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Abstract

We consider a problem where a group of agents is interested in some goods

provided by a supplier with multiple sources. To be served, each agent should be

connected directly or indirectly to all sources of the supplier for a safety reason.

This problem generalizes the classical minimum cost spanning problem with one

source by allowing the possibility of multiple sources. In this paper, we extend the

definitions of the folk rule to be suitable for minimal cost spanning tree problems

with multiple sources and present its axiomatic characterizations.
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1 Introduction

A group of agents is interested in a service provided by a supplier with multiple service
stations, also called sources. Agents will be served through costly connections. They
do not care whether they are connected directly or indirectly to the sources, but they
want to be connected to all of them. This may occur for a safety reason. Agents have
greater assurances of the service in the sense that they can still enjoy the service even if
one or more sources cease to provide it. Also, there could be a situation where several
suppliers offer different services by using the same network (Internet, cable TV, etc.)
and agents are interested in all of them. These situations generalize classical minimum
cost spanning tree problems with one source by allowing the possibility of multiple
sources.

Given a cost spanning tree problem with multiple sources, the least costly way of
connecting all agents to all sources (or minimum cost spanning tree) must be sought.
This tree can be obtained, in polynomial time, by using the same algorithms as in the
classical minimum cost spanning tree problem, for instance, Prim (1956) algorithm or
Kruskal (1957) algorithm. Nevertheless, some variants of this problem are not so easy
from a computational point of view: the fixed cost spanning forest problem studied in
Granot and Granot (1992), where there are potential sites to construct facilities with
fixed construction costs; the multi-source spanning tree problem studied in Farley et
al. (2000), where the objective is to compute the spanning tree that minimizes the sum
of the distances from each source to every other node; and the hop constrained Steiner
trees with multiple root nodes studied in Gouveia et al. (2014).

Once it is known how to construct the minimum cost spanning tree, another inter-
esting issue that usually arises is how to allocate that cost to the agents. Our paper
studies this issue in minimum cost spanning tree problems with multiple sources. Even
though many papers in the literature on Operations Research or Economics study how
to allocate the minimum cost to agents in the classical setting with a single source,
there are only a few devoted to this issue in the setting of multiple sources. Rosen-
thal (1987) introduces the minimum cost spanning forest game where there are several
sources that offer the same service and agents want to be connected to at least one
source. He associates a cooperative game with this problem and shows that its core is
non-empty. Kuipers (1997) studies a problem where there are multiple sources, each
of them offering a different service, and each agent specifies the set of sources that she
wants to be connected to. He associates a cooperative game with this problem and
seeks to determine the conditions under which the core is non-empty.

Our approach is different because we want all agents to be connected to all sources.
From this perspective our problem can be seen as a particular case of Kuipers (1997)
where all agents demand to be connected to all sources. Nevertheless, the cooperative
game that we set up to study this problem is different. In the two papers mentioned
above, the cost of a coalition S is the minimum cost of connecting all members in S
to some sources under the assumption that S is allowed to use nodes outside of S. We
follow the standard approach (as in the classical minimum cost spanning tree problem)
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and assume that agents in S can not use the locations of agents outside of S.
In the classical minimum cost spanning tree problem, the most popular rule is the

so called “folk rule”, which is studied in many papers. The folk rule has been proved to
satisfy very appealing properties. It chooses an allocation in the core and is monotonic
in the population and in the cost matrix. It is also additive in the cost matrix, which
makes it easy to compute. Our first aim is to extend the definition of the folk rule to
our setting by using the following four approaches:

1. as the Shapley value of the irreducible game (Bergantiños and Vidal-Puga 2007),

2. as an obligation rule (Tijs et al. 2006; Bergantiños and Kar 2010),

3. as a partition rule (Bergantiños et al. 2010 and 2011),

4. through a cone-wise decomposition (Branzei et al. 2004; Bergantiños and Vidal-
Puga 2009).

We show that all four approaches make the same recommendation, the folk rule. We
also provide its axiomatic characterizations.

The paper is structured as follows. Section 2 introduces minimum cost spanning
tree problems with multiple sources. Section 3 extends the four definitions of the folk
rule to our setting and show that they coincide in our setting. Section 4 presents its
axiomatic characterizations.

2 The model

Let N = {1, . . . , |N |} be a set of agents and M = {s1, ..., s|M |} be a set of sources. We
are interested in a network whose nodes are elements of N ∪ M . We denote by |N |
and |M | the cardinalities of N and M, respectively. For each N and M, a cost matrix
C = (cij)i,j∈N∪M represents the cost of a direct link between any pair of nodes. We
assume that cij = cji ≥ 0 for each i, j ∈ N ∪M and cii = 0 for each i ∈ N ∪M . Since
cij = cji for each i, j ∈ N ∪M, we will work with undirected arcs {i, j}. We denote the
set of all cost matrices over N ∪M as CN∪M . Given C, C ′ ∈ CN∪M , C ≤ C ′ if cij ≤ c′ij
for all i, j ∈ N ∪M . Similarly, given x, y ∈ RN , x ≤ y if xi ≤ yi for each i ∈ N .

A minimum cost spanning tree problem with multiple sources, or a problem, is char-
acterized by a triple (N,M,C) where N is the set of agents, M is the set of sources,
and C is the cost matrix in CN∪M . Given a subset S ⊂ N, we denote by (S,M,C)
the restriction of the problem to the subset of agents S. The classical minimum cost
spanning tree problem, or the classical problem for short, corresponds to the case where
M has a single element, which is denoted by 0.

For each network g and each pair of distinct nodes i and j ∈ N ∪M, a path from
i to j in g is a sequence of distinct arcs gij = {{is−1, is}}

p
s=1 such that {is−1, is} ∈ g

for each s ∈ {1, 2, . . . , p}, i = i0, and j = ip. A cycle is a path from i to i. For each
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i, j ∈ N ∪ M , i and j are connected in g if there is a path from i to j. A tree is a
connected network without any cycle.

For each network g, S ⊂ N ∪M is a connected component if (1) for each i, j ∈ S,
i and j are connected in g and (2) S is maximal, i.e., for each i ∈ S and each j /∈ S, i

and j are not connected in g. Let P (g) = {Sk(g)}
n(g)
k=1 be the partition of N ∪M into

connected components induced by g. For each network g, let S(P (g), i) be the element
of P (g) to which i belongs. Let P (N ∪M) denote the set of all partitions of N ∪M and
P = {S1, . . . , S|P |} be a generic element of P (N ∪M). For each P, P ′ ∈ P (N ∪M), P
is finer than P ′ if for each S ∈ P there is T ∈ P ′ such that S ⊂ T . Given a finite set
S, ∆(S) = {x ∈ R such that xi ∈ [0, 1] for each i ∈ S and

∑

i∈S

xi = 1} is the simplex

over S.
For each problem (N,M,C) and each network g, the cost associated with g is

defined as c(N,M,C, g) =
∑

{i,j}∈g

cij. When there is no ambiguity, we write c(g) or

c(C, g) instead of c(N,M,C, g). Our first objective is to construct a network which
minimizes the cost of connecting all agents to all sources, which can be achieved by
a minimal tree. Formally, a tree t is a minimal tree if c(t) = min{c(g) : g is a tree}.
A minimal tree always exists but it does not necessarily have to be unique. Kruskal
algorithm (1956) computes a minimal tree. It constructs such a tree by sequentially
adding the cheapest arc avoiding cycles.

Formally, let A0(C) = {{i, j} : i, j ∈ N ∪M and i 6= j} and g0(C) = ∅.

Step 1: Take an arc {i, j} ∈ A0(C) such that cij = min
{k,ℓ}∈A0(C)

{ckℓ}. If there are more

than one arcs satisfying this condition, select just one. Let {i1(C), j1(C)} = {i, j},
A1(C) = A0(C) \ {i, j} and g1(C) = {i1(C), j1(C)}.

Step p + 1 (p = 1, . . . , |N | + |M | − 2): Take an arc {i, j} ∈ Ap(C) such that cij =
min

{k,ℓ}∈Ap(C)
{ckℓ}. If there are more than one arcs satisfying this condition, select just

one. Two cases are possible:

1. If gp(C) ∪ {i, j} has a cycle, then go to the beginning of Step p + 1 with new
Ap(C) obtained from Ap(C) by deleting {i, j}, that is, Ap(C) = Ap(C) \ {i, j},
and gp(C) the same.

2. If gp(C) ∪ {i, j} has no cycle, then take {ip+1(C), jp+1(C)} = {i, j}, Ap+1(C) =
Ap(C) \ {i, j} , and gp+1(C) = gp(C) ∪ {ip+1(C), jp+1(C)} , and go to Step p+ 2.

This process is completed in |N |+ |M | − 1 steps, exactly the minimum number of arcs
that are needed in order to connect all agents with all sources. g|N |+|M |−1(C) is a tree
obtained from the Kruskal algorithm (the algorithm leads to a tree which is not always
unique). When there is no ambiguity, we write Ap, gp, and {ip, jp} instead of Ap(C),
gp(C), and {ip(C), jp(C)} respectively. We denote by m(N,M,C) the cost of a minimal
tree in (N,M,C).
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Once the minimal tree is obtained, an interesting issue is how to divide its cost
among the agents. A cost allocation rule, or a rule, is a map f that associates with each
problem (N,M,C) a vector of cost shares f(N,M,C) ∈ RN such that

∑

i∈N

fi(N,M,C) =

m(N,M,C).

Example 1 Let (N,M,C) be such that N = {1, 2, 3}, M = {a, b}, c1a = 7, c12 = 8,
c3b = 9, c1b = 10, and cij = 20 otherwise. The unique minimal tree is
{{1, a}, {1, 2}, {1, b}, {3, b}} and m(N,M,C) = 34.

3 The folk rule in minimum cost spanning tree prob-

lems with multiple sources

In this section, we extend four definitions of the folk rule to our setting and show that
they make the same recommendation. The first one is defined as the Shapley value of
the irreducible game, the second as an obligation rule, the third as a partition rule, and
the fourth through simple problems.

