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Abstract  

 

 

Applying the MCMC algorithm for time varying Bayesian VAR model, I have estimated the 

impulse response, stochastic volatility and forecast error variance decomposition. The model 

allows both parameters and stochastic volatility to vary. The impulse response of 

unemployment, inflation and interest rate to the interest rate shock using the UK data during 

1971:Q1-2016:Q4 has taken place for a horizon of 40 quarters. The obtained result indicates 

that the response to interest rate shock does not decay entirely and the shocks have substantial 

effect on error variance in the forecast horizon, and the stochastic volatility has reduced over 

time except unemployment. 
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Dynamics and Interactions of Monetary Policy and Macroeconomic Variables: 

Empirical Investigation in the UK Economy with Bayesian VAR 

 

1. Introduction  

In the macroeconomics research, different types of vector autoregression (VAR) model have 

been using extensively. Contemporary development in the field of empirical research and 

application is the Bayesian econometric tools and the use of Bayesian VAR has been increasing 

in this area. In the VAR model, all variables are depended on all other variables and their lag 

including its own lag. Therefore, VAR models need to estimate a large number of parameter, 

which can make the estimate imprecise. Bayesian VAR model has to estimate the prior 

information into the estimation process that makes the estimates more precise. I have applied 

Bayesian VAR in modelling and conducting the empirical analysis of this study for the United 

Kingdom (UK) economy data of unemployment, inflation and interest rate. 

 

The relationship between unemployment and inflation has gone through loads of scrutiny from 

both theoretical and empirical perspectives in the economics literature. A long-standing debate 

exists about the effectiveness of monetary policy to stimulate the macroeconomic performance, 

to be specific, determining the relationship between unemployment and inflation, still this is 

speculative idea (Tobin, 1972; Mankiew, 2001). Thankfully, the world has been able to accept 

the core principles of monetary policy as a working consensus (Goodfriend, 2007; Arestis and 

Sawyer, 2008). However, this is neither a real agreement nor a conclusive result on the rule of 

monetary policy, and relationships between unemployment and inflation. Empirical 

macroeconomic researchers have been using different econometric tools including reduced 

form regression, VAR, correlation analysis etc. for a better understanding of the relationship 

of unemployment and inflation, and the role of monetary policy to obtain the best outcome. 

Recent literature has been trying to explore unemployment and inflation relationship applying 

the Bayesian methodology (e.g., Cogley and Sargent, 2001; Cogley and Sargent, 2005; 

Primiceri, 2004; Sim and Zha, 2006; Benati, 2008). 

 

Due to the drifting coefficients or other potential nonlinearities, monetary policy shock in the 

time series variables evolves over time. Upon these criticisms of invariant parameters in the 

model a few empirical researchers, for example, Cogley and Sargent (2005), Primiceri (2004), 

have started to analyse VAR allowing time varying parameter and at the same time variation 
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in the stochastic volatility. My interest in this paper is to understand the small UK economy 

case applying the similar identification of the model, as most of the analyses in literature have 

used the data of the United States (US) economy. I have chosen the variables and model in 

such a way that keep the number of parameters small as calculation of a large number of 

parameters is troublesome and cover the theoretical base of Philips curve. 

 

VAR model with stochastic volatility is difficult to estimate because this makes the likelihood 

function intractable. Bayesian inference with Markov Chain Monte Carlo (MCMC) algorithm 

methods overcome this difficulty of intractability (Nakajima, 2011). Geyer (1992) endorses 

that in the simulation of stochastic processes whose probability densities are known up to a 

constant proportionality, MCMC method is a general statistical application. However, to date, 

the macroeconomic researchers have paid most focus on Bayesian applications. To compute 

posterior densities of the model encompassing the drifting coefficients and stochastic 

volatilities, I have applied the Bayesian VAR with the MCMC algorithm. 

 

In the estimation process of the impulse response function in this model, I have considered the 

unemployment and inflation rate variables in the non-policy block, and the interest rate in the 

policy block. I mainly concentrate to the shock to the interest rate, as this is considered to be a 

policy variable. The reason of counting the interest rate in the policy block is that the monetary 

policy is intimately connected with the new consensus in macroeconomics where this, as a key 

policy instrument, has become firmly based on the use of interest rate (Arestis and Sawyer, 

2008; Goodfriend, 2007). I have presented the posterior densities of the forecast horizon for 

the variables applying time varying Bayesian VAR model. The reported results are the impulse 

response of the unemployment, inflation and interest rate to the interest rate shock, estimated 

stochastic volatility and forecast error variance decomposition (FEVD) due to the interest rate 

shock.   

 

The empirical findings of the research, presented in the three-dimensional graph, mostly go 

with the view of the non-neutrality of monetary policy in the long run. The monetary policy 

shock does not entirely die out, and it has some implications to interpret the forecast horizon 

of unemployment and inflation relations as well as interest rate itself. However, the response 

and the relationship cannot be confirmed as I did not conduct the significance test. The 

methodological and empirical development of the model is the primary focus of this research 

than the empirical confirmation of a theory. The related interest of this research is to understand 



 

8 
 

the role of monetary policy, to be specific, the interest rate in forecasting the unemployment 

and inflation, and determining their relationship. To understand the pertinence of a monetary 

policy variable in explaining the relationship between unemployment and inflation, I measured 

the impulse response of shock to the interest rate. The data used in this research on the UK 

economy are quarterly data for inflation, unemployment and bank rate as a proxy of interest 

rate. This research mainly contributes to the following key issues for the UK economy case 

during 1971: Q1 to 2016: Q4. Design Bayesian framework using MCMC algorithm for the 

above variables in the UK economy and present of the effect of the shock to the monetary 

policy on unemployment and inflation as studies have been done on this topic using the UK 

data is few.   

 

I have organized the paper as follows. Section 1 has introduced the topic and methodology, and 

summed up the core findings. Section 2 covers the review of the literature on concepts, 

theoretical and methodological development. The third section presents the theoretical 

framework of the model. Section 4 is on the data source and description, and section 5 gives 

the empirical framework. The penultimate section contains the research result, and the last 

section concludes this study. 

 

2. Literature Review 

2.1.Unemployment, inflation and monetary policy 

Unemployment, inflation and interest rate are some of the very core issues in the 

Macroeconomic extent. The study on the relationship among them has developed a rich set of 

literature in the range of both theoretical and empirical aspect. Friedman (1977) remarks that 

the professional view of the relationship between unemployment and inflation has passed 

through three stages. First, acceptance of a stable Phillips curve, that is a stable trade-off 

between unemployment and inflation. Second, the introduction of expectation in the 

unemployment-inflation model. Third, the development of empirical evidence favouring an 

apparent positive relationship between unemployment and inflation. Since then quite a few 

structural shifts have taken place, and studies have endeavoured to capture them. Taylor (1997) 

to summarise the findings of research of monetary policy, clusters the research issues and 

results in four blocks. First, attaining the long run neutrality feature of monetary policy, that is, 

the result does not find the evidence of the long run trade-off between the unemployment and 

inflation rate. Second, the finding that confirms that monetary policy is non-neutral in the short-

run. Third, the collection of researches that are concerned about the function of the monetary 



 

9 
 

policy if it should be viewed as a contingency plan or a policy rule, the focus of these research 

is the credibility, time inconsistency and rational expectations of monetary policy. Fourth, the 

studies that deal with determining the broad characteristics that sound monetary policy should 

contain. Though draws no specific conclusion about how should monetary policy be used to 

influence unemployment and inflation, Parkin (1998) analysing DGE models for The US, UK 

and Canadian data opines favouring the consensus rule that arises from an accumulation of 

evidence and theory which has led most macroeconomists to describe the world in terms of 

four propositions as follows. First, as changes in the demand for money is not predictable, it is 

better to target directly the inflation than to target a monetary aggregate. Second, contingency 

rule has taken as superior to discretion, as the credibility and time consistency problems remain. 

