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Abstract

Labor markets become more efficient in theory if jobseekers direct their search. Us-

ing online job board data, we show that high-wage ads attract more applicants as in

directed search models. Due to distinctive data features, we also estimate significant

but milder directed search for hidden (or implicit) wages, suggesting that ad texts and

requirements tacitly convey wage information. Since explicit-wage ads often target un-

skilled workers, other estimates in the literature ignoring hidden-wage ads may suffer

from selection bias. Moreover, job ad requirements are aligned with their applicants’

traits, as predicted in directed search models with heterogeneity.
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1 Introduction

Nowadays workers routinely search for job ads on websites such as www.monster.com in the

US, or www.trabajando.com in several countries, including Chile and other Latin American

countries. Applicants consider wages and other features posted in job ads to direct their

search effort. On the other side, employers post to attract the appropriate kind and number

of applications. Theoretical models of the labor market in the search and matching tradition

typically propose a precise way in which workers seek jobs or employers seek and select

applicants. With few exceptions, existing models advocate either random search, in which

wages are determined ex post in a bargaining setting and play no role in driving applications,

or directed search, in which wages do drive applications and impact the probabilities of

obtaining positions.

Researchers often pick random or directed search based on analytical convenience and

theoretical implications rather than the alignment between theory and evidence. However,

characterizing deep underlying behavior matters for prescribing policies in counterfactual

scenarios. Since it is often possible to construct models generating similar predictions based

on different premises, evaluating competing models based solely on indirect empirical im-

plications is often insufficient.

The prevalence of random or directed search in frictional markets implies different nor-

mative policy implications. Job search efforts negatively impact the matching chances of

others on the same side of the market, and positively affect the chances of those on the op-

posite side in a frictional market. In the simplest case with homogeneous agents, Hosios

(1990) shows that random search with ex post wage bargaining yields inefficient outcomes

in the labor market unless the vacancy-elasticity of the matching function equals the firm

bargaining power. Workers and employers do not internalize the externalities they generate

when bargaining over the surplus in a bilateral monopoly situation.

In contrast, under directed search, jobseekers have information about specific job offers

and apply more to positions with higher announced wages (Moen, 1997) or target the sub-

market where employers open positions with specific requirements and announce optimally

designed take-it-or-leave-it wage schedules (Menzio & Shi, 2010; Menzio et al. , 2016).

Since these models predict a unique (sub)market equilibrium wage, an observed cross-

sectional positive correlation between wages and applications would be out of equilibrium.

Models with multiple applications, a sensible assumption in our online context, can solve

this tension because they predict a positive correlation and equilibrium wage dispersion as
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a consequence of the strategic behavior of applicants and employers (Albrecht et al. , 2006;

Galenianos & Kircher, 2009; Kircher, 2009). Moreover, unobserved heterogeneity in both

sides of the market could also be a reason for coexistence of wage dispersion and directed

search behavior. A recent in-depth survey for directed search is Wright et al. (2017).

In most models, directed search behavior implies constrained efficiency of the labor mar-

ket allocation.1 Intuitively, agents internalize congestion externalities by realizing the trade-

off between the wage and the likelihood of being hired. Thus, labor market regulations may

be welfare-improving under random search, but not under directed search. For instance, un-

der directed search Moen & Rosén (2004) show that poaching activity does not distort train-

ing decisions. In contrast, Acemoglu (1997) finds that training subsidies increase welfare

because poaching induces suboptimal training investment under random search. With re-

spect to other policies such as minimum wages and unemployment insurance, several papers

show welfare-improving effects under search frictions (Acemoglu & Shimer, 2000; Ace-

moglu, 2001; Flinn, 2006).

Hence, empirical evidence on the prevailing type of job search behavior should shape

policy recommendations. However, finding solid evidence for random or directed search is

difficult for at least two reasons. In an ideal experiment for homogeneous jobs, we would

clone job ads except for an exogenously modified offered wage and compare application

responses. Then, we would estimate the average causal impact of wages in applications

received, as in Belot et al. (2017). The potential problems of this approach are aggregate

effects of the intervention and suspicious jobseekers detecting identical ads with different

wages. Instead, to test for directed search behavior, we use proprietary data from the Chilean

job board www.trabajando.com, described in Section 2. The data merges the information

of applicants, firms, applications, and job ads in a context of heterogeneous workers and

positions.

A second challenge is that most employers do not explicitly post wages, and if they do, the

advertised positions are clearly different from those in which wages are not revealed. Sur-

mounting this sample selection issue is important to provide convincing evidence of directed

search because job ads with hidden wages are predominant. Such ads account for 86.6% of

all job ads in www.trabajando.com, 75.2% in www.monster.com (Brenčič, 2012), 80% in

www.careerbuilder.com (Marinescu & Wolthoff, 2015), and 83% in www.zhaopin.com,

a Chinese online job board (Kuhn & Shen, 2013). In contrast, we investigate the behavior

1Within the class of multiple application models Kircher (2009) is an example of decentralized constrained

efficiency in contrast to Galenianos & Kircher (2009).
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of applicants facing offered wages even if employers choose not to show them in the job ad.

This is due to the job ad form for prospective employers having a mandatory field of “ap-

proximated net monthly wage”2 (Salario lı́quido mensual aproximado in Spanish) as shown

in Figure 1. The prospective employer has to enter a single amount representing a monthly

net wage offer. Unlike other websites, entering a wage range is not allowed. However, next

to the wage box employers can choose if they want to make the wage visible to applicants.

This option is selected for only 13.4% of ads in our sample. In Section 2.5, we show that

hidden wages are reliable measures of wages that employers intend to pay. To the best of our

knowledge, this is a unique feature among databases of this sort that allows us to circum-

vent a large sample selection problem when estimating the responsiveness of applications to

wages.

Figure 1: Standard job ad form

Note: Accessed on May 5th, 2015. Red asterisks indicate that the required field is mandatory.

Section 3 shows our results for directed search and wage posting. First, using negative

binomial models for count data allowing for under- or over-dispersion (Cameron & Trivedi,

2013) in Section 3.1, we find evidence of directed search in the sense that the number of

applications increases in the offered wage, even if hidden. This impact is significantly larger

2A customary characteristic of the Chilean labor market is that wages are generally expressed in a monthly

rate net of taxes, mandatory contributions to health services (7% of monthly wage), a fully-funded private

pension system (10%), disability insurance (1.2%), and unemployment insurance account (0.6%).
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for ads in which the wage offer is observable for applicants. Applicants react to hidden

wages probably because they use search filters by wage bracket that are fine for low wages

and coarse for large ones. Even within a bracket, as we show below, applicants may infer

wages through information in the job ad. Consequently, we refer to hidden wages as implicit

interchangeably. The evidence suggests that directed search prevails for job seekers in the

online job board, even if wages are not explicit. We thus interpret implicit wage job ads as

noisy signals that attract skilled applicants, perhaps indicating potential ex post bargaining,

as in the Michelacci & Suarez (2006) model. In addition, we also show that job ads posting

low explicit wages receive significantly fewer applications, controlling for job ad features

and firm characteristics.

In the literature few empirical papers show some evidence on application responding

positively to higher wages. We believe we are the first showing this effect for employers not

posting explicit wages. Holzer et al. (1991) show that vacancies for which minimum wage

regulation is binding provide extra rents that attract more applicants. Dal Bó et al. (2013)

find that higher wages attract more and better qualified applicants in a Mexican public sector

online job board. Marinescu & Wolthoff (2015) use online job ads by www.careerbuilder.

com and explain job ad posted wages mainly through job titles, as we do in our results. They

provide evidence of directed search job ads with explicitly posted wages, which comprise

nearly 20% of their sample, but they are silent about job ads with hidden wages. Belot et al.

(2017) set up a field experiment by altering original posted wages of real job ads. Their

results support the directed search hypothesis, since high-wage jobs receive significantly

more applications than their low-wage experimental clones. Braun et al. (2016) use NLSY

data to estimate duration models and show that search effort is higher in high-wage markets

compared to medium-wage markets. Finally, for product markets Lewis (2011) shows that

internet seekers for used cars react significantly to posted information regarding automobile

quality.

For our second finding, we show that similar workers tend to apply for the same jobs

and their qualifications closely meet employers’ requirements in Section 3.2, as endogenous

segmentation arises in directed search models with heterogeneity on at least one side of the

market (e.g. Shi (2002); Menzio et al. (2016)), We also show that wages attract applications

within submarkets defined in various ways in Section 3.3. Therefore, the observed behavior

of applicants is inconsistent with random search within submarkets, a hypothesis competing

with directed search.

In the literature, to the best of our knowledge, only Dal Bó et al. (2013) provide some
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evidence interpretable as segmentation since job characteristics such as location and munic-

ipality features drive applicant search. In a similar vein, we document jobseekers targeting

ads with requirements that fit their characteristics, regardless of the final hiring decision. Of-

ten weak correlations between worker and firm effects found in matched employer-employee

databases (e.g. Abowd et al. (1999)) might mistakenly be taken as segmentation since good

workers match with good jobs as implied by directed search models. However, employ-

ers may also select among multiple randomly sent applications as in non-sequential random

search models (Moen, 1999; Villena-Roldán, 2012). Hence, these correlations are not nec-

essarily evidence of the segmentation implied by directed search.

Our third empirical fact concerns wage posting behavior, a decision interlinked with ap-

plications in Section 3.4. We find that firms are more likely to post a wage explicitly for

low-skill jobs. This evidence, on top of the negative impact of explicit wage posting in the

number of applicants in Section 3.1, suggests that employers post explicit wages to receive

fewer applications. In this way, they avoid large screening costs, especially for simple jobs

in which differentiation across suitable candidates barely matters. Posting explicit wages is

a strategic decision correlated with factors also affecting offered wages. Hence, studying

directed search behavior only through explicitly posted wages leads to biased evidence. In

fact, given the empirical estimates obtained in Sections 3.1 and 3.4, we conclude that there

is an upward bias in the sensitivity of applications to wages when neglecting the endogenous

decision of posting explicit wages.

In line with our findings, Brenčič (2012) shows that explicit wage posting is standard

in job ads requiring low qualifications and those that need to be filled fast. The evidence

suggests that firms face a trade-off when announcing a wage: it reduces search costs, but

decreases the quality of applicants. Due to the link between directed search and committed

explicit wage posting in most models (i.e. competitive search), some authors investigate the

prevalence of wage-posting and wage-bargaining behavior. Brenzel et al. (2014) report a

sizable share of wage posting, often concentrated in low-skill jobs. Hall & Krueger (2012)

report that nearly one-third of workers were largely certain of the wage paid before applying.

However, knowing wages is not a concrete indication of directed search since it may just

reflect anticipation of a bargaining result. All in all, the evidence suggests that implicit wage

posting is frequently used to target skilled workers and that ex post bargaining and directed

search may coexist.

Finally, Section 4 summarizes and concludes that applicants noticeably react to informa-

tion posted (or hidden) in job ads, and employers strategically configure ads to attract or to
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hinder targeted groups of workers.

2 Data description

Our data covers all job ads posted, all job seekers and all job applications between January

1st, 2008 and June 14th, 2014 for the Chilean job board www.trabajando.com. This job

board operates several websites, generating multiple simultaneous appearances of job ads,

or repetitions of previously posted ads. There are three main databases: the first one has

applications to each job ad and personal data on the applicants; the second one contains

employer information, and the third one gathers information on job ads.

Applicants register for free in the website and fill out a form to provide demographic

information, educational record, previous worker experience, etc. Employers complete the

form in Figure 1 and pay3 USD 116 for a 60-day term posting, as of December 2014. While

www.trabajando.com keeps records of hidden wages, employers may provide nonsensical

information. We keep 6,131,626 applications during the mentioned period, after removing

nearly two million cases with unreliable wage information.4

Jobseekers can filter job ads by job title keywords, region, posting date, occupation, job

ad type, and full/part time arrangement. They can also filter jobs by monthly wage offer level

in ranges as narrow as CLP 100,000 (USD 163) for wages below CLP 1,000,000. For wages

between CLP 1,000,000 and 3,500,000, jobseekers could filter in ranges of CLP 500,000 at

most. Ads with hidden wage are listed in these ranges when filtering by wage offer level.

We have no information regarding the filters jobseekers actually use to find postings because

users are not required to login to search job offers.

2.1 Applicants

Individuals are identified in the database by unique combinations of years of experience,

date of birth, date of entry of the resume, gender, nationality, and profession. Only nine

duplicated cases are dropped.

3The price was CLP 59,900 + 19% of value added tax. Current terms are located at http://www1.

trabajando.cl/empresas/noticia.cfm?noticiaid=3877. The cost in dollars is computed using the

December 2014 average CLP/USD spot exchange rate. The job board also offers preferential rates for big

clients.
4We discuss data cleaning details in the online appendix (OA) in Section A.1.
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We keep individuals between 18 to 69 years old with monthly net wages lower than 5

million pesos in their previous work (9,745 USD per month, using the average nominal

exchange rate over 2008Q1 - 2014Q2), which is well above the 99th percentile according

to CASEN 2011, a Chilean household survey akin to the March CPS). We also exclude

individuals with monthly net wage expectations over 5 million pesos, and those who omit

an expected figure in the application form (as econometricians, we observe this expectation

even if applicants choose to hide it from employers). Excluding these cases, we get 463,495

applicants. Descriptive statistics are in Tables 1.5

The sample is young (30 years old on average) and mostly single. More than 60% of the

applicants are in the Metropolitan Region of Santiago. The sample shows a high educational

level, so they are likely paid above the legal minimum wage (approximately 377 USD per

month). About 42% of the sample has some kind of college education, and 27% of applicants

have a technical tertiary degree. We estimate schooling according to the highest educational

level achieved (8 years for primary, 12 years for both Scientific-Humanistic or Technical

high school, 16 years for technical tertiary degrees, 17 years for university (college) degrees,

and 18 years for graduate degrees). The average schooling is 15 years and is similar for

males and females. Males are more likely to be in technical or technology related areas,

while females are often in sales. A significant share of applicants do not declare an area.

Given the youth of the sample, most individuals have few years of work experience. On

average, individuals possess 6.5 potential years of experience, with males slightly more ex-

perienced. A large proportion of the sample are self-reported as unemployed (47.74%), who

are more likely to be females. The rest of the applicants are on-the-job searchers.

The gender gap in expected wages paid is nearly 44%, similar to the gap of last/current

jobs. Applicants expect to be better off from a job change: expected wages for the next

job are 3.9% higher than their last or current job.6 Applicants’ wage expectations tend to be

private: less than half of the sample chooses to display their wage expectations to employers.