3.1 The Shapley value of the irreducible game

In the classical problem, Bergantiños and Vidal-Puga (2007) define the folk rule as the
Shapley value of the irreducible game. We now extend this definition to our problem.
Let (N,M,C) be a problem and t a minimal tree in (N,M,C). We define the minimal
network (N,M,Ct) associated with t where ctij = max

{k,ℓ}∈gij
{ckℓ} and gij denotes the

unique path in t from i to j. It is well known that Ct does not depend on the choice of the
minimal tree. Following Bird (1976), the irreducible problem (N,M,C∗) of (N,M,C)
can thus be defined as the minimal network (N,M,Ct) associated with any minimal
tree t. C∗ is referred to as the irreducible matrix.

A game with transferable utility, briefly a game, is a pair (N, v), where v is a real-
valued function defined on all coalitions S ⊆ N satisfying v(∅) = 0. The irreducible
game is a pair (N, vC∗) such that for each S ⊂ N, vC∗(S) = m(S,M,C∗), which means
that the value of a coalition is the minimum cost in C∗ of connecting the agents in S
to all sources using only the locations of the members in S.

Let ΠN be the set of all permutations over the finite set N . For each π ∈ ΠN , let
Pre(i, π) be the set of agents of N preceding i in the order π, i.e., Pre(i, π) = {j ∈
N such that π(j) < π(i)}. For each i ∈ N, the Shapley value of a game (N, v) (Shapley
1953) is the average of her marginal contributions:

Shi(N, v) =
1

|N |!

∑

π∈ΠN

{

v(Pre(i, π) ∪ {i})− v(Pre(i, π))
}

.

Definition 1 For each problem (N,M,C), the rule fSh is defined as the Shapley value
of the irreducible game associated with (N,M,C). Namely, fSh(N,M,C) = Sh(N, vC∗).
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We now compute fSh in Example 1. Since the unique minimal tree is
{{1, a}, {1, 2}, {1, b}, {3, b}}, c∗1a = 7, c∗12 = 8, c∗1b = 10, and c∗3b = 9. Besides, c∗2a = 8,
and c∗ij = 10 otherwise. The irreducible game is as follows:

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vC∗(S) 17 18 19 25 26 27 34

Thus,

fSh(N,M,C) =

(

62

6
,
68

6
,
74

6

)

= (10.33, 11.33, 12.33).

3.2 Obligation rules

Tijs et al. (2006) define the family of obligation rules for the classical problem by
introducing obligation functions. Let N0 = N ∪ {0} be a set of nodes where 0 is the
unique source in the classical problem. An obligation function is a map o assigning to
each S ∈ 2N0 \ {∅} a vector o(S) meeting the requirement that o(S) ∈ ∆(S) if 0 /∈ S,
oi(S) = 0 for each i ∈ S if 0 ∈ S, and for each S, T ∈ 2N0 \ {∅} such that S ⊂ T and
i ∈ S, oi(S) ≥ oi(T ). An obligation function can be interpreted as follows. Assume
that agents in S are connected with one another. Now, they need to construct an arc
from any agent in S to the source so that they are all connected. Thus, oi(S) represents
the proportion of the cost of the arc that each agent i ∈ S must pay. If the agents in S
are already connected to the source, then they do not need to construct any additional
arc so that their obligation is zero, oi(S) = 0 for each i ∈ S.

The obligation rule associated with an obligation function o is defined through the
Kruskal algorithm as follows. The cost of each arc that is constructed at each step of
the Kruskal algorithm is divided among the agents who benefit from its construction.
Each agent pays the difference between her obligation to the component to which she
belongs before the arc is added and the one afterwards. Tijs et al. (2006) prove that
f o is well-defined, namely, it is independent of the choice of the minimal tree by the
Kruskal algorithm. The folk rule corresponds to the obligation function where for each

S ⊂ N and each i ∈ S, o∗i (S) =
1

|S|
.

We now extend this definition to our problem. Let P =
{

S1, ..., S|P |

}

∈ P (N ∪M).
Note that in the classical problem, if i ∈ Sk, then the obligation of agent i depends only
on Sk (the element of the partition to which i belongs). However, in our problem, it
depends on the whole structure of the partition in connected components. We assume
that for each Sk ∈ P, agents in Sk are connected with one another. The obligation of
each i ∈ N in P, oi(P ), is defined as follows.
(1) A link that joins two components of P with sources: Since all agents in N are
interested in such a link, all agents have an equal obligation over that link.
(2) A link that joins a component Sk with no source (Sk ∩M = ∅) to a component Sk′

with a source (Sk′ ∩M 6= ∅): Since only agents in Sk are interested in such a link, only
agents in Sk have obligations over it.
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Formally, for each i ∈ Sk ∩N, the obligation function o∗ is defined as

o∗i (P ) =















|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if Sk ∩M 6= ∅,

|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
+

1

|Sk|
if Sk ∩M = ∅.

(1)

It is straightforward to see that when there is a single source (|M | = 1), o∗ coincides
with the obligation function associated with the folk rule in the classical problem.

The obligation rule f o∗ associated with the obligation function o∗ is defined in the
same way as in the classical problem.

Definition 2 For each problem (N,M,C) and each i ∈ N, the rule f o∗ is defined as

f o∗

i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp [o
∗
i (P (gp−1))− o∗i (P (gp))].

In Proposition 1, we show that f o∗ is well-defined, namely, for each (N,M,C), f o∗

divides m(N,M,C) among the agents and is independent of the minimal tree selected
by the Kruskal algorithm.

We now compute f o∗ in Example 1.

Arc P (g) o∗1(P (g)) o∗2(P (g)) o∗3(P (g))

∅ {1, 2, 3, a, b}
2− 1

3
+

1

1
= 1 +

1

3

2− 1

3
+

1

1
= 1 +

1

3

2− 1

3
+

1

1
= 1 +

1

3

{1, a} {1a, 2, 3, b}
2− 1

3
=

1

3

2− 1

3
+ 1 = 1 +

1

3

2− 1

3
+ 1 = 1 +

1

3

{1, 2} {12a, 3, b}
2− 1

3
=

1

3

2− 1

3
=

1

3

2− 1

3
+ 1 = 1 +

1

3

{3, b} {12a, 3b}
2− 1

3
=

1

3

2− 1

3
=

1

3

2− 1

3
=

1

3

{1, b} {123ab} 0 0 0

Thus,

f o∗

1 (N,M,C) = c1a +
1

3
c1b = 7 +

10

3
= 10.33,

f o∗

2 (N,M,C) = c12 +
1

3
c1b = 8 +

10

3
= 11.33,

f o∗

3 (N,M,C) = c3b +
1

3
c1b = 9 +

10

3
= 12.33.
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3.3 Partition rules

Bergantiños et al. (2010, 2011) introduce a family of rules using the Kruskal algorithm.
At each step of the algorithm, the cost of the selected arc is divided among the agents
by using sharing functions. A sharing function ̺ is a map that specifies the part of the
cost paid by each agent at each step of the Kruskal algorithm.

We now explain the sharing function inducing the folk rule. Assume that when an
arc is added, components Sk and Sℓ are joined. The sharing function is defined through
the following principles.

1. When a component with no source is joined to one with a source, only agents in
the component with no source obtain benefits. Thus, the full cost of the arc is
paid by the agents in the component with no source.

2. When two components with no source are joined, agents in both components
benefit. We assume that the total amount paid by one component is proportional
to the number of agents in the other. We further assume that all agents in the
same component pay the same amount.

For each i ∈ Sk, the proportion of the cost paid by agent i is:























0 if 0 ∈ Sk,
1

|Sk|
if 0 ∈ Sℓ,

|Sℓ|

|Sk ∪ Sℓ||Sk|
if 0 /∈ Sk ∪ Sℓ.

Next we extend the definition of the sharing function to our problem. Let P =
{

S1, ..., S|P |

}

∈ P (N ∪M). We assume that for each Sk ∈ P, agents in Sk are connected
to one another. Let P ′ be a partition obtained from P after components Sk and Sℓ are
joined. We define the sharing function ̺ as follows: Cases 1 and 2 are similar to the
ones in the classical problem, but Case 3 is new.

1. When we join a component with no source to one with a source, only agents in
the component with no source benefit. Thus, the full cost of the arc is paid by
the agents in the component with no source.

2. When we join two components with no source, agents of both components benefit.
We assume that the total amount paid by one component is proportional to the
number of agents in the other. We further assume that all agents in the same
component pay the same amount.

3. When we join two components with sources, all agents in the problem benefit.
Thus, the cost of that arc is divided equally among all agents in the problem.
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Formally, for each i ∈ N, the sharing function ̺∗ is defined as

̺∗i (P, P
′) =







































1

|N |
if Sk ∩M 6= ∅, Sℓ ∩M 6= ∅,

1

|Sk|
if Sk ⊆ N , Sℓ ∩M 6= ∅, and i ∈ Sk,

|Sℓ|

|Sk ∪ Sℓ||Sk|
if Sk ∪ Sℓ ⊆ N and i ∈ Sk,

0 otherwise.

(2)

It is clear that ̺∗(P, P ′) ∈ ∆(N).

Definition 3 For each problem (N,M,C) and each i ∈ N, the rule f̺∗ is defined as

f̺∗

i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp [̺
∗
i (P (gp−1), P (gp))].

In Proposition 1, we show that f̺∗ is well-defined, namely, it does not depend on
the choice of the minimal tree by the Kruskal algorithm.

We now compute f̺∗ in Example 1.