Third, though with the constant inflation at the natural rate of unemployment a trade-off exists 

between the unemployment and inflation, there is no long-run trade-off between them. While 

independent of monetary policy the natural rate of unemployment may varies for many reasons, 

so targeting zero inflation incurs no permanent costs but brings enduring benefits. Fourth, the 

research cannot fine-tune unemployment and inflation, as the time lags in the effects of 

monetary policy extend beyond its forecast horizon. Referring to the historic quote in Hume’s 

1752 easy, Ball and Mankiw (2002) point that even though two centuries passed, professional 

of economics could not reach a consensus about the reason of trade-off between unemployment 

and inflation while classical theory takes money as neutral. According to Dobrescu, Paicu and 

Iacob (2011), in the post-war era the analysis of the trade-off between unemployment and 

inflation has undergone numerous stages— the acceptance of the 1957 hypothesis of A.W. 

Phillips and the succeeding Phillips curve; contributions of Friedman by revealing a long-run 

vertical Phillips curve and introducing the natural rate of unemployment. Mankiew (2001) 

stipulates that unemployment and inflation trade-off is not about deriving a stable downward-

sloping Phillips curve by plotting these two variables in scatter diagram or not running specific 

regression of these variables with well-fitted data and producing precise coefficients. At its 

heart, the idea of trade-off between unemployment and inflation is about the influence of 

monetary policy that claims that these two variables go opposite directions in the short-run 

with the changes in monetary policy variable.  

 

Empirical researchers have conducted a bunch of study on unemployment, inflation and 

monetary policy. Applying different methods for the semi-annual US dataset, Karanassou and 

Sala (2010) argue for the trade-off between unemployment and inflation. However, considering 

as a superior indicator, their focus is on the money growth than the federal fund rate in getting 
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the response of unemployment and inflation to the shocks. Blanchard and Galí (2010) show 

that from the normative point of view when frictions and real wage rigidities are a presence in 

the labour market, monetary policy that tends to stabilize inflation strictly is not the best. They 

conclude that monetary policy implies some accommodation of inflation, but limited 

fluctuations in unemployment. Coibion (2012) finds, for US data during 1970-1996, variation 

in results based on different methodology. While standard VAR results give a minimal 

fluctuation in unemployment and inflation accrued from the shock to the monetary policy, the 

Romer and Romer methodology implies substantial fluctuations in both unemployment and 

inflation determined by the monetary policy. Medium sized real effects of shocks to the 

monetary policy have been found from Taylor rules, which also indicate the significant 

historical contribution to real fluctuations due to the monetary policy shocks. Several factors 

influence the strengths of the monetary policy shocks. These include the pattern of contraction, 

lag structure, the period for a target, which are responsible for the consistent and most likely 

medium size effects of the monetary policy shocks from the different approach. Louis and Balli 

(2013) attempt to explore if the distinctive unemployment rate in organization for economic 

cooperation and development (OECD) with the US is the result of unanticipated deviation of 

the short-term OECD rates from the fund rate and to understand if monetary policy target for 

low-inflation is responsible for the financial crisis. In the very short-run, they do not find any 

effects of interest rate differential shocks on unemployment, but there is effect in the long-run. 

Drastic deviation from the US monetary policy incur a higher cost and persistent 

unemployment in the OECD countries, on average the inflation targeting countries incur higher 

cost. Applying an identification scheme for the non-accelerating inflation rate of 

unemployment (NAIRU) estimate allowing regime shifts in the structural shocks, Kajuth 

(2014) concludes that there are significant statistical and economic relationships between 

unemployment and inflation in Germany, and justify the trend of the unemployment rate as 

NAIRU. To understand the unemployment and inflation relation, Bhattarai (2016) analyse the 

data of OECD economies with panel data using fixed and random effect, and panel VAR 

models for the period 1990-2014. In the country specific regressions, out of 35 of OECD 

economies 28 observe empirically significant Phillips curve phenomena. 

Gerlach, Lydon and Stuart (2016) study the determination of inflation between 1926 and 2012 

in Ireland to test the overarching view about the unemployment-inflation relationship that the 

small economy Ireland does not have the Phillips curve relationship. They incorporated 

unemployment relative to the NAIRU and import prices to estimate a backwards looking 

Phillips Curve and found that unemployment has a statistically significant effect on inflation.  
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Literature has also been dealing with different analytical dimensions. According to Karanassou, 

Sala and Snower (2009), as the conventional wisdom accepts that no long-run relationship 

exists between unemployment and inflation, the evolution of unemployment and inflation can 

be sufficiently modelled by separate branches of economics. Hence, the macro branch with 

inflation dynamics accepts the existence of the natural rate of unemployment (NRU) and 

estimates the unemployment rate compatible with inflation stability (NAIRU), and the labour 

macro branch accepts the existence of the NAIRU and attempts to identify the real economic 

driving forces of NRU. They recommend adopting a holistic framework to be able to model 

inflation dynamics jointly, estimate the unemployment-inflation trade-off and determine the 

factors that are responsible for the movements of the equilibrium unemployment rate in the 

long run. Beyer and Farmer (2007) study the co-movements in unemployment, inflation and 

federal funds rate in the US and observe that these can be well described as non-stationary but 

cointegrated variables from 1970 through 1999. They find stable cointegrating equation over 

the entire period that links unemployment with inflation and the evidence through the neo 

Keynesian model leads to be sceptical of the theories that maintain super neutrality assumption 

so the ‘natural rate doubts’. Berentsen, Menzio and Wright (2011) investigate the long-run 

relationships between inflation or nominal interest as a measure of monetary policy and 

unemployment as a measure of labour market performance for the quarterly US data during the 

period 1955-2005. The paper documents that in the low-frequency, inflation and interest rates 

have a positive relationship with the unemployment rate. Using the search-and-bargaining 

approach to model labour markets and goods markets, they find that monetary policy as a sole 

driving force accounts for quite a lot of unemployment behaviour. 

 

2.2.Relevant VAR and Bayesian literature 

Stock and Watson (2001) use two related structural VAR model to incorporate the various 

identifying assumption of the causal relationship monetary policy with unemployment, 

inflation and interest rate. Using the quarterly US data for 1960:1-2000: IV, they find the VAR 

model to be instrumental in four macroeconometrics tasks—for describing the data, for 

forecasting, for structural inference and policy analysis. Claiming natural alternative methods 

to estimating the impulse response from VAR, Jorda (2005) recommends computing the 

impulse response of a given VAR model for each period’s local projections but not for 

extrapolating into horizon progressively. Ribba (2006), identifying a small structural vector 

error correction model by using the long-run and short-run combination of restrictions for the 

period 1980-2001, studies the dynamic interactions at various frequencies among 
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unemployment, inflation and federal fund rate. The study finds that in the short run 

unemployment and inflation move in opposite directions due to aggregate demand and 

monetary policy shocks. While analysing the pre and post 1980 data for the US economy using 

the VAR model, Boivin and Giannoni (2006) find fewer effects of the shock to the monetary 

policy during the post-1980 period. Lanne, Lutkepohl and Maciejowska (2010) estimate two 

model to understand the applicability of a Markov regime switching property of structural VAR 

analysis in identifying shocks when the matrix of reduced form error covariance varies across 

states. According to the study, to obtain identification under general conditions assumption of 

the shocks to be orthogonal and of the impulse responses to be invariant across regimes is 

enough. In case of regimes more than two, the regime invariance condition is advised to test. 

D’Agostino, Gambetti and Giannone (2013) using a VAR of time varying coefficients with 

stochastic volatility, produce real time out of sample forecast up to 3 years ahead for the 

unemployment rate, inflation rate and a short term interest rate for the US economy. The 

findings confirm the time varying VAR as the only model that delivers precise forecasts 

systematically for these variables. Therefore, the paper concludes that for forecasting structural 

economic change is vital to take into account and as the incorporation of the prominent features 

of a time varying economy in a time varying VAR is flexible but parsimonious, it is a reliable 

tool for real time forecasting. However, Clark and Ravazzolo (2015) estimate the Bayesian 

autoregressive and VAR models by incorporating a different form of time varying volatility 

including stochastic volatility models coupled with random walk, stationary AR process and 

fat tails, and GARCH and mixture of innovation models. They find that conventional stochastic 

volatility in the autoregression and VAR specifications dominate other specifications of 

volatility mainly in density forecasting and to some extent in point forecasting.  