2.2 Employers

Our sample has 6,386 different firms.7 A sizable set of firms have less than 50 employees,

but this figure is affected by recruiting firms that offer their services to contact and select

5For data cleaning details, see our online appendix (OA), Section A.1. For more descriptive details, see our

OA, Section A.2, Tables A2 and A3.
6Summary statistics of applicant last job wages are reported in the OA, Section A.2, Table A2
7We describe firm data in greater detail in the OA, Table A4.
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Table 1: Summary of applicant characteristics

Males Females All

Age (%)

18 - 24 23.25 34.18 28.46

25 - 34 47.61 44.56 46.16

35 - 44 19.59 15.07 17.44

45+ 9.55 6.19 7.95

Age (Avg.) 31.25 29.05 30.20

Marital Status (%)

Married 27.99 19.17 23.79

Single 66.80 74.75 70.59

Other 5.22 6.08 5.63

Wage expectation (%)

CLP 300.000 < 18.18 35.88 26.61

CLP 300.001 - 600.000 30.89 33.29 32.03

CLP 600.001 - 1.000.000 24.76 18.23 21.65

CLP 1.000.000+ 23.13 9.86 16.81

No wage or too high 3.17 2.78 2.98

Wage expectation (Avg./S.D.) 838753 559238 705339

(693009) (473144) (614307)

Visible expected wage (%) 48.47 42.77 45.75

Years of experience (%)

0 - 3 37.08 49.43 42.96

4 - 7 25.38 24.94 25.17

8+ 37.54 25.63 31.87

Experience (Avg./S.D.) 7.44 5.38 6.45

7.21 5.78 6.65

Highest attained educ. level(%)

Primary/Secondary/Tech. Secondary 29.47 32.78 31.04

Technical Tertiary 27.17 24.80 26.04

College (Tertiary)/Graduate 43.36 42.43 42.92

Estimated Schooling (Avg./S.D.) 15.25 15.10 15.18

(2.19) (2.25) (2.22)

Major study area (%)

Commerce & Management 13.95 19.50 16.59

Technology 33.23 13.05 23.62

No area 36.46 41.18 38.71

Other 16.36 26.26 21.07

Labor status (%)

Employed 50.09 38.04 44.35

Unemployed 43.12 52.82 47.74

Inactive 6.79 9.13 7.91

Observations 242733 220762 463495

potential applicants for their clients. We consider a recruiting firm as one posting a number

of vacancies exceeding half of the upper limit of its reported interval of employees in a

given month.8 Larger firms post more ads and vacancies per month, but do not receive

8For instance, if a firm in the range of 11-50 employees posts more than 25 vacancies, we classify

it as a recruiting firm. The intervals are 1-10, 11-50, 51-150, 151-300, 301-500, 501-1000, 1001-5000,
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more applicants per ad or vacancy posted. By industry, a majority of firms are in retail,

communications, services, or manufacturing. The posting frequency of ads and vacancies

varies substantially across industries, with the highest values in primary sectors (agriculture,

fishing, and mining) and the lowest in construction and services. However, job seekers apply

more for industries that post fewer ads or vacancies, such as household services, personal

services, and public administration.

2.3 Job Ads

Job ads have requirements for applicants, a number of open positions (vacancies), and an

estimated offered wage, potentially hidden by the employer. Descriptive statistics for job ads

are shown in Table 2.9 Our sample excludes jobs with (i) an estimated offered monthly wage

below CLP 100,000 or over CLP 5,000,000 (USD 194-9,745 approximately); (ii) missing

or unreliable information for offered wages (explicit or hidden); and (iii) a requirement of

experience over 20 years, or a missing experience request. After cleaning, 184,920 job ads

remained in our sample, some of them with missing fields.

In the online labor market data, only 13.4% of job ads post wages explicitly. In Table 2

we see that most job ads require little labor experience, which is even more noticeable for

jobs with explicit wages. The mean and standard deviation of explicit wages is 40% lower

than of implicit ones. Job ads with explicit wages tend to require no specific profession or

occupation, low experience, and high-school education. Explicit-wage ads concentrate in re-

tail, communications, and services. Implicit-wage ads receive substantially more applicants

on average than explicit-wage ones. The average number of applications per ad is 34.8, with

a large dispersion.

2.4 Job Ad Titles

The job title itself may convey relevant information on the set of tasks that a worker would

undertake once hired, the hierarchy in the organization, relevant qualifications, etc. Mari-

nescu & Wolthoff (2015) use job titles from www.careerbuilder.com data to assess their

+5000 employees. Dealing with this concern was motivated by informal conversations with managers of

www.trabajando.com who claim these firms exist and are frequent users (clients) of their job search en-

gine. Even though our definition is admittedly ad hoc and it is not immune to potential misclassification, our

results are barely changed by this issue, as we show below.
9For further details, please see the OA, Section A.2, Tables A5, A6, and A7.
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Table 2: Summary of Job Ad Characteristics

Explicit wage Implicit wage All

Required years of experience (%)

0 21.66 14.62 15.57

1 44.50 31.37 33.14

2 - 3 27.68 39.39 37.82

4 - 20 6.16 14.61 13.48

Years of experience (Avg./S.D.) 1.41 2.05 1.96

(1.40) (1.80) (1.76)

Required educ. level (%)

Primary/Secondary/Tech. Secondary 56.82 34.36 37.38

Technical Tertiary 25.13 28.14 27.74

College (Tertiary)/Graduate 18.05 37.50 34.88

Major study area (%)

Commerce & Management 23.68 22.24 22.43

Technology 15.78 29.38 27.55

No area 53.45 40.30 42.07

Others 7.09 8.09 7.95

Sectors (%)

Manufacturing 7.76 8.85 8.71

Electricity/gas/water 4.47 2.37 2.66

Commerce 19.56 19.84 19.80

Transportation 6.81 3.13 3.63

Communication 11.12 9.01 9.30

Financial/Business/Personal Serv. 25.27 25.65 25.60

Others 25.01 31.14 30.31

Offered wage (%)

CLP 300.000< 54.45 31.86 34.89

CLP 300.001 - 600.000 31.52 29.00 29.34

CLP 600.001 - 1.000.000 9.78 22.32 20.63

CLP 1.000.000+ 4.24 16.83 15.14

Offered wage (Avg/S.D.) 404887 680704 643614

(347276) (587201) (568778)

Applications per ad (%)

0 14.44 14.94 14.87

1 - 2 10.91 6.62 7.20

3 - 5 12.16 7.96 8.53

6 - 10 13.83 10.66 11.09

11 - 20 16.23 15.36 15.48

21 - 30 9.15 10.36 10.20

31 - 50 9.88 12.66 12.29

51+ 13.38 21.43 20.35

Applications per ad (Avg./S.D.) 25.3 36.3 34.8

(49.68) (64.52) (62.84)

Applications per vacancy (Avg./S.D.) 15.8 27.9 26.2

(34.05) (54.16) (52.07)

Observations 24867 160053 184920

Note: Fixed-term ads announce an explicit time frame for the job. Undefined-term jobs post no finishing date. These are legal distinctions

in Chilean labor law.
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predictive power on the 20% of job ads that post an explicit wage in their sample. In the

same fashion, we use job titles (in Spanish) of ads posted in www.trabajando.com.

Our approach to extract information from job titles is akin to Marinescu & Wolthoff

(2015). We recognize the first four meaningful words of the job title, after deleting arti-

cles, connectors, etc, and construct four categorical variables representing a list of words

repeated more than 100 times in the whole sample of titles, as one of the first four words.

Since most words in Spanish are not gender neutral, we consider male and female words as

the same. This entails some loss of information since the employer could succinctly define a

desired gender for the applicant, a feature employed in the literature Kuhn & Shen (2013).

The first word has 140 different categories such as: analyst (analista), chief (jefe), man-

ager (administrador), assistant (asistente), engineer (ingeniero), intern (práctica), etc. The

second one considers 290 categories, and the third and fourth have 218 and 67 categories,

respectively. If a word in the job title does not appear in the selected list, it is denoted as

Other. For the whole sample of job ads, the first word was catalogued as Other only in the

7.04% of ad titles. 17.22%, 27.33% and 12.68% of job ads were categorized into the Other

group for the second, third, and fourth words, respectively. In Figures A1 and A2 in the Sec-

tion A.3 of the OA, we show “word clouds” with the most repeated words for job ads with

implicit and explicit wages, respectively (in Spanish). The larger the word in the cloud, the

more repeated it is in our job title sample. A loose inspection of these word clouds suggests

that explicit wage job ads are more frequent in low skill jobs.

These categorical variables constructed from the job ad titles are used as dummy controls

in the estimations in the models specified in Tables 4 and 8 in the main text, and A8 - A11,

A13 - A16 in the OA.

2.5 Reliability of Implicit Wages

Are employers reliably reporting offered wages when they are choosing not to show them to

applicants? The first reason for employers caring about reporting is that the job board allows

jobseekers to filter by wage ranges, even for implicit wages. Hence, posting nonsensical

information is potentially detrimental for the employer. Moreover, we assess how reliable

implicit wages are by assuming that explicit wages are truthfully reported.

We proceed by estimating a predictive equation for log wages for implicit-wage and

explicit-wage job ads, separately. The baseline explanatory variables are job ad title word,

regional, and quarter binary variables. In augmented models, we incorporate additional re-

gressors in steps, such as experience, education, and 166 different job areas and computer
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skill requirements.

The upper panel of Table 3 shows in-sample prediction statistics for regressions by type

of wage. The columns report the R2 (squared correlation coefficient between actual and fitted

values), the root-square of the mean squared error (RMSE) to measure prediction inaccuracy,

and the sample size, N. High R2 and low RMSE are complementary measures of prediction

accuracy both in and out of sample. Observed characteristics such as job title word, region,

and quarter dummies explain 57.7% of the variance of implicit log wages and 62.2% for ex-

plicit log wages. As we incorporate more variables, the explained share of variance increases

to 67.9% and 72.6% for implicit and explicit log wages, respectively. In-sample predictive

accuracy is clearly higher for the explicit-wage equation. Additional controls increase R2

and reduce RMSE in both equations.

The lower panel of Table 3 shows how good the explicit wage equation is at predicting

implicit wages and vice versa. For every set of controls, a given type of regression pre-

dicts wages of the other kind with remarkable accuracy, particularly in terms of R2. With

all controls, the out-of-sample explicit-wage prediction of hidden wages explains 92.3%

(0.627/0.679) of the variance compared to the in-sample implicit-wage prediction. Compar-

ing out-of-sample and in-sample RMSE predictions, the latter is 27.2% larger (0.560/0.440).

The counterpart exercise with all controls reveals that the out-of-sample implicit-wage pre-

diction of explicit wages explains 87.6% (0.636/0.726) of the variance relative to the in-

sample prediction of explicit wages. The comparable RMSE ratio is 29.8% larger (0.414/0.319)

The explicit-wage equation quite accurately predicts hidden wages. In addition, the

implicit-wage equation can be used to predict explicit wages as well. These facts illustrate

that employers use a similar pricing scheme for all kinds of wages, as hypothesized to some

extent by Marinescu & Wolthoff (2015). This evidence shows that hidden wages are gener-

ally truthfully declared because employers posting a job ad of a fixed set of characteristics

post substantially similar wages regardless of the explicitness of the wage.

3 Empirical Results

In this section, we test several relevant predictions. First, do job ads posting higher wages

or benefits attract more applicants Moen (1997). Second, do job ads offer wages or benefits

to attract specific groups of workers, who optimally choose to apply to them, i.e. there is

endogenous segmentation in heterogeneous labor markets Menzio & Shi (2010); Menzio

et al. (2016). Third, we test if directed search prevails within labor market segments in
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Table 3: Predictive power of job ad features on log wages

In-sample prediction Implicit predicts implicit Explicit predicts explicit

R2 RMSE N R2 RMSE N

Title words, region, quarter 0.577 0.505 160053 0.622 0.373 24867

+ req exper (quartic) 0.625 0.475 160053 0.668 0.350 24867

+ req educ & completion 0.671 0.446 160053 0.715 0.324 24867

+ job area & comp skill 0.679 0.440 160053 0.726 0.319 24867

Out-of-sample prediction Implicit predicts explicit Explicit predicts implicit

R2 RMSE N R2 RMSE N

Title words, region, quarter 0.522 0.437 24867 0.502 0.632 160053

+ req exper (quartic) 0.576 0.409 24867 0.563 0.589 160053

+ req educ & completion 0.630 0.415 24867 0.621 0.567 160053

+ job area & comp skill 0.636 0.414 24867 0.627 0.560 160053

Note: The first model uses four job ad words described in Section 2.4, regional, and quarter dummies. The second model adds a quartic

polynomial in job ad required experience. The third model adds required educational level dummies and completion required level dum-

mies (graduated, certified,ongoing, indifferent, close to graduation) with main and interacted effects. The fourth model includes 166 job

area dummies (similar to occupation) and seven categories of computer skills required (none, basic, medium, advanced user, expert, etc).

R2 is the squared correlation between the predicted and actual values of the log wages. RMSE is the square-root of the mean squared

prediction error. N is the sample size used in estimating or predicting the model.

order to rule out random search within segments. Finally, given the distinctive behavior of

workers towards explicit- and implicit-wage job ads, we examine the major factors behind

employer wage posting, an issue tightly related to directed search.10

3.1 Do applications increase in wages?

In a setting of homogeneous jobs, as in Moen (1997), we ideally want to test if workers apply

more to high-wage jobs which are otherwise identical. To isolate the effect of increasing

wages on a particular job ad, we control for a large set of variables related to wages including

education, experience, major, and job title words. Since we observe all offered wages, we

circumvent the sample selection issue of hidden offered wages so prevalent in online job

boards.

Because the dependent variable takes non-negative integer values, we use a Negative

10Due to the nature of our data, we miss some applications to ads posted in early June 2014. However, this

is barely a concern because these ads only account for 0.33% of our sample and most applications arrive soon

after the posting date, as reported by Banfi et al. (2017).
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Binomial (NB) model, which is more flexible than Poisson (Cameron & Trivedi, 2013).11

We circumvent the potential selection bias by estimating our equations using data on hidden

or implicit wages. We only present a subset of estimates here.12

Table 4 shows the NB estimates (β ), the estimated standard errors (SE), and the average

marginal elasticity (η = ∂E[logA|X ]/∂ logz) of the number of applications, A, with respect

to a variable z if considered continuous (offered log wage, ad appearances, number of va-

cancies, etc), or the expected log point change of the dependent variable (η = E[logy|X ,z =

1]−E[logy|X ,z = 0]), if z is binary (explicit wage, educational status, etc.)

Figure 2 depicts the conditional expectations of the number of applications implied by

the NB model as a function of offered log wages, number of vacancies in the ad, and the

level of required experience. We also plot referential lines showing quantiles of the latter

variables. Job ads with an explicitly posted wage receive significantly fewer applications.

The point estimate suggests a mean marginal effect of 13.2% fewer applications when a job

ad is explicit. The first panel of Figure 2 shows that the effect is stronger for lower wages

and much smaller at the 75th percentile. For higher wages, the pattern is reversed.

The marginal impact of wages in number of applications is decreasing since the relation

between the number of applications and log wages looks nearly linear. To explain this shape,

directed search theory suggests that the probability of being hired declines at increasing rate

as more applicants apply.13 Diminishing marginal utility of consumption (or money) can

also help explain this fact.

The offered wage has both a statistically and economically important effect: increasing

log wage by 1% increases the number of applicants by 0.1% if wages are implicit. Although

the explicit wage effect (0.224) is larger than the implicit one (0.076), both kinds of wages

have a highly significant positive effect on applicant behavior. The combination of these

findings is clear in Figure 2 showing that the curves of conditional expectation of applications

for explicit and implicit wages cross each other.

How do we interpret the explicit-implicit wage-elasticity gap? Because higher implicit

wages attract more applications in spite of being hidden, our results could be interpreted as

applicants inferring wages from the text, requirements of the job ad, and potentially the job ad

filter in the website. The evidence is consistent with a signal extraction process over the text

11A standard count data Poisson model imposes equality of conditional variance and mean. In contrast, the

NB model relaxes this assumption.
12Full results are in Tables A8 and A9 in the OA, Section A.4.
13Under the standard assumption of a matching function with constant returns to scale, the job finding

probability is a convex function of the number of applicants received.
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of the job ad, coupled with directed search. The milder yet sizable response of applications to

implicit wages is coherent with the job ad conveying noisy information regarding the wage.

However, the evidence is also compatible with higher reporting error in implicit offered

wages. A mixture of both explanations is also possible.