Arc P (gp−1), P (gp) ̺∗1(P (gp−1), P (gp)) ̺∗2(P (gp−1), P (gp)) ̺∗3(P (gp−1), P (gp))
{1, a} {1, a, 2, 3, b} 1 0 0

{1a, 2, 3, b}
{1, 2} {1a, 2, 3, b} 0 1 0

{12a, 3, b}
{3, b} {12a, 3, b} 0 0 1

{12a, 3b}

{1, b} {12a, 3b}
1

3

1

3

1

3
{123ab}

Thus,

f̺∗

1 (N,M,C) = c1a +
1

3
c1b = 7 +

10

3
= 10.33,

f̺∗

2 (N,M,C) = c12 +
1

3
c1b = 8 +

10

3
= 11.33,

f̺∗

3 (N,M,C) = c3b +
1

3
c1b = 9 +

10

3
= 12.33.
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3.4 The cone-wise decomposition

Norde et al. (2004) prove that each classical problem can be written as a non-negative
linear combination of classical simple problems where the costs of the arcs are either
0 or 1. Branzei et al. (2004) define the folk rule first in the classical simple problem
as follows. Agents connected to the source through a 0 cost path pay nothing. Agents
connected with one another through a 1 cost path pay the cost of connecting to the
source equally. Then they extend this definition to the general problem in a linear way
following the result by Norde et al. (2004).

We first introduce the folk rule in the classical simple problem following Branzei et
al. (2004). For each simple problem (N0, C) and each S ⊂ N , two agents i, j ∈ N,
i 6= j are (C, S)-connected if there exists a path gij from i to j satisfying that for all
{k, ℓ} ∈ gij, ckℓ = 0 and {k, ℓ} ⊂ S. Also, S ⊂ N is a C-component if two conditions
hold: First, for all i, j ∈ S, i and j are (C, S)-connected. Second, S is maximal, i.e., if
S  T, then there exist i, j ∈ T, i 6= j, such that i and j are not (C, T )-connected. It
is obvious that the set of C-components is a partition of N .

For each simple problem (N0, C), the folk rule is defined as follows. For each i ∈ N,
let Si be the C-component to which i belongs. Then,

fi(N0, C) =







1

|Si|
if c0j = 1 for each j ∈ Si,

0 otherwise.

Namely, agents in a C-component who are connected to the source at 0 cost pay
nothing, whereas agents in a C-component who are connected to the source at 1 cost
divide this cost equally among the members.

Next lemma adapts the results of Norde et al. (2004) to our setting.

Lemma 1 For each problem (N,M,C), there exist a positive number m(C) ∈ N, a se-

quence {Cq}
m(C)
q=1 of cost matrices, and a sequence {xq}

m(C)
q=1 of non-negative real numbers

satisfying three conditions:

(1) C =
m(C)
∑

q=1

xqCq.

(2) For each q ∈ {1, . . . ,m(C)}, there exists a network gq such that cqij = 1 if
{i, j} ∈ gq and cqij = 0 otherwise.

(3) For each q ∈ {1, . . . ,m(C)} and each {i, j, k, ℓ} ⊂ N0, if cij ≤ ckℓ, then cqij ≤ cqkℓ.

Branzei et al. (2004) extend the definition of the folk rule to a classical problem
(N0, C) using Lemma 1, so that the folk rule is defined as

m(C)
∑

q=1

xqf (N0, C
q)

where f (N0, C
q) denotes the folk rule in the simple problem (N0, C

q).
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We now apply this approach to our problem. Since we have multiple sources, we
need to adapt the procedure. First, we need to modify the definition of C-component.
Instead of considering each component as a subset ofN, we now consider a C-component
as a subset of N ∪M .

Let (N,M,C) be a simple problem. Denote by P = {S1, . . . , S|P |} the set of C-
components. The rule fCW for simple problems is defined as follows. We first connect
each component with no source to a component with sources and divide the cost equally
among the agents in the component. Then we connect the components with sources
with one another and divide the cost equally among all agents. Formally, for each
i ∈ N, let S(P, i) be the C-component to which i belongs. Then,

fCW
i (N,M,C) =















|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if S(P, i) ∩M 6= ∅,

1

|S(P, i)|
+

|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if S(P, i) ∩M = ∅.

Definition 4 For each problem (N,M,C) and each i ∈ N, the rule fCW is defined as

fCW
i (N,M,C) =

m(C)
∑

q=1

xqfCW
i (N,M,Cq).

We now compute fCW in Example 1. Note that C =
5
∑

q=1

xqCq where x1 = 7,

x2 = x3 = x4 = 1, x5 = 10, and

Arcs C1 C2 C3 C4 C5

{a, 1} 1 0 0 0 0
{1, 2} 1 1 0 0 0
{b, 3} 1 1 1 0 0
{b, 1} 1 1 1 1 0
{a, b} 1 1 1 1 1
{a, 2} 1 1 1 1 1
{a, 3} 1 1 1 1 1
{b, 2} 1 1 1 1 1
{1, 3} 1 1 1 1 1
{2, 3} 1 1 1 1 1

We compute fCW (N,M,Cq) for each q = 1, ..., 5.

1. C1-components are {1, 2, 3, a, b}.

fCW (N,M,C1) =

(

1 +
1

3
, 1 +

1

3
, 1 +

1

3

)

.
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2. C2-components are {a1, 2, 3, b}.

fCW (N,M,C2) =

(

1

3
, 1 +

1

3
, 1 +

1

3

)

.

3. C3-components are {a12, 3, b}.

fCW (N,M,C3) =

(

1

3
,
1

3
, 1 +

1

3

)

.

4. C4-components are {a12, b3}.

fCW (N,M,C4) =

(

1

3
,
1

3
,
1

3

)

.

5. C5-components are {ab123}.

fCW (N,M,C5) = (0, 0, 0).

Then,

fCW (N,M,C) =
5

∑

q=1

xqfCW (N,M,Cq)

= 7

(

1 +
1

3
, 1 +

1

3
, 1 +

1

3

)

+

(

1

3
, 1 +

1

3
, 1 +

1

3

)

+

(

1

3
,
1

3
, 1 +

1

3

)

+

(

1

3
,
1

3
,
1

3

)

+ 10 (0, 0, 0)

= (10.33, 11.33, 12.33) .

3.5 Equivalence of four approaches

In Proposition 1, we show that the obligation rule f o∗ and the Kruskal sharing rule f̺∗

are well-defined. Also, in Theorem 1, we prove that all four approaches make the same
recommendation. The proofs of Proposition 1 and Theorem 1 are given in Appendix.

Proposition 1 f o∗ and f̺∗ are well-defined.

Theorem 1 For each problem (N,M,C),

fSh(N,M,C) = f o∗(N,M,C) = f̺∗(N,M,C) = fCW (N,M,C).
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4 Axiomatic characterizations of the folk rule

Here, we provide axiomatic characterizations of the folk rule. We begin with an exten-
sion of the axioms discussed in the classical problem. Our first axiom, independence of
irrelevant trees, requires that the cost allocation chosen by a rule should depend only on
the edges that belong to a minimal tree. This axiom is introduced in Bergantiños and
Vidal-Puga (2007) and also used in Bogomolnaia and Moulin (2010) under the name
of reductionism.

Independence of irrelevant trees (IIT). For each (N,M,C) and (N,M,C ′), if they have
a common minimal tree t such that cij = c′ij for each {i, j} ∈ t, then f(N,M,C) =
f(N,M,C ′).

Equivalently, IIT can be stated as for each (N,M,C), f(N,M,C) = f(N,M,C∗),
where C∗ is an irreducible matrix associated with (N,M,C).

Cost monotonicity requires that if some cost increases, then no agent ends up better
off. This axiom has been widely discussed in the literature: Dutta and Kar (2004); Tijs
et al. (2006); Bergantiños and Vidal-Puga (2007); Lorenzo and Lorenzo-Freire (2009);
and Bergantiños and Kar (2010).

Cost monotonicity (CM). For each (N,M,C) and (N,M,C ′), if C ≤ C ′, then f(N,M,C) ≤
f(N,M,C ′).

It is easy to check that CM implies IIT.
Additivity requires that a cost allocation be an additive function of problems, that

is, for each (N,M,C) and (N,M,C ′), f(N,M,C + C ′) = f(N,M,C) + f(N,M,C ′).
However, there is no rule satisfying additivity. Therefore, as in the classical problem,
we formulate a weaker version of additivity, cone-wise additivity (Norde et al. 2004;
Bergantiños and Kar 2010; Bogomolnaia and Moulin 2010) which requires the additivity
property to hold only for a pair of problems where the orders of all arcs (in which their
costs are increasing) are the same in two problems.

Cone-wise additivity (CA). For each (N,M,C) and (N,M,C ′) and each order σ :

{{i, j}}i,j∈N∪M,i<j →
{

1, 2, ..., |N∪M |(|N∪M |+1)
2

}

, if for each i, j, k, ℓ ∈ N ∪M such that

σ{i, j} ≤ σ{k, ℓ}, cij ≤ ckℓ and c′ij ≤ c′kℓ, then f(N,M,C + C ′) = f(N,M,C) +
f(N,M,C ′).

We now introduce a monotonicity property concerned with the changes in the set
of agents. Population monotonicity requires that if new agents join the problem, then
no agent in the initial problem should be worse off. PM has been widely discussed in
the literature: Dutta and Kar (2004); Tijs et al. (2006); Bergantiños and Vidal-Puga
(2007, 2008); Lorenzo and Lorenzo-Freire (2009); Bergantiños and Kar (2010); and
Bogomolnaia and Moulin (2010).
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Population monotonicity (PM). For each (N,M,C), each S ⊂ T ⊆ N, and each i ∈ S,
fi(S,M,C) ≥ fi(T,M,C).

Core selection requires that no coalition of agents has an incentive to deviate from
the grand coalition and to build their own minimal tree.

Core selection (CS). For each (N,M,C) and each S ⊂ N,
∑

i∈S fi(N,M,C) ≤ m(S,M,C).

It is straightforward to show that PM implies CS. For each S ⊂ N and each i ∈ S,
PM implies that fi(N,M,C) ≤ fi(S,M,C), so that

∑

i∈S

fi(N,M,C) ≤
∑

i∈S

fi(S,M,C).

