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Abstract

In the mechanism design theory, a designer would like to implement a desired social
choice function which specifies her favorite outcome for each possible profile of all
agents’ types. In a standard one-shot mechanism, the agents interact only once and
the designer has no way to adjust agents’ types. Hence, the designer may be in a
dilemma in the sense that even if she is not satisfied with some outcome with low
profit, she has to announce it because she must obey the mechanism designed by
herself. In this paper, we investigate a case where the designer can induce each agent
to adjust his type in a one-shot mechanism. After defining a series of notions such as
adjusted types, optimal adjustment cost and profitable Bayesian implementability,
we propose that the revelation principle does not hold in this generalized case.
Finally, we construct an example to show that the designer can obtain an expected
profit greater than the maximum profit that she can obtain in the traditional optimal
auction.

Key words: Mechanism design; Optimal auction; Bayesian Nash implementation.

1 Introduction

In the framework of mechanism design theory [1–3], there are one designer
and some agents. 1 The designer would like to implement a desired social
choice function which specifies her favorite outcome for each possible profile of
agents’ types. However, agents’ types are modelled as their private properties
and unknown to the designer. In order to implement the social choice function,
the designer constructs a mechanism which specifies each agent’s strategy set
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1 The designer is denoted as “She”, and the agent is denoted as “He”.



(i.e., the allowed actions of each agent) and an outcome function (i.e., a rule
for how agents’ actions get turned into a social choice).

Traditionally, in a standard mechanism agents interact only once (i.e., in one-
shot settings), and the designer has no way to adjust agents’ types. Hence,
the designer may be in a dilemma in the sense that even if some profile of
agents’ strategies leads to an outcome with low profit, she has to announce it
because she must obey the mechanism designed by herself. The designer may
improve her situation by constructing a multi-period mechanism, or holding a
charity auction [4]. Engers and McManus [4] proposed that agents’ bids in a
first-price charity auction are greater than those in a standard (non-charity)
auction [5] because of the charitable benefit that winners receive from their
own payments. Besides the multi-period mechanism and the charity auction,
there may exist another way for the designer to escape from the dilemma.

For example, suppose the designer is an auctioneer who sells a good in a hotel,
and each agent is a bidder whose initial valuation to the good (i.e., private
type) is low. The gorgeousness of the hotel is an open signal to all agents that
induces each agent to adjust his valuation to the good before he submits his
bid to the designer. Without loss of generality, we assume that each agent’s
valuation and bid both increase concavely with the hotel rent spent by the
designer, and the designer’s utility is a linear function of the winner agent’s bid.
From the viewpoint of the designer, as long as her marginal utility is greater
than her marginal rent cost, it is worthwhile for her to continue investing on
the rent cost. Obviously, the designer will obtain the maximum profit when
her marginal utility is equal to her marginal cost. Thus, if agents’ types are
adjustable in a one-shot mechanism, the designer may actively escape from
the above-mentioned dilemma and yield an outcome better than what would
happened without doing so.

In this paper, we focus on the one-shot settings and investigate a case where
the designer can induce each agent to adjust his type in a one-shot mechanism.
In Section 2, we define notions such as adjusted types, optimal adjustment
cost, profitable Bayesian implementability and so on. Then we propose that
the revelation principle does not hold in this generalized case. In Section 3, we
construct an example to show that by choosing the optimal adjustment cost,
the designer can obtain an expected profit greater than what she can obtain
at most in the traditional optimal auction model.

2 Theoretical analysis

Following Section 23.B of MWG’s textbook [1], we consider a one-shot setting
with one designer and I agents, indexed by i = 1, · · · , I. Let X be a set of

2



possible alternatives.

Assumption 1: Each agent i is assumed to observe a private parameter (i.e.,
type θi) which determines his preference over alternatives in X. Let Θi be the
set of agent i’s all possible types. Let Θ = Θ1×· · ·×ΘI , θ = (θ1, · · · , θI) ∈ Θ.

Definition 1: For any x ∈ X, each agent i’s utility is denoted as ui(x, θi) ∈ R,
where θi ∈ Θi, and the designer’s utility is denoted as ud(x) ∈ R.

Definition 23.B.1 [1]: A social choice function (SCF) is a function f : Θ → X
that, for each possible profile of the agents’ types θ ∈ Θ, assigns a collective
choice f(θ) ∈ X.