In line with these interpretations, the exercise in Table 3 shows that key words in the job ad

title and other information regarding education, experience, and other requirements explain

a sizable share of the variance, although lower than found in other online job boards (Mari-

nescu & Wolthoff, 2015). In addition, our prediction of implicit wages using an explicit-

wage “pricing” equation entails an accuracy loss. This is consistent with either noisy-signal

posting as well as larger measurement error in implicit-wage job ads.

Theoretical models explaining explicit wage posting link hidden wages with ex post bar-

gaining (Ellingsen & Rosén, 2003; Michelacci & Suarez, 2006). Directed search and com-

mitted take-it-or-leave-it offers (i.e. competitive search) are also key ingredients in many

theoretical models for delivering efficient competitive equilibrium in labor markets. How-

ever, we observe that higher implicit wages attract more applicants, something we should not

expect if there is random search and ex post bargaining. Thus, directed search is empirically

relevant even in cases where we may expect ex post wage bargaining.

How do we explain that low explicit-wage jobs attract fewer applicants? It may

be challenging to rationalize that rare low implicit wage job ads receive more applications

than do their abundant low explicit wage counterparts, as depicted in Figure 2. The most

likely explanation is that explicit or implicit wage-posting is a way to induce self-selection of

applicants to obtain a smaller pool of candidates who better fit the profile the employer wants.

At the infancy of online job boards, Autor (2001) stated that “excess applications appears

to be the norm for on-line job postings”. Online marketplaces such as oDesk (now www.

upwork.com) or Amazon Mechanical Turk, and even the academic job market for junior

economists, suffer from congestion problems typically considered by scholars in market

design (Roth & Sotomayor, 1992; Niederle & Roth, 2009). Due to low marginal costs of

application, job seekers may apply for positions that they are not well suited for and generate

potentially large screening costs for employers.

The rationales behind strategies for reducing applicants may differ by worker type. For

jobs requiring low skills, employers would like to discourage too many applications be-

cause any worker may be a close substitute for another. A small pool of candidates is often

enough. For complex jobs, a strategy rendering fewer but better suited applications is rea-

sonable because sending a marginal application on a job board is cheap but screening one is
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quite costly. Previous research documents that employers devote considerable resources to

recruiting activities (Barron et al. , 1985; Oyer & Schaefer, 2011; Muehlemann & Pfeifer,

2016).

Moreover, employers may want to avoid receiving too many applicants because the qual-

ity of hirings may decrease, as in some theoretical models (Seabright & Sen, 2014). In line

with this conjecture, Chandler et al. (2015) report an experiment using the oDesk platform,

in which they randomly impose questions for workers to apply for jobs, raising their appli-

cation costs. Treated job ads received fewer but more qualified applicants, so that the overall

number of matches remains invariant.

How do we interpret findings on vacancies, ad appearances, and other ad traits? The

number of vacancies mentioned in the job ad marginally increases the number of applications

received, but the magnitude of the effect suggests important decreasing returns to scale in

the recruiting technology. The elasticity implied in the NB model is significantly lower than

one. We interpret this finding as evidence of simultaneous search, that is, the existence of

a selection process of applicants (van Ours & Ridder, 1992; Villena-Roldán, 2012). When

engaged in sequential search, employers use a reservation productivity optimal strategy that

implies that vacancies and applicants are proportional. Instead, under non-sequential or

simultaneous search, the impact of more available vacancies increases applications less than

proportionally, as noticed in van Ommeren & Russo (2014), exactly what we see in the data.

Job ad appearances have a negative impact on the total number of applications received by

a particular posting, probably because searchers look for job opportunities in many websites

simultaneously, or may be aware of previous appearances of the same job ad. For the sake

of brevity, we refer the interested reader to the OA, Section A.4, to see further results. In

particular, there we show that lower requested experience and higher required educational

level increase the number of applications, as expected for a young and highly educated pool

of applicants.

Are these results robust? A potential setback for our NB results is that workers often

have preferences for firms due to traits that are unobservable by the econometrician such

as potential colleagues, fringe benefits, prestige, location, organizational climate, etc. Since

these characteristics are often correlated with wages, failing to control for these idiosyncratic

factors may generate an omitted variable bias. In other words, we may be erroneously at-

tributing the effect of these unobserved desirable job traits to wages and overestimating the

sensitivity of applicants to wages.

To test the robustness of our results, in the OA, Section A.4, besides full NB results,
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Table 4: NB Model explaining the number of received applications

Negative Binomial

β SE η

Explicit wage -2.312*** 0.187 -0.132

Ad appearances -0.033*** 0.001 -0.103

Number of vacancies 0.009*** 0.000 0.040

Req. experience -0.060*** 0.002 -0.115

log wage 0.076*** 0.006 0.099

Explicit × Num. of vac. -0.001*** 0.001

Explicit × Req. experience 0.013** 0.006

Explicit × log wage 0.165*** 0.015

log wage - Implicit 0.076

log wage - Explicit 0.224

Observations 184,920

Estimated avg. applications 35.45

pseudo - R2 0.089

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.. Selected coefficients of models without controlling for recruiting firms. Tables A8 and A9

in the OA, Section A.4, show full specifications. Omitted or reference groups: Highest educ: Science-humanity high-school; Contract law

Other. Availabilty: Full-time. Computer knowledge level: None. In all equations we control for profession/occupation dummies, industry

dummies, quarter dummies to capture seasonality, first four words job title dummies, and the number of days the vacancy was open.

we report linear regression models without (OLS) and with (OLS-FE) firm fixed-effects.14

Given the different natures of NB and linear models, we can only directly compare estimates

the η coefficients reflecting marginal changes or differences in conditional expectations.

Results across NB, OLS, and OLS-FE models are very similar. These findings suggest that

variables which are observable for us contain enough information for applicants to direct

their job searches, so that firm identities are mostly redundant data.

Another potential problem occurs if recruiting firms post ads with generic descriptions

without mentioning specific firms. If applicants cannot recognize which firm they are apply-

ing to, we may observe different behavior. In the OA (Section A.4, Tables A10 and A11),

we report estimates for a model including job ads posted by recruiting firms. Other than

recruiting firms receiving fewer applicants, the rest of conclusions remain unaltered.

We finally take into account the potential effect of the search filter of www.trabajando.

com. As explained before in Section 2, jobseekers could filter implicit-wage ads in brackets

of CLP 100,000 for wages below CLP 1,000,000, and brackets of CLP 500,000 for wages

above that level. Therefore, jobseekers using this filter to target ads offering more than CLP

1,000,000 face much more uncertainty about the actual wage offer. Thus, we define a filter

14We use OLS with firm fixed effects since there is no general procedure for estimating nonlinear models

conditional on fixed effects (Wooldridge, 2010).
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Figure 2: Conditional expectations of applications by explicitness of wage (Table 4, NB

Model)
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Note: Effects computed from model without controlling for recruiting firms. Vertical bars surrounding circles indicate 95% confidence

intervals. Vertical lines labeled p5, p25, p50, p75, p95 stand for the corresponding wage distribution percentiles. The vertical line labeled

M denotes the mean of the wage distribution.

binary variable for wages above CLP 1,000,000 and include it in the NB, OLS, and OLS-

FE models, as well as interactions of the filter with log wage, explicit dummy, and explicit

× log wage. Hence, we capture application responses to the discontinuity in the quality of

information. In Figure A6, Section A.4 of the OA, we depict the conditional expectations of

applications received once we introduce the aforementioned regressors. Besides moderately

widening the confidence intervals, our results do not change significantly. Thus, implicit-

wage ads still attract applications when the wage uncertainty is significantly higher. This is

consistent with jobseekers inferring implicit wages from contextual information of the ad.
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3.2 Are workers applying to the “right” jobs (submarkets, segments)?

In directed search models with heterogeneity, applicants direct their search effort to a par-

ticular submarket where employers are posting offers to specifically attract them (Shi, 2002;

Menzio et al. , 2016). Thus, the directed search mechanism generates endogenous segmen-

tation of the labor market. We assess the relevance of this prediction in two complementary

ways.

First, we ask if job ad requirements, such as experience and schooling, are correlated with

the corresponding average attributes of the received applications. In the upper-left panel of

Figure 3, we fit a linear and a Local Polynomial Regression (LPR) between the average

experience of the applicants for a given job and the corresponding ad required experience.

To assess the strength of this increasing relation, we compute a 99% confidence interval for

the LPR. The figure shows that ads with no required experience (zero) receive applicants

with an average of five years of self-declared experience. This is due to the abundance of

job ads for unexperienced workers. Moreover, since the experience requirement conveys a

minimum bar, more experienced applicants still fit the profile. For jobs requiring less than

five years, the LPR shows little variance. Beyond that point, the LPR flattens suggesting

that required and actual experience level out in that region. The increasing relation between

minimum experience required and average applicant experience is a clear indication of self-

selection into the right submarket, in line with directed search models with heterogeneous

agents.

There is clear segmentation by educational level. The upper-right panel of Figure 3 fits a

LPR correlating the imputed schooling years requirement for job ads and the corresponding

average imputed schooling years of applicants. The conversion between education attained

and schooling years is explained in Section 2.1. Applicants clearly comply to ad require-

ments. Nevertheless, the LPR shows that job ads with primary education requirement (eight

years) attract applicants with average schooling of more than 12 years. For requirements of

technical tertiary education (16 years) or college graduation (17 years), the available pool of

applicants meet the specific requirement more closely. Since the overall schooling level of

the applicants is high (around 15 years) it is likely that ads with low educational requirements

receive overqualified applicants more often on average.

The two remaining panels of Figure 3 show a LPR between log offered wages (implicit

and explicit) and the average log expected wage of individuals applying for those jobs. We

observe a clear positive correlation. For implicit wages, the polynomial local regression

is slightly decreasing at exp(12.5) ≈ CLP 270,000 ≈ USD 523 per month, which shows
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that workers applying for implicit low wage ads have overoptimistic expectations. In the

upper portion of the LPR, we observe a sightly decreasing portion, showing the opposite

pattern in that region. The 99% confidence interval has a similar width for different levels,

showing a constant degree of variation in average log expected wages of applicants around

the log offered wage of the employer. In line with the endogenous segmentation implied by

directed search behavior, implicit-wage ads attract applicants with similar wage expectations

as shown by the modest width of confidence intervals. Moreover, applicant expected wages

are closely aligned to hidden ad wages, a pattern consistent with signal extraction from job

ads. We advocate this interpretation especially above exp(13.8)≈ CLP 1,000,000 , a region

where the search filter of the website offers much more limited guidance, with wide brackets

of CLP 500,000.

For explicit wages, in the lower-right panel, we observe similar patterns. We observe

a notable widening of the confidence intervals due to the relatively small sample size for

explicit wages above exp(14)≈ CLP 1,200,000 while the point estimate of the LPR becomes

erratic. Other than this exception, the variability of log average expected wages around

any job offer seems very modest for both explicit- and implicit-wage job ads, constituting

evidence of self-segmentation as predicted by directed search models with heterogenous

agents.

Table 5 portrays a matrix of the major educational areas of applicants. On the vertical

axis, there are educational majors required by job ads, while the horizontal axis lists the ed-

ucational major possessed by applicants. Given a required specific educational major, the

rows of the table show the share of individuals applying to those jobs by jobseeker major.

For instance, 9.72% of jobseekers applying to job ads requiring a educational major in So-

cial Sciences (5) have a Commerce & Management major, while a 68.32% of them hold

a diploma that meets the requirement. Since the main diagonal of the matrix shows high

percentages, applicants tend to apply more for jobs explicitly matching their own major. In

jobs requiring law, health, and social sciences majors, more than 60% of the applicants have

the exact kind of major required by the employer. A finer view of educational segmentation

is shown by Table 6 in which we distinguish different types of education with equal years

of schooling. The modal applicant exactly complies to the major required by the employer.

The only exception is that job ads requiring graduate education tend to receive mostly col-

lege graduate applicants, probably because of the relative scarcity of this kind of jobseeker

in the sample.

Similar jobseekers cluster in applying to similar job ads. Applicants generally meet em-
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Figure 3: Correlations between job ad requirements and average applicant characteristics
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ployer requirements in terms of wage expectations, experience, and major. This is partic-

ularly important since it constitutes a more stringent test for directed search behavior. The

sole fact that applications react positively to higher wages ceteris paribus can be interpreted

as a positively sloped labor supply at the job ad level, as Dal Bó et al. (2013) suggest. We

show that jobseekers refrain from applying to ads when they are not a good fit, an empirical

implication of directed search beyond the positive association between wages and applica-

tions.

The correlation between requirements and applicant features is noticeable but not per-

fect. Moreover, higher implicit wages tend to attract more applicants, and job ads with

specific requirements tend to attract workers with characteristics that meet them. As a con-

sequence, both directed search and ex post bargaining may be at work. Hence, a theoretical

linkage between signal posting attracting specific workers and ex post bargaining would
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Table 5: Distribution of applicant majors by job ad specific major requirement

Applicant Educational Major

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

J
o

b
A

d
s

R
eq

u
ir

em
en

ts

(1) Commerce and Management 48.38 0.53 0.99 0.34 3.52 1.17 0.92 2.16 0.56 18.73 17.85 5.25

(2) Agropecuary 13.25 44.96 0.36 1.06 0.88 0.14 0.22 0.47 2.13 25.29 4.49 6.97

(3) Art and Architecture 11.92 0.20 29.17 0.42 13.38 0.62 1.41 1.26 0.59 27.11 8.09 6.17

(4) Natural Sciences 7.76 2.95 0.39 26.30 0.95 0.20 1.64 0.55 6.80 34.81 13.00 5.66

(5) Social Sciences 9.72 0.11 2.53 0.13 68.32 0.30 1.05 0.98 0.13 4.24 4.41 8.26

(6) Law 3.85 0.03 0.09 1.24 1.09 82.11 0.14 0.48 0.05 2.23 3.78 5.15

(7) Education 6.70 0.27 1.28 1.41 7.22 0.47 44.18 5.03 1.46 5.89 16.98 10.63

(8) Humanities 12.31 0.24 1.96 0.54 8.70 2.06 7.64 39.42 0.75 6.74 14.15 6.22

(9) Health 3.50 0.74 0.24 1.26 0.83 0.10 1.14 0.27 70.60 8.86 11.37 2.84

(10) Technology 23.38 0.89 0.84 0.55 2.69 0.19 0.25 0.57 0.40 53.74 7.41 9.36

(11) Non-declared 21.84 0.74 1.47 0.79 3.75 1.52 1.58 1.23 1.81 19.34 44.67 2.91

(12) Other 17.86 1.88 3.07 1.26 6.52 1.92 6.68 2.66 2.13 21.53 23.06 12.13

Table 6: Distribution of applicant education by job ad education requirement

Applicant Educational Level

(1) (2) (3) (4) (5) (6)

J
o

b
A

d
s

R
eq

. (1) Primary (1-8 years) 1.94 42.24 26.02 20.76 17.91 0.13

(2) Science-humanity High School 1.15 24.13 24.32 27.22 25.21 0.19

(3) Tech. High School 0.73 8.49 26.49 36.44 28.74 0.31

(4) Tech. Tertiary Educ. 0.47 2.44 17.20 37.34 42.46 0.63

(5) College 0.25 0.31 6.82 14.94 76.11 1.67

(6) Graduate 0.43 0.26 6.52 6.40 82.45 4.10

be fruitful. Along these lines, Menzio (2007) provides a cheap-talk model of job ads that

actually guides job seekers towards employers paying wages that are correlated with their

announcements posted without commitment. Cheremukhin et al. (2015) develop a model

that sees job seeker behavior as costly information processing, generating an equilibrium that

is in between random and directed search, allowing for ex post bargaining as a wage-setting

mechanism. Stacey (2015) builds a theoretical setting in which both sides of the market can

strategically post ask or bid prices to induce directed search, but there is a potential ex post

bargaining that can be triggered in equilibrium.
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3.3 Random Search in Segments?