Since
∑

i∈S

fi(S,M,C) = m(S,M,C), PM implies CS.

Suppose that two subsets, S and N\S, can connect to all sources separately or
jointly. Separability (Bergantiños and Vidal-Puga 2007 and 2009; Bergantiños et al.
2011) requires that if the minimal costs in two situations are the same, then the same
assignment should be made to all agents in two circumstances.

Separability (SEP). For each (N,M,C) and each S ⊂ N, if m(N,M,C) = m(S,M,C)+
m(N\S,M,C), then

fi(N,M,C) =

{

fi(S,M,C) if i ∈ S,
fi(N\S,M,C) if i ∈ N\S.

Note that PM also implies SEP. By PM, for each i ∈ S, fi(N,M,C) ≤ fi(S,M,C)
and for each i ∈ N\S, fi(N,M,C) ≤ fi(N\S,M,C). If m(N,M,C) = m(S,M,C) +
m(N\S,M,C), then from the definition of a rule, we have the desired conclusion.

Symmetry requires that if two agents have the same costs for all connections with
nodes, then their cost assignments should be the same.

Symmetry (SYM). For each (N,M,C) and each i, j ∈ N, if cik = cjk for each k ∈
N ∪M\{i, j}, then fi(N,M,C) = fj(N,M,C).

We now introduce a property specifically designed for our problem, which requires
that if the cost between two sources increases, then all agents should be affected by the
same amount.

Equal treatment of source costs (ETSC). For each (N,M,C) and (N,M,C ′) and each
a, b ∈ M, if for each k, ℓ ∈ M ∪N such that {k, ℓ} 6= {a, b}, ckℓ = c′kℓ, then for each i,
j ∈ N , fi(N,M,C ′)− fi(N,M,C) = fj(N,M,C ′)− fj(N,M,C).

In the context of the classical problem, this axiom is related to constant share of extra
costs (Bergantiños and Kar 2010), which requires that if the connection cost to the
source increases by the same amount for all agents, then all agents should share this
extra cost by the same amount. However, constant share of extra costs is concerned
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with the cost change in the arc between agents and the source, but ETSC is concerned
with the cost change in the arc between two sources.

We are ready to present axiomatic characterizations of the folk rule. First, we show
that the folk rule satisfies all axioms introduced in the above.

Proposition 2 The folk rule satisfies IIT, CM, CA, PM, CS, SEP, SYM, and ETSC.

The proof is given in Appendix.
We now provide axiomatic characterizations of the folk rule.

Theorem 2 (a) A rule satisfies IIT, CA, CS, SYM, and ETSC if and only if it is the
folk rule.

(b) A rule satisfies IIT, CA ,SEP, SYM,and ETSC if and only if it is the folk rule.

The proof is given in Appendix. Also, in Appendix, we show that all axioms in Theorem
2 are independent.

Remark 1 In the classical problem, Bergantiños et al. (2011) characterizes the folk
rule by imposing the axioms of CM, CA, CS (or SEP), and SYM. Since CM implies
IIT and the folk rule satisfies CM, the folk rule can alternatively be characterized by
imposing CM instead of IIT. By adding ETSC to the list, we obtain characterizations of
the folk rule in our problem. This axiom is important since we need to specify how a rule
should respond to cost changes between sources differently from the classical problem.

Appendix:

In the appendix, we present the proofs of the results. We also show that all axioms of
Theorem 2 are independent.

Proof of Proposition 1. We need to prove two statements. First, f o∗ and f̺∗ divide
the cost of the minimal tree m(N,M,C) among the agents. Second, the definition of
f o∗ and f̺∗ does not depend on the choice of the minimal tree by the Kruskal algorithm.

We start with f o∗ . In order to prove that f o∗ divides m(N,M,C) among the agents,
it suffices to prove that for each p = 1, . . . , |N |+ |M | − 1, the cost of arc {ip, jp} is
allocated in full among the agents in N .

Given P =
{

S1, ..., S|P |

}

∈ P (N ∪M) it is trivial to see that
∑

i∈N

o∗i (P ) = |P | − 1.

Then,

∑

i∈N

[o∗i (P (gp−1))− o∗i (P (gp))] =
∑

i∈N

o∗i (P (gp−1))−
∑

i∈N

o∗i (P (gp))

= |P (gp−1)| − 1− (|P (gp)| − 1)

= |P (gp−1)| − |P (gp)|

= 1
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Next we prove that f o∗ does not depend on the choice of the minimal tree by
the Kruskal algorithm. Given a tree t = {{ip, jp}}

|N |+|M |−1
p=1 obtained by the Kruskal

algorithm, we define the followings:

• B0(t) = ∅, c0(t) = c0 = 0.

• c1(t) = min
{k,ℓ}∈t\B0(t)

{ckℓ}, c
1 = min

{k,ℓ}⊂N∪M,ckℓ>c0
{ckℓ} , and

B1(t) = {{i, j} ∈ t : cij = c1(t)}.

• In general, cq(t) = min
{k,ℓ}∈t\∪q−1

r=0B
r(t)

{ckℓ}, c
q = min

{k,ℓ}⊂N∪M,ckℓ>cq−1
{ckℓ} , and Bq(t) =

{{i, j} ∈ t : cij = cq(t)}.

This process ends when we find m(t) ≤ |N |+ |M | − 1 such that ∪
m(t)−1
r=0 Br(t)  t =

∪
m(t)
r=0 B

r(t). Note that m(t) denotes the number of arcs in t with different costs.
By the Kruskal algorithm, for all q = 1, ...,m (t), cq(t) = cq. Next, we prove that

P (B1(t)) = P ({{i, j} : cij ≤ c1}). Since B1(t) ⊂ {{i, j} : cij ≤ c1}, P (B1(t)) is finer
than P ({{i, j} : cij ≤ c1}). Suppose that P (B1(t)) 6= P ({{i, j} : cij ≤ c1}). Then,
there exist S, S ′ ∈ P (B1(t)), S 6= S ′, k ∈ S, and ℓ ∈ S ′ such that ckℓ ≤ c1. Thus,
B1(t) ∪ {{k, ℓ}} has no cycle and {k, ℓ} /∈ t, which contradicts the construction of t by
the Kruskal algorithm. Then, P (B1(t)) = P ({{i, j} : cij ≤ c1}).

Suppose now that for all q < q0,

P (∪q
r=0B

r(t)) = P ({{k, ℓ} : ckℓ ≤ cq}).

Using arguments similar to those used in the case q = 1, we can prove that

P (∪q0
r=0B

r(t)) = P ({{i, j} : cij ≤ cq0}).

Since t = ∪
m(t)
r=1 B

r(t) and cij = cr for all {i, j} ∈ Br(t) and all r = 0, . . . ,m(t),

f o
i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

o∗i (P (gp−1))− o∗i (P (gp))
]

=

m(t)
∑

q=1





|∪q
r=0B

r(t)|
∑

p=|∪q−1
r=0B

r(t)|+1

cipjp
[

o∗i (P (gp−1))− o∗i (P (gp))
]





=

m(t)
∑

q=1

cq
[

o∗i (P (g|∪
q−1
r=0B

r(t)|))− o∗i (P (g|∪
q
r=0B

r(t)|))
]

=

m(t)
∑

q=1

cq
[

o∗i (P (∪q−1
r=0B

r(t)))− o∗i (P (∪q
r=0B

r(t)))
]

=

m(t)
∑

q=1

cq
[

o∗i (P ({{i, j} : cij ≤ cq−1}))− o∗i (P ({{i, j} : cij ≤ cq}))
]

.(3)
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Thus, f o∗ does not depend on the minimal tree t.
To prove that f̺∗ is well-defined, it is enough to show that at each step p of the

Kruskal algorithm and for each i ∈ N,

̺∗i (P (gp−1), P (gp)) = o∗i (P (gp−1))− o∗i (P (gp)).

Assume without loss of generality that gp = gp−1 ∪ {k, ℓ}, P (gp−1) = {S1, . . . , Sr},
k ∈ S1, ℓ ∈ S2, and P (gp) = {S ′

2, . . . , S
′
r} where S ′

2 = S1 ∪ S2 and S ′
j = Sj for each

j = 3, . . . , r. We consider four cases:

1. S1 ∪ S2 ⊂ N :

(a) i /∈ S ′
2. Since S ′

i = Si, it is trivial to see that

o∗i (P (gp−1))− o∗i (P (gp)) = 0 = ̺∗i (P
(

gp−1
)

, P (gp)).

(b) i ∈ S ′
2. Assume that i ∈ S1 (since the other case is similar, we omit it).

Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
1

|S1|
−

1

|S1 ∪ S2|
=

|S2|

|S1 ∪ S2||S1|

= ̺∗i (P
(

gp−1
)

, P (gp)).

2. S1 ∩M 6= ∅ and S2 ∩M 6= ∅:

(a) i /∈ S ′
2 and Si ⊂ N .

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |
+

1

|Si|

−
|{S ′

j ∈ P (gp) : S ′
j ∩M 6= ∅}| − 1

|N |
−

1

|S ′
i|

=
1

|N |
= ̺∗i (P

(

gp−1
)

, P (gp)).

(b) i /∈ S ′
2 and Si ∩M 6= ∅.

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S ′

j ∈ P (gp) : S ′
j ∩M 6= ∅}| − 1

|N |

=
1

|N |
= ̺∗i (P

(

gp−1
)

, P (gp)).
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(c) i ∈ S ′
2. Suppose that i ∈ S1 (since the other case is analogous, we omit it).

Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S ′

j ∈ P (gp) : S ′
j ∩M 6= ∅}| − 1

|N |

=
1

|N |
= ̺∗i (P

(

gp−1
)

, P (gp)).