 
A well set of analysis has been done applying the Bayesian VAR with stochastic volatility to 

explain and forecast the interactions among unemployment, inflation and monetary policy. 

Cogley and Sargent (2001) apply nonlinear stochastic state space model with time varying 

parameters in Bayesian VAR to detect the features of unemployment and inflation dynamics 

of US economy in the post World War II period and describe the evolving nature of the law of 

motion for inflation. They use time variant coefficients and unknown time invariant innovation 

covariance matrix for error variance that conflicts with quite a few existing literature, which 

used changing VAR innovation over time. The model predicts that the evidence goes against 

the natural rate hypothesis of Philips curve when the observations of lower and more stable 

inflation are accumulated. Upon controversies with some contemporary literature and 
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criticisms, Cogley and Sargent (2005) conduct a similar type of analysis with same data set. 

However, to address some of the criticisms, they use VAR allowing both coefficients and the 

volatilities (R) to vary. They apply the MCMC methods to present posterior densities for 

numerous objects that are pertinent for monetary policy. They use posterior distributions in 

evaluating the strength of some tests, which they do for testing the null hypothesis that the 

autoregressive coefficients of VARs are time invariant against the alternative hypothesis of 

time varying coefficients. After taking into account the stochastic volatility, the results accept 

the drifting variances within the new specification and preserves the previous evidence for 

drifting systematic parts. However, evidence of having drifting coefficients is a concern as 

detecting evidence for movements in the systematic part is more challenging than detecting the 

stochastic volatility of a VAR. Cogley, Morozov and Sargent (2005) also estimate a Bayesian 

VAR for the UK economy allowing coefficients to drifted and the stochastic volatilities during 

the period 1957-2002. To compute the posterior densities, they used the MCMC algorithm. 

When they illustrated the model by constructing different fan charts for the UK inflation for 

2003-2008, they find that to forecast inflation parameter uncertainty and drift matter greatly 

for the longer forecast horizon while only slightly matter for one or two years ahead. Primiceri 

(2004) also uses multivariate stochastic model for US data from 1953:I to 2001:III to model 

time varying VAR allowing both coefficients and variance covariance matrix to vary over time.  

The study considers literature as divided into two categories in explaining the strong evidence 

volatility, those focuses the heteroschedasticity of the exogenous shocks, and those emphasise 

the ways of responses of macroeconomic variables to the shocks. Specifically, the variability 

of the monetary policy over time has the potential effect on the transmission of innovation, and 

the rational and forward looking agents induce additional modifications in the transmission 

when the macroeconomic system with the rational agent is dynamic and interconnected. The 

paper confirms the non-policy exogenous shocks to be more dominant than the interest rate 

policy to explain the occurrence of unemployment and inflation in the considered recent time 

in the US economy. To address the dynamic evolution of variables with interconnection among 

them, VAR with time varying parameters performs better (Primiceri, 2004; Cogley and 

Sargent, 2005). Applying a structural VAR model that allows coefficients and stochastic 

volatility to vary over time for post war the US, Benati and Surico (2008) report having a strong 

negative correlation of the persistence and predictability evolution with the long-run coefficient 

evolution of inflation in the monetary rule. Canova and Gambetti (2009), using 1959-1967 data 

for prior calibration and 1967-2006 data for estimating the model for US economy, find that in 

time varying model with robust sign restriction, monetary policy shock is responsible for a 
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little amount of the level and variation of volatility and persistence in the inflation and output 

growth. They observe little significant evidence of the interest rate response to inflation in the 

long run. Cogley, Primiceri and Sargent (2010) estimating VAR with drifting coefficients and 

stochastic volatility, investigate if any change has taken place in the persistence of US inflation. 

They use similar VAR model as Cogley and Sargent (2005) and Primiceri (2004), but unlike 

those previous studies, they allow stochastic volatility in the state innovations (Q) as like the 

VAR innovation (R). Nakajima (2011) estimate a similar model of time varying VAR for Japan 

economy's inflation rate, output and interest rate. The study suggests that the time varying VAR 

model with incorporation of stochastic volatility indicates a great potential to be considered as 

a very flexible toolkit in analysing the structure of evolution in the modern economy. However, 

the study makes a few cautions about applying this model in case of a negative real interest 

rate. Blake and Mumtaz (2012) present a very comprehensive book of empirical Bayesian 

econometrics along with calibration in matlab code. 

 

In this article, I have heavily depended on the content of Cogley and Sargent (2005) and 

Primicery (2004) for the theoretical framework, and Blake and Mumtaz (2012) for the 

empirical analysis.  

 

3. Theoretical Framework 

I have developed a multivariate stochastic volatility VAR model for the law of motion of 

variance covariance matrix of the observation equation to observe the response of 

unemployment and inflation to the monetary policy shock. The model is structural VAR in the 

sense that it captures well-developed economic theory. For numerical evaluation of the model 

with drifting coefficients and multivariate stochastic volatility, I evaluate the posterior of the 

parameter by using MCMC algorithm. 

 

The model contained in this study is a multivariate state space model with observation equation 

and transition equation. The typical use of this type of model is in detecting structural changes 

in the relationships and extracting unobserved components from the data in time series set up. 

Since early 1990s, a considerable amount of literature has been developed that employs VAR 

model in the attempt of identifying and measuring the effects of monetary policy innovations 

on unemployment, inflation and other macroeconomic variables (Bernanke and Blinder, 1992; 

Sims, 1992; Bernanke, Boivin and Eliasz, 2005; Nakajima, 2011). I have used both time 

varying coefficients and time varying variance covariance matrix of the additive innovations 



 

15 
 

in observation equation in this state space VAR model. The idea of stochastic volatility has 

been used extensively in the recent empirical literature, particularly in finance since Black 

(1976) originally proposed the idea (Black, 1976 cited in Nakajima, 2011). Currently, the 

empirical macroeconomic researcher has been using the stochastic volatility concept (Cogley 

and Sargent, 2005; Primiceri, 2004). Drifting coefficients and shocks of stochastic volatility 

are a common observance in the data generating process of economic variables. The 

consideration of time varying coefficients but a constant volatility in disturbances ignoring 

possible variation of the volatility raises a possible misspecification bias, so VAR model with 

both time varying coefficient and time varying stochastic volatility is used (Nakajima, 2011). 

Time varying coefficients and time varying variance covariance matrix together allow the data 

to determine where the time variation of the linear structure is derived from—if it is from the 

changes in the size of the impulse shocks or from the response to the shock, that is changes in 

the propagation mechanism (Primiceri, 2004). In the considered model, the devised drifting 

coefficients are supposed to capture the possible nonlinearities or time variation in the lag 

structure and the multivariate stochastic volatility to capture the possible heteroschedasticity 

of the shocks and nonlinearities in the simultaneous relations of the variables. 

 

3.1.The model: general specification of the state space model 

Observation equation of the state space VAR model is 

Yt = ct + ∑ β𝑝𝑗=1 j,tYt-j + vt …………………………….. (1) 

Here, Yt is a vector of endogenous variables of observed data (U, I, B) 

ct is a vector of constant terms  

βj,t is a vector of VAR parameters; βt = {β1,t………. βp,t} 

Yt-j is a lag of Yt  

vt is a vector of heteroschedastic unobservable shocks  

This VAR can be written in a compact form as follows 

Yt = Xtβ + vt 

Xt = {ct, Yit-1,………. Yit-j} 

There are identical regressors in each equation of the VAR so that it can I rewrite as  

Vec (Yt) = (IN⊗Xt) Vec (βt) + Vec (vt) for each time period t =1….. T.  ⊗ (Kronecker product) allows to present the transition equation in terms of VAR coefficients 

in vectorised form at each point in time. 