Definition 23.B.3 [1]: A mechanism Γ = (S1, · · · , SI , g(·)) is a collection of
I strategy sets S1, · · · , SI , and an outcome function g : S1 × · · · × SI → X.
A strategy of each agent i in Γ is a function si(·) : Θi → Si. Let s(·) =
(s1(·), · · · , sI(·)).

Assumption 2: Assume that in a mechanism, each agent i can play his strategy
si without any cost. Hence agent i’s profit from the outcome x is just his utility
ui(x, θi).
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Assumption 3: Assume that in a mechanism, the designer constructs an out-
come function and announces a cost c ≥ 0 which she will spend to perform the
outcome function. The cost c is observable to all agents and acts as an open
signal. The outcome function is denoted as gc(·) : S1 × · · · × SI → X, and the
mechanism is denoted as Γc = (S1, · · · , SI , g

c(·)). After learning the cost c,
each agent i adjusts his private type from the initial value θ0i ∈ Θi to a new
value θci ∈ Θi,

3 and then plays strategy si(θ
c
i ). At last, the designer announces

gc(s1(θ
c
1), · · · , sI(θcI)) as the outcome. The cost c is also denoted as adjustment

cost. Thus, although the designer does not know agents’ private types exactly,
she can induce each agent to adjust his type in a one-shot mechanism.

Definition 2: For any adjustment cost c ≥ 0 and each agent i’s initial type

2 For example, suppose that each agent is a bidder in an auction, then each agent
can be considered to submit his bid to the auctioneer without any cost.
3 In Ref [5] (Page 60, Line 12), Myerson proposed that “if there are quality uncer-
tainties, then bidder i might tend to revise his valuation of the object after learning
about other bidders’ value estimates.” Similarly, here it is reasonable to assume
that each agent i can adjust his private type after observing the cost signal sent
by the designer. Section 3 gives an example, where the designer spends some cost
to rent a hotel to hold an auction. The gorgeousness of the hotel is just the signal
that the designer sends to agents in order to show how precious the sold good is,
although the designer may sell a poor good but deliberately rent a luxurious hotel
to deceive agents. After observing the signal, each agent adjusts his private type
(i.e., valuation to the good).
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θ0i ∈ Θi, by assumption 3 each agent i’s preference over the alternatives in X
is determined by his adjusted type θci ∈ Θi. For each i = 1, · · · , I, let

θ0 = (θ01, · · · , θ0I ) ∈ Θ,

θ0−i = (θ01, · · · , θ0i−1, θ
0
i+1, · · · , θ0I ),

θc = (θc1, · · · , θcI) ∈ Θ,

θc−i = (θc1, · · · , θci−1, θ
c
i+1, · · · , θcI).

A type adjustment function is denoted as µ(θ, c) : Θ × R+ → Θ, in which
µ(θ, 0) = θ for any θ ∈ Θ, i.e. zero adjustment cost means no type adjustment.
Let θc = µ(θ0, c). Let φ0(θ0) = (φ0

1(θ
0
1), · · · , φ0

I(θ
0
I )) be the probability density

function of initial type profile θ0 ∈ Θ, and φc(θc) = (φc
1(θ

c
1), · · · , φc

I(θ
c
I)) be

the probability density function of adjusted type profile θc ∈ Θ. For each
i = 1, · · · , I, let

φ0
−i(θ

0
−i) = (φ0

1(θ
0
1), · · · , φ0

i−1(θ
0
i−1), φ

0
i+1(θ

0
i+1), · · · , φ0

I(θ
0
I )),

φc
−i(θ

c
−i) = (φc

1(θ
c
1), · · · , φc

i−1(θ
c
i−1), φ

c
i+1(θ

c
i+1), · · · , φc

I(θ
c
I)).

Assumption 4: For any θ ∈ Θ and adjustment cost c ≥ 0, the designer is
assumed to know type adjustment function µ(θ, c), the initial type distribution
φ0(·) and the adjusted type distribution φc(·).

Definition 3: For any c ≥ 0, given an SCF f and φ0(·), the designer’s expected
utility is denoted as ūd(c) = Eθcud(f(θ

c)), and her initial expected utility is
denoted as ūd(0) = Eθ0ud(f(θ

0)).

Definition 4: For any c ≥ 0, given an SCF f and φ0(·), the designer’s expected
profit is denoted as p̄d(c) = ūd(c)− c, and her initial expected profit is denoted
as p̄d(0) = ūd(0).