3. S1 ⊂ N and S2 ∩M 6= ∅ (since the case S1 ∩M 6= ∅ and S2 ⊂ N is similar, we
omit it):

(a) i /∈ S ′
2 and Si ⊂ N . Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
1

|Si|
−

1

|S ′
i|

= 0 = ̺∗i (P
(

gp−1
)

, P (gp)).

(b) i /∈ S ′
2 and Si ∩M 6= ∅. Then,

o∗i (P (gp−1))− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S ′

j ∈ P (gp) : S ′
j ∩M 6= ∅}| − 1

|N |

= 0 = ̺∗i (P
(

gp−1
)

, P (gp)).

(c) i ∈ S ′
2 ∩ S1. Then,

o∗i (P (gp−1)− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |
+

1

|S1|

−
|{S ′

j ∈ P (gp) : S ′
j ∩M 6= ∅}| − 1

|N |

=
1

|S1|
= ̺∗i (P

(

gp−1
)

, P (gp)).

(d) i ∈ S ′
2 ∩ S2. Then,

o∗i (P (gp−1)− o∗i (P (gp)) =
|{Sj ∈ P (gp−1) : Sj ∩M 6= ∅}| − 1

|N |

−
|{S ′

j ∈ P (gp) : S ′
j ∩M 6= ∅}| − 1

|N |

= 0 = ̺∗i (P
(

gp−1
)

, P (gp)). �
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Proof of Theorem 1. From the proof of Proposition 1, f o∗ = f̺∗ . We now prove that
fSh = fCW and f̺∗ = fCW .

We first prove that fCW and fSh coincide in simple problems. Let (N,M,C) be
a simple problem. Let P = {S1, . . . , S|P |} be the set of C-components. For each i ∈
N ∪M, let S(P, i) be the C-component to which i belongs. Assume that t is a minimal
tree. It is easy to prove that all the elements inside a component are connected at zero
cost in t, while the components connect to one another through arcs of cost 1. Note that
in the irreducible problem (N,M,C∗) we have that c∗ij = 0 when S(P, i) = S(P, j) while
c∗ij = 1 when S(P, i) 6= S(P, j). Thus, the set of C-components and C∗-components
coincide. Recall that for each i ∈ N,

fCW
i (N,M,C) =















|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
if S(P, i) ∩M 6= ∅,

|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
+

1

|S(P, i)|
otherwise.

fSh
i (N,M,C) = Shi(N, vC∗) =

1

|N |!

∑

π∈Π

(vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π))).

We consider two cases:

1. S(P, i) ∩ M 6= ∅. For each order π ∈ Π, if π(i) = 1, agent i has to pay the
cost of connecting its component to all sources. Thus, vC∗(Pre(i, π) ∪ {i}) −
vC∗(Pre(i, π)) = |{Sj ∈ P : Sj ∩M 6= ∅}| − 1. If π(i) > 1, this means that when
this agent arrives all the components with sources are already connected. Thus,
vC∗(Pre(i, π) ∪ {i})− vC∗ (Pre(i, π)) = 0. Therefore,

fSh
i (N,M,C) =

1

|N |!

∑

π∈Π

(vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π)))

=
1

|N |!

∑

π∈Π:π(i)=1

(|{Sj ∈ P : Sj ∩M 6= ∅}| − 1)

=
1

|N |!
(|N | − 1)! (|{Sj ∈ P : Sj ∩M 6= ∅}| − 1)

=
|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |

= fCW
i (N,M,C).

2. S(P, i) ∩ M = ∅. For each order π ∈ Π, we compute vC∗(Pre(i, π) ∪ {i}) −
vC∗(Pre(i, π)) distinguishing several cases.

(a) Pre(i, π) ∩ S(P, i) 6= ∅. Thus, vC∗(Pre(i, π) ∪ {i})− vC∗(Pre(i, π)) = 0.

(b) Pre(i, π) ∩ S(P, i) = ∅ = Pre(i, π). Then π(i) = 1. Thus, vC∗(Pre(i, π) ∪
{i})− vC∗(Pre(i, π)) = |{Sj ∈ P : Sj ∩M 6= ∅}|.
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(c) Pre(i, π)∩S(P, i) = ∅ 6= Pre(i, π). In this case, π(i) > 1. Thus, vC∗(Pre(i, π)∪
{i})− vC∗(Pre(i, π)) = 1.

Let Π∗ = {π ∈ Π : Pre(i, π)∩S(P, i) = ∅ and π(i) > 1}. Taking into account the
computations above, we have that

fSh
i (N,M,C) =

1

|N |
|{Sj ∈ P : Sj ∩M 6= ∅}|+

1

|N |!
|Π∗|.

Note that

1

|N |!
|Π∗| =

1

|N |!

|N |−|S(P,i)|
∑

k=1

(|N | − |S(P, i)|)!

(|N | − |S(P, i)| − k)!
(|N | − k − 1)!.

We consider |S(P, i)| = m+ 1. Then,

1

|N |!
|Π∗| =

|N |−m−1
∑

k=1

(|N | −m− 1)!(|N | − k − 1)!

(|N | −m− k − 1)!|N |!

=
(|N | −m− 1)!m!

|N |!

|N |−m−1
∑

k=1

(

|N | − k − 1
m

)

.

Since
(

x+ 1
y + 1

)

−

(

x
y + 1

)

=
(x+ 1)!

(y + 1)! (x− y)!
−

x!

(y + 1)! (x− y − 1)!

=
[(x+ 1)− (x− y)] x!

(y + 1)! (x− y)!

=
x!

y! (x− y)!

=

(

x
y

)

we have that

|N |−m−1
∑

k=1

(

|N | − k − 1
m

)

=

|N |−m−2
∑

k=1

(

|N | − k − 1
m

)

+

(

m
m

)

=

|N |−m−2
∑

k=1

[(

|N | − k
m+ 1

)

−

(

|N | − k − 1
m+ 1

)]

+

(

m
m

)

=

(

|N | − 1
m+ 1

)

−

(

m+ 1
m+ 1

)

+

(

m
m

)

=

(

|N | − 1
m+ 1

)

.
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Hence,

1

|N |!
|Π∗| =

(|N | −m− 1)!m!

|N |!

(

|N | − 1
m+ 1

)

=
(|N | −m− 1)!m!

|N |!

(|N | − 1)!

(m+ 1)! (|N | −m− 2)!

=
|N | −m− 1

|N |(m+ 1)

=
1

m+ 1
−

1

|N |

=
1

|S(P, i)|
−

1

|N |
.

Therefore,

fSh
i (N,M,C) =

|{Sj ∈ P : Sj ∩M 6= ∅}|

|N |
+

1

|S(P, i)|
−

1

|N |

=
|{Sj ∈ P : Sj ∩M 6= ∅}| − 1

|N |
+

1

|S(P, i)|

= fCW
i (N,M,C).

Now we consider a general problem (N,M,C) and i ∈ N . Thus,

fCW
i (N,M,C) =

m(C)
∑

q=1

xqfCW
i (N,M,Cq) =

m(C)
∑

q=1

xqShi(N, v(Cq)∗).

Since the Shapley value satisfies additivity on v,

m(C)
∑

q=1

xqShi(N, v(Cq)∗) = Shi

(

N, v∑m(C)
q=1 xq(Cq)∗

)

.

It only remains to prove that C∗ =
m(C)
∑

q=1

xq(Cq)∗. Let t be a minimal tree and gij

the unique path in t from i to j. We know that c∗ij = max
{k,ℓ}∈gij

{ckℓ} = ci′j′ . By Lemma 1,

we know that the order of the arcs according to its cost is preserved in each Cq. So t
is also a minimal tree for each simple problem Cq. Thus, cq∗ij = max

{k,ℓ}∈gij
{cqkℓ} = cqi′j′ and

hence

c∗ij = ci′j′ =

m(C)
∑

q=1

xqcqi′j′ =

m(C)
∑

q=1

xqcq∗ij .

We now prove that f o∗ coincides with fCW . Let (N,M,C) be a problem and t,
m(t), and ck (k = 1, ...,m(t)) be as in the proof of Proposition 1 when we proved that
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f o∗ does not depend on the minimal tree chosen by the Kruskal algorithm. By Lemma

1, C =
m(C)
∑

q=1

xqCq. Besides, by Norde et al. (2004), we have that c1 = min{cij : cij > 0}

and

c1ij =

{

0 when cij < c1,
1 when cij ≥ c1.

In general, for each q = 2, . . . ,m(C),

cq = min{cij : cij > cq−1},

cqij =

{

0 when cij < cq,
1 when cij ≥ cq,

and

xq =

{

c1 when q = 1,
cq − cq−1 when q > 1.

For each q = 1, ...,m(C), the set of Cq-components coincides with P ({{i, j} : cij ≤
cq−1}). Obviously, m(t) ≤ m(C) and t is a minimal tree in Cq for each q = 1, ...,m (C).
Besides, for each q > m(t) and each {i, j} ∈ t, cqij = 0. By definition of f o∗ , for each
i ∈ N and each q = m(t) + 1, ...,m(C), fCW

i (N,M,Cq) = 0. Then,

fCW (N,M,C) =

m(C)
∑

q=1

xqfCW (N,M,Cq) =

m(t)
∑

q=1

xqfCW (N,M,Cq).

By definition of o∗ and fCW , for each i ∈ N and each q = 1, ...,m(t),

fCW
i (N,M,Cq) = o∗i (P ({{i, j} : cij ≤ cq−1})),

where we denote c0 = 0.
Therefore,

fCW
i (N,M,C) =

m(t)
∑

q=1

xqfCW
i (N,M,Cq)

=

m(t)
∑

q=1

xqo∗i (P ({{i, j} : cij ≤ cq−1}))

= c1o∗i (P ({{i, j} : cij ≤ c0})) +

m(t)
∑

q=2

(cq − cq−1)o∗i (P ({{i, j} : cij ≤ cq−1}))

=

m(t)
∑

q=1

cq
[

o∗i (P ({{i, j} : cij ≤ cq−1}))− o∗i (P ({{i, j} : cij ≤ cq}))
]

+cm(t)o∗i (P ({{i, j} : cij ≤ cm(t)})).
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Since P ({{i, j} : cij ≤ cm(t)}) = {N ∪M} , for each i ∈ N, o∗i (P ({{i, j} : cij ≤
cm(t)})) = 0. Therefore,

fCW
i (N,M,C) =

m(C)
∑

q=1

cq
[

o∗i (P ({{i, j} : cij ≤ cq−1}))− o∗i (P ({{i, j} : cij ≤ cq}))
]

.

