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1 Introduction

We consider price competition between capacity constrained firms. Capacity

constraints are not rigid though, and, by incurring an additional per unit cost

of capacity expansion, firms can produce beyond capacity. As pointed out

by Boccard and Wauthy (2000, 2004), allowing for such non-rigid capacity

costs is important and, in their generalization of Kreps and Scheinkman

(1983), they explicitly follow this approach.1 Further, we focus on Bertrand

competition, i.e. price competition where firms supply all demand. This

framework can be traced back to Chamberlin (1933) and is appropriate

when the costs of turning away customers are high (see, for example, Vives

(1999)).2

We find that there is an interval of prices such that any price in this

interval can be sustained as a symmetric Nash equilibrium. Moreover, no

other price can be sustained as an equilibrium. We then examine some

comparative statics properties of this interval. Even in the limit as the

number of firms tend to infinity, the set of equilibrium prices turn out to be

a non-degenerate interval. While the competitive price is the lowest price

in this set, it contains other prices also. Further, as the cost of capacity

expansion increases, the maximal price that is sustainable in equilibrium

increases.

Turning to the literature, this paper complements Boccard and Wauthy

(2000, 2004), who also examine non-rigid capacity costs, though for the case

where firms are free to supply less than the quantity demanded. Another

interesting class of models examines capacity constrained firms with rigid

capacity where, given prices, firms are willing to supply till capacity. Pa-

pers in this framework include, among others, Allen and Hellwig (1986),

Dasgupta and Maskin (1986), and Vives (1986). The present paper clearly

traces its ancestry to both these streams of the literature.

1Other papers to allow for non-rigid capacity constraints include Dixit (1980).
2The literature on Bertrand competition is a relatively recent one. It includes, among

others, Dastidar (1995), Maggi (1996), Novshek and Roy Chowdhury (2003), Ray Chaud-

huri (1996), Roy Chowdhury and Sengupta (2004), etc.
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2 The Model

The market comprises n (≥ 2) identical firms, all producing a single ho-

mogeneous good, and having the same cost function, C(q). The firms are

capacity contsrained with a (non-rigid) capacity level of k. Thus the cost

function

C(q) =

{

cq, if 0 ≤ q ≤ k,

ck + c′(q − k), if q > k,

where c′ > c > 0 and (c′ − c) represents the per unit cost of capacity

expansion. Interestingly the cost function is somewhat non-standard in that

it is not only discontinuous at q = k > 0, but is convexo-concave (i.e. can

be approximated by convexo-concave functions).

The market demand function f(p) satisfies the following assumption.

Assumption 1. (i) f : [0,∞) → [0,∞) is twice differentiable. Moreover,

f(p) is negatively sloped and weakly concave ∀p such that f(p) > 0.

(ii) Also, limp→∞ f(p) < c and f−1(0) > c′.

For ease of exposition, we assume that f(c′)
n

< k.3

Let Di(p1, · · · , pi, · · · , pn) denote the demand facing firm i as a function

of the announced price vector (p1, · · · , pi, · · · , pn) so that

Di(p1, · · · , pi, · · · , pn) =

{

0, if pi > pj, for some j,
f(pi)

m
, if pi ≤ pj, ∀j, and #(l : pl = pi) = m.

Thus the profit of the i-th firm

πi(p1, · · · , pn) = (pi − AC(Di(p1, · · · , pn)))Di(p1, · · · , pn).

We examine a game of Bertrand competition where the firms simulta-

neously announce their prices and supply all demand. We solve for pure

strategy Nash equilibria in prices.

3As we argue later though, the analysis goes through qualitatively even if f(c′)
n
≥ k.
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3 The Analysis

We begin by characterizing the set of Nash equilibria. Let us introduce some

notations.

Definition. Let π(p) denote the profit of any firm that undercuts all

other firms by charging p, where c ≤ p ≤ c′. Formally,

π(p) = f(p)p − ck − c′[f(p) − k]. (1)

Lemma 1 below summarizes some properties of π(p). The proofs of all

the lemmas are in the Appendix.

Lemma 1.

(i) π(p) is increasing in p, ∀p ∈ [c, c′].

(ii) π(c) = (k − f(c))(c′ − c) < 0 and π(c′) = k(c′ − c) > 0.

We require another

Definition. Let π(p, n) denote the profit of any firm if all firms charge

the same price p, where c ≤ p ≤ c′. Formally,

π(p, n) =

{

f(p)
n

(p − c), if f(p)
n

≤ k,
pf(p)

n
− ck − c′[f(p)

n
− k], if f(p)

n
> k.

(2)

In case f(c)
n

> k, let p solve f(p)
n

= k (p is clearly well defined). We then

discuss some properties of π(p, n).

Lemma 2.

(i) ∂π(p,n)
∂p

|p=c > 0.