The residuals, vt is conditionally normal with mean zero and covariance matrix R;  



 

16 
 

 

Time varying coefficients βt in the equation (2) below are formulated to follow the first order 

condition of random walk process, which allows both temporary and permanent shifts in the 

parameters. Following Cogley and Sargent (2005), I assume that the state vector βt evolves as 

driftless random walk subject to reflecting barriers.  

βT = (β1
', ………., βT

')' represents history from dates 1 to T for the VAR parameters. A joint 

prior of the driftless random walk component can be represented by  

p(βT, Q)= p(βT| Q) p(Q)= p(Q) ∏ p𝑇−1𝑡=0 (βt+1| βt, Q) 

βt evolves in the transition equation as follows 

βt= βt-1 + et………………………..(2) 

The innovation 𝑒𝑡 is normal with mean zero and variance Q; et ~ N (0, Q); Cov (vt, et) = 0. 

In this model both βt and covariance matrix Rt are allowed to vary.  

 

The drifting coefficient is supposed to capture a possible nonlinearity like a gradual change or 

structural break; in practical estimation, this assumption implies a possibility that the time 

varying coefficients capture some spurious movements as well as the actual movement as βt 

can move freely under the random walk assumption. To avoid such situation it is advised to 

assume the time varying coefficients to be stationary while downside of this formulation is that 

even if there is structural change or permanent shift exists it is difficult to estimate (Nakajima, 

2011). However, we need to specify the model in such a way that is suitable for the data set 

and goes with the policy prioritization. The stability condition for the VAR reflects an apriori 

belief about the implausibility of explosive representations for unemployment, inflation and 

interest rate. The stability prior follows from the belief that the Bank of England (BoE) has 

some purpose when sets monetary policy rules. When the BoE observes a loss function that 

penalizes the variance of inflation, it will take a policy rule that results compensate the loss and 

will not allow a unit root in inflation to end up with an infinite loss. βT is drawn for p(βT|R, Q, 

Yt) but ensure the stability of VAR in each point of time (Cogley and Sargent, 2005).  

The reflecting barrier for stability can be encoded as an indicator function as below  

I(βT) = ∏ 𝐼(𝛽𝑠)𝑇𝑠=1  

The value of the function I(βs) varies between 0 and 1, when the roots of the associated VAR 

polynomial are inside the unit circle the value is 0 and it is equal to 1 otherwise. The stability 

restriction truncates and renormalises the random walk prior as follows 

p(βT,Q) ∞ I(βT) f(βT,Q). 
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The covariance matrix of the error term (vt) of time varying VAR, Rt has the time varying 

elements as I am allowing the time varying stochastic volatility. Following Blake and Mumtaz 

(2012), I prefer to present Rt in a simplistic way as follows 

Rt = At
-1Ht At

 -1'…………………………(3) 

Here, aij,t are the elements of a lower triangular matrix At and hi,t are the diagonal elements of 

a diagonal matrix Ht. For my three variables model, At and Ht can be presented as below 

At =     ( 1 0 0𝑎12,𝑡 1 0𝑎13,𝑡 𝑎23,𝑡 1)  

Here, aij,t = aij,t-1 + Vt ,…………………(4) 

Var(Vt) = D 

Ht =     (ℎ1,𝑡 0 00 ℎ2,𝑡 00 0 ℎ3,𝑡)  

I assume that diagonal elements of Ht are independent, univariate stochastic volatilities. The 

elements evolve as driftless geometric random walks 

lnhit = lnhit−1 +zi,t,  ……………………..(5) 

Var (zi,t) = gi  

zi,t=σiηit, for i = 1, ….. 3. 

Therefore, βt and aij,t are two sets of time varying coefficients in the model and the diagonal 

elements hit entail a stochastic volatility model for in the matrix Ht. It is assumed that the 

standard deviations (σi) evolve as geometric random walks in the stochastic volatility model, 

which establishes a substitute for ARCH models (Primiceri, 2004).  

For clarification purpose, it is worth noting the following relationship 

Atvt = εt 

Where, Var (εt) = Ht 

For the VAR consisting of three variables the relationship implies the following set of 

equations 

( 1 0 0a12,t 1 0a13,t a23,t 1) (v1,tv2,tv3,t) = (ε1,tε2,tε3,t) 

It is convenient to expand the above relationship as follows v1,t = ε1,t………………………………………………….…….. (6) v2,t= - a12,tv1,t + ε2,t; Var (ε2,t) = h2,t  ………………….……… (7) v3,t = - a13,tv1,t - a23,tv2,t + ε3,t; Var (ε3,t) = h3,t……..………... (8) 
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a12,t=a12,t-1 +V1t, Var (V1t) =  D1 ………………………..…….… (9) (a13,ta23,t) = (a13,t−1a23,t−1) +  (V2tV3t) , Var (V2tV3t)= D2 ……….…….…... (10) 

Therefore, aij,t are the time varying coefficients on regressions involving the VAR residuals. 

Here is the main difference between the specification of this paper and the one by Cogley and 

Sargent (2005) paper. They take At as constant over time while I am taking At as changing 

over time. It is crucial to allow the matrix At to vary in a time varying structural VAR because 

otherwise an innovation to the ith variable would make a time invariant effect on the jth variable. 

Hence, to model time variation in a simultaneous equations set up, among variables 

simultaneous interactions are necessary (Primiceri, 2004). 

 

For permanent shifts in the innovation variance, the random walk specification is devised. 

Independent of one another and of the other shocks in the model, the volatility innovations zi,t 

are standard normal random variables. σi is a scale free parameter in the volatility innovations 

to determine their magnitude. Rt is a positive definite confirmed by the factorisation in equation 

(3) and log specification in equation (5). Correlation among the elements of vt is allowed 

because of the free parameters in At. The matrix At orthogonalizes vt, however, this is not 

considered as an identification scheme. 

 

Cogley and Sargent (2005) found that with the stability condition imposed the ordering of the 

variables in the VAR model has little evidence of differences in posterior estimate of Q and 

hence shifting drift in βt. As specification of model in this paper is mostly similar to that of 

Cogley and Sarget (2005), I have not cared much about the ordering of the variables. 

 

In drawing posterior, I cannot apply Carter and Kohn algorithm only because observation 

equation in my state space model is non-linear in the state variable hit. As stochastic volatility 

hit makes the observation equation of the state space model, I need to use independence MH 

method as Jacquier, Polson, and Rossi (2004) suggested to apply this algorithm at each point 

in time to sample from the conditional distribution of hit rather than the carter and Kohn 

algorithm. MH method offers an alternative algorithm to Gibbs sampling when conditional 

distribution of the parameter is not available in the closed form. Thus this VAR model can be 

estimated by combining the Carter and Kohn algorithm to draw βt and aij,t, the independence 

Metropolis Hastings (MH) algorithm for the stochastic volatility. Time varying coefficients aij,t 
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(c) (Zt) (Zt-1) (Et) (A) 

(Square root of ∑,  A0) 

in the regression of VAR residual can be sampled similarly as βt as contain similar 

characteristics.  

 

3.2.Forecast using the model: IRF and FEVD 

The purpose of forming the model and algorithm is to calculate the impulse response function 

(IRF) of the three macroeconomic variables to the shock to policy variable and decompose the 

error variance. An impulse responses trace out the response of each of the variables, that is 

unemployment, inflation and interest rate, to a one-unit change in the current value of interest 

rate in the VAR errors. In calculating the impulse response, it is assumed that all other errors 

are equal to zero and the interest rate error returns to zero in subsequent periods. For calculating 

the impulse response the coefficients and error obtained from the above model for the selected 

variables can be presented as follows 

 

(𝑈𝑡𝐼𝑡𝐵𝑡)=  (𝐶1̂𝐶2̂𝐶3̂)  +  (𝛽11̂ 𝛽12̂ 𝛽13̂𝛽21̂ 𝛽22̂ 𝛽23̂𝛽31̂ 𝛽32̂ 𝛽33̂) (𝑈𝑡 − 1𝐼𝑡 − 1𝐵𝑡 − 1)  + (𝑣1𝑣2𝑣3)      

Var (𝑣1𝑣2𝑣3)=∑=A0'A0 

Before shock occurring assume Z0 is zero and �̂� is zero. 