By (3), we deduce that fCW
i (N,M,C) = f o∗

i (N,M,C). �

Proof of Proposition 2.

(1) The folk rule satisfies IIT : By Theorem 1 the folk rule can be defined as the Shapley
value of the irreducible game. Thus, the folk rule satisfies IIT.

(2) The folk rule satisfies CM : Let (N,M,C) and (N,M,C ′) be such that C ≤ C ′. We
will prove that f o∗(N,M,C) ≤ f o∗(N,M,C ′). It is enough to prove it when there exists
a, b ∈ N ∪M such that cab < c′ab and cij = c′ij when {i, j} 6= {a, b}.

Suppose that there is a minimal tree t in (N,M,C) such that {a, b} /∈ t. This
means that t is also a minimal tree in the problem (N,M,C ′) with exactly the same
costs. Since the folk rule satisfies IIT, f o∗(N,M,C) = f o∗(N,M,C ′). Now suppose that
{a, b} ∈ t for each minimal tree t in (N,M,C). Let T be the set of trees in (N,M,C)
that do not contain the arc {a, b} and x = min

t∈T
c(N,M,C, t)−m(N,M,C).

We distinguish several cases:
Case 1. c′ab − cab ≤ x. Given a minimal tree t in (N,M,C), we have that t is also a
minimal tree in (N,M,C ′). Consider the set

A = {{i, j} ∈ t : cab < cij < c′ab}.

We have two subcases:
Subcase 1.a. A = ∅. We can apply the Kruskal algorithm to problems (N,M,C) and
(N,M,C ′) in such a way that we select the arcs of t in the same order. Therefore, for
each i ∈ N,

f o∗

i (N,M,C ′)− f o∗

i (N,M,C) = (c′ab − cab)
(

o∗i (P )− o∗i (P
ab)

)

where P is the partition in connected components before arc {a, b} is selected by the
Kruskal algorithm and P ab is the partition obtained after arc {a, b} is selected. Note
that P ab = P \ {S(P, a), S(P, b)} ∪ (S (P, a) ∪ S(P, b)). Let i ∈ N .

Subcase 1.a.i. S(P, a) ∩M 6= ∅ and S(P, b) ∩M 6= ∅. Then,

(c′ab − cab)(o
∗
i (P )− o∗i (P

ab))

= (c′ab − cab)

(

|Sk ∈ P : Sk ∩M 6= ∅| − 1

|N |
−

|Sk ∈ P : Sk ∩M 6= ∅| − 2

|N |

)

=
c′ab − cab

|N |
≥ 0.
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Subcase 1.a.ii. S(P, a) ∩M 6= ∅ and S(P, b) ∩M = ∅. Since the case S(P, a) ∩M = ∅
and S(P, b) ∩M 6= ∅ is similar, we omit it.
(1) If i /∈ S(P, a) ∪ S(P, b), then

(c′ab − cab)
(

o∗i (P )− o∗i (P
ab)

)

= 0.

(2) If i ∈ S(P, a), then

(c′ab − cab)
(

o∗i (P )− o∗i (P
ab)

)

= 0.

(3) If i ∈ S(P, b), then

(c′ab − cab)
(

o∗i (P )− o∗i (P
ab)

)

=
(c′ab − cab)

|S(P, b)|
≥ 0.

Subcase 1.a.iii. S(P, a) ∩M = ∅ and S(P, b) ∩M = ∅.
(1) If i /∈ S(P, a) ∪ S(P, b), then

(c′ab − cab)
(

o∗i (P )− o∗i (P
ab)

)

= 0.

(2) If i ∈ S(P, a) (since the case i ∈ S(P, b) is similar, we omit it), then

(c′ab − cab)
(

o∗i (P )− o∗i (P
ab)

)

= (c′ab − cab)

(

1

|S(P, a)|
−

1

|S(P, a) ∪ S(P, b)|

)

≥ 0.

Subcase 1.b. A 6= ∅. When we apply the Kruskal algorithm to problems (N,M,C) and
(N,M,C ′), the arc {a, b} is selected later in (N,M,C ′). Let

c0 = cab and c0ij =

{

c0 if {i, j} = {a, b},
cij otherwise.

For each k ≥ 1, let

ck = min{cij : {i, j} ∈ A, cij > ck−1} and

ckij =

{

ck if {i, j} = {a, b},
cij otherwise.

We apply this procedure until we find r such that crab = max{cij : {i, j} ∈ A}.
By setting Cr+1 = C ′, we have a sequence of problems {(N,M,Ck)}k∈{0,...,r+1} such
that C0 = C and Cr+1 = C ′. Note that t is a minimal tree in each of those problems.
Besides, for each pair of problems (N,M,Ck) and (N,M,Ck+1) we can select the arcs
of t in the same order following the Kruskal algorithm.

Thus, using arguments similar to those used in subcase 1.a, for each k = 0, ..., r and
each i ∈ N,

f o∗

i (N,M,Cr+1−k)− f o∗

i (N,M,Cr−k) ≥ 0.
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Then, for each i ∈ N,

f o∗

i (N,M,C ′)− f o∗

i (N,M,C) =
r

∑

k=0

[

f o∗

i (N,M,Cr+1−k)− f o∗

i (N,M,Cr−k)
]

≥ 0.

Case 2. c′ab − cab > x. Let the problem (N,M,C ′′) be such that c′′ab = cab + x and
c′′ij = cij otherwise. Let t

′ be a minimal tree in (N,M,C ′). Obviously {a, b} /∈ t′ and t′

is also a minimal tree in (N,M,C ′′). Since the folk rule f o∗ satisfies IIT, for each i ∈ N,

f o∗

i (N,M,C ′)− f o∗

i (N,M,C) = f o∗

i (N,M,C ′′)− f o∗

i (N,M,C).

Since (N,M,C ′′) satisfies the condition of Case 1, for each i ∈ N,

f o∗

i (N,M,C ′′)− f o∗

i (N,M,C) ≥ 0.

(3) The folk rule satisfies CA: By Theorem 1 the folk rule can be defined as fCW , the
cone-wise decomposition. Thus, it is obvious that it satisfies CA.

(4) The folk rule satisfies PM : It is enough to show that for each k ∈ N and each i ∈
N\{k}, f o∗

i (N,M,C) ≤ f o∗

i (N\{k},M,C). Without loss of generality, let k = |N | = n.
First, we claim that if cns = α for each s ∈ M , cni = β for each i ∈ N\{n}, and

β > α > max
i,j∈N∪M\{n}

{cij}, then for each i ∈ N \{n}, f o∗

i (N,M,C) ≤ f o∗

i (N \{n},M,C).

Let t = {{ip(N,M,C), jp(N,M,C)}}
|N |+|M |−1
p=1 be a minimal tree chosen by the

Kruskal algorithm. Then, (i) {i|N |+|M |−1(N,M,C), j|N |+|M |−1(N,M,C)} = {n, s} for
some s ∈ M , (ii) {n, s} is the only arc that agent n is linked in the tree t, and (iii)
N\{n} and M are already connected under g|N |+|M |−2(N,M,C). Also, the subtree

{{ip(N,M,C), jp(N,M,C)}}
|N |+|M |−2
p=1 is a minimal tree in (N\{n},M,C) and for each

p = 1, . . . , |N | + |M | − 2, {ip(N,M,C), jp(N,M,C)} = {ip(N \ {n},M,C), jp(N \
{n},M,C)}. Then, for each i ∈ N\{n},

f o∗

i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

o∗i
(

P
(

gp−1(N,M,C)
))

− o∗i (P (gp(N,M,C)))
]

=

|N |+|M |−2
∑

p=1

cipjp
[

o∗i
(

P
(

gp−1(N,M,C)
))

− o∗i (P (gp(N,M,C)))
]

where the last equality comes from the fact that for each i ∈ N\{n},

o∗i
(

P
(

g|N |+|M |−2(N,M,C)
))

= o∗i
(

P
(

g|N |+|M |−1(N,M,C)
))

= 0.

Note that for each p = 1, . . . , |N |+|M |−2, P (gp(N,M,C))\{n} = P (gp(N \ {n},M,C)) ,
for each i ∈ N \ {n}, S (P (gp(N,M,C)) , i) = S (P (gp(N \ {n},M,C)) , i) , and {Sj ∈
P (gp(N,M,C)) : Sj ∩M 6= ∅} = {Sj ∈ P (gp(N \ {n},M,C)) : Sj ∩M 6= ∅}.

25



Let i ∈ N\{n}. For each p = 1, . . . , |N |+ |M | − 2, let

qp = |{Sj ∈ P (gp(N,M,C)) : Sj ∩M 6= ∅}| = |{Sj ∈ P (gp(N \ {n},M,C)) : Sj ∩M 6= ∅}|

and
sp = |S(P (gp(N,M,C)), i)| = |S(P (gp(N \ {n},M,C)), i)|.

We consider several cases:

Case 1. S (P (gp−1(N,M,C)) , i)∩M 6= ∅. Then, S (P (gp(N,M,C)) , i)∩M 6= ∅. Now

o∗i
(

P
(

gp−1(N,M,C)
))

− o∗i (P (gp(N,M,C)))

=
qp−1

|N |
−

qp

|N |
≤

qp−1

|N \ {n}|
−

qp

|N \ {n}|

= o∗i
(

P
(

gp−1(N \ {n},M,C)
))

− o∗i (P (gp(N \ {n},M,C))) .

where the last inequality comes from the fact that qp−1 ≥ qp.