(ii) π(p, n) has a unique maximum and is increasing (respectively decreasing)

to the left (respectively right) of this maximal price.

(iii) π(c′, n) = f(c′)
n

(c′ − c) > 0.

(iv) π(c, n) =

{

0, if f(c)
n

≤ k,

(k − f(c)
n

)(c′ − c) < 0, if f(c)
n

> k.

Given Lemmas 1 and 2 we have the following
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Lemma 3.

(i) π(c′) > π(c′, n).

(ii) π(c, n) > π(c).

(iii) ∂π(p,n)
∂p

<
∂π(p)

∂p
, ∀p ∈ [c, c′].

Given the preceding lemmas we have the following definitions.

Definition. Let p′′ be the unique p that satisfies π(p, n) = π′(p).4

Further, from Lemmas 3(i) and 3(ii), we have that c < p′′ < c′.

Definition. For f(c)
n

> k, let p̃ define the minimum p such that π(p, n) =

0.5

Definition. Finally, let

p′ =

{

c, if f(c)
n

≤ k,

p̃, otherwise.

The next lemma follows from the preceding discussion.

Lemma 4.

(i) p̃ solves pf(p)
n

− ck − c′[f(p)
n

− k] = 0.

(ii) p̃(n) is decreasing in n.

(iii) p′′(n) is decreasing in n.

(iv) For all p ∈ [c, c′], π(p, n) ≥ π(p) if and only if p ∈ [c, p′′].

We are now in a position to characterize the set of equilibrium prices.

Proposition 1 below demonstrates that there is an interval such that any

price in this interval can be sustained as a symmetric Nash equilibrium.

Proposition 1. Let Assumption 1 hold. Any price p ∈ [p′, p′′] can be

sustained as a symmetric Nash equilibrium. No other price can be sustained

as an equilibrium.

Proof: (a) We first demonstrate that any price p ∈ [p′, p′′] can be sus-

4That such a p′′ exists follows from Lemma 3(i), 3(ii) and the intermediate velue

theorem. Uniqueness follows from Lemma 3(iii).
5From Lemma 2(iii) and 2(iv), p̃ is well defined.
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tained as a symmetric equilibrium where all firms charge the price p.

We argue that no firm can deviate by charging a higher price compared

to p, and gain. From the definition of p′, all firms make zero profits at p′.

We then argue that π(p, n) ≥ 0 for all p ∈ [c, p′′]. Suppose to the contrary,

there exists some p ∈ (c, p′′] for which π(p, n) < 0. Given Lemma 2(ii), this

implies that π(p′′, n) < 0. This in turn implies that π(c′, n) < 0, which

contradicts Lemma 2(iii). Whereas any firm that deviates and charges a

higher price has no demand, and thus obtains a zero profit.

We next argue that any firm that undercuts and charges p − ǫ, ǫ > 0,

has a lower profit. This follows since

π(p − ǫ) < π(p) ≤ π(p, n),

where the first inequality follows as π(p) is increasing in p (Lemma 1(i)),

and the second inequality follows from Lemma 4(iv).

(b) We then argue that no other price can be sustained as an equilibrium.

We first demonstrate that no price p < p′ can be sustained. If p′ = c

this is obvious. So let p′ > c and suppose to the contrary that a price less

than p′ can be sustained. But then the number of firms charging this price

must be less than n (otherwise they have a loss). But this implies that p̃ is

increasing in n, a contradiction to Lemma 4(i).

Finally, consider some price c′ ≥ p > p′′. In case all n firms charge

this price, one of the firms can undercut by a small enough amount and

gain, since at p > p′′ we have that π(p) > π(p, n) (Lemma 4(iv)). Whereas

if the number of firms charging this price is strictly less than n, then one

of the firms who charges a higher price, can undercut by a small enough

amount and get a strictly positive profit. This follows from the fact that

since π(p′′) = π(p′′, n) > 0 and π(p) is increasing, π(p) is strictly positive

for all c′ ≥ p ≥ p′′. Finally, if p > c′, then any firm that undercuts makes a

gain.

We then examine some interesting comparative statics properties. We

first examine the limit properties of the equilibrium set, i.e. [p′(n), p′′(n)],

as n goes to infinity. We need one final assumption.
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Assumption 2. There exists a choke-off price p̂, such that f(p) = 0

∀p ≥ p̂ and f(p) > 0 ∀p < p̂.

Interestingly, even for n arbitrarily large, the limit equilibrium set turns

out to be a non-degenerate interval. Interpreting c as the competitive price,

we find that the competitive price is only one member of the limit equilibrium

set. This is interesting since in models with rigid capacity, Allen and Hellwig

(1986) and Vives (1986), both find that for n large, the equilibrium prices

converge, at least in distribution, to the competitive price.