Because Et are correlated rewrite the model in terms of orthogonalized shock to distinguish 

the shock effect.  

 

(𝑣1𝑣2𝑣3) =        (𝐴11 𝐴21 𝐴31𝐴12 𝐴22 𝐴32𝐴13 𝐴23 𝐴33)                        (µ1𝑡µ2𝑡µ3𝑡) 

So the VAR model become 

(𝑈1𝐼1𝐵1)=(000)+(𝛽11̂ 𝛽12̂ 𝛽13̂𝛽21̂ 𝛽22̂ 𝛽23̂𝛽31̂ 𝛽32̂ 𝛽33̂) ( 𝐼0𝑈0𝐵0) +  (𝐴11 𝐴21 𝐴31𝐴12 𝐴22 𝐴32𝐴13 𝐴23 𝐴33) (µ1µ2µ3) 

Or Zt = AZt-1 + A0Ut  ……………………(11) 

In the first period Z0 = ( 𝐼0𝑈0𝐵0) is assumed to be 0. 

So if shock is given in period 0 it is transmitted as  

(Ut: Uncorrelated/ orthogonal shocks) 
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2
2

(𝑈1𝐼1𝐵1)=(000)+(𝛽11̂ 𝛽12̂ 𝛽13̂𝛽21̂ 𝛽22̂ 𝛽23̂𝛽31̂ 𝛽32̂ 𝛽33̂) (𝑈0𝐼0𝐵0) + (𝐴11 𝐴21 𝐴31𝐴12 𝐴22 𝐴32𝐴13 𝐴23 𝐴33) (001) 

=  (𝐴31𝐴32𝐴33) 

The given shock in period 0 is transmitted to period 2 as 

(𝑈2𝐼2𝐵2)=(𝛽11̂ 𝛽12̂ 𝛽13̂𝛽21̂ 𝛽22̂ 𝛽23̂𝛽31̂ 𝛽32̂ 𝛽33̂) (𝑈1𝐼1𝐵1) 

(𝑈2𝐼2𝐵2)=(𝛽11̂ 𝛽12̂ 𝛽13̂𝛽21̂ 𝛽22̂ 𝛽23̂𝛽31̂ 𝛽32̂ 𝛽33̂) (𝐴31𝐴32𝐴33)  =  (𝐴31𝛽11̂ + 𝐴32𝛽12̂ + 𝐴33𝛽13̂𝐴31𝛽21̂ + 𝐴32𝛽22̂ + 𝐴33𝛽23̂𝐴31𝛽31̂ + 𝐴32𝛽32̂ + 𝐴33𝛽33̂) 

and so on 

Therefore, the impulse response for shock in period 0 is cumulated in future as  

Period Unemployment (U) Inflation (I) Interest rate (B) 

1 A31 A32 A33 

2 𝐴31𝛽11̂ + 𝐴32𝛽12̂ + 𝐴33𝛽13̂ 𝐴31𝛽21̂ + 𝐴32𝛽22̂ + 𝐴33𝛽23̂ 𝐴31𝛽31̂ + 𝐴32𝛽32̂ + 𝐴33𝛽33̂ 

…… ……. ……. ……. 

 

FEVD traces out the percentage of the variance of the error made in forecasting a variable due 

to a specific shock to the error term in the bank rate equation at a given horizon, for this model 

the horizon is 10 years or 40 quarters. Error variance decomposition can be represented as 

follows for a two period simplified version. 

The two period ahead forecast, for example, is presented as   Ẑt+1 = c + AZt Ẑt+2 = c + AẐt+1 = c + A (c + AZt) = c + Ac + A2Zt 

The true value Zt+2 and the estimated value Ẑt+2 will be different because of future shock U2. 

The FEVD calculates the degree of importance of the shocks in driving the variance of the 

forecast error. We need to calculate the actual Zt+2 for calculating the FEVD.  

Zt+1 = c + AZt + A0Ut+1 

Zt+2 = c + AZt+1 + A0Ut+2 = c + A (c + AZt + A0Ut) + A0Ut+2 = c + Ac + A2Zt + AA0Ut+1+ A0Ut+2  

…………………… 

Zt+40 = ……………. 

The forecast error is for two period 
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ζ = Zt+2 - Ẑt+2 = AA0Ut+1 + A0Ut+2 

 

Var (ζ)= [AA0]2 Var (Ut+1)+ [A0]2 Var (Ut+2) =[AA0(IRF periodd2) ]2+ [A0 (IRF period1)]2 

Var (ζ (i)) is the cumulative sum of the square of the impulse response to shock i   

Mean square error (mse) is the total variance in the model due to all the shocks in in the model.  

mse= Var (ζ(I)) + Var (ζ(U)) + Var (ζ(B)) 

FEVD here is the variance of the error made in forecasting three variables due to a specific 

shock to the error term in all variables at the given 40 quarters horizon. 

Therefore, the FEVD for i variable is  

FEVD (i) = Var (ζ(i)) / mse  

 

3.3.Bayesian inference 

This paper estimates the state space model with time varying state variables. I have used 

Bayesian methods to evaluate the posterior distributions of the parameters to deal with 

unobservable components. A Bayesian approach is the commonly used when the parameters 

and shocks are less clearly distinctive than in other situations. Primiceri (2004) mentions three 

other factors favouring the suitability of Bayesian methods for estimating this type of models 

and prefers Bayesian to classical approach. a) The classical maximum likelihood estimator of 

the variance generates pile-up problem that gives a point mass at zero in case of small variance 

of the time varying coefficients; b) There is high chance of getting a likelihood with multiple 

peaks in classical model when there are high dimensionality and nonlinearity in the parameter. 

In addition to the possibility of the peaks being uninteresting or implausible regions of the 

parameter space, the likelihood may reach particularly high values if peaks are very narrow. 

Consequently, the representative may not fit on a wider and interesting parameter region; c) 

Though in principle it is possible to write up the likelihood of the model, in reality maximising 

the functions over such a high dimensional space is a difficult task. In a Bayesian setting the 

use of uninformative priors of the parameter space on reasonable regions helps effectively to 

rule out these misbehaviours. Bayesian method splits the original estimation problem in smaller 

and simpler one, and hence is efficient to deal with the high dimensional parameter space and 

the nonlinearities.  

 

In this study, I have used Gibbs sampler for numerical evaluation of posterior of the parameters. 

Due to the non-linearity of state space model derived from the stochastic volatility maximum 
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likelihood estimation entails heavy computational burden to repeat the filtering for many times 

in evaluating the likelihood function for each set of parameters until reach at maximum. In such 

situation MCMC method provides a precise and efficient estimation. A particular variant of 

MCMC methods, Gibbs sampling draws from lower dimensional conditional posteriors as 

opposed to the high dimensional joint posterior of the whole parameter set. Being a smoothing 

method MCMC generates smoothed estimates, that is, the estimates of the parameters is based 

on the entire available set of data. However, the appropriateness of smoothed estimates 

compared to filtered ones cannot be established apriori, but depends on the specific problem 

we are dealing with. For constructing model diagnostics or forecasting evaluation, filtered 

estimates are more appropriate but smoothed estimates are more efficient for investigating the 

true evolution of the unobservable states over time. In such cases, filtered estimates are 

inappropriate but smoothed one as they may have transient variation even if the model is time 

invariant. 

The history of a variables MT in generic vector up to a time period T can be expressed as  

MT = [m1׳,…………. m׳T ] ׳  

In this model the representation is as follows  

YT = [y1׳,…………. y׳T ]׳ and 

HT =     ( ℎ11 ℎ21 ℎ31ℎ12 ℎ22 ℎ32…ℎ1𝑇 …ℎ 2𝑇 …ℎ 3𝑇)  

YT and HT represent the history of data and stochastic volatilities up to date T respectively. 