Assumption 5: ūd(c) is assumed to be a concave function that satisfies the
following inequalities,

∂ūd(c)

∂c
> 0,

∂2ūd(c)

∂c2
< 0, for any c ≥ 0. 4

Proposition 1: If there exists an adjustment cost c∗ ≥ 0 such that

∂ūd(c)

∂c

∣

∣

∣

∣

c=c∗
= 1, i.e.

∂p̄d(c)

∂c

∣

∣

∣

∣

c=c∗
= 0,

4 See the example given in Section 3. When each agent i’s adjusted type is a square
root function of the designer’s cost as specified by Eq (5) and the social choice
function is specified by Eq (6), then the inequalities in Assumption 5 holds.
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then the designer will obtain the maximum expected profit p̄d(c
∗) at c = c∗.

c∗ is denoted as the optimal adjustment cost. By Assumption 5 there holds

∂ūd(c)

∂c

∣

∣

∣

∣

c=0
≥ 1, i.e.

∂p̄d(c)

∂c

∣

∣

∣

∣

c=0
≥ 0.

Definition 23.D.1 [1]: The strategy profile s∗(·) = (s∗1(·), · · · , s∗I(·)) is a Bayesian
Nash equilibrium of mechanism Γ = (S1, · · · , SI , g(·)) if, for all agent i and all
θi ∈ Θi,

Eθ−i
[ui(g(s

∗
i (θi), s

∗
−i(θ−i)), θi)|θi] ≥ Eθ−i

[ui(g(ŝi, s
∗
−i(θ−i)), θi)|θi], (1)

for all ŝi ∈ Si.

Definition 23.D.2 [1]: The mechanism Γ = (S1, · · · , SI , g(·)) implements the

social choice function f(·) in Bayesian Nash equilibrium if there is a Bayesian
Nash equilibrium of Γ, s∗(·) = (s∗1(·), · · · , s∗I(·)), such that g(s∗(θ)) = f(θ) for
all θ ∈ Θ.

Definition 5: Given an SCF f and φ0(·), f is profitable Bayesian imple-

mentable if the following conditions are satisfied:
1) The optimal adjustment cost c∗ > 0, which means that the distribution of
agents’ private types is adjusted from φ0(·) to φc∗(·).
2) There exist a mechanism Γc∗ = (S1, · · · , SI , g

c∗(·)) that implements f in
Bayesian Nash equilibrium. That is, there exists a strategy profile s∗(·) =
(s∗1(·), · · · , s∗I(·)) such that:
(i) For all agent i and all θc

∗

i ∈ Θi,

Eθc
∗

−i

[ui(g
c∗(s∗i (θ

c∗

i ), s∗−i(θ
c∗

−i)), θ
c∗

i )|θc∗i ] ≥ Eθc
∗

−i

[ui(g
c∗(ŝi, s

∗
−i(θ

c∗

−i)), θ
c∗

i )|θc∗i ] (2)

for all ŝi ∈ Si.
5

(ii) gc
∗

(s∗(θ)) = f(θ) for all θ ∈ Θ.

Proposition 2: Given an SCF f and φ0(·), if f is profitable Bayesian imple-
mentable, then the designer’s expected profit at the optimal adjustment cost
is greater than her initial expected profit.
Proof : Given that f is profitable Bayesian implementable, then the optimal
adjustment cost c∗ > 0. By Proposition 1, p̄d(c

∗) > p̄d(0). ✷

Definition 23.D.3 [1]: A social choice function f(·) is truthfully implementable

in Bayesian Nash equilibrium (or Bayesian incentive compatible) if s∗i (θi) = θi

5 Note that in formula (2), the probability density function of type profile θc
∗

−i =
(θc

∗

1 , · · · , θc∗i−1, θ
c∗
i+1, · · · , θc

∗

I ) is φc∗
−i(·). As a comparison, in the notion of Bayesian

Nash equilibrium (see Definition 23.D.1), there is no type adjustment. Thus, the
probability density function of type profile θ−i = (θ1, · · · , θi−1, θi+1, · · · , θI) in for-
mula (1) is just φ0

−i(·).
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for all θi ∈ Θi (i = 1, · · · , I) is a Bayesian Nash equilibrium of the direct
mechanism Γ = (S1, · · · , SI , g(·)), in which Si = Θi, g = f . That is, if for all
i = 1, · · · , I and all θi ∈ Θi,

Eθ−i
[ui(f(θi, θ−i), θi)|θi] ≥ Eθ−i

[ui(f(θ̂i, θ−i), θi)|θi], (3)

for all θ̂i ∈ Θi.