Case 2. S (P (gp−1(N,M,C)) , i) ∩M = ∅ and S (P (gp(N,M,C)) , i) ∩M 6= ∅. Now,

o∗i
(

P
(

gp−1(N,M,C)
))

− o∗i (P (gp(N,M,C)))

=
qp−1

|N |
+

1

sp−1
−

qp

|N |
≤

qp−1

|N \ {n}|
+

1

sp−1
−

qp

|N \ {n}|

= o∗i
(

P
(

gp−1(N \ {n},M,C)
))

− o∗i (P (gp(N \ {n},M,C))) .

Case 3. S (P (gp−1(N,M,C)) , i) ∩M = ∅ and S (P (gp(N,M,C)) , i) ∩M = ∅. Now,

o∗i
(

P
(

gp−1(N,M,C)
))

− o∗i (P (gp(N,M,C)))

=
qp−1

|N |
+

1

sp−1
−

qp

|N |
−

1

sp
≤

qp−1

|N \ {n}|
+

1

sp−1
−

qp

|N \ {n}|
−

1

sp

= o∗i
(

P
(

gp−1(N \ {n},M,C)
))

− o∗i (P (gp(N \ {n},M,C))) .

Therefore,

f o∗

i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

o∗i
(

P
(

gp−1(N,M,C)
))

− o∗i (P (gp(N,M,C)))
]

≤

|N |+|M |−2
∑

p=1

cipjp
[

o∗i
(

P
(

gp−1(N \ {n},M,C)
))

− o∗i (P (gp(N \ {n},M,C)))
]

= f o∗

i (N \ {n},M,C), (4)

as desired.
Let α = max

i,j∈N∪M
{cij} + 1 and β = α + 1. Let C0 ∈ CN∪M be such that c0ns = α for

each s ∈ M and c0ij = cij otherwise. For each r = 1, ..., |N | − 1, let Cr ∈ CN∪M be such
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that crnr = β and for each {i, j} 6= {n, r} , crij = cr−1
ij . Let i ∈ N \ {n}. Since f o∗ satisfies

CM,

f o∗

i (N,M,C) ≤ f o∗

i (N,M,C0) ≤ f o∗

i (N,M,C1) ≤ · · · ≤ f o∗

i (N,M,C |N |−1).

Applying (4) to C |N |−1,

f o∗

i (N,M,C |N |−1) ≤ f o∗

i (N\{n},M,C |N |−1).

Since C |N |−1 = C, we conclude that f o∗ satisfies PM.

(5) The folk rule satisfies CS and SEP : Since PM implies CS and SEP, the result holds.

(6) The folk rule satisfies SYM : By Theorem 1 the folk rule can be obtained as the
Shapley value of the game associated with the irreducible problem. It is trivial to
prove that if two agents are symmetric in the problem (N,M,C), then they will also
be symmetric in the irreducible problem (N,M,C∗) and hence, in the game associated
with the irreducible problem. Since the Shapley value satisfies SYM, the folk rule also
does.

(7) The folk rule satisfies ETSC : Let (N,M,C) and (N,M,C ′) be two problems sat-
isfying the conditions in the statement of ETSC. Suppose that there is a minimal tree
in (N,M,C) such that {a, b} /∈ t. Thus, t is also a minimal tree in (N,M,C ′) with the
same costs. Since the folk rule satisfies IIT, we have that f o∗(N,M,C) = f o∗(N,M,C ′).
Assume that {a, b} ∈ t for each minimal tree t in (N,M,C). Let T be the set of all
trees in (N,M,C) that do not contain {a, b}. Let x = min

t∈T
c(N,M,C, t)−m(N,M,C).

We consider several cases.
Case 1. c′ab − cab ≤ x. Note that a minimal tree t in (N,M,C) is also a minimal tree
in (N,M,C ′). Now consider the set A = {{i, j} ∈ t : cab < cij < c′ab}. The proof is
divided into two subcases:

Subcase 1.a. A = ∅. We can apply the Kruskal algorithm to (N,M,C) and (N,M,C ′)
in such a way that the arcs of t are selected in the same order. Then, for each i ∈ N,

f o∗

i (N,M,C ′)− f o∗

i (N,M,C) = (c′ab − cab)(o
∗
i (P )− o∗i (P

ab))

where P is the partition in connected components before arc {a, b} is selected by the
Kruskal algorithm and P ab is the partition obtained after arc {a, b} is selected. Note
that P ab = P\{S(P, a), S(P, b)} ∪ {S(P, a) ∪ S(P, b)}. By the definition of o∗, for each
i ∈ N,

(c′ab − cab)(o
∗
i (P )− o∗i (P

ab))

= (c′ab − cab)
( |{Sk ∈ P : Sk ∩M 6= ∅}| − 1

|N |
−

|{Sk ∈ P : Sk ∩M 6= ∅}| − 2

|N |

)

=
c′ab − cab

|N |
.
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Subcase 1.b. A 6= ∅. When we apply the Kruskal algorithm to (N,M,C) and (N,M,C ′),
the arc {a, b} is selected later in (N,M,C ′) than in (N,M,C). Let

c0 = cab andc
0
ij =

{

c0 if {i, j} = {a, b},
cij otherwise.

For each r ≥ 1, let cr = min{cij : {i, j} ∈ A, cij > cr−1} and

crij =

{

cr if {i, j} = {a, b},
cij otherwise.

We apply this procedure until we find r̄ such that cr̄ab = max{cij : {i, j} ∈ A}. By
setting C r̄+1 = C ′, we have a sequence of problems {(N,M,Cr)}r∈{0,...,r̄+1} such that
C0 = C and C r̄+1 = C ′. Note that t is a minimal tree in each of those problems. In
addition, for each pair of problems (N,M,Cr) and (N,M,Cr+1), r ∈ {0, ..., r̄}, we can
select the arcs of t in the same order by following the Kruskal algorithm. Therefore, by
using arguments similar to Subcase 1.a,

f o∗

i (N,M,C ′)− f o∗

i (N,M,C) =
r̄

∑

r=0

[

f o∗

i (N,M,C r̄+1−r)− f o∗

i (N,M,C r̄−r)
]

=
r̄

∑

r=0

cr̄+1−r − cr̄−r

|N |
=

cr̄+1 − c0

|N |
=

c′ab − cab
|N |

.

Case 2. c′ab− cab > x. Let (N,M,C ′′) be such that c′′ab = cab+x and c′′ij = cij otherwise.
Let t′ be a minimal tree in (N,M,C ′). Obviously, {a, b} /∈ t′ and t′ is also a minimal
tree in (N,M,C ′′). Since f o∗ satisfies IIT, for each i ∈ N,

f o∗

i (N,M,C ′)− f o∗

i (N,M,C) = f o∗

i (N,M,C ′′)− f o∗

i (N,M,C).

Since (N,M,C ′′) satisfies the condition of Case 1, for each i ∈ N,

f o∗

i (N,M,C ′′)− f o∗

i (N,M,C) =
c′ab − cab

|N |
=

x

|N |
,

as desired. �

Proof of Theorem 2.

(a) By Proposition 2, the folk rule satisfies the five axioms. Conversely, let f be a
rule satisfying the five axioms. For each partition P = {S1, S2, ..., S|P |} ∈ P (N ∪M),
we define the function o(P ) = f(N,M,CP ) where cPij = 0 if i, j ∈ Sk for some k ∈
{1, ..., |P |} and cPij = 1 otherwise. Note that

∑

i∈N

oi(P ) =
∑

i∈N

fi(N,M,CP ) = m(N,M,CP ) = |P | − 1.
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We claim that f = f o where for each (N,M,C) and each i ∈ N,

f o
i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

oi
(

P (gp−1)
)

− oi
(

P (gp)
)

]

.

Since f and f o satisfy CA, by Lemma 1, f(N,M,C) =
m(C)
∑

q=1

f(N,M, xqCq) and

f o(N,M,C) =
m(C)
∑

q=1

f o(N,M, xqCq). Therefore, it is enough to prove that f coincides

with f o in problems (N,M,C) where there exists a network g such that cij = x if
{i, j} ∈ g and cij = 0 otherwise. Let P (g) = {S1, ..., Sr} be the partition induced by g
over N ∪M .

When we use the Kruskal algorithm in this problem, we first connect the nodes
within the same component with zero cost until step (|N |+ |M |−r). Then, we connect
the nodes from different components with the constant cost x. Thus, for each i ∈ N ,

f o
i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

oi

(

P (gp−1)
)

− oi

(

P (gp)
)]

=

|N |+|M |−1
∑

p=|N |+|M |−r+1

x
[

oi

(

P (gp−1)
)

− oi

(

P (gp)
)]

= x
[

oi

(

P (g|N |+|M |−r+1)
)

− oi

(

P (g|N |+|M |−1)
)]

= x
[

fi(N,M,CP (g|N|+|M|−r+1))− fi(N,M,CP (g|N|+|M|−1))
]

.

Note that P (g|N |+|M |−r+1) = P (g) and P (g|N |+|M |−1) = N ∪M .
Since cN∪M

ij = 0 for each i, j ∈ N ∪ M and f satisfies CA, for each i ∈ N,

fi(N,M,CN∪M) = 0, which implies that f o
i (N,M,C) = xfi(N,M,CP (g)). Now, con-

sider C ′ such that c′ij = 1
x
cij for each i, j ∈ N ∪ M . Note that C ′∗ = CP (g). By IIT,

f(N,M,CP (g)) = f(N,M,C ′). By CA, f o(N,M,C) = xf(N,M,C ′).
Using similar arguments as in Bergantiños et al. (2010, p.708), we can prove that

xf(N,M,C ′) = f(N,M, xC ′), which implies that f o(N,M,C) = f(N,M, xC ′). Since
xC ′ = C, we conclude that f = f o, as desired.