I shall use MCMC methods to simulate the posterior density. ηit and εt are assumed to be 

independent in this stochastic volatility model to simplify the algorithm greatly for simulating 

the posterior distribution. 

 

4. Data and Sources (1971:Q1-2016: Q4) 

For this research, I have collected data for all three variables from the Central Bank, BoE. The 

interest rate variable is captured by the quarterly average of monthly bank rate series. The Bank 

rate is considered as the single most important interest rate in the UK, which is set usually eight 

times a years by the Monetary Policy of Committee of the Central Bank. The BoE adjusts bank 

rate in order to reach the inflation target (BoE website). The inflation is captured as CPI 

inflation rates for wedge adjustment, and the unemployment is labour force survey 

unemployment rate. All variables are quarterly for the period 1971-2016, from first quarter 

1971 to fourth quarter 2016. Therefore total number of observation is 184. 
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Figure1 presents the trend of the variables from first quarter of 1971 to fourth quarter of 2016. 

The figure shows that in the first half of the sample period inflation was very high at some 

points and more volatile. Unemployment and interest rate were also high with comparatively 

more volatility than the second half of the observation period. While over the whole period 

unemployment trend is nearly unchanged, both interest rate and inflation followed downward 

trends, shown in the dotted linear trend line. In the first half of the period, it seems 

unemployment and inflation broadly followed opposite direction while in the latter half 

observes similar direction. The naked eye observation in this figure is that the unemployment 

in general follows a standard natural rate path that is not much volatile and inflation follows 

the similar path of the interest rate. 

 

Figure 1: Data plotting and linear trend line for 1971Q1-2016Q4 

 

Source: Author's presentation from the dataset 

 

Descriptive statistics of the variables are presented in the Table1. For the 184 observations, 

interest rate observed the highest mean followed by unemployment and inflation. The largest 

difference between maximum and minimum value is observed for inflation (25.06 percentage 

point), the difference for interest rate is 16.75 percentage point and for unemployment is 8.50 

percentage point. In the same token the largest standard deviations is for inflation followed by 
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interest rate and unemployment. The highest unemployment was in 1984Q2 and lowest in 

1973Q4, the highest inflation rate was observed in 1973Q3 and lowest in 2015Q2. Since 

2009Q2 bank rate has been fixed at 0.50. 

 

Table 1: Descriptive Statistics of the Variables 

Variables Observation Mean Std. Dev. Min Max 

Unemployment rate 184 7.08 2.33 3.40 11.90 

Inflation rate 184 5.34 5.09 - 0.02 25.04 

Interest rate 184 7.17 4.45 0.25 17.00 

Source: Authors calculation from dataset 

 

5. Estimation Framework  

For estimating the time-varying parameters in the VAR model, the Gibbs and MH algorithm 

consists of the follows steps.  

Step1: Setting prior and obtaining starting values using the training sample 

Step2: Drawing βt conditional on At, Ht, and Q using the Carter and Kohn algorithm; βt| At, Ht, 

Q. 

Step3: Sampling Q using the draw of βt; Qt| At, Ht, βt.  

Step4: Drawing aij,t the elements of At applying the Carter and Kohn algorithm; At| Ht, βt, Qt 

Step5: Calculating the residuals V1t, V2t, and V3t 

Step6: Calculating Atvt = εt 

Step7: Drawing gi 

Estimation framework in this section is mostly in line with Blake and Mumtaz (2012) as I have 

used heavily the contents of this book. 

 

5.1. Priors and ordering 

In Bayesian inference process, the priors are chosen depending on intuitiveness and 

convenience in the application. If the unknown parameter is θ, for example, the prior density 

need to be specified for the parameters., for instance, π(θ) 

π(θ|y) = 𝑓(𝑦|θ)π(θ)ʃ 𝑓(𝑦|θ)π(θ)dθ 

π(θ|y) is posterior distribution, f(y|θ) is the likelihood function for the data y. 

General practice is that the prior information concerning the unknown parameter is updated by 

observing the data y (Nakajima, 2011). Assuming the independence of initial states for the 
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coefficients, covariance and log volatilites, and hyperparameters is convenient (Primiceri, 

2004). I assume the hyperparameters and initial states are independent across blocks, as a result, 

the joint prior can be expressed as the product of marginal priors as follows 

p(β0, h10, h20, h30) 

=p(β0) p(h10) p(h20) p(h30) p(Q0) p(σ1) p(σ2) p(σ3)                       

Normal distribution is assumed for the priors for initial states of the time varying coefficients 

p(β0), simultaneous relations p(a0), and standard errors p(σ0). These assumptions together 

with (3), (4) and (5) imply normal priors on the entire sequences of the β’s, a’s and σ’s 

(conditional on Q, D and g). 

As a typical practice in setting the prior, I calibrate the prior distributions using the 

observations of first 10 years (40 observations, from 1971: Q3 to 1981: Q2) as a training 

sample. β0 is estimated from a standard fixed coefficient VAR applying OLS for the initial 

small sample, β0 = (X'0tX0t)-1 (X'0tX0t) and the coefficient covariance matrix is given by P0|0 = 

∑0⊗(X'0tX0t)-1, where X0t = {Y0t-1,…Y0t-p, 1},  ∑0=
(𝑌0𝑡−𝑋𝑜𝑡𝛽0)׳(𝑌0𝑡−𝑋𝑜𝑡𝛽0)𝑇0−𝐾 . I set the prior for 

Q, D and hij,t as follows. 

 

I begin with setting a prior for Q and starting values for the Kalman filter. The marginal prior 

p(Q) for a multivariate model makes Q an inverse-Wishart variate, p(Q) ~ IW(Q0,T0). The prior 

of Q influences the amount of time variation in the VAR model, a large value of the scale 

matrix Q0 would mean more fluctuation in the βt. Therefore, it is critical to fix prior in a 

prudential way. Inverse-Wishart prior distributions need the degrees of freedom and scale 

matrices of the hyperparameters. The scale matrix Q0 is set equal to P0|0*T0*τ, here τ is a scaling 

factor. Sometimes a small number τ=3.5*10-4 is used to reflect the fact the training sample in 

typically short and the resulting estimates of P0|0 may be imprecise. Varying τ can control the 

amount of time-variation in the model. Set the starting value for Q, the initial state is set equal 

to β0|0 = vec(β0)׳ and the initial state covariance is given by P0|0. 

 

After Q, I set the prior for D1 and D2; the prior for D1 is inverse Gamma p(D1) ~ IG (D10, T0) 

and the prior for D2 is inverse Wishart p(D2) ~ IW (D20, T0). Following Benati and Mumtaz 

(2006) I use D10=0.001 and D20=(0.001 00 0.001). I take C = ∑0
1/2 and C0 as the inverse of the 

matrix C that has the diagonal elements normalised to 1. The initial state is aij,0|0 for aij,t values. 

The aij,t is the non-zero elements of C0 and as in the Benati and Mumtaz (2006), the variance 

of the initial state set equal to abs(aij)*10. Set a starting value for aij,t. 
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I obtain a starting value for hi,t, i=1..3 and t=0….T as 𝑣𝑖�̂�2. I set the prior 𝑢�̅�, 𝜎. Here, 𝑢�̅� can be 

set equal to the log of the ith element of the diagonal of ∑0 and 𝜎 to a large number. Set an 

inverse Gamma prior for gi like p(gi) ~ IG(g0, v0). Set the starting value for gi. 

 

Usually, the degrees of freedom are set to the dimension of each matrix plus one. Degrees of 

freedom are chosen differently because for proper inverse-Wishart distribution the degrees of 

freedom need to exceed the dimension respectively to g and the blocks of A. Because a slightly 

tighter prior is necessary in order to avoid implausible behaviours of the time varying 

coefficients, I take the size of the initial subsample 40 as the degrees of freedom Q. Following 

the literature (Cogley and Sargent, 2005, Cogley, 2003, Primicery, 2004), I have chosen the 

scale matrices, Q, gi, D1 and D2, as constant fractions of the variances of the corresponding 

OLS estimates on the initial subsample. 