Proposition 23.D.1 [1]: (The Revelation Principle for Bayesian Nash Equilib-

rium) Suppose that there exists a mechanism Γ = (S1, · · · , SI , g(·)) that im-
plements the social choice function f(·) in Bayesian Nash equilibrium. Then
f(·) is truthfully implementable in Bayesian Nash equilibrium.

Proposition 3: Given an SCF f and φ0(·), if f is profitable Bayesian im-
plementable, then it cannot be inferred that f is truthfully implementable in
Bayesian Nash equilibrium. That is, the revelation principle does not hold in
this generalized case.

Proof : Given that f is profitable Bayesian implementable, then the optimal
adjustment cost c∗ > 0, and there exist a mechanism Γc∗ = (S1, · · · , SI , g

c∗(·))
that implements f in Bayesian Nash equilibrium. Thus, formula (2) is related
to the type distribution φc∗(·) (see Footnote 5).
As a comparison, in the notion of Bayesian incentive compatibility, there is no
type adjustment in the direct mechanism by Definition 23.D.3 . Thus, formula
(3) is related to the type distribution φ0(·).
Since θc

∗

= µ(θ0, c∗) and φ0(·) is not equal to φc∗(·), formula (3) cannot be
inferred from formula (2). Therefore, given that f is profitable Bayesian imple-
mentable, it cannot be inferred that f is truthfully implementable in Bayesian
Nash equilibrium. Consequently, the revelation principle does not hold in this
generalized case. ✷

Proposition 4: If the designer’s expected utility ūd(c) and expected profit
p̄d(c) satisfy the following condition,

∂ūd(c)

∂c

∣

∣

∣

∣

c=0
< 1, i.e.

∂p̄d(c)

∂c

∣

∣

∣

∣

c=0
< 0, (4)

then the designer will obtain the maximum expected profit at c = 0. Put
differently, in this case the designer cannot obtain any more profit by spending
any cost to adjust agents’ types.
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3 Example

Following the auction model in MWG’s book (Page 863, [1]), suppose that
there are one designer and two agents. Let the designer be an auctioneer who
wants to sell a good, and each agent be a bidder whose valuation to the good is
θi ≥ 0, i.e., Θi = R+. We consider a first-price-sealed-bid auction setting: Each
agent i is allowed to submit a sealed bid bi ≥ 0. The bids are then opened,
and the agent with the higher bid gets the good, and must pay money equal
to his bid to the auctioneer.

Suppose that:
1) Each agent i’s initial valuation (i.e., his initial type) θ0i is drawn indepen-
dently from the uniform distribution on [0, 1]. The distribution is known by
the designer but the exact value of each θ0i is agent i’s private information.
2) The designer holds the auction in a hotel, and the cost for renting the hotel
is c ≥ 0.
3) The gorgeousness of hotel is characterized by the rent cost. Each agent i’s
valuation to the good is adjusted by the gorgeousness of the hotel: The more
expensive the rent cost is, the greater the bidder’s private valuation to the
good is.
4) Let β > 0 be a coefficient, each agent i’s valuation to the good (i.e., his
adjusted type θci ) is a square root function of the rent cost c,

θci = (1 + β
√
c)θ0i . (5)

Thus,
∂θci
∂c

=
βθ0i
2
√
c
,

∂2θci
∂c2

= −βθ0i
4

c−3/2.

That is, for any c ≥ 0, the following formulas hold:

∂θci
∂c

∣

∣

∣

∣

c=0
= +∞,

∂θci
∂c

> 0,
∂2θci
∂c2

< 0.

Let θ = (θ1, θ2), consider the social choice function

f(θ) = (y1(θ), y2(θ), yd(θ), t1(θ), t2(θ), td(θ)), (6)

in which

y1(θ) = 1, if θ1 ≥ θ2; = 0 if θ1 < θ2
y2(θ) = 1, if θ1 < θ2; = 0 if θ1 ≥ θ2
yd(θ) = 0, for all θ ∈ Θ

t1(θ) = −θ1y1(θ)/2

t2(θ) = −θ2y2(θ)/2

td(θ) = [θ1y1(θ) + θ2y2(θ)]/2.
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The subscript d stands for the designer, and the subscript 1, 2 stands for the
agent 1 and agent 2 respectively. yi = 1 means that agent i = 1, 2 gets the
good. ti denotes agent i’s payment to the designer. td denotes the sum of two
agents’ payment to the designer. Obviously, for any c ≥ 0, y1(θ

c) = y1(θ
0),

y2(θ
c) = y2(θ

0).