In this section we assess the right scope for directed search. In a market with highly heteroge-

neous ads and applicants, we may consider two interpretations of Section 3.2: are applicants

just attached to a niche and randomly search within it? Or are they actively directing their

search using ad information after targeting the right submarket? Thus, we want to test if

wages drive applications within segments or submarkets. In doing so, we still allow for di-

rected search behavior across submarkets. Finer segmentation would allow us to test for the

scope of directed search, but at the expense of reducing the sample size and power of testing.

In Table 7 we report key parameters of NB regressions for a priori defined subsamples

to estimate potentially heterogeneous reactions of applicants to wages across segments. We

divide job ads in professional area requirements defined by Commerce, Technology, and

Non-Declared. Simultaneously, we also classify our sample by educational requirements

considering Scientific-Humanities High School, Technical High School, Technical Tertiary

Education, and College. These twelve segments defined by the crossover of these categories

cover 90.5% of the sample of job ads. As in Section 3.1, β is the model parameter and η the

average elasticity or differential response.

Across segments, explicit-wage ads consistently receive fewer applications than their

implicit-wage counterparts. We also find a lower but positive sensitivity of the number of

applications to wages in highly-educated segments. This mainly occurs in the Technology

and Commerce areas, and less for workers in non-declared areas. For example, while a

1% increment of offered wages raises applications 0.286% in the segment regular Science-

Humanity High School & Commerce (the log wage elasticity η in the upper-left panel), it

only increases applications by 0.075% in the segment College & Commerce (the log wage

elasticity η in the lower-left panel). Moreover, we observe a that the positive effect of explicit

wages on applications is stronger for low-education segments.

Applicant responses are heterogeneous across segments. Low-educated workers are more

sensitive to offered wages, and the high-educated ones to experience requirements. A ra-

tionale for these findings is that unskilled workers apply to simple jobs in which the most

important attribute is the wage offer, while jobseekers with high education or experience can

access higher wages by fulfilling the ad requirements.

We also approach segmentation more agnostically by relying on an unsupervised machine

learning technique, the k-means classification algorithm (Everitt et al. , 2011, for instance).

With this technique, we split the sample of ads into k = 50 segments. We estimate a linear

OLS model to investigate directed search behavior for each segment. For nearly 3/4 of the
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Table 7: Negative binomial models for number of applications received by occupa-

tion/education segments

Commerce Technology Non-declared

β η β η β η

Science-humanity High

Explicit wage -3.029 -0.216 3.294 0.361 -3.018*** -0.185

log wage 0.236** 0.286 0.330* 0.280 0.143*** 0.194

Explicit wage × log wage 0.223 -0.243 0.230***

Req. exper. -0.027 -0.013 -0.101* -0.116 -0.037*** -0.036

Explicit wage × Req. exper. 0.086 0.120 0.008

Obs. 1483 555 36939

Tech. High School

Explicit wage -5.420*** -0.200 -3.188* -0.282 -5.157*** -0.054

log wage 0.118*** 0.202 0.119** 0.153 0.138*** 0.206

Explicit wage × log wage 0.415*** 0.236* 0.411***

Req. exper. -0.029*** -0.063 -0.078*** -0.139 -0.011 -0.028

Explicit wage × Req. exper. -0.040 -0.004 -0.044

Obs. 7725 4237 14234

Tech. Tertiary Educ.

Explicit wage -2.691*** -0.170 -1.718** -0.110 -3.973*** -0.115

log wage 0.159*** 0.187 -0.004 0.008 0.070*** 0.099

Explicit wage × log wage 0.193*** 0.119** 0.289***

Req. exper. -0.036*** -0.084 -0.056*** -0.111 -0.024*** -0.040

Explicit wage × Req. exper. -0.018 0.039** 0.021

Obs. 19905 13314 14684

College

Explicit wage -3.063*** -0.119 -2.589*** -0.077 -2.710** -0.006

log wage 0.055*** 0.075 -0.037*** -0.027 -0.018 -0.004

Explicit wage × log wage 0.220*** 0.186*** 0.197**

Req. exper. -0.048*** -0.137 -0.087*** -0.245 -0.067*** -0.174

Explicit wage × Req. exper. -0.007 -0.020 0.027

Obs. 12189 32401 9602

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.In all the specifications, we control for firm size dummies, industry dummies, quarter dummies

to capture seasonality, first four words job title dummies, contract law dummies, required availability dummies, computer knowledge

requirements, and the number of days the vacancy was open. We do not control for recruiting firm.

cases, we cannot reject that the estimate of sensitivity of the number of applicants to wages

is the same we obtain for the whole sample at 95% confidence. Nevertheless, 2/3 of the

95% confidence intervals for these parameters contain zero. Considering that each model

is estimated with roughly 2% of the whole sample, the evidence regarding directed search

within submarkets is naturally weaker than for the whole market. However, it is quite aligned

with the findings above for market segments defined by professional area and education. We

refer the reader to the OA, Section A.5, to see the results based on k-means segmentation in

depth.
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3.4 Why do employers show or hide wages?

Knowing that applicants react differently to explicit wages, employers may make strategic

decisions to induce certain applicant behaviors. Consequently, we investigate the determi-

nants behind explicit wage posting.

We estimate a probit model to examine the impact of job ad characteristics such as the

number of vacancies, requested experience, offered wage, educational requirements, etc.

In order to control for seasonal effects or trends, we incorporate quarterly binary variables

according to the date of the job ad.

Table 8 shows selected estimates from the probit model. As in Table 4, the coefficients β

represent actual model coefficients. The coefficients η are the average marginal effects for

(quasi) continuous regressors such as log wage or number of vacancies, that is η = ∂Prob(Y |X)
∂ z

.

If z is a binary variable, such as educational level, η is the probability change due to a switch

of the binary variable, i.e. η = Prob(Y |X ,z = 1)−Prob(Y |X ,z = 0). Most of the estimated

coefficients are shown in the OA, Section A.6, Tables A13 and A14.

Table 8: Model for probability of explicit wage posting

Probit

β SE η

Number of vac. 0.000 0.000 0.000

Req. exper. -0.034*** 0.003 -0.010

log wage -0.268*** 0.010 -0.051

Highest educ

Primary (1-8 years) 0.211*** 0.034 0.052

Tech. High School -0.108*** 0.015 -0.023

Tech. Tertiary Educ. -0.257*** 0.016 -0.052

College -0.328*** 0.019 -0.064

Graduate -0.276*** 0.075 -0.055

Observations 183997

Avg. Probability 0.135

pseudo - R2 0.131

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.Selected coefficients of models without controlling for recruiting firms. Omitted groups:

Highest educ: Science-humanity high-school; Contract law Other. Availability: Full-time. Computer knowledge level: None. In all the

equations, we control for profession/occupation dummies, firm size dummies, industry dummies, quarter dummies to capture seasonality,

first four words job title dummies, and the number of days the vacancy was open.

In Table 8, we might expect that the larger number of vacancies increases the probability

of an explicit wage because massive hirings tend to be frequent in low-skilled, standardized

jobs, as found by Brenčič (2012). In our case, the number of vacancies offered in the job
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Figure 4: Conditional probability of explicit wage posting (Table 8)
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Note: Effects computed from model without controlling for recruiting firms. Vertical bars indicate 95% confidence intervals.

ad does not show a significant impact on the probability of announcing the wage, probably

because the job quality is adequately captured by other covariates.

Higher experience requirements reduce the chances for a job ad to explicitly post a wage.

One extra year of experience reduces the probability of explicit wage posting by 1% on

average. In Figure 4, we show that ads without an experience requirement have a 14% of

probability of having an explicit wage, while positions with experience requirements over

20 years have a probability close to 5%. Since job complexity is associated with the level of

experience required, firms decide to post a specific wage offer when trying to hire skills that

are abundant in the market.

An increase of one log point of offered wage decreases the probability of explicit wage

posting by 5.1%. In Figure 4, we plot the average conditional probability of posting an

explicit wage. We show that for wages close to CLP 100,000 (below the minimum legal

net monthly wage for full-time workers), the chances are close to 22%. In contrast, for
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wages close to the top of distribution the chance is nearly 3%. On top of this, job ads

with explicit wages tend to target unskilled workers because the probability of explicit wage

posting decreases in the required education level.

What conclusions would we reach if we did not observe implicit or hidden wages when

estimating models in the previous section, as often occurs in other studies of job search on

the internet? Because explicit-wage ads typically target low productivity workers, directed

search evidence solely based on explicit wages as in Dal Bó et al. (2013) and Marinescu

& Wolthoff (2015) is likely to overestimate the average effect of wages on applications.

Indeed, job ad characteristics affecting the response of applications to explicit wages may

be simultaneously determining the probability of explicit wage posting. Therefore, inferring

the true effect of wages on applications is subject to a sample selection problem.

A wage increase not only affects the number of applicants received, but also the proba-

bility that the employer makes the wage offer explicit. In the OA, Section A.7, we derive a

theoretical condition to obtain an unbiased estimate for application-wage sensitivity solely

based on explicit wages ads. Such condition, involving application-wage elasticities and

other estimated magnitudes, does not empirically hold. Thus, we conclude that the esti-

mated application-wage sensitivity for only explicit wages overestimates the average value

for all ads.

Our facts are consistent with the Michelacci & Suarez (2006) model. Under certain pa-

rameterizations, their model allows for a separating equilibrium in which high-productivity

workers apply for good jobs with hidden wages and low-productivity workers go for bad

jobs with explicit wages. Intuitively, for high-quality jobs hiding wages is a strategic choice

by employers to signal ex post bargaining when match-specific requirements are important.

Hence, if job quality is imperfectly observed, an employer choosing an implicit wage may

reveal some information, or attract applicants with specific knowledge of the job or the eco-

nomic sector. The targeted group could guess wages and other job characteristics more

accurately. In contrast, an explicit wage could reveal that a job does not require a match

specific skill or information, so that the job quality is perceived as low.

Our results are robust. In the OA, Section A.6, Tables A13 and A14, besides probit

estimates, we report OLS linear probability and firm fixed effects (OLS-FE) to account for

all firm idiosyncratic unobserved factors affecting the wage explicitness decision, such as

corporate culture, or specific managerial standards. If explicit-wage posting is a corporate

policy, controlling for unobserved heterogeneity is important. While the effect of wage level

on wage-explicitness decreases noticeably if we control for firm-fixed effects, it remains
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negative and significant. Hence, job characteristics affect explicit wage-posting even within

the same firm.

We also show that these linear models controlling for recruiting firms since they may be

hired to post ads for a particular type of jobs. In the OA, Section A.6, Tables A15 and A16

we show that the average marginal effects barely change with respect to the baseline.

4 Conclusions

Our evidence shows that directed search is a prevalent behavior in the online labor market

studied. Thanks to the remarkable availability of offered wages for a sizable share of ads in

the job board studied, we can circumvent the large selection bias arising in other databases,

which typically cannot analyze more than 25% of their job ads.

Applicants react to information provided by employers such as offered wages or educa-

tional requirements, as predicted by standard directed search models. We show that workers

apply more for jobs offering higher wages even if employers choose to hide them, after con-

trolling for a detailed set of job characteristics, including requirements over education level,

major, experience, job title binary variables, and even firm fixed effects. Nevertheless, appli-

cants are more sensitive to changes in wages when they are explicit and less when they are

hidden. Explicit-wage job ads provide a low-noise signal to applicants, driving their search

behavior more decisively. In turn, the evidence suggests that applicants infer hidden wages

from job ads, so we refer to them as implicit wages.

A second more stringent testable prediction of directed search behavior is that workers

apply for job ads targeting them in a specific submarket. We slice the data in several ways to

show that there is a notable alignment between job ad requirements and worker characteris-

tics in terms of offered/expected wage, educational level, occupation, and experience. These

results notably hold for implicit wages as well.

Evidence suggests that employers use explicit/implicit wage posting strategies to reduce

the pool of applicants and increase their quality or suitability. Low marginal application

costs potentially spurs too many applications, imposing a large screening burden on the

employers’ side. By making explicit wage offers for simple jobs, employers dissuade too

many applications when differentiation among candidates is rarely a concern and take-it-

or-leave-it offers prevail. On the other side of the wage distribution, differentiation across

candidates matters and employers often prefer implicit wages, perhaps as a way to signal they

are open for bargaining, in line with the theory of Michelacci & Suarez (2006). Consistent
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with this view, we also show that employers tend to post explicit wages in job ads with low

educational and experience requirements.

Beyond labor market efficiency implications, a practical lesson is that there is a large

scope for strategic communication and job ad design for firms in order to attract the kind and

number of applicants they desire. This is important since hiring involves a costly selection

process among heterogeneously productive workers, especially for job positions for skilled

workers (Oyer & Schaefer, 2011; Muehlemann & Pfeifer, 2016).
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Appendix A Not intended for publication

A.1 Detailed data cleaning process

The original application database has 8,285,727 observations, and the sample of analysis

ended up with the 74% of the raw data. The procedure consists of two steps

• Wage cleaning process:

1. We treat an observation as a missing if the wage attached to a job ad is non-

informative because it is equal to zero, lower than CLP 12,345, or if it is a suspi-

cious number due to its pattern (CLP 123,456; CLP 123,123, and CLP 111,111).

This procedure discards 18.46% of the job ads.

2. Wage values below CLP 30,000 were multiplied by 10 because they were most

likely originated as a typo. These modifications affected the 0.16% of the raw

dataset.

• Deleting process. We drop:

1. Observations with estimated wages below CLP 100,000 and above CLP 5,000,000

for implicit and explicit wages, 3.74% of the data.

2. Ads with experience requirements over 20 years, 0.03% of the data.

3. Applicants with expected and last job wages below CLP 100,000 or above CLP

5,000,000, 0.76% of the data.

4. Applicants with more than five years of inactivity, 3.12% of the data.

5. Applicants younger than 18 or older than 69 years, 0.1% of the data.

Table A1 summarizes the deleted data to create the sample of analysis.