 

5.2.Simulation method and model estimation 

Given the data, the model is estimated by simulating the distribution of the required parameters. 

Applying the MCMC algorithm a sample from the joint posterior of βT, AT and HT has been 

generated. In exploiting the blocking structure of the unknowns Gibbs sampling has been used 

in order. Gibbs sampling is carried out in four steps, drawing time varying coefficients (βT), 

simultaneous relations (AT ), volatilities (HT) and hyperparameters (Q and R) conditional on 

the observed data and the rest of the parameters in turn. The following steps has been followed 

to draw the posterior distribution for the parameter of interest  

 

Draw βt conditional on At, Ht and Q using the Carter and Kohn algorithm. The only difference 

of the algorithm in drawing βt from the VAR with and without time varying stochastic volatility 

is that in time varying case the variance of vt changes at each point in time and this needs to be 

taken into account when run the Kalman filter. The detailed algorithm for drawing βt from 

Carter and Kohn algorithm is presented in Appendix A1. 

 

Using the draw for βt, I calculate the residuals of the transition equation βt - βt-1 = et. Then with 

the help of the scale matrix et׳et + Q0 and degrees of freedom T + T0, sample the Q from the 

inverse-Wishart distribution. The innovation variance Q in the unrestricted transition equation 

for VAR parameters is influential in determining the movement of βt, larger values Q imply 

rapid movements in βt, smaller values mean a slower rate of drift, and Q=0 gives a time-
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invariant model. The stability constraint pushes the system away from the unit root boundary 

and amplifies evidence for drift in βt. With imposition of stability condition, posterior mean 

estimates for Q are smaller, and withdrawal of the stability prior increases the rate of drift in 

βt. I have imposed the stability condition in the estimation process. 

 

Conditional on βt, Ht, D1 and D2, I draw the elements of At, aij,t, using the Carter and Kohn 

algorithm. The state space formulation for a12,t are (7), (9) and the state space formulation for 

a13,t and a23,t are (8), (10). These two formulations are time varying regressions in the residuals 

and the Carter and Kohn algorithm is applied similarly as βt to each separately for drawing a12,t 

a13,t and a23,t. 

 

Conditional on a draw for a12,t a13,t and a23,t calculate the residuals V1t, V2t and V3t. Draw D1 

from the inverse-Gamma distribution with scale parameter 
V1t`V1t+D1,02  and degrees of freedom 

T+T0. Draw D2 from the inverse-Wishart distribution with scale matrix V2t
 V2t + D20 and׳

degrees of freedom T+T0. 

Using the draw of At calculate εt = Atvt where εt = (𝜀1𝑡𝜀2𝑡𝜀3𝑡). εt are contemporaneously 

uncorrelated. We can therefore draw hi,t for i=1…3 separately by merely applying the 

independence MH algorithm described above for each εt conditional on a draw for gi. The 

detailed distribution and algorithm are presented in Appendix A2. 

 

Conditional on a draw for hi,t for i = 1..3, draw gi from the inverse Gamma distribution with 

scale parameter 
(𝑙𝑛ℎ𝑖,𝑡−𝑙𝑛ℎ𝑖,𝑡−1)`(𝑙𝑛ℎ𝑖,𝑡−𝑙𝑛ℎ𝑖,𝑡−1)+𝑔02  and degrees of freedom 

𝑇+𝑣02 . This is the 

combination of MH and Gibbs sampling algorithm.  

 

The simulations are based on 50000 iterations of the Gibbs sampler, discarding the first 49000 

for convergence. From the total draw, the last 1000 draws provide an approximation to the 

marginal posterior distributions of the model parameters. The recursive means of the retained 

draws for the time-varying parameter VAR has been considered for checking convergence of 

the Gibbs sampler. The result is presented as three-dimensional surface diagram for the impulse 

response and for error variance decomposition. The samples run from 1971:Q1 to 2016:Q4. I 

have used two lags for the estimation. After taking 2 lags and 40 training sample the posterior 

density is drawn from 1981: Q3 to 2016: Q4.   
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6. Results  

Measuring the impulse response of the variables to monetary policy shocks is the primary focus 

in this research, so I reported the impulse response of the variables. The estimated impulse 

response to the shock and the estimated stochastic volatility are plotted in Figure 2.   

The surface diagram from Monte Carlo simulation gives some interesting response results. The 

impulse responses do not die out toward zero in the long forecast horizon ever after 10 years 

(40 quarters). This is more applicable for the unemployment rate, which never shows any 

indication of zero response. Interest and inflation rate response show a signal to end up with 

zero response in the later part of the impulse horizon. According to Mankiew (2001), for long-

run neutrality the estimated impulse response need to die out toward zero. The impulse 

response result generates draws some interesting observations here. Bernanke and Mihov 

(1998) do not highlight the large impact of monetary policy even after ten years on GDP in 

point estimates because the standard errors rise with the time horizon and thus for far enough 

the estimated impact becomes statistically insignificant. However, considering that if one does 

not approach the data with a prior view favouring long-run neutrality, one would not leave the 

data with that posterior, Mankiew (2001) emphasise the data's best guess that monetary shocks 

leave permanent scars on the economy. This research has been approached the data with a prior 

view.  

 

This result could be aligned with some well-supported category of research findings that there 

is no long run trade-off between unemployment and inflation, there is long run trade-off, there 

is short term relationship or even not. No trade-off view comes from one group of commonly 

accepted literature that takes monetary policy as insignificant in the long run. In this paper 

monetary policy shock is only responded by the unemployment rate and has little influence on 

the long run inflation rate. The co-movement of unemployment and inflation response to shock 

is in same direction up to certain horizon then inflation starts to fall but not unemployment. 

While current day researchers almost agreed on no long-run trade off between unemployment 

and inflation, most cases they accept the case of short run trade-off. However, at present this 

topic has been puzzling the researcher when both unemployment and inflation are low. The 

BoE adopted the principle of inflation targeting (IT) in October 1992 and the changes 

introduced in May 1997. The strategy has been successful in terms of keeping the UK inflation 

rates within the targets, however, other countries including USA, non-IT country has also been 

successful in this regards (Angeriz and Arestis, 2007; Goodfriend, 2007). In bare eye, I can see 

the relationship in different dimensions but whether they are significant or not is unknown at 
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this point. So it might not be the case why monetary policy can directly influence inflation or 

not. From the point that people set their expectation for inflation which influence the natural 

rate of unemployment, it is good to give an expectation benchmark for inflation through 

credible monetary policy target.  As Primiceri (2004) concludes, even though there is little 

evidence for a causal link between changes in systematic responses of interest rate, and the 

unemployment and inflation episodes, this is not a statement about neutrality of monetary 

policy. However, in this research, I do not make any specific conclusion about their relation, 

as I have not done any test for significance. 

 

Figure 2: Impulse response to an interest rate shock (top panel) and the estimated 

stochastic volatility (bottom panel) 

 

The bottom panel in the figure 2 presents the estimated stochastic volatility in the variables. 

Since 1990s volatilities in all the variables reduced profoundly except unemployment. The 

highest volatility in the unemployment is observed around 2010 which had been increasing 

since 2000s. Similar volatility appearances for inflation too. Highest volatility in interest rate 

is found in around 1985 and there is a small peak in recent time. For all three variables 

stochastic volatilities featured highest peak in recent time is around 2010, which is very much 
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the result of 2008 financial crisis. The estimated stochastic volatility has been highly reduced 

for interest rate and somewhat for the inflation. In contrary opposite has happened for 

unemployment. These pattern of stochastic volatility may makes response of unemployment to 

shock comparatively less reliable than the response of inflation. One of the reason of reducing 

stochastic volatility of inflation could be the monetary policy activism of targeting the inflation, 

while unemployment is responsive to different policy indirectly.  