Now we investigate whether this social choice function is Bayesian imple-
mentable. We will look for an equilibrium in which each agent i’s strategy
bi(·) takes the form bi(θ

c
i ) = αiθ

c
i = αi(1 + β

√
c)θ0i for αi ∈ [0, 1].

Suppose that agent 2’s strategy has this form, and consider agent 1’s problem.
For each possible θc1, agent 1 wants to solve the following problem:

max
b1≥0

(θc1 − b1)Prob(b2(θ
c
2) ≤ b1).

Because agent 2’s highest possible bid is α2(1 + β
√
c) when θ02 = 1, it is

evident that agent 1’s bid b1 should never more than α2(1 + β
√
c). Note that

θ02 is uniformly distributed on [0, 1], and b2(θ
c
2) = α2(1 + β

√
c)θ02 ≤ b1 if and

only if θ02 ≤ b1/[α2(1 + β
√
c)]. Hence we can write agent 1’s problem as:

max
0≤b1≤α2(1+β

√
c)

(θc1 − b1)b1
α2(1 + β

√
c)

The solution to this problem is

b∗1(θ
c
1) =







θc1/2, if θ01/2 ≤ α2

α2(1 + β
√
c), if θ01/2 > α2

.

Similarly,

b∗2(θ
c
2) =







θc2/2, if θ02/2 ≤ α1

α1(1 + β
√
c), if θ02/2 > α1

.

Letting α1 = α2 = 1/2, we see that the strategies b∗i (θ
c
i ) = θci/2 for i = 1, 2

constitute a Bayesian Nash equilibrium for this mechanism. Thus, there is
a Bayesian Nash equilibrium of this first-price-sealed-bid auction mechanism
that indirectly yields the outcomes specified by the social choice function f(θ),
and hence f(θ) is Bayesian Nash implementable.

Let us consider the designer’s expected profit:

p̄d(c) = (1 + β
√
c)E[θ01y1(θ

0) + θ02y2(θ
0)]/2− c.

The designer’s problem is to choose an optimal adjustment cost c ≥ 0 to
maximize her expected profit, i.e.,

max
c≥0

(1 + β
√
c)E[θ01y1(θ

0) + θ02y2(θ
0)]/2− c

8



By appendix, the designer’s initial expected profit is p̄d(0) = E[θ01y1(θ
0) +

θ02y2(θ
0)]/2 = 1/3. Thus, the designer’s problem is reformulated as:

max
c≥0

(1 + β
√
c)/3− c

It can be easily derived that the optimal adjustment cost c∗ = β2/36. By Def-
inition 5, f(θ) is profitable Bayesian implementable. The maximum expected
profit of the designer is:

p̄d(c
∗) = (1 + β

√
c∗)/3− c∗ =

1

3
(1 +

β2

12
).

Obviously, when β >
√
3, there exists p̄d(c

∗) > 5/12. Note that the designer’s
maximum expected profit in the traditional optimal auction with two bidders
is 5/12 (see Page 23, the ninth line from the bottom, Ref [6]). Therefore,
if β >

√
3, then by choosing the optimal adjustment cost c∗ = β2/36, the

designer can obtain an expected profit greater than the maximum expected profit

given by the traditional optimal auction.

Now we consider the ex ante expected profit of each agent i when agents’
types are adjustable and the designer chooses the optimal adjustment cost c∗.
By appendix, the winner agent’s expected profit is denoted as follows:

E[θc
∗

winner−b∗winner(θ
c∗

winner)] = E[θc
∗

winner/2] = (1+β
√
c∗)E[θ0winner]/2 = (1+

β2

6
)/3.

And the loser agent’s expected profit is zero. Because the two agents are
symmetric, each of them has the same probability 1/2 to be the winner agent.
Therefore, the ex ante expected profit of each agent is 1/6 + β2/36.