It remains to prove that o = o∗. Now, let P = {S1, ..., Sq, ..., S|P |} be a partition such
that Sk ∩M 6= ∅ when k ≤ q and Sk ⊂ N when k > q. Note that |{Sk ∈ P : Sk ∩M 6=
∅}| = q. We introduce a sequence of problems {(N,M,Cr)}r=1,2,...,q where C1 = CP

and for each r > 1, Cr is obtained from Cr−1 such that cr
ar−1ar

= 0 if ar−1 ∈ Sr−1 ∩M
and ar ∈ Sr ∩M, and crij = cr−1

ij otherwise. By ETSC, for each r = 2, . . . , q and each i,
j ∈ N,

fi(N,M,Cr−1)− fi(N,M,Cr) = fj(N,M,Cr−1)− fj(N,M,Cr).
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Since

∑

i∈N

[

fi(N,M,Cr−1)− fi(N,M,Cr)
]

=
∑

i∈N

fi(N,M,Cr−1)−
∑

i∈N

fi(N,M,Cr)

= m(N,M,Cr−1)−m(N,M,Cr)

= 1,

for each i ∈ N,

fi(N,M,Cr−1)− fi(N,M,Cr) =
1

|N |
.

Therefore, for each i ∈ N,

fi(N,M,C1)− fi(N,M,Cq) =

q
∑

r=2

[

fi(N,M,Cr−1)− fi(N,M,Cr)
]

=
q − 1

|N |
.

Thus,

o(P ) = fi(N,M,C1) =
q − 1

|N |
+ fi(N,M,Cq). (5)

By CS, for each k = q+1, . . . , |P |,
∑

i∈Sk∩N

fi(N,M,Cq) ≤ m(Sk∩N,M,Cq) = 1 and

for each i ∈ (∪q
k=1Sk)∩N, fi(N,M,Cq) ≤ m({i},M,Cq) = 0. Since

∑

i∈N

fi(N,M,Cq) =

m(N,M,Cq) = |P | − q, for each k = q + 1, . . . , |P |,
∑

i∈Sk∩N

fi(N,M,Cq) = 1 and for

each i ∈ (∪q
k=1Sk) ∩N, fi(N,M,Cq) = 0. By (1) and (5), for each i ∈ (∪q

k=1Sk) ∩N,

oi(P ) =
q − 1

|N |
= o∗i (P )

For each k = q + 1, ..., |P | and each i, j ∈ Sk, i and j are symmetric, so that by
SYM, for each i ∈ Sk (k > q), fi(N,M,Cq) = 1

|Sk|
. From (1) and (5), we have that

oi(P ) =
q − 1

|N |
+

1

|Sk|
= o∗i (P ).

(b) By Proposition 2, the folk rule satisfies the five axioms. Conversely, let f be a rule
satisfying the five axioms. From the same argument as in (a), we obtain (5). Note
that m(N,M,Cq) = |P | − q, for each k = q + 1, . . . , |P |, m(Sk,M,Cq) = 1, and for
each i ∈ (∪q

k=1Sk) ∩ N, m({i},M,Cq) = 0, which together imply that m(N,M,Cq) =
q
∑

k=1

(
∑

i∈Sk∩N

m({i},
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M,Cq)
)

+
|P |
∑

k=q+1

m(Sk,M,Cq). By SEP, for each k = q + 1, . . . , |P |, fi(N,M,Cq) =

fi(Sk,M,Cq), which implies that
∑

i∈Sk∩N

fi(N,M,Cq) =
∑

i∈Sk∩N

fi(Sk,M,Cq) =

m(Sk,M,Cq) = 1 and for each i ∈ (∪q
k=1Sk) ∩ N, fi(N,M,Cq) = fi({i},M,Cq) =

m({i},M,Cq) = 0. Once again, by using the same argument as in the proof of (a), we
conclude that f coincides with the folk rule. �

Next, we show that all axioms are independent in Theorem 2.

(1) Dropping Independence of irrelevant trees : Let fw be a rule defined for simple
problems. For each simple problem (N,M,C), we consider g = {{i, j} ⊂ N ∪M : cij =
0}. For each i ∈ N, let

wi =

{ 1
|{{i,j}:j∈S(P (g),i) andcij=0}|

if S(P (g), i) 6= {i},

1 otherwise.

For each i ∈ N, let fw be

fw
i (N,M,C) =







|{Sk∈P (g):Sk∩M 6=∅}|−1
|N |

if S(P (g), i) ∩M 6= ∅,
|{Sk∈P (g):Sk∩M 6=∅}|−1

|N |
+ wi∑

j∈S(P (g),i)

wj
otherwise.

This rule is extended to general problems using Lemma 1. The rule fw satisfies CA,
CS, SEP, SYM, and ETSC, but not IIT.

(2) Dropping Cone-wise additivity : We first introduce some notion in the classical prob-
lem following Bergantiños and Vidal-Puga (2015). For each classical problem (N0, C)
and each S ⊂ N, let

δS =







min
j∈N0\{i}

cij if S = {i},

min
i∈S,j∈N0\S

cij − max
{i,j}∈τ(S)

cij if |S| > 1,

where N0 = N ∪ {0} and τ(S) is a minimal tree in (S,CS) connecting all agents in S.
Let Ne(N0, C) be a set of all coalitions S ⊂ N and |S| > 1 such that δS > 0. Let
ô = {ôx}x∈R+ be a parametric family of functions defined as

ôxi (N) =







1
|N |

if |N | 6= 2,
1
2

if |N | = 2 and x > 1,
max{1

3
,min{ c0i

c01+c02
, 2
3
}} if |N | = 2 and x ≤ 1.

Let C∗ be the irreducible cost matrix of C. For each (C∗, x) and each i ∈ N , let

ei(C
∗, x) =

∫ x

0

ôti(N)dt.
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Now, we define the rule f e such that for each classical problem (N0, C) and each i ∈ N,

f e
i (N0, C) = c∗0i −

∑

S∈Ne(N0,C),i∈S

(δS − ei((S,C
∗
S), δS)).

Next, we extend this rule to our problem. For all (N,M,C), let t be a minimal tree in
the irreducible problem (N,M,C∗) where all sources are connected among themselves.
Let tM be the restriction of t to M . We now consider the classical problem (N0, C̄)
such that t̄ = {{i, j} ∈ t : i, j ∈ N} ∪ {{0, i} : i ∈ N and {i, j} ∈ t for some j ∈ M}. It
is easy to see that t̄ is a tree that connects all agents in N to 0. Let c̄ij = c∗ij if i, j ∈ N
and {i, j} ∈ t̄; c̄0i = max{c∗kℓ : {k, ℓ} ∈ gt

iiM
}, where iM is the first source in the unique

path connecting agent i to each source in t; and c̄ij = max{c̄kℓ : {k, ℓ} ∈ gt̄ij} if i, j ∈ N
and {i, j} /∈ t. For each problem (N,M,C), let

f e(N,M,C) =
c(tM)

|N |
+ f e(N0, C̄).

The rule f e satisfies CM (thus, IIT), PM (thus, CS and SEP), SYM and ETSC, but
not CA.

(3) Dropping Core selection or Separability : The egalitarian rule fE, defined as for

each (N,M,C) and each i ∈ N, fE
i (N,M,C) = m(N,M,C)

|N |
, satisfies CA, IIT, SYM, and

ETSC, but not CS or SEP.

(4) Dropping Symmetry : Let õ be a function such that for each P ∈ P (N ∪ M) and
each i 6= n,

õi(P ) =











|{S∈P :S∩M 6=∅}|−1
|N |

if i ∈ Sk, Sk ∩M = ∅ and n ∈ Sk,
|{S∈P :S∩M 6=∅}|−1

|N |
+ 1

|Sk|
if i ∈ Sk, Sk ∩M = ∅ and n /∈ Sk,

|{S∈P :S∩M 6=∅}|−1
|N |

if i ∈ Sk and Sk ∩M 6= ∅,

and

õn(P ) =

{

|{S∈P :S∩M 6=∅}|−1
|N |

+ 1 if n ∈ Sk and Sk ∩M = ∅,
|{S∈P :S∩M 6=∅}|−1

|N |
if n ∈ Sk and Sk ∩M 6= ∅.

Let f õ be a rule such that for each (N,M,C) and each i ∈ N ,

f õ
i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

õi
(

P (gp−1)
)

− õi
(

P (gp)
)

]

.

The rule f õ satisfies CA, IIT, CS, SEP, and ETSC, but not SYM.

(5) Dropping Equal treatment of source costs : Let P = {S1, ..., Sq, ..., S|P |} be a partition
in P (N ∪M), where Sk ∩M 6= ∅ if k ≤ q and Sk ∩M = ∅ if k > q. Let t be a number
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of agents in an element in P containing no source, i.e., t = |{i ∈ N : i ∈ Sk (Sk ∈ P )
and Sk ∩M = ∅}|. Let ǫ be an arbitrarily small number such that ǫ ∈ (0, 1

|N ||M |
). Let

oǫ be a function such that for each P ∈ P (N ∪M) and each i ∈ N, if 0 < t < |N |,

oǫi(P ) =

{

1−ǫ
|N |

(|{S ∈ P : S ∩M 6= ∅}| − 1) + 1
|Sk|

if i ∈ Sk and Sk ∩M = ∅,
|N |−t(1−ǫ)
|N |(|N |−t)

(|{S ∈ P : S ∩M 6= ∅}| − 1) if i ∈ Sk and Sk ∩M 6= ∅,

and if t = 0 or t = |N |, oǫi(P ) = o∗(P ). Let f oǫ be a rule such that for each (N,M,C)
and each i ∈ N ,

f oǫ

i (N,M,C) =

|N |+|M |−1
∑

p=1

cipjp
[

oǫi
(

P (gp−1)
)

− oǫi
(

P (gp)
)

]

.

The rule f oǫ satisfies CA, IIT, CS, SEP, and SYM, but not ETSC.
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