δ̄ ≤ 0. (B.21)

Now consider the function h(∆) = −(δ2 − δ̄)∆2 + (2δ2 − δ̄ − δ1)∆ − δ2 + δ̄. It reaches maximum
(4δ2−3δ̄−δ1)(δ̄−δ1)

4(δ2−δ̄)
> 0 at 0 < 2δ2−δ̄−δ1

2δ2−2δ̄
< 1. Then we only need the smaller root of h(∆) = 0 to be

bigger than 0. That is

2δ2 − δ̄ − δ1 −
√

4δ2(δ̄ − δ1) − 3δ̄2 + 2δ̄δ1 + δ2
1 > 0. (B.22)

Simplify it to get

(δ2 − δ̄)2 > 0, (B.23)

which is always true. Now we can define the condition Cp on δ1, δ2, ∆ and α that allows the

semi-pooling equilibrium to exist.

Cp = {(δ1, δ2,∆, α) ∈ R
2
++ × (0, 1)2|δ1 ≥ max{δ‡

1, δ
⋄
1} and α+ (1 − α)∆ ≤ 1 − α}. (B.24)

And the above reasoning shows that it is not empty. �

Proof of Proposition 4.3: Consider the following problem

v∗
1,2 = max

θ,m̄
θ

[

u(b+ m̄) − u(b) − m̄
δ2

δ

]

(B.25)

s.t. v∗
1,1 ≥ θ

[

u(b+ m̄) − u(b) − m̄
δ1

δ

]

(B.26)

θ ≤ 1. (B.27)

If we let δ = δ2 then this problem is the one when trading motives are known. If we let δ = δ̄ then

this problem is the one when trading motives are unknown. If δ is close enough to δ2, we know the
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solution to the above problem is

v∗
1,1 = u(b+m2) − u(b) −m2

δ1

δ
(B.28)

and θ = 1. Now take implicit derivatives and get

∂m2

∂δ
= −

m2
δ1

δ2

u′(b+m2) − δ1

δ

. (B.29)

Then

∂v∗
1,2

∂δ
=

[

u′(b+m2) −
δ2

δ

]

∂m2

∂δ
+m2

δ2

δ2

=
u′(b+m2)m2

δ2 (δ2 − δ1)

u′(b+m2) − δ1

δ

> 0. (B.30)

This says that when we decreases δ from δ2 to δ̄, first (B.26) binds, and the above equation says

that v1,2 decreases as δ decreases. Next, suppose that (B.26) does not bind, which is exactly the

scenario Proposition 4.2 refers to. Then we have v∗
1,2 = u(b+m2)−u(b)−m2

δ2

δ
and u′(b+m2) = δ2

δ
.

As a result

∂v∗
1,2

∂δ
= m2

δ2

δ2
> 0. (B.31)

That is, v1,2 always decreases as δ decreases. �

Proof of Proposition 4.4: Let mp
2 denote the trading volume of δ2 location in the semi-pooling

equilibrium. Let ms
2 denote the trading volume of δ2 location in the separating equilibrium. To

prove the proposition, we want to show that ms
2 < mp

2 because the total surplus in the semi-pooling

equilibrium is shared between δ1 non-shopper and δ2 shopper, and it increases with m2. Since m1

is unchanged, a higher m2 implies higher expected search value for agents.

Now define δ†
1 to be such that

v∗
1,1 = u(b+mp

2) − u(b) −mp
2

δ†
1

δ2
.

Then fix δ2, a necessary and sufficient condition for ms
2 ≤ mp

2 to be true is that δ1 ≤ δ†
1. That is,

we then need δ†
1 ≥ δ1 ≥ max{δ⋄, δ‡}. Now we can define the condition Cw on δ1, δ2, ∆ and α that

allows the semi-pooling equilibrium to improve welfare.

Cw = {(δ1, δ2,∆, α) ∈ Cp|δ†
1 ≥ max{δ‡, δ⋄} and δ1 ∈ [max{δ‡, δ⋄}, δ†

1]}. (B.32)

We need to show that the set Cw is not empty. Suppose max{δ⋄, δ‡} = δ‡. Recall that δ‡ is
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defined by (see the proof of Proposition 4.2)

v∗
1,1 = u(b+m⋄) − u(b) −m⋄ δ

‡
1

δ̄
. (B.33)

Since δ̄ < δ2, it must be that δ†
1 > δ‡. Hence, if max{δ⋄, δ‡} = δ‡, Cw is not empty.