Table A1: Deleting Process Summary

Dataset Original Data Final Data Losses

Applications 8,285,727 6,131,626 26%

Job Ads 252,42 184,92 26.74%

Firms 6,78 6,386 5.81%

Appicants 502,183 463,495 7.7%
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A.2 Additional data description

Table A2: Applicant characteristics (I)

Males Females All

Age (%)

18 - 24 23.25 34.18 28.46

25 - 34 47.61 44.56 46.16

35 - 44 19.59 15.07 17.44

45 - 54 7.60 5.30 6.50

55+ 1.95 0.90 1.45

Age (Avg.) 31.25 29.05 30.20

Marital Status (%)

Married 27.99 19.17 23.79

Partner 2.35 1.39 1.89

Divorced 1.19 1.69 1.43

Separated 1.56 2.73 2.11

Single 66.80 74.75 70.59

Last declared monthly wage (%)

CLP 70,000 ≤ 0.82 1.38 1.08

CLP 70,001 - 150,000 3.58 6.50 4.97

CLP 150,001 - 300,000 13.08 23.61 18.10

CLP 300,001 - 600,000 27.41 27.11 27.27

CLP 600,001 - 1,000,000 20.21 13.15 16.85

CLP 1,000,001 - 1,500,000 10.06 5.03 7.66

CLP 1,500,001 - 2,500,000 7.05 2.37 4.82

CLP 2,500,000+ 2.70 0.68 1.74

No wage declared 15.18 20.20 17.57

Last declared monthly wage (Avg. / S.D.) 804686 531855 678878

(684730) (475868) (612840)

Wage expectation (%)

CLP 70,000 ≤ 0.17 0.25 0.21

CLP 70,001 - 150,000 2.64 5.50 4.00

CLP 150,001 - 300,000 15.37 30.13 22.40

CLP 300,001 - 600,000 30.89 33.29 32.03

CLP 600,001 - 1,000,000 24.76 18.23 21.65

CLP 1,000,001 - 1,500,000 11.32 5.91 8.74

CLP 1,500,001 - 2,500,000 8.52 3.15 5.98

CLP 2,500,000+ 3.26 0.79 2.08

No wage or too high 3.17 2.78 2.98

Wage Expectation (Avg. / S.D.) 838753 559238 705339

(693009) (473144) (614307)

Declare expected wage (%) 48.47 42.77 45.75

Observations 235037 214626 449663
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Table A3: Applicant characteristics (II)

Males Female All

Years of experience (%)

0 - 3 37.08 49.43 42.96

4 - 7 25.38 24.94 25.17

8 - 12 17.86 14.32 16.18

13 - 20 13.60 8.89 11.36

21+ 6.08 2.42 4.33

Not mentioned 0.00 0.00 0.00

Experience (Avg / S.D.) 7.44 5.38 6.45

(7.21) (5.78) (6.65)

Estimated inactivity years (Avg. / S.D.) 2.54 2.54 2.54

(5.25) (5.68) (5.46)

Highest attained educ. level(%)

Primary (1-8 years) 0.39 0.37 0.38

Science & Humanities Secondary (9-12) 11.99 13.44 12.68

Technical Secondary (9-12) 17.09 18.97 17.98

Technical Tertiary 27.17 24.80 26.04

College (Tertiary) 42.62 41.82 42.23

Graduate 0.75 0.61 0.68

Unknown 0.00 0.00 0.00

Estimated Schooling (Avg. / S.D.) 15.25 15.10 15.18

(2.189) (2.250) (2.219)

Major study area (%)

Commerce & Management 13.95 19.50 16.59

Agriculture 1.19 0.74 0.97

Art & Architecture 1.55 1.77 1.66

Natural Sciences 1.03 1.10 1.06

Social Sciences 2.93 6.93 4.84

Law 1.58 2.21 1.88

Education 1.57 3.80 2.63

Humanities 0.81 1.70 1.23

Health 1.78 5.92 3.75

Technology 33.23 13.05 23.62

No area 36.46 41.18 38.71

Other 3.91 2.09 3.05

Labor status (%)

Employed 50.09 38.04 44.35

Unemployed 43.12 52.82 47.74

Inactive 6.79 9.13 7.91

Available for work 63.35 35.24 49.96

Observations 242733 220762 463495

Note: The years of inactivity is estimated as inactivity = age− schooling− experience− 6, which assumes that school starts at age six.

Nevertheless, this number is an overestimation because completing a college degree often takes more time than the theoretical years for

completing coursework in the Chilean educational system (Servicio de Información de Educación Superior, 2017).
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Table A4: Firm characteristics

Monthly Ads Montly Vacs Monthly Apps Vacs/Ad Apps/Ad Apps/Vac

Size (# employees)

1-10 (N=1522) 1.5 7.5 20.3 3.6 21.4 16.5

11-50 (N=1751) 1.3 5.3 18.6 3.3 19.2 14.7

51-300 (N=583) 1.5 8.6 15.1 3.8 15.4 11.7

301-1000 (N=600) 3.2 15.6 13.0 3.6 13.1 9.9

>1000 (N=248) 2.2 9.3 18.5 3.2 18.2 14.2

NA (N=191) 1.9 8.6 21.6 3.8 21.4 14.4

Industry

Agriculture (N=271) 5.3 32.5 16.2 2.0 17.5 16.1

Fishing (N=34) 5.8 29.3 11.4 1.9 12.5 12.2

Mining (N=231) 2.4 7.0 11.4 2.3 11.1 8.7

Manufacturing (N=981) 1.7 7.7 13.1 3.0 13.1 10.9

Elect, water, gas (N=151) 1.9 6.1 14.5 2.6 14.3 12.2

Construction (N=261) 1.0 2.1 20.7 2.1 20.7 17.1

Commerce (N=1120) 1.3 5.9 20.2 4.1 21.0 15.2

Rest. & Hotel (N=221) 1.3 6.7 33.9 4.4 34.1 16.0

Transportation (N=164) 1.4 5.0 22.0 3.3 21.4 16.1

Communication (N=589) 1.2 9.7 13.0 5.1 13.7 9.0

Financial Serv. (N=219) 1.6 6.0 18.7 4.1 19.7 13.0

Business Serv. (N=533) 1.0 4.3 21.5 4.0 23.1 17.7

Household Serv. (N=134) 0.9 1.3 32.1 1.5 35.0 29.8

Personal Serv. (N=629) 1.1 4.0 26.2 3.4 26.1 20.1

Public Admin. (N=71) 1.7 12.0 35.0 5.3 32.9 27.9

Other (N=777) 2.5 11.3 11.8 3.7 11.5 9.4

Avg. offered wage

TCLP 100-150 (N=54) 1.2 4.5 15.7 4.5 16.6 9.9

TCLP 150-300 (N=685) 1.8 16.6 20.9 8.8 21.6 9.1

TCLP 300-600 (N=2630) 1.8 10.2 15.5 3.6 15.8 11.8

TCLP 600-1,000 (N=1937) 1.5 4.0 17.0 2.2 17.9 14.7

TCLP 1,000-1,500 (N=757) 1.9 4.8 21.2 2.4 21.1 17.9

TCLP 1,500-2,500 (N=268) 1.2 3.4 33.2 2.7 33.1 28.7

TCLP >2,500 (N=55) 1.1 2.2 58.8 2.0 56.5 53.8

% Explicit wage ads

0% explicit (N=4311) 1.2 4.0 22.3 3.4 22.7 17.4

(0%,10%] explicit (N=437) 5.5 22.1 1.8 2.6 1.1 0.7

(10%,50%] explicit (N=721) 3.0 20.8 3.1 4.0 3.9 2.4

(50%,100%) explicit (N=366) 1.8 16.4 7.8 3.9 10.5 7.4

100% explicit (N=551) 1.0 5.5 27.7 4.8 27.0 19.5

Whole sample (Avg) 1.7 8.0 18.3 3.6 18.8 14.2

Whole sample (Sd) (23.31) (11.56) (40.27) (26.85) (43.36) (39.15)

Observations 6386 6386 6386 6386 6386 6386

Note: Wages in thousands of Chilean pesos (TCLP).
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Table A5: Job Ads Characteristics (I)

Explicit wage Implicit wage All

Required years of experience (%)

0 21.66 14.62 15.57

1 44.50 31.37 33.14

2 - 3 27.68 39.39 37.82

4 - 7 5.53 12.89 11.90

8 - 12 0.58 1.61 1.47

13 - 20 0.06 0.11 0.10

Years of experience (Avg / S.D.) 1.41 2.05 1.96

(1.40) (1.80) (1.76)

Required educ. level (%)

Primary (1-8 years) 2.59 1.02 1.23

Science & Humanities Secondary (9-12) 35.15 19.20 21.34

Technical Secondary (9-12) 19.08 14.14 14.81

Technical Tertiary 25.13 28.14 27.74

College (Tertiary) 17.85 36.90 34.34

Graduate 0.20 0.60 0.55

Major study area (%)

Commerce & Management 23.68 22.24 22.43

Agriculture 0.23 0.43 0.40

Art & Architecture 0.66 0.94 0.90

Natural Sciences 0.68 0.84 0.82

Social Sciences 2.03 2.44 2.39

Law 0.24 0.39 0.37

Education 0.84 0.83 0.83

Humanities 0.66 0.22 0.28

Health 1.34 1.80 1.74

Technology 15.78 29.38 27.55

No area 53.45 40.30 42.07

Other 0.41 0.19 0.22

Observations 24867 160053 184920

Offered wage (%)

CLP 100.000 - 150.000 6.93 5.37 5.58

CLP 150.001 - 300.000 47.52 26.49 29.32

CLP 300.001 - 600.000 31.52 29.00 29.34

CLP 600.001 - 1.000.000 9.78 22.32 20.63

CLP 1.000.001 - 1.500.000 2.55 9.78 8.80

CLP 1.500.001 - 2.500.000 1.44 5.58 5.02

CLP 2.500.000 + 0.25 1.47 1.31

Offered wage (Avg/(S.D.)) 404887 680704 643614

(347276.1) (587200.5) (568778.1)

Observations 24867 160053 184920

Note: Fixed-term ads announce an explicit time frame for the job. Undefined-term jobs post no finishing date. These are legal distinctions

in Chilean labor law.
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Table A6: Job Ads Characteristics (II)

Explicit Wage Posting Implicit Wage All

Sectors (%)

Agriculture 0.81 1.05 1.02

Fisheries 0.02 0.26 0.22

Mining 0.68 1.98 1.81

Manufacturing 7.76 8.85 8.71

Electricity, water, gas 4.47 2.37 2.66

Construction 1.37 2.59 2.42

Commerce 19.56 19.84 19.80

Restaurant and Hotels 1.49 1.60 1.59

Transportation 6.81 3.13 3.63

Communication 11.12 9.01 9.30

Financial Serv. 4.72 6.33 6.12

Business Serv. 8.57 6.91 7.13

Household Serv. 0.62 1.07 1.01

Personal Serv. 11.99 12.41 12.35

Public Admin. 2.16 1.22 1.34

Others 17.87 21.37 20.90

Applications per ad (%)

0 14.44 14.94 14.87

1 - 2 10.91 6.62 7.20

3 - 5 12.16 7.96 8.53

6 - 10 13.83 10.66 11.09

11 - 20 16.23 15.36 15.48

21 - 30 9.15 10.36 10.20

31 - 50 9.88 12.66 12.29

51 - 100 8.52 13.09 12.48

101 - 300 4.39 7.41 7.01

301 - 600 0.39 0.78 0.73

> 601 0.08 0.15 0.14

Applications per ad (Avg/S.D.) 25.3 36.3 34.8

(49.68) (64.52) (62.84)

Applications per vacancy (Avg/S.D.) 15.8 27.9 26.2

(34.05) (54.16) (52.07)

Ad appearances (%)

1 75.83 80.27 79.67

2 - 3 12.00 10.41 10.62

4 - 6 4.15 3.52 3.61

6 - 10 2.54 1.87 1.96

10 + 5.49 3.93 4.14

Ad appearances (Avg/S.D.) 3.31 3.12 3.15

(10.49) (12.48) (12.24)

Observations 24867 160053 184920
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Table A7: Job Ads Characteristics (III)

Explicit Wage Posting Implicit Wage All

Vacancies per ad (%)

1 45.88 61.82 59.68

2 13.54 11.29 11.59

3 - 5 14.46 12.17 12.48

6 - 10 12.69 8.05 8.68

> 10 13.43 6.66 7.57

Vacancies (Avg / S.D.) 7.14 4.45 4.81

(17.32) (12.36) (13.17)

Legal contract type (%)

Fixed term 26.55 16.28 17.66

Undefined term 60.83 65.20 64.61

Other 12.62 18.52 17.73

Firm Size - Num. Employees (%)

1 - 10 16.12 16.29 16.26

11 - 50 26.11 21.71 22.30

51 - 150 10.66 10.00 10.09

151 - 300 11.69 10.00 10.23

301 - 500 8.45 9.56 9.41

501 - 1000 7.46 7.48 7.48

1001 - 5000 12.84 12.92 12.91

> 5000 1.93 3.68 3.45

N.A. 4.74 8.36 7.87

Job arrangement (%)

Commission-earner 0.35 0.70 0.65

Full-time 75.57 85.74 84.37

Part-time 4.97 3.82 3.97

Shift work 15.31 7.89 8.89

Internship 3.16 1.35 1.60

Replacement 0.65 0.50 0.52

Ads from Recruiting Firms* (%) 45.72 36.15 37.44

Observations 24867 160053 184920

Note: Estimated considering the monthly average job ads posted and firm size.
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A.3 Word cloud for job titles

Figure A1: Job Ad Titles with Implicit Wages

Note: Generated in www.tagul.com
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Figure A2: Job Ad Titles with Explicit Wages

Note: Generated in www.tagul.com
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A.4 Additional estimates for received applications, Section 3.1

Table A8: Models explaining the number of received applications, Part I

Negative Binomial OLS OLS, Firm FE

β SE η β SE η β SE η

Explicit wage -2.312*** 0.187 -0.132 -1.818*** 0.176 -0.148 -2.184*** 0.175 -0.038

Ad appearances -0.033*** 0.001 -0.103 -0.009*** 0.000 -0.028 -0.008*** 0.000 -0.025

Number of vacancies 0.009*** 0.000 0.040 0.005*** 0.000 0.021 0.005*** 0.000 0.023

Req. experience -0.060*** 0.002 -0.115 -0.047*** 0.002 -0.089 -0.047*** 0.002 -0.092

log wage 0.076*** 0.006 0.099 0.085*** 0.006 0.102 0.060*** 0.006 0.082

Explicit × Num. of vac. -0.001*** 0.001 -0.001 0.000 -0.001 0.000

Explicit × Req. experience 0.013** 0.006 0.014** 0.006 -0.001 0.006

Explicit × log wage 0.165*** 0.015 0.126*** 0.014 0.164*** 0.014

Days ad available 0.004*** 0.000 0.003*** 0.000 0.002*** 0.000

log wage - Implicit 0.076 0.085 0.060

log wage - Explicit 0.224 0.209 0.226

Highest educ

Primary (1-8 years) -0.326*** 0.028 -0.326 -0.220*** 0.026 -0.220 -0.297*** 0.027 -0.297

Tech. High School -0.010 0.011 -0.010 0.049*** 0.010 0.049 0.019* 0.010 0.019

Tech. Tertiary Educ. 0.068*** 0.011 0.068 0.136*** 0.011 0.136 0.083*** 0.011 0.083

College 0.180*** 0.013 0.180 0.202*** 0.012 0.202 0.159*** 0.013 0.159

Graduate -0.103*** 0.039 -0.103 -0.083** 0.037 -0.083 -0.022 0.036 -0.022

Professional Area

Commerce and Management 0.047*** 0.010 0.047 0.069*** 0.009 0.069 0.039*** 0.009 0.039

Agropecuary 0.556*** 0.043 0.556 0.529*** 0.040 0.529 0.474*** 0.040 0.474

Art and Architecture 0.312*** 0.030 0.312 0.233*** 0.029 0.233 0.239*** 0.029 0.239

Natural Sciences -0.165*** 0.033 -0.165 -0.113*** 0.031 -0.113 -0.174*** 0.031 -0.174

Social Sciences 0.104*** 0.023 0.104 0.053** 0.023 0.053 0.003 0.022 0.003

Law 0.320*** 0.060 0.320 0.352*** 0.058 0.352 0.395*** 0.057 0.395

Education -0.016 0.036 -0.016 -0.021 0.033 -0.021 -0.069** 0.033 -0.069

Humanities -0.271*** 0.053 -0.271 -0.317*** 0.053 -0.317 -0.268*** 0.055 -0.268

Health -0.423*** 0.031 -0.423 -0.429*** 0.027 -0.429 -0.441*** 0.027 -0.441

Non-declared -0.231*** 0.009 -0.231 -0.185*** 0.008 -0.185 -0.185*** 0.009 -0.185