 

FEVD is the related concepts to the impulse response function. FEVD represents the 

percentage of variance of the error made in forecasting a variable due to shock to the specific 

variable at the horizon of 10 years. The result suggests considerable interaction among the 

variables. FEVD shows that there is substantial part of error variation in the model due to the 

shocks even in the distant horizon, particularly in case of the interest rate. This indicates that 

the shocks are influential in the error variance in the forecast horizon. This variance 

decomposition is consistent with the variance decomposition of the Federal Funds interest rate 

in Stock and Watson (2001). 

 

Figure 3: Forecast error variance decomposition  

 

The MCMC algorithm is applied to calculate posterior using 50000 iterations and discarding 

first 49000 as burn-in. The recursive means presented in the figure (Appendix B) has been 

calculated every 20 draws for the retained draw for βt, hit and aij,t. The X-axis of each panel 

represents these parameterised vectorised, the Y-axis represents the draws. The recursive 
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means suggest convergence has almost taken place for βt and aij, as there is tiny fluctuations in 

the figure. However, the recursive mean for hit shows more fluctuations, probably needs more 

iteration for convergence. This is because here Jacquier, Polson, and Rossi (2004) suggested 

algorithm has been used which is a single-move algorithm so requires a large number of draws 

before convergence occurs. 

 

7. Conclusions  

By developing the MCMC algorithm for Bayesian VAR with stochastic volatility for the UK 

data between 1971 and 2016, I have calculated the impulse response of the variables to 

monetary policy shock. Estimated stochastic volatility and FEVD are useful as a supplement 

of the impulse response to understand the data behaviour and importance of shock to different 

variables in the forecast horizon. Bayesian VAR gives more precise estimation result compared 

to the classical VAR because it incorporates the prior in producing posterior. I allow both 

parameter and stochastic volatility to vary to capture the possible non-linearity or drifting 

coefficients in the model. To calibrate the state space model with both time varying parameter 

and stochastic volatility, I have applied the Carter and Kohn algorithm for parameters and MH 

algorithm for stochastic volatility in producing posterior densities.      

 

The calculated impulse response of unemployment, inflation and interest rate to the interest 

rate shock shows that the impulse response does not die out entirely toward zero at the 10 year 

horizon. Although estimated stochastic volatility is downward trending with some high picks 

for inflation and interest rate, this is upward trending for the unemployment. FEVD indicates 

that shock to the variables have a substantial effect on the error variance of the variables in the 

forecast horizon.  

 

However, as the methodological issue is the primary focus of this research, I have not 

conducted any significance test for the obtained result so do not draw the specific conclusion. 

Ample scope remains to apply and develop further this method in forecasting, determining 

relationships, exploring more the issues concerning methods, country experience and 

observation period. With some additional test, this research can be used to explain the effect of 

the shock to the economy and specify the relationship between unemployment and inflation.  
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APPENDICES 

 

Appendix A1: Drawing βt (conditional on At, Ht and Q) applying Kalman filter and 

Carter and Kohn algorithm 

We can compute the mean (𝛽𝑡|𝑡) and the variance (𝑃𝑡|𝑡) using the Kalman Filter. Kalman filter 

consists of the following equations which are evaluated recursively through time starting from 

an initial 𝛽0|0 and 𝑃0|0  𝛽𝑡|𝑡−1 = µ + 𝐹𝛽𝑡−1|𝑡−1  𝑃0|0= F𝑃𝑡−1|𝑡−1F` + Q  𝜂𝑡|𝑡−1= Yt - H𝛽𝑡|𝑡−1  𝑓𝑡|𝑡−1= H𝑃𝑡|𝑡−1H`+R 𝛽𝑡|𝑡 = 𝛽𝑡|𝑡−1 + 𝐾𝜂𝑡|𝑡−1  𝑃𝑡|𝑡 = 𝑃𝑡|𝑡−1 + 𝐾𝐻𝑃𝑡|𝑡−1  

K=𝑃𝑡|𝑡−1𝐻`f-1
t|t-1  

These equations for t=1,…….,T deliver  𝛽𝑇|𝑇 and 𝑃𝑇|𝑇 at the end of recursion. 

 

The conditional distribution of the state variable  

P(βT
|YT) = P(βT

|YT) ∏ 𝑓(𝛽𝑡|𝛽𝑡+1)𝑇−1𝑡=1  

βT~ 𝑁(𝛽𝑇|𝑇 , 𝑃𝑇|𝑇) 

βt|𝛽𝑡+1~ 𝑁(𝛽𝑡|𝑡,𝛽𝑡+1 , 𝑃𝑡|𝑡,𝛽𝑡+1) 

βT~ 𝑁(𝛽𝑇|𝑇 , 𝑃𝑇|𝑇)is already presented by Kalman filter. The computation of the mean and 

variance in 𝑁(𝛽𝑡|𝑡,𝛽𝑡+1 , 𝑃𝑡|𝑡,𝛽𝑡+1) requires 

βt|t, 𝛽𝑡+1 = 𝛽𝑡|𝑡 + 𝑃𝑡|𝑡𝐹`(FPt|tF`+Q)-1(𝛽𝑡+1-µ-F𝛽𝑡|𝑡 ) 

Pt|t, 𝛽𝑡+1 = 𝑃𝑡|𝑡 − 𝑃𝑡|𝑡𝐹`(FPt|tF`+Q)-1F𝑃𝑡|𝑡  
These are computed going backwards in time from period from t−1 to 1. 

Similar approach as βt in A1, just need to do separately for a12,t (conditional on βt, Ht, D1), and 

a13,t and a23,t (conditional on βt, Ht, D2) 
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Appendix A2: Drawing hit of Ht applying MH algorithm 

Conditional distribution of ht 

f (ht| h-t, yt)               (-t is all other dates than t) 

As the transition equation of the model is a random walk, the knowledge of ht+1 and ht−1 

contains all relevant information of ht. Therefore, ht can be simplified as 

f (ht| h-t, yt) = f (ht| ht-t, ht+1, yt) 

The density is 

f (ht| ht-t, ht+1, yt) = ht
-0.5 exp (-yt

2/2ht) * ht
-1 exp {(-lnht -µ)2/2σh} 

µ=(lnht+1 + lnht-1)/2 

σh= g/2 

Simplifying some algorithm, acceptance probability can be obtained 

α = {ht,new
-0.5 exp (-yt

2/2ht,new)}/ {ht,old
-0.5 exp (-yt

2/2ht,old)}  (see Blake and Mumtaz, 2012) 

Initial value of ht is h0, the prior lnh0~N(�̅�, 𝜎) and posterior for lnh0 is 

f (h0| h1) = h0
-1 exp {(-lnh0 -µ0)2/2σ0} 

here σ0 = 𝜎g/(𝜎+g) 

µ0 = σ0 {(�̅�/𝜎) + (lnh1/g)} 

Modified candidate generating density 

q(ΦG+1)= ht
-1 exp {(-lnht -µ)2/2σh} 

µ = lnht-1  

σh = g 

 

The steps of the MH algorithm for the stochastic volatility model consists of the following 

Step 1: Obtain a starting value for ht, t = 0….T as 𝜀̂2 and set the prior �̅�, 𝜎. Set an inverse 

Gamma prior for g. Set starting value for g. 

Step 2: Time 0, Sample the initial value of ht denoted by h0 from the log normal density 

f (h0| h1) = h0
-1 exp {(-lnh0 -µ0)2/2σ0} 

here 

Time 1 to T-1, For each date t=1 to T-1 draw a new value for ht from the candidate density  

q(ΦG+1)= ht
-1 exp {(-lnht -µ)2/2σh} and compute the acceptance probability 

Draw µ ~ U(0,1). If µ< α set ht = ht,new, otherwise retain old draw. 

Time T:for the last period t=T compute µ = lnht-1 and σh = g and draw ht,new from the candidate 

density and compute the acceptance probability. Draw µ ~ U(0,1). If µ< α set ht = ht,new, 

otherwise retain old draw. 
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Appendix B: Recursive mean for the parameters in the model (Convergence) 

 

 

 

Appendix C: Matlab code 
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