Now suppose max{δ⋄, δ‡} = δ⋄. Recall δ⋄ is defined by the following two expressions

u(b+m⋄) − u(b) −m⋄ = u(b+m‡) − u(b) −m‡ δ2

δ̄
(B.34)

m⋄

(

1 −
δ⋄

1

δ2

)

= m2

(

1 −
δ⋄

1

δ̄

)

. (B.35)

This case is trickier since even with explicit functional forms of u(.) (which I assume to be log), it

is no possible to derive explicit expressions. To see the set Cw is not empty, consider the following

example: b = 0.50, δ2 = 1.45 and δ̄ = 1.00, which gives rise to δ⋄ = 0.90, δ‡ = 0.67 and δ†
1 = 0.97.

Then any δ1 ∈ (0.90, 0.97) supports a semi-pooling equilibrium that improves welfare. �

Proof of Proposition 4.5: First, I show the semi-pooling equilibrium proposed in Proposition 4.4

is always undefeated.20 Note first that there does not exist another semi-pooling equilibrium where

δ2 shoppers are better off, because otherwise the maximization problem (B.4) is violated. The only

other possible equilibrium is a pooling equilibrium. In the only undefeated pooling equilibrium,

the δ2 shoppers solves

max
θ,m̄

θ

[

u(b+ m̄) − u(b) − m̄
δ2

δ̄p

]

(B.36)

s.t. v1,1 ≤ θ

[

u(b+ m̄) − u(b) − m̄
δ1

δ̄p

]

. (B.37)

where δ̄p = α∆2δ2+∆1δ1

α∆2+∆1
and v1,1 = u(b+m∗) − u(b) −m∗. That is, δ2 shoppers takes δ1 shoppers’

full information search value as given and maximizes their search value. Now since in the semi-

pooling equilibrium constraint (B.5) does not and δ̄p < δ̄, the above constraint must bind. Then

δ2 shoppers’ search value is strictly less than in the semi-pooling equilibrium while δ1 shoppers’

search value stays the same. Hence this equilibrium is defeated.

Next, for the fully separating equilibrium I derive conditions under which it is not defeated.

Bajaj (2018) shows that a sufficient condition to determine if the separating equilibrium is defeated

is whether it maximizes δ2 shoppers’ utility. That is, the separating equilibrium is undefeated if

20Note that this is not saying that any semi-pooling equilibrium will be undefeated.
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and only if vs1,2 > vp1,2 where

vs1,2 = u(b+ms
2) − u(b) −ms

2 (B.38)

v∗
1,1 = u(b+ms

2) − u(b) −ms
2

δ1

δ2
(B.39)

and

vp1,2 = max
m̄

u(b+ m̄) − u(b) − m̄
δ2

δ̄pk
(B.40)

s.t. v1,1 ≤ u(b+ m̄) − u(b) − m̄
δ1

δ̄pk
, (B.41)

δ̄pk = ∆δ1 + (1 − ∆)δ2. (B.42)

Recall that for the semi-pooling equilibrium to exist, given δ2, δ̄ and b, we put restrictions on the

lower bound of δ1. For the semi-pooling equilibrium to improve welfare, we put restrictions on

the upper bound of δ1. The goal now is that given δ1, δ2, δ̄ and b, we find the ∆ that makes the

separating equilibrium undefeated. Recall that we also have restrictions on ∆ Proposition 4.1 – we

need ∆ to be not too big so that v∗
0 = 0. Recall

α =
∆(δ̄ − δ1)

∆(δ̄ − δ1) + (1 − ∆)(δ2 − δ̄)
. (B.43)

and we need α ≤ (1 − α)(1 − ∆). Now we can define the condition Cu on δ1, δ2, ∆ and α that

allows the semi-pooling equilibrium to improve welfare.

Cu =

{

(δ1, δ2,∆, α) ∈ Cw
∣
∣
∣
∣
∣
α =

∆(δ̄ − δ1)

∆(δ̄ − δ1) + (1 − ∆)(δ2 − δ̄)
, α ≤ (1 − α)(1 − ∆), and vs1,2 ≥ vp1,2

}

.

(B.44)

To show that the set Cu is not empty, consider the following example: b = 0.50, δ2 = 1.45, δ̄ = 1.00,

and δ1 = 0.95. Obviously the example is in Cw (see the proof of Proposition 4.4). Now let ∆ = 0.40

and ∆̄ = 0.71. If ∆ < ∆̄, then α ≤ (1 − α)(1 − ∆). If ∆ ≥ ∆, then the separating equilibrium is

undefeated. Hence any ∆ ∈ [∆, ∆̄] is in Cu with α given by equation (B.43). �
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