As a comparison, we consider the ex ante expected profit of each agent in the
traditional optimal auction model. By Ref [6] (Page 22), the ex ante expected
payment of a bidder is

r(1− F (r))G(r) +
∫ ω

r
y(1− F (y))g(y)dy,

where r > 0 is the reserve price, [r, ω] is the interval of each agent i’s valuation
Xi. Each Xi is independently and identically distributed according to the
increasing distribution function F . Fix a bidder, G denotes the distribution
function of the highest valuation among the rest remaining bidders. For the
case of two agents with valuation range [r, 1] and uniform distribution, there
exist

F (r) = r, G(r) = r, ω = 1, F (y) = y, g(y) = 1, for any y ∈ [r, 1].

By Ref [6] (Page 23), given that each of two agent’s valuation to the good
is uniformly distributed on interval [0, 1], the optimal reserve price r∗ = 1/2.
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Therefore, the ex ante expected payment of each agent in the optimal auction
with reserve price r∗ = 1/2 is

r∗(1− r∗)r∗ +
∫ 1

r∗
y(1− y)dy

=
1

8
+

∫ 1

1

2

y(1− y)dy =
5

24
.

According to the optimal reserve price 1/2, each of two agent’s valuation to the
good is uniformly distributed on interval [1/2, 1], hence each agent’s expected
valuation is the middle point of interval [1/2, 1], i.e., 3/4. Consequently, the
ex ante expected profit of each agent in the traditional optimal auction with
reserve price 1/2 is his expected valuation 3/4 minus his ex ante expected
payment 5/24, i.e.,

3

4
− 5

24
=

13

24
.

Recall that when agents’ types are adjustable and the designer chooses the
optimal adjustment cost c∗ = β2/36, the ex ante expected profit of each agent

is 1/6 + β2/36. It can be seen that if β >
√

27/2, then 1/6 + β2/36 > 13/24.

To sum up, when agents’ types are adjustable and the designer chooses the
optimal adjustment cost:
1) If β >

√
3, then the expected profit of the designer is greater than her

expected profit in the traditional optimal auction with reserve price 1/2.

2) If β >
√

27/2, then the ex ante expected profit of each agent is greater than

his counterpart in the traditional optimal auction with reserve price 1/2.

4 Conclusions

In the standard mechanism design theory, the mechanism works in a one-shot
manner. Each agent’s type is considered as private and endogenous value,
which means that the designer has no way to know and adjust each agent’s
type. Thus, although the designer constructs a mechanism in order to imple-
ment her favorite social choice function, she may behave like a passive observer

in a dilemma after receiving a profile of agents’ strategies: i.e., she must obey
the mechanism and announce the outcome specified by the outcome function,
even if she is not satisfied with the outcome.

In this paper, we investigate a case where the designer can induce each agent to
adjust his type in a one-shot mechanism. In the generalized case, the designer
may behave like an active modulator and escape from the dilemma. There are
two novelties related to profitable Bayesian implementation:

1) For a profitable Bayesian implementable social choice function, it cannot
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be inferred that it is truthfully implementable in Bayesian Nash equilibrium.
That is, the revelation principle does not hold in this generalized case.

2) If β >
√
3, then by choosing the optimal adjustment cost the designer can

obtain an expected profit greater than the maximum expected profit yielded by

the traditional optimal auction. If β >
√

27/2, each agent’s ex ante expected
profit is also increased.

Appendix

As specified in Section 3, θ01 and θ02 are drawn independently from the uniform
distribution on [0, 1]. Let Z be a random variable defined as Z = θ01y1(θ

0) +
θ02y2(θ

0).

fθ0
1

(z) =















0, z < 0

1, z ∈ [0, 1]

0, z > 1

.

Fθ0
1

(z) = Prob{θ01 ≤ z} =















0, z < 0

z, z ∈ [0, 1]

1, z > 1

.

FZ(z) = [Fθ0
1

(z)]2 =















0, z < 0

z2, z ∈ [0, 1]

1, z > 1

.

Therefore,

fZ(z) =















0, z < 0

2z, z ∈ [0, 1]

0, z > 1

.

As a result,

E(Z) =
∫ 1

0
z · 2zdz =

∫ 1

0
2z2dz = 2/3.

Therefore, E[θ01y1(θ
0) + θ02y2(θ

0)]/2 = 1/3. Let the According to Eq (6), the
designer’s initial expected profit and utility are p̄d(0) = ūd(0) = 1/3.
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