Other 0.493*** 0.062 0.493 0.271*** 0.054 0.271 0.222*** 0.057 0.222

Observations 184,920 184,920 184,920

Estimated avg. applications 35.45 2.59 2.59

Note: Table A9 continues the estimated results.
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Table A9: Models explaining number of received applications, Part II

Negative Binomial OLS OLS, Firm fixed effect

β SE η β SE η β SE η

Industry

Agriculture 0.174*** 0.026 0.174 0.268*** 0.026 0.268 0.145*** 0.030 0.145

Fisheries -0.262*** 0.053 -0.262 -0.097* 0.052 -0.097 -0.166** 0.079 -0.166

Mining 0.355*** 0.021 0.355 0.343*** 0.020 0.343 0.167*** 0.028 0.167

Manufacturing 0.005 0.011 0.005 0.017 0.011 0.017 -0.045*** 0.013 -0.045

Electricity, water, and gas 0.056*** 0.018 0.056 0.059*** 0.018 0.059 0.066*** 0.023 0.066

Construction 0.024 0.018 0.024 0.043** 0.018 0.043 -0.003 0.022 -0.003

Restaurants and Hotels 0.100*** 0.022 0.100 0.019 0.022 0.019 -0.060* 0.031 -0.060

Transportation 0.057*** 0.015 0.057 0.013 0.015 0.013 -0.090*** 0.019 -0.090

Communication -0.231*** 0.012 -0.231 -0.265*** 0.011 -0.265 -0.114*** 0.014 -0.114

Financial Serv. 0.106*** 0.013 0.106 0.067*** 0.013 0.067 0.018 0.015 0.018

Business Serv. -0.028** 0.012 -0.028 -0.067*** 0.012 -0.067 -0.114*** 0.014 -0.114

Household Serv. -0.002 0.026 -0.002 0.022 0.027 0.022 0.006 0.030 0.006

Personal Serv. 0.112*** 0.010 0.112 0.100*** 0.010 0.100 -0.022* 0.013 -0.022

Public Admin. -0.171*** 0.024 -0.171 -0.213*** 0.024 -0.213 -0.137*** 0.038 -0.137

Others 0.012 0.013 0.012 -0.017 0.013 -0.017 -0.019 0.014 -0.019

Legal contract type

Fixed-term -0.211*** 0.012 -0.211 -0.195*** 0.011 -0.195 -0.113*** 0.011 -0.113

Undefined term 0.034*** 0.010 0.034 0.096*** 0.009 0.096 0.074*** 0.010 0.074

Availability

Commission-earner -0.519*** 0.034 -0.519 -0.524*** 0.033 -0.524 -0.299*** 0.034 -0.299

Half time 0.026 0.021 0.026 -0.013 0.020 -0.013 -0.017 0.020 -0.017

Part-time 0.259*** 0.021 0.259 0.123*** 0.019 0.123 0.128*** 0.019 0.128

Shift-work 0.007 0.011 0.007 -0.033*** 0.010 -0.033 -0.055*** 0.010 -0.055

Internship 0.448*** 0.030 0.448 0.271*** 0.025 0.271 0.361*** 0.027 0.361

Replacement -0.262*** 0.038 -0.262 -0.154*** 0.035 -0.154 -0.253*** 0.033 -0.253

Computer knowledge level

Low level 0.021 0.018 0.021 0.145*** 0.016 0.145 0.077*** 0.016 0.077

Expert level -0.243*** 0.024 -0.243 -0.202*** 0.022 -0.202 -0.238*** 0.022 -0.238

Professional level -0.184*** 0.014 -0.184 -0.050*** 0.013 -0.050 -0.061*** 0.013 -0.061

Technical level -0.032* 0.017 -0.032 0.058*** 0.015 0.058 0.008 0.016 0.008

User level 0.087*** 0.007 0.087 0.115*** 0.007 0.115 0.043*** 0.007 0.043

Advanced User level 0.070*** 0.008 0.070 0.122*** 0.008 0.122 0.077*** 0.008 0.077

Constant -5.192*** 0.184 -1.832*** 0.163 -1.316*** 0.159

log(α) 0.087*** 0.003

Observations 184,920 184,920 184,920

Estimated avg. applications 35.45 2.59 2.59

pseudo - R2 0.089

R2 0.542 0.611

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.All estimates based on Table 4 in the main text, which do not distinguish recruiting firms. For

OLS and OLS-FE models, the dependent variable is log(1+number of applicants). Omitted or reference groups: Highest educ: Science-

humanity high-school; Contract law Other. Availabilty: Full-time. Computer knowledge level: None. In all equations we control for

profession/occupation dummies, industry dummies, quarter dummies to capture seasonality, first four words job title dummies, and the

number of days the vacancy was open.
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Table A10: Models explaining number of received applications (controlling for recruiting

firms), Part I

Negative Binomial OLS OLS, Firm FE

β SE η β SE η β SE η

Explicit wage -2.030*** 0.189 -0.121 -1.666*** 0.179 -0.141 -2.268*** 0.179 -0.037

Ad appearances -0.030*** 0.001 -0.100 -0.008*** 0.000 -0.025 -0.008*** 0.000 -0.026

Number of vacancies 0.008*** 0.000 0.039 0.005*** 0.000 0.023 0.005*** 0.000 0.022

Req. experience -0.057*** 0.002 -0.110 -0.045*** 0.002 -0.088 -0.047*** 0.002 -0.093

log wage 0.079*** 0.006 0.100 0.093*** 0.006 0.109 0.055*** 0.006 0.078

Explicit × Num. of vac. -0.001 0.001 -0.001 0.000 -0.000 0.000

Explicit × Req. experience 0.009 0.006 0.008 0.006 0.001 0.006

Explicit × log wage 0.145*** 0.015 0.116*** 0.014 0.171*** 0.014

Days ad available 0.003*** 0.000 0.003*** 0.000 0.002*** 0.000

Recruiting firm (=1) -0.270*** 0.008 -0.270 -0.284*** 0.007 -0.284 0.000 . 0.000

log wage - Implicit 0.079 0.093 0.055

log wage - Explicit 0.224 0.209 0.226

Highest educ

Primary (1-8 years) -0.333*** 0.028 -0.333 -0.256*** 0.026 -0.256 -0.287*** 0.028 -0.287

Tech. High School -0.009 0.011 -0.009 0.048*** 0.011 0.048 0.020* 0.011 0.020

Tech. Tertiary Educ. 0.056*** 0.012 0.056 0.130*** 0.011 0.130 0.086*** 0.011 0.086

College 0.169*** 0.014 0.169 0.196*** 0.013 0.196 0.160*** 0.013 0.160

Graduate -0.136*** 0.039 -0.136 -0.100*** 0.038 -0.100 -0.030 0.037 -0.030

Professional Area

Commerce and Management 0.031*** 0.010 0.031 0.057*** 0.009 0.057 0.034*** 0.009 0.034

Agropecuary 0.515*** 0.044 0.515 0.537*** 0.042 0.537 0.494*** 0.043 0.494

Art and Architecture 0.288*** 0.031 0.288 0.198*** 0.030 0.198 0.224*** 0.030 0.224

Natural Sciences -0.164*** 0.034 -0.164 -0.115*** 0.032 -0.115 -0.183*** 0.032 -0.183

Social Sciences 0.093*** 0.023 0.093 0.039 0.024 0.039 -0.005 0.023 -0.005

Law 0.296*** 0.061 0.296 0.335*** 0.059 0.335 0.380*** 0.059 0.380

Education 0.030 0.038 0.030 0.046 0.035 0.046 -0.038 0.035 -0.038

Humanities -0.423*** 0.055 -0.423 -0.433*** 0.054 -0.433 -0.311*** 0.058 -0.311

Health -0.466*** 0.031 -0.466 -0.445*** 0.028 -0.445 -0.454*** 0.028 -0.454

Non-declared -0.238*** 0.010 -0.238 -0.174*** 0.009 -0.174 -0.190*** 0.009 -0.190

Other 0.469*** 0.065 0.469 0.269*** 0.056 0.269 0.286*** 0.061 0.286

Observations 170,365 170,365 170,365

Estimated avg. applications 34.87 2.59 2.59

Note: Table A11 continues the estimated results.
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Table A11: Models explaining number of received applications (controlling for recruiting

firms), Part II

Negative Binomial OLS OLS, Firm FE

β SE η β SE η β SE η

Industry

Agriculture 0.183*** 0.027 0.183 0.263*** 0.027 0.263 0.161*** 0.032 0.161

Fisheries -0.278*** 0.054 -0.278 -0.110** 0.054 -0.110 -0.259*** 0.085 -0.259

Mining 0.290*** 0.021 0.290 0.298*** 0.021 0.298 0.151*** 0.029 0.151

Manufacturing -0.027** 0.011 -0.027 -0.007 0.011 -0.007 -0.048*** 0.013 -0.048

Electricity, water, and gas 0.042** 0.018 0.042 0.049*** 0.018 0.049 0.074*** 0.024 0.074

Construction -0.016 0.018 -0.016 0.008 0.018 0.008 -0.010 0.023 -0.010

Restaurants and Hotels 0.066*** 0.023 0.066 -0.001 0.022 -0.001 -0.051 0.032 -0.051

Transportation 0.054*** 0.016 0.054 0.019 0.016 0.019 -0.104*** 0.020 -0.104

Communication -0.214*** 0.012 -0.214 -0.256*** 0.012 -0.256 -0.120*** 0.015 -0.120

Financial Serv. 0.114*** 0.013 0.114 0.078*** 0.013 0.078 0.016 0.016 0.016

Business Serv. -0.017 0.012 -0.017 -0.050*** 0.012 -0.050 -0.120*** 0.015 -0.120

Household Serv. -0.041 0.026 -0.041 -0.013 0.027 -0.013 -0.004 0.031 -0.004

Personal Serv. 0.077*** 0.011 0.077 0.070*** 0.010 0.070 -0.033** 0.014 -0.033

Public Admin. -0.266*** 0.025 -0.266 -0.284*** 0.025 -0.284 -0.161*** 0.042 -0.161

Others -0.008 0.014 -0.008 -0.037*** 0.013 -0.037 -0.017 0.015 -0.017

Legal contract type

Fixed-term -0.208*** 0.012 -0.208 -0.191*** 0.011 -0.191 -0.113*** 0.012 -0.113

Undefined term 0.016 0.011 0.016 0.066*** 0.010 0.066 0.065*** 0.010 0.065

Availability

Commission-earner -0.567*** 0.034 -0.567 -0.571*** 0.033 -0.571 -0.314*** 0.035 -0.314

Half time 0.061*** 0.022 0.061 0.011 0.021 0.011 -0.020 0.021 -0.020

Part-time 0.217*** 0.021 0.217 0.091*** 0.020 0.091 0.097*** 0.020 0.097

Shift-work 0.000 0.011 0.000 -0.027** 0.011 -0.027 -0.046*** 0.011 -0.046

Internship 0.437*** 0.031 0.437 0.283*** 0.026 0.283 0.358*** 0.029 0.358

Replacement -0.241*** 0.040 -0.241 -0.142*** 0.037 -0.142 -0.242*** 0.036 -0.242

Computer knowledge level

Low level -0.019 0.019 -0.019 0.094*** 0.016 0.094 0.071*** 0.016 0.071

Expert level -0.325*** 0.024 -0.325 -0.270*** 0.023 -0.270 -0.239*** 0.023 -0.239

Professional level -0.238*** 0.014 -0.238 -0.086*** 0.013 -0.086 -0.069*** 0.014 -0.069

Technical level -0.092*** 0.017 -0.092 0.013 0.016 0.013 -0.008 0.016 -0.008

User level 0.045*** 0.007 0.045 0.071*** 0.007 0.071 0.041*** 0.008 0.041

Advanced User level 0.041*** 0.009 0.041 0.092*** 0.008 0.092 0.076*** 0.009 0.076

Constant -4.842*** 0.189 -1.581*** 0.167 -1.261*** 0.164

log(α) 0.057*** 0.004

Observations 170,365 170,365 170,365

Estimated avg. applications 34.87 2.59 2.59

pseudo - R2 0.090

R2 0.545 0.606

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.All estimates, implementing a recruiting firm dummy as defined in Section 2.2. For OLS and

OLS-FE models, the dependent variable is log(1+number of applicants). Omitted or reference groups: Highest educ: Science-humanity

high-school; Contract law Other. Availabilty: Full-time. Computer knowledge level: None. In all equations we control for profes-

sion/occupation dummies, industry dummies, quarter dummies to capture seasonality, first four words job title dummies, and the number

of days the vacancy was open.
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Figure A3: Conditional expectations of applications by explicitness of wage (Tables A8 and

A9, OLS and OLS Firm FE)
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Figure A4: Conditional expectations of applications by explicitness of wage (Tables A10

and A11, NB Model)
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Figure A5: Conditional expectations of applications by explicitness of wage (Tables A10

and A11, OLS and OLS Firm FE)

p5 p25 p50 p75M

p5 p25 p50M p75 p95

2
2
.2

2
.4

2
.6

2
.8

3
A

p
p
lic

a
ti
o
n
s
 (

lo
g
)

11.5 12 12.5 13 13.5 14 14.5 15 15.5
Estimated wage (log)

CE Offered Wage (OLS)

p5 p25 p50 p75M

p5 p25 p50M p75 p95

2
.2

2
.4

2
.6

2
.8

3
3
.2

A
p
p
lic

a
ti
o
n
s
 (

lo
g
)

11.5 12 12.5 13 13.5 14 14.5 15 15.5
Estimated wage (log)

CE Offered Wage (OLS,FE)

p50 p75 M

2
.4

2
.5

2
.6

2
.7

A
p
p
lic

a
ti
o
n
s
 (

lo
g
)

1 3 5 7 9 11 13 15 17 19
Number of vacancies

CE Vacancies (OLS)
p50 p75 M

2
.5

2
.5

5
2
.6

2
.6

5
2
.7

A
p
p
lic

a
ti
o
n
s
 (

lo
g
)

1 3 5 7 9 11 13 15 17 19
Number of vacancies

CE Vacancies (OLS,FE)

p5 p25p50p75 p95

1
.5

2
2
.5

3
A

p
p
lic

a
ti
o
n
s
 (

lo
g
)

0 2 4 6 8 10 12 14 16 18 20
Req. experience

CE Req. Experience (OLS)
p5 p25p50p75 p95

1
.5

2
2
.5

3
A

p
p
lic

a
ti
o
n
s
 (

lo
g
)

0 2 4 6 8 10 12 14 16 18 20
Req. experience

CE Req. Experience (OLS,FE)

Implicit Wage Explicit Wage

Note: Model controlling for recruiting firms. Vertical bars indicate 95% confidence intervals.

16



Figure A6: Conditional expectations of applications by explicitness of wage including inter-

net filter dummy
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A.5 Additional information for testing random search in segmented

markets, Section 3.3

The k-means algorithm is an old non-supervised machine-learning technique (Everitt et al. ,

2011) that defines k segments of job ads based on a predefined number of observable char-

acteristics such as quarter, educational level required, experience required, and occupation

dummies, among others. The procedure begins by randomly grouping all observations into

k sets. The first step is to compute the centroid of each group as the vector of means of each

observable characteristic. The second step assigns each observation (job ad) to the nearest

group centroid. Once the assignment is completed, we check if one or more observations

changed groups. If they did, we go back to the first step. Otherwise, we stop.