Proposition 2. Let Assumptions 1 and 2 hold. Then limn→∞[p′(n), p′′(n)] =

[c, p], where c′ > p > c.

Proof. (i) Note that for n large f(c)
n

≤ k. Consequently, p′′(n) solves

f(p)

n
(p − c) = pf(p)− ck − c′(f(p) − k).

Given Assumptions 1 and 2, f(p)(p − c) is bounded above by f(0)(p̂ − c).

Therefore as n becomes large, the LHS goes to zero. Thus in the limit we

must have

f(p)(c′ − p) = k(c′ − c).

Hence if p = c, then from the preceding equation, f(c) = k, which is a

contradiction. Finally note that if p > c′, then for p close to p the firms can

profitably undercut.

(ii) For n large, f(c)
n

< k, so that from Lemmas 2 and 3, π(c, n) > π(c),

and π(c, n) = 0. Thus p′ = c.

We finally examine the effect of an increase in the capacity costs, i.e. c′,

on the equilibrium outcome. Interestingly, as the capacity costs increase,

higher prices can be sustained in equilibrium.

Proposition 3. Let Assumption 1 hold. If capacity costs c′ increases

then

(a) p′′ increases, and

(b) p′ increases if f(c)
n

> k and remains unaffected otherwise.
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Proof. From equation (1), π(p) is decreasing in c′. Whereas π(p, n) is

decreasing in c′ if f(p)
n

> k. Otherwise, π(p, n) does not depend on c′. Thus,

with an increase in c′, p′′ increases. If f(c)
n

> k, then p′ = c, otherwise p′ = p̃.

The result now follows from Lemma 4(i).

Remark. How critical is the assumption that f(c′)
n

< k? In case f(c′)
n

≥ k,

it is easy to see that Proposition 1 goes through with the modification that

p′′ is replaced by c′. Thus the only result that is qualitatively affected is

that the maximal price becomes independent of the number of firms as well

as the demand parameters, though still dependent on the costs of capacity

expansion.

4 Conclusion

We examine a model of Bertrand competition with non-rigid capacity con-

straints, so that by incurring an additional cost, firms can produce beyond

capacity. We find that there is an interval of prices such that a price can

be sustained as a pure strategy Nash equilibrium if and only if it lies in

this interval. We then examine the properties of this set as (a) the num-

ber of firms becomes large and (b) the capacity cost increases. For n large,

the limit equilibrium set is a non-degenerate interval, with the competitive

price being the lowest price in this interval. Further, as the capacity cost

increases we find that the maximum possible price that can be sustained as

an equilibrium increases.
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5 Appendix

Proof of Lemma 1. (i) ∂π(p)
∂p

= f ′(p)(p − c′) + f(p) > 0 (since p ≤ c′).

(ii) Follows from (1).

Proof of Lemma 2. (i) ∂π(p,n)
∂p

|p=c equals f(c)
n

> 0 if f(c)
n

≤ k and equals
f ′(c)

n
(c − c′) + f(c)

n
otherwise.

(ii) For f(c)
n

≤ k, we have that f(p)
n

≤ k ∀p ≥ c. Thus

π′′(p, n) = 2f ′(p) + f ′′(p)(p − c) ≤ 0.

Next consider f(c)
n

> k. First note that for p ∈ [c, p], π′(p, n) = 1
n
[f(p)+

f ′(p)(p − c′)] > 0, so that π(p, n) is increasing over the whole interval [c, p].

From the first part of the argument, π(p, n) is concave over [p, c′]. Finally,

note that the left hand derivative of π(p, n) at p, i.e. 1
n
[f(p) + f ′(p)(p− c′)],

is greater than the right hand derivative at p, i.e. 1
n
[f(p) + f ′(p)(p − c)].

Hence the claim follows.

(iii) and (iv) Follows from equation (2).

Proof of Lemma 3. (i) Note that π(c′) = k(c′ − c). Further, since
f(c′)

n
< k, π(c′, n) = f(c′)

n
(c′ − c). Thus π(c′) > π(c′, n).

(ii) Note that π(c) = (c′ − c)(k − f(c)) < 0. Moreover, if f(c)
n

≤ k, then

π(c, n) = 0 > π(c). Whereas, if f(c)
n

> k, then π(c, n) = (c′ − c)[k − f(c)
n

] >

π(c).

(iii) Follows straightaway from euqations (1) and (2).

Proof of Lemma 4. (i) Suppose f(c)
n

> k. The result follows since π(p, n)

is increasing over [c, p] and

π(p, n) =
f(p)

n
(p − c) > 0.

(ii) Follows since p̃ solves

k(c′ − c) =
f(p)

n
(c′ − p).

(iii) Since f(p′′)
n

< k, π(p′′, n) = f(p′′)
n

(p′′ − c).

(iv) Follows from Lemma 1, 2 and 3.
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