Figure A7 shows the sorted estimated coefficients of linear models for all segments de-

fined by the k-means algorithm, with a chosen k = 50. In these models, the dependent

variable is the log of the number of applications by ad, and the explanatory variables are

required educational level, industry, career, firm size, contractual terms, computer skills, re-

muneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed

effects. Shaded areas indicate 95% confidence intervals. The horizontal red lines show the

estimates for the whole sample, comparable to OLS estimation in Table 4. The Figures

also report the mean, 5th, and 95th percentile of the estimates. In Table A12, we present a

general characterization in terms of observable variables of the 50 clusters generated by the

algorithm.

The left panel shows how the coefficient associated with log wage varies across the k = 50

segments. Nearly 2/3 of point estimates are negative, and a majority of those could not be sta-

tistically distinguished from zero with 95% of confidence. Indeed, roughly 3/4 of coefficients

are not distinguished from the coefficient estimated for the whole sample. The center panel

displays the estimates for the explicit wage binary variable. A large set of point estimates

are not statistically different from the whole-sample negative coefficient. Finally, the right

panel shows estimated coefficients associated with the differential effect of directed search

for explicit-wage job ads. The lion’s share is positive and statistically undistinguishable from

the whole-sample estimate. If random search within segments prevailed, we would not see

application responsiveness to wages and wage-explicitness in segments. In fact, we see that

the coefficients estimated across different segments are not significantly distinct from those

estimated for the whole sample. Hence, the evidence points to prevailing directed search

behavior within labor market segments, as in the whole job board.
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Figure A7: Distribution of estimated coefficients by cluster (k=50)
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Note: Blue dots represent estimated coefficients of linear models by segment (cluster). Plotted coefficients come from linear models

computed with observations in each segment. Shaded areas are 95% confidence intervals. Variables used to define clusters are quarter,

educational level required, experience required, and occupation dummies. In the models, the dependent variable is the log of the number

of received applications by ad, and the explanatory variables are required educational level, industry, career, firm size, contractual terms,

computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects. Numbers displayed

on top of blue dots label the corresponding segments. A characterization of the clusters is in the Section A.5, Table A12. Horizontal red

lines show the estimated value of the coefficient for the whole sample. Segment assignment of ads is the one with the highest Caliński &

Harabasz (1974) statistic among 15 stochastic realizations of the k-means algorithm.

In the literature, there are several methods to determine the “best” number of clusters, k.

Since the right choice of k is highly dependent on many tuning choices such as variables

defining clusters, distance metric, and selection method, we simply verify that our conclu-

sions remain intact if (1) we consider a different number of segments (k = 25,50, and 100)

and (2) we define segments based on larger sets of job ad characteristics. Besides our bench-

mark k-means exercise in Figure A7, we present additional results in Figures A8 - A15.
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Figure A8: Distribution of estimated coefficients by cluster (k=25)

19

22
17

12

20

1

14

-.
2

-.
1

0
.1

.2
.3

E
la

s
ti
c
it
y

0 5 10 15 20 25
Cluster

avg=0.050
p5=-0.048
p95=0.153

log(Wage)

15

7

21
16

22

14

-1
0

-5
0

5
E

la
s
ti
c
it
y

0 5 10 15 20 25
Cluster

avg=-2.514
p5=-5.950
p95=0.229

Expl Wage

14

22

16
21

7

15

-.
5

0
.5

1
E

la
s
ti
c
it
y

0 5 10 15 20 25
Cluster

avg=0.192
p5=-0.013
p95=0.457

log(Wage) X Expl Wage

Coeff by cluster Coeff whole sample

Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, and occupation dummies. Plotted coefficients come

from linear models computed with observations in each segment. In the models, the dependent variables is the log of received application

by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual terms, computer skills,

remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A9: Distribution of estimated coefficients by cluster (k=100)
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Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, and occupation dummies. Plotted coefficients come

from linear models computed with observations in each segment. In the models, the dependent variables is the log of received application

by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual terms, computer skills,

remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A10: Distribution of estimated coefficients by cluster (k=25)
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defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, occupation, industry, and firm size dummies.. Plotted

coefficients come from linear models computed with observations in each segment. In the models, the dependent variables is the log of

received application by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual

terms, computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A11: Distribution of estimated coefficients by cluster (k=50)
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Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, occupation, industry, and firm size dummies.. Plotted

coefficients come from linear models computed with observations in each segment. In the models, the dependent variables is the log of

received application by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual

terms, computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A12: Distribution of estimated coefficients by cluster (k=100)
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Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, occupation, industry, and firm size dummies.. Plotted

coefficients come from linear models computed with observations in each segment. In the models, the dependent variables is the log of

received application by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual

terms, computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A13: Distribution of estimated coefficients by cluster (k=25)
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Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, occupation, industry, firm size, and location dummies..

Plotted coefficients come from linear models computed with observations in each segment. In the models, the dependent variables is the log

of received application by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual

terms, computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A14: Distribution of estimated coefficients by cluster (k=50)

27

41

20
47

14

5

-.
4

-.
2

0
.2

.4
E

la
s
ti
c
it
y

0 10 20 30 40 50
Cluster

avg=0.052
p5=-0.113
p95=0.227

log(Wage)

43

34

16
26 8

7

-1
5

-1
0

-5
0

5
1

0
E

la
s
ti
c
it
y

0 10 20 30 40 50
Cluster

avg=-3.164
p5=-9.548
p95=1.371

Expl Wage

36

50

22 26
13

3

11

-.
5

0
.5

1
1

.5
E

la
s
ti
c
it
y

0 10 20 30 40 50
Cluster

avg=0.241
p5=-0.118
p95=0.730

log(Wage) X Expl Wage

Coeff by cluster Coeff whole sample

Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, occupation, industry, firm size, and location dummies..

Plotted coefficients come from linear models computed with observations in each segment. In the models, the dependent variables is the log

of received application by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual

terms, computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Figure A15: Distribution of estimated coefficients by cluster (k=100)
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Note: Estimated coefficients of linear models by segment (cluster) are plotted. Shaded areas indicate 95% confidence intervals. Segments

defined by the highest Caliński & Harabasz (1974) statistic obtained among 15 stochastic realizations of the k-means algorithm. Variables

used to define clusters are quarter, educational level required, experience required, occupation, industry, firm size, and location dummies..

Plotted coefficients come from linear models computed with observations in each segment. In the models, the dependent variables is the log

of received application by ad plus one, and the explanatory variables are required educational level, industry, career, firm size, contractual

terms, computer skills, remuneration schemes, location, word-title dummies, firm fixed effects, and quarterly fixed effects.
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Table A12: Description of clusters used in estimating coefficients for Figure A7

Cluster Obs Avg # Avg wage Avg expl Avg req Mode Mode Mode

applic offer wage exper trim req educ occup

1 5316 7.9 311358 0.20 1.03 2008q3 (29%) High school SH (46%) Non-declared (73%)

2 7011 24.1 359419 0.18 1.06 2011q1 (26%) High school SH (62%) Non-declared (90%)

3 4917 43.1 718041 0.10 3.00 2012q2 (13%) Tertiary tech (90%) Commerce/Manag (56%)

4 3531 38.7 328953 0.18 1.20 2014q1 (69%) High school SH (86%) Non-declared (96%)

5 5688 5.3 419147 0.08 0.03 2008q2 (29%) Tertiary tech (52%) Non-declared (89%)

6 2711 33.2 637009 0.07 3.00 2011q4 (19%) Tertiary tech (100%) Commerce/Manag (46%)

7 6391 39.7 347537 0.20 1.02 2014q1 (15%) High school TP (100%) Non-declared (50%)

8 2187 23.5 369624 0.17 0.00 2008q3 (19%) College (47%) Commerce/Manag (68%)

9 2504 19.7 955595 0.09 4.84 2008q1 (18%) College (48%) Non-declared (99%)

10 3341 10.5 710286 0.07 3.00 2008q2 (35%) Tertiary tech (49%) Non-declared (81%)

11 2871 33.0 1558202 0.04 5.59 2011q4 (26%) College (91%) Technology (58%)

12 5433 44.7 432542 0.20 1.00 2014q1 (11%) Tertiary tech (100%) Commerce/Manag (79%)

13 3642 24.0 597972 0.09 0.47 2008q3 (24%) College (86%) Technology (92%)

14 4857 35.9 621008 0.13 1.67 2012q3 (14%) Tertiary tech (100%) Technology (100%)

15 3826 15.8 441713 0.11 2.01 2008q2 (19%) Tertiary tech (28%) Non-declared (98%)

16 3473 32.7 994518 0.07 3.00 2011q2 (27%) College (77%) Technology (38%)

17 2827 29.2 350450 0.22 1.05 2011q1 (24%) High school TP (100%) Non-declared (58%)

18 3737 30.6 651543 0.13 2.54 2010q4 (30%) College (39%) Non-declared (93%)

19 6250 30.1 282616 0.28 0.00 2012q1 (15%) High school SH (71%) Non-declared (98%)

20 2486 43.4 338069 0.19 0.00 2013q4 (13%) Tertiary tech (52%) Commerce/Manag (84%)

21 3716 28.8 576238 0.11 2.00 2011q3 (24%) Tertiary tech (100%) Commerce/Manag (36%)

22 4973 65.7 771323 0.11 1.00 2013q1 (12%) College (100%) Technology (49%)

23 3733 27.7 955089 0.06 3.00 2008q3 (15%) College (81%) Technology (76%)

24 1542 35.9 415184 0.20 0.00 2011q4 (35%) College (55%) Technology (61%)

25 1239 32.3 762935 0.08 5.18 2011q3 (30%) Tertiary tech (97%) Commerce/Manag (38%)

26 5897 56.0 1207470 0.05 3.00 2012q2 (12%) College (93%) Technology (60%)

27 1266 23.6 497755 0.13 1.11 2011q4 (11%) Tertiary tech (100%) Technology (99%)

28 3954 28.7 623262 0.13 2.00 2011q1 (30%) College (46%) Non-declared (62%)

29 3301 37.1 433114 0.18 2.06 2012q2 (16%) High school TP (100%) Non-declared (44%)

30 1677 28.3 846620 0.13 4.98 2008q3 (14%) Tertiary tech (47%) Commerce/Manag (98%)

31 4474 61.2 1783839 0.03 5.62 2012q2 (13%) College (92%) Technology (100%)

32 2721 40.8 337799 0.16 1.04 2009q3 (28%) High school SH (37%) Non-declared (69%)

33 5541 44.8 583995 0.14 2.20 2012q2 (14%) Tertiary tech (97%) Commerce/Manag (73%)

34 826 60.3 1372855 0.04 5.44 2013q3 (15%) College (86%) Soc Science (35%)

35 1282 34.6 957295 0.04 4.76 2012q2 (11%) Tertiary tech (100%) Technology (88%)

36 6504 62.6 996123 0.06 2.00 2012q2 (13%) College (99%) Technology (56%)

37 2127 45.9 829229 0.11 3.74 2010q2 (21%) College (69%) Commerce/Manag (98%)

38 2372 26.0 499110 0.13 2.00 2008q3 (20%) Tertiary tech (49%) Commerce/Manag (96%)

39 3185 54.2 1139636 0.07 5.07 2013q2 (13%) College (50%) Commerce/Manag (100%)

40 6680 34.7 312788 0.23 1.16 2013q1 (29%) High school SH (89%) Non-declared (95%)

41 997 37.2 856451 0.09 5.03 2012q1 (15%) Tertiary tech (28%) Non-declared (97%)

42 3037 20.9 755791 0.05 2.00 2008q2 (21%) College (68%) Technology (88%)

43 1163 35.9 855633 0.13 2.96 2011q4 (31%) College (92%) Commerce/Manag (100%)

44 7453 23.1 285541 0.19 1.14 2012q1 (30%) High school SH (91%) Non-declared (95%)

45 3824 30.9 1444238 0.04 5.52 2010q4 (13%) College (89%) Technology (90%)

46 4628 43.8 947422 0.07 1.66 2011q3 (18%) College (97%) Technology (100%)

47 4585 33.0 357539 0.18 1.03 2010q4 (40%) High school SH (43%) Non-declared (79%)

48 1075 32.2 512411 0.14 3.00 2014q1 (20%) High school SH (49%) Non-declared (96%)

49 4864 23.5 260924 0.26 0.00 2011q4 (21%) High school SH (72%) Non-declared (98%)

50 3285 57.4 479504 0.13 0.00 2013q3 (12%) College (69%) Technology (74%)

Note: These 50 clusters are defined by the highest Caliński & Harabasz (1974) statistic among 15 computations of the k-means

method.
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A.6 Additional estimates for explicit wage posting, Section 3.4

Table A13: Models for the probability of explicit wage posting, not considering recruiting

firms (Part I)

Probit OLS OLS, Firm FE

β SE η β SE η β SE η

Number of vac. 0.000 0.000 0.000 0.000*** 0.000 0.001 0.000 0.000 0.000

Req. exper. -0.034*** 0.003 -0.010 -0.005*** 0.001 -0.010 -0.005*** 0.001 -0.009

log wage -0.268*** 0.010 -0.051 -0.043*** 0.002 -0.043 -0.028*** 0.002 -0.028

Highest educ

Primary (1-8 years) 0.211*** 0.034 0.052 0.066*** 0.008 0.066 0.022*** 0.008 0.022

Tech. High School -0.108*** 0.015 -0.023 -0.032*** 0.003 -0.032 -0.022*** 0.003 -0.022

Tech. Tertiary Educ. -0.257*** 0.016 -0.052 -0.066*** 0.003 -0.066 -0.041*** 0.003 -0.041

College -0.328*** 0.019 -0.064 -0.074*** 0.004 -0.074 -0.048*** 0.004 -0.048

Graduate -0.276*** 0.075 -0.055 -0.069*** 0.011 -0.069 -0.043*** 0.011 -0.043

Professional Area

Commerce and Manag. 0.139*** 0.015 0.026 0.022*** 0.003 0.022 0.017*** 0.003 0.017

Agropecuary 0.015 0.076 0.003 0.008 0.012 0.008 0.021* 0.012 0.021

Art and Architecture 0.221*** 0.049 0.044 0.031*** 0.009 0.031 0.009 0.009 0.009

Natural Sciences 0.066 0.053 0.012 0.011 0.010 0.011 0.011 0.009 0.011

Social Sciences 0.003 0.039 0.001 -0.006 0.007 -0.006 -0.006 0.006 -0.006

Law 0.141 0.097 0.027 0.023 0.018 0.023 0.020 0.017 0.020

Education 0.080 0.053 0.015 0.016 0.010 0.016 -0.019** 0.010 -0.019

Humanities 0.620*** 0.074 0.145 0.165*** 0.016 0.165 0.080*** 0.016 0.080

Health 0.142*** 0.046 0.027 0.026*** 0.008 0.026 0.030*** 0.008 0.030

Non-declared 0.058*** 0.015 0.011 0.008*** 0.003 0.008 0.005** 0.003 0.005

Other 0.386*** 0.074 0.082 0.090*** 0.016 0.090 0.011 0.017 0.011

Computer knowledge level

Low level 0.062*** 0.023 0.011 0.014*** 0.005 0.014 0.028*** 0.005 0.028

Expert level 0.270*** 0.037 0.055 0.040*** 0.007 0.040 0.011* 0.006 0.011

Professional level 0.068*** 0.023 0.013 0.013*** 0.004 0.013 -0.020*** 0.004 -0.020

Technical level 0.179*** 0.024 0.035 0.035*** 0.005 0.035 0.009** 0.005 0.009

User level 0.051*** 0.011 0.009 0.010*** 0.002 0.010 0.011*** 0.002 0.011

Advanced User level 0.105*** 0.014 0.020 0.018*** 0.002 0.018 0.008*** 0.002 0.008

Constant 2.246*** 0.291 0.687*** 0.050 0.429*** 0.046

Legal contract type

Fixed-term 0.346*** 0.016 0.066 0.071*** 0.003 0.071 0.032*** 0.003 0.032

Undefined term 0.161*** 0.015 0.028 0.030*** 0.003 0.030 0.026*** 0.003 0.026

Observations 183997 184920 184920

Note: Table A14 continues the estimated results.
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Table A14: Models for the probability of explicit wage posting, not considering recruiting

firms (Part I)

Probit OLS OLS, Firm FE

β SE η β SE η β SE η

Industry

Agriculture 0.121*** 0.043 0.022 0.022*** 0.008 0.022 0.012 0.009 0.012

Fisheries -0.963*** 0.176 -0.094 -0.075*** 0.016 -0.075 0.001 0.023 0.001

Mining -0.147*** 0.041 -0.023 -0.011* 0.006 -0.011 0.010 0.008 0.010

Manufacturing 0.056*** 0.017 0.010 0.012*** 0.003 0.012 0.024*** 0.004 0.024

Electricity, water, and gas 0.131*** 0.030 0.024 0.034*** 0.005 0.034 0.021*** 0.007 0.021

Construction -0.053* 0.032 -0.009 -0.006 0.005 -0.006 0.005 0.007 0.005

Restaurants and Hotels -0.040 0.034 -0.007 -0.011* 0.007 -0.011 -0.005 0.009 -0.005

Transportation 0.424*** 0.022 0.089 0.104*** 0.005 0.104 0.099*** 0.006 0.099

Communication 0.182*** 0.018 0.034 0.037*** 0.003 0.037 -0.001 0.004 -0.001

Financial Serv. -0.026 0.021 -0.004 0.000 0.004 0.000 0.018*** 0.004 0.018

Business Serv. 0.221*** 0.018 0.042 0.048*** 0.004 0.048 0.032*** 0.004 0.032

Household Serv. -0.027 0.047 -0.005 -0.001 0.008 -0.001 0.012 0.009 0.012

Personal Serv. 0.112*** 0.016 0.020 0.025*** 0.003 0.025 0.040*** 0.004 0.040

Public Admin. 0.421*** 0.035 0.088 0.093*** 0.007 0.093 0.060*** 0.011 0.060

Others 0.150*** 0.020 0.028 0.032*** 0.004 0.032 0.033*** 0.004 0.033

Availability

Commission -0.264*** 0.059 -0.043 -0.053*** 0.010 -0.053 -0.058*** 0.010 -0.058

Half time 0.129*** 0.029 0.026 0.034*** 0.006 0.034 0.006 0.006 0.006

Part-time -0.114*** 0.030 -0.020 -0.021*** 0.006 -0.021 -0.019*** 0.006 -0.019

Shift-work 0.072*** 0.015 0.014 0.021*** 0.003 0.021 0.021*** 0.003 0.021

Internship 0.033 0.034 0.006 0.018** 0.008 0.018 0.010 0.008 0.010

Replacement 0.085* 0.050 0.017 0.012 0.011 0.012 -0.004 0.010 -0.004

Observations 183997 184920 184920

Avg. Probability 0.135 0.134 0.134

pseudo - R2 0.131

R2 0.113 0.316

Adj. R2 0.109 0.289

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.Estimated coefficients of models without controlling for recruiting firms. Omitted groups:

Highest educ: Science-humanity high-school; Contract law Other. Availabilty: Full-time. Computer knowledge level: None. In all the

equations, we control for profession/occupation dummies, firm size dummies, industry dummies, quarter dummies to capture seasonality,

first four words job title dummies, and the number of days the vacancy was open.
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Table A15: Models for the probability of explicit wage posting, controlling for recruiting

firms (Part I)

Probit OLS OLS, Firm FE

β SE η β SE η β SE η

Number of vac. 0.000 0.000 0.000 0.000** 0.000 0.001 0.000* 0.000 0.000

Req. experience -0.036*** 0.004 -0.011 -0.005*** 0.001 -0.010 -0.005*** 0.001 -0.009

log wage -0.276*** 0.010 -0.053 -0.046*** 0.002 -0.046 -0.029*** 0.002 -0.029

Recr. firm 0.098*** 0.011 0.019 0.026*** 0.002 0.026 0.000 . 0.000

Highest educ

Primary (1-8 years) 0.216*** 0.035 0.054 0.069*** 0.008 0.069 0.024*** 0.008 0.024

Tech. High School -0.093*** 0.015 -0.020 -0.029*** 0.003 -0.029 -0.022*** 0.003 -0.022

Tech. Tertiary Educ. -0.250*** 0.016 -0.051 -0.066*** 0.003 -0.066 -0.043*** 0.003 -0.043

College -0.319*** 0.020 -0.063 -0.073*** 0.004 -0.073 -0.049*** 0.004 -0.049

Graduate -0.246*** 0.076 -0.050 -0.066*** 0.012 -0.066 -0.044*** 0.011 -0.044

Professional Area

Commerce and Manag. 0.130*** 0.016 0.025 0.021*** 0.003 0.021 0.015*** 0.003 0.015

Agropecuary 0.052 0.079 0.010 0.013 0.013 0.013 0.020 0.013 0.020

Art and Architecture 0.182*** 0.051 0.036 0.027*** 0.009 0.027 0.009 0.009 0.009

Natural Sciences 0.064 0.055 0.012 0.012 0.010 0.012 0.011 0.010 0.011

Social Sciences -0.010 0.041 -0.002 -0.008 0.007 -0.008 -0.006 0.007 -0.006

Law 0.145 0.099 0.028 0.022 0.019 0.022 0.019 0.017 0.019

Education 0.111** 0.056 0.021 0.023** 0.011 0.023 -0.013 0.010 -0.013

Humanities 0.666*** 0.077 0.161 0.182*** 0.017 0.182 0.096*** 0.017 0.096

Health 0.148*** 0.047 0.029 0.028*** 0.009 0.028 0.033*** 0.008 0.033

Non-declared 0.053*** 0.015 0.010 0.007** 0.003 0.007 0.005* 0.003 0.005

Other 0.417*** 0.077 0.091 0.100*** 0.018 0.100 0.009 0.018 0.009

Legal contract type

Fixed-term 0.338*** 0.017 0.065 0.071*** 0.003 0.071 0.032*** 0.003 0.032

Undefined term 0.162*** 0.016 0.029 0.031*** 0.003 0.031 0.026*** 0.003 0.026

Observations 169487 170365 170365

Note: Table A16 continues the estimated results.

31



Table A16: Models for the probability of explicit wage posting, controlling for recruiting

firms (Part II)

Probit OLS OLS, Firm FE

β SE η β SE η β SE η

Industry

Agriculture 0.110** 0.045 0.020 0.022*** 0.008 0.022 0.014 0.009 0.014

Fisheries -0.983*** 0.177 -0.100 -0.083*** 0.017 -0.083 -0.007 0.025 -0.007

Mining -0.174*** 0.043 -0.028 -0.013** 0.007 -0.013 0.006 0.009 0.006

Manufacturing 0.048*** 0.018 0.009 0.011*** 0.003 0.011 0.024*** 0.004 0.024

Electricity, water, and gas 0.091*** 0.031 0.017 0.028*** 0.006 0.028 0.018*** 0.007 0.018

Construction -0.057* 0.032 -0.010 -0.005 0.006 -0.005 0.008 0.007 0.008

Restaurants and Hotels -0.059* 0.035 -0.010 -0.014** 0.007 -0.014 -0.004 0.009 -0.004

Transportation 0.413*** 0.023 0.088 0.104*** 0.005 0.104 0.105*** 0.006 0.105

Communication 0.149*** 0.019 0.028 0.031*** 0.004 0.031 -0.001 0.004 -0.001

Financial Serv. -0.047** 0.021 -0.008 -0.003 0.004 -0.003 0.019*** 0.005 0.019

Business Serv. 0.192*** 0.019 0.037 0.044*** 0.004 0.044 0.032*** 0.004 0.032

Household Serv. -0.059 0.048 -0.010 -0.004 0.008 -0.004 0.013 0.009 0.013

Personal Serv. 0.107*** 0.017 0.020 0.025*** 0.003 0.025 0.041*** 0.004 0.041

Public Admin. 0.452*** 0.036 0.099 0.104*** 0.008 0.104 0.071*** 0.013 0.071

Others 0.151*** 0.021 0.029 0.034*** 0.004 0.034 0.034*** 0.004 0.034

Availability

Commission earner -0.263*** 0.061 -0.044 -0.052*** 0.010 -0.052 -0.060*** 0.011 -0.060

Half time 0.072** 0.031 0.014 0.020*** 0.007 0.020 0.005 0.006 0.005

Part-time -0.126*** 0.031 -0.023 -0.023*** 0.006 -0.023 -0.015** 0.006 -0.015

Shift-work 0.092*** 0.016 0.018 0.027*** 0.003 0.027 0.023*** 0.003 0.023

Internship 0.066* 0.035 0.013 0.029*** 0.008 0.029 0.021** 0.009 0.021

Replacement 0.033 0.054 0.007 0.001 0.012 0.001 -0.012 0.011 -0.012

Computer knowledge level

Low level 0.094*** 0.023 0.018 0.023*** 0.005 0.023 0.033*** 0.005 0.033

Expert level 0.289*** 0.038 0.060 0.046*** 0.007 0.046 0.015** 0.007 0.015

Professional level 0.086*** 0.024 0.016 0.016*** 0.004 0.016 -0.017*** 0.004 -0.017

Technical level 0.225*** 0.025 0.045 0.044*** 0.005 0.044 0.015*** 0.005 0.015

User level 0.066*** 0.012 0.012 0.014*** 0.002 0.014 0.012*** 0.002 0.012

Advanced User level 0.119*** 0.014 0.023 0.021*** 0.003 0.021 0.010*** 0.003 0.010

Constant 2.311*** 0.297 0.698*** 0.052 0.457*** 0.048

Observations 169487 170365 170365

Avg. Probability 0.139 0.139 0.139

pseudo - R2 0.134

R2 0.118 0.315

Adj. R2 0.114 0.288

Note: * p < 0.1, ** p < 0.05, *** p < 0.01.Estimated coefficients of models controlling for recruiting firms. Omitted groups: Highest

educ: Science-humanity high-school; Contract law Other. Availabilty: Full-time. Computer knowledge level: None. In all the equations,

we control for profession/occupation dummies, firm size dummies, industry dummies, quarter dummies to capture seasonality, first four

words job title dummies, and the number of days the vacancy was open.
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Figure A16: Conditional probability of explicit wage posting (Tables A13 and A14, OLS

and OLS Firm FE)

0
.0

5
.1

.1
5

.2

P
ro

b
. 

E
x
p

lic
it
 W

a
g

e

11.5 12 12.5 13 13.5 14 14.5 15 15.5

Estimated wage (log)

CE Offered Wage (OLS)

.1
3
2

.1
3
4

.1
3
6

.1
3
8

.1
4

P
ro

b
. 

E
x
p

lic
it
 W

a
g

e

0 5 10 15 20

Number of vacancies

CE Vacancies (OLS)

0
.0

5
.1

.1
5

P
ro

b
. 

E
x
p

lic
it
 W

a
g

e

0 5 10 15 20

Req. experience

CE Req. Experience (OLS)

.0
5

.1
.1

5
.2

P
ro

b
. 

E
x
p

lic
it
 W

a
g

e

11.5 12 12.5 13 13.5 14 14.5 15 15.5

Estimated wage (log)

CE Offered Wage (OLS,FE)

.1
3
3

.1
3
4

.1
3
5

.1
3
6

.1
3
7

.1
3
8

P
ro

b
. 

E
x
p

lic
it
 W

a
g

e

0 5 10 15 20

Number of vacancies

CE Vacancies (OLS,FE)

0
.0

5
.1

.1
5

P
ro

b
. 

E
x
p

lic
it
 W

a
g

e

0 5 10 15 20

Req. experience

CE Req. Experience (OLS,FE)

Note: Effects computed without controlling for recruiting firms. Vertical bars indicate 95% confidence intervals.
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Figure A17: Conditional probability of explicit wage posting (Tables A15 and A16, probit)

.0
5

.1
.1

5
.2

.2
5

P
ro

b
. 
E

x
p
lic

it
 W

a
g
e

11.5 12 12.5 13 13.5 14 14.5 15 15.5

Estimated wage (log)

CE Offered Wage (Probit)

.1
3
7

.1
3
8

.1
3
9

.1
4

.1
4
1

.1
4
2

P
ro

b
. 
E

x
p
lic

it
 W

a
g
e

0 5 10 15 20

Number of vacancies

CE Vacancies (Probit)

.0
5

.1
.1

5

P
ro

b
. 
E

x
p
lic

it
 W

a
g
e

0 5 10 15 20

Req. experience

CE Req. Experience (Probit)

Note: Effects computed controlling for recruiting firms. Vertical bars indicate 95% confidence intervals.
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Figure A18: Conditional probability of explicit wage posting (Tables A15 and A16, OLS

and OLS Firm FE)
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Note: Effects computed controlling for recruiting firms. Vertical bars indicate 95% confidence intervals.
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A.7 Condition for unbiased estimation of wage-sensitivity of applicants

using explicit wages only

Let A be the applications received by a job ad, X be the corresponding set of job ad traits,

including wage W . The binary variable D takes value 1 if the wage is explicitly posted, and

0 otherwise. We use the law of total expectation to write

E[logA|X ] = E[logA|X ,D = 1]P(D = 1|X))+E[logA|X ,D = 0]P(D = 0|X)

where D is an indicator for explicit wage posting. Taking derivatives with respect to logW ,

we show that the expected marginal impact of wages on applications is given by the following

formula:

∂E[logA|X ]

∂ logW
=

∂E[logA|X ,D = 1]

∂ logW
−P(D = 0|X))

(

∂E[logA|X ,D = 1]

∂ logW
−

∂E[logA|X ,D = 0]

∂ logW

)

−
∂P(D = 0|X)

∂ logW
(E[logA|X ,D = 1]−E[logA|X ,D = 0])

From this expression, we see that the impact of wages on applications is not correctly esti-

mated from explicit wage job ads in general. The marginal expected impact of log wage is

the same for the whole population and for the sample of ads with explicit wages only if

P(D = 0|X)

(

∂E[logA|X ,D = 1]

∂ logW
−

∂E[logA|X ,D = 0]

∂ logW

)

=−
∂P(D = 0|X)

∂ logW
(E[logA|X ,D = 1]−E[logA|X ,D = 0]) .

Rearranging terms, we obtain that only if condition

∂E[logA|X ,D = 0]

∂ logW
−

∂E[logA|X ,D = 1]

∂ logW
=

−
∂P(D = 1|X)

∂ logW

(

E[logA|X ,D = 1]−E[logA|X ,D = 0]

1−P(D = 1|X)

)

(1)

holds would we obtain the true response of applications to wages just by estimating the effect

with explicit wage job ads.

To evaluate (1), we use the NB model in Table 4. We compute the left-hand side of (1) to

be 0.148 (implicit-explicit elasticity-wage gap). Using the marginal probability response to

log wage of -0.051 from the probit model in Table 8 and the expected implicit-explicit log

wage gap in Table 4 of -0.132, we obtain a small and negative right-hand side value in (1)

of -0.007. Therefore, the observed explicit-implicit sensitivity to wages is not compensated

by the expected log wage gap, considering how wages affect the probability of posting an

explicit wage.
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