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Abstract

I propose a Generalized Roy Model with sample selection that can be used to analyze
treatment effects in a variety of empirical problems. First, I decompose, under a monotonicity
assumption on the sample selection indicator, the MTR function for the observable outcome
when treated as a weighted average of (i) the MTR on the outcome of interest for the always-
observed sub-population and (ii) the MTE on the observable outcome for the observed-only-
when-treated sub-population, and show that such decomposition can provide point-wise sharp
bounds on the MTE of interest for the always-observed sub-population. Moreover, I impose
an extra mean dominance assumption and tighten the previous bounds. I, then, show how to
point-identify those bounds when the support of the propensity score is continuous. After that,
I show how to (partially) identify the MTE of interest when the support of the propensity score
is discrete. At the end, I estimate bounds on the MTE of the Job Corps Training Program
on hourly wages for the always-employed sub-population and find that it is decreasing with
the likelihood of attending the program for the Non-Hispanic group. For example, I find that
the ATT is between ✩.38 and ✩1.17 while the ATU is between ✩.73 and ✩3.14.
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1 Introduction

I propose a Generalized Roy Model (Heckman & Vytlacil (1999)) with sample selection

in which there is one outcome of interest that is observed only if the individual self-selects

into the sample. So, in addition to the fundamental problem of causal analysis in which I

only observe one of the potential outcomes due to endogenous self-selection into treatment,

I also face a problem of endogenous sample selection. Such framework is useful to analyze

many empirical problems: the effect of a job training program on wages (Heckman et al.

(1999), Lee (2009), Chen & Flores (2015)), the college wage premium (Altonji (1993), Card

(1999), Carneiro et al. (2011)), scarring effects (Heckman & Borjas (1980), Farber (1993),

Jacobson et al. (1993)), the effect of an educational intervention on short- and long-term

outcomes (Krueger & Whitmore (2001), Angrist et al. (2006), Angrist et al. (2009), Chetty

et al. (2011), Dobbie & Jr. (2015)), the effect of a medical treatment on health quality (CASS

(1984), Sexton & Hebel (1984), U.S. Department of Health and Human Services (2004)), the

effect of procedural laws on litigation outcomes (Helland & Yoon (2017)), and any randomized

control trial that faces an attrition problem (DeMel et al. (2013), Angelucci et al. (2015)).

For example, in the case of a job training program, I am interested in its effect on workers’

hourly wages (outcome of interest), but I only observe their hourly labor earnings (observable

outcome). Note that, in such context, I face two endogeneity problems: self-selection into the

training program and self-selection into employment.

Under a monotonicity assumption on the sample selection indicator, I decompose the

Marginal Treatment Response (MTR) function for the potential observable outcome when

treated as a weighted average of (i) the MTR on the outcome of interest for the sub-population

who is always observed and (ii) the Marginal Treatment Effect (MTE) on the observable

outcome for the sub-population who is observed only when treated. Under a bounded (in one

direction) support condition, such decomposition is useful because it allows me to propose

point-wise sharp bounds on the MTE on the outcome of interest for the always-observed sub-

population (MTEOO) as a function of the MTR functions on the observable outcome, the

maximum and (or) minimum of the support of the potential outcome, and the proportions
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of always-observed individuals and observed-only-when-treated individuals. I also show that

it is impossible to construct bounds without extra assumptions when the support of the

potential outcome is the entire real line. After that, I impose an extra mean dominance

assumption that compares the always-observed population against the observed-only-when-

treated population, tightening the previous bounds. Moreover, under this new assumption,

I show that those tighter bounds are also sharp and derive an informative lower bound even

when the support of the potential outcome is the entire real line.

I, then, proceed to show that those bounds are well-identified. When the support of the

propensity score is an interval, the relevant objects are point-identified by applying the local

instrumental variable approach (LIV, see Heckman & Vytlacil (1999)) to the expectations of

the observable outcome and of the selection indicator conditional on the propensity score and

the treatment status. However, in many empirical applications, the support of the propensity

score is a finite set. In such context, I can identify bounds on the MTEOO of interest by

adapting the nonparametric bounds proposed by Mogstad et al. (2018) or the flexible para-

metric approach suggested by Brinch et al. (2017) to encompass a sample selection problem.

When using the nonparametric approach, the bounds on the MTEOO of interest are simply

an outer set that contains the true MTEOO, i.e., they are not point-wise sharp anymore.

Partial identification of the MTEOO of interest is useful for two reasons. First, bounds

on the MTEOO can be used to shed light on the heterogeneity of treatment effects, allowing

the researcher to understand who benefits and who loses with a specific treatment. Such

knowledge can be used to optimally design policies that provide incentives to agents to take

a treatment. Second, bounds on the MTEOO can be used to construct bounds in any treat-

ment effect parameter that is written as a weighted integral of the MTEOO. For example, by

taking a weighted average of the point-wise sharp bounds on the MTEOO, one can bound the

average treatment effect (ATE), the average treatment effect on the treated (ATT), any local

average treatment effect (LATE, Imbens & Angrist (1994)) and any policy-relevant treat-

ment effect (PRTE, Heckman & Vytlacil (2001b)) for the always-observed sub-population.

Although such bounds may not be sharp for any specific parameter, they are a general and

3



easy-to-apply solution to many empirical problems. Therefore, if the applied researcher is

interested in a parameter that already has specific bounds for it (e.g., intention-to-treat treat-

ment effect (ITTOO) by Lee (2009) and local average treatment effect (LATEOO) by Chen

& Flores (2015) for the always-observed subpopulation), he or she should use a specialized

tool. However, if the applied researcher is interested in parameters without specialized bounds

(e.g., ATE, ATT and the Average Treatment Effect on the Untreated (ATU) in the case of

imperfect compliance), he or she may take a weighted integral of point-wise sharp bounds on

the MTEOO of interest. In other words, facing a trade-off between empirical flexibility and

sharpness, the partial identification tool proposed in this paper focus on empirical flexibility

while still ensuring some notion of sharpness.

At the end, I illustrate the usefulness of the proposed bounds on the MTEOO of interest

by analyzing the effect of the Job Corps Training Program (JCTP) on hourly wages for

the Non-Hispanic always-employed sub-population. My framework is ideal to analyze such

important experiment because it simultaneously addresses the imperfect compliance issue

(self-selection into treatment) by focusing on the MTE, and the endogenous employment

decision (sample selection) by using a partial identification strategy. Although my MTEOO

bounds are uninformative when using only the monotonicity assumption, they are tight and

positive under a mean dominance assumption, illustrating the identification power of extra

assumptions in a context of partial identification. Most interestingly, I find that the bounds

of the MTEOO on hourly wages are decreasing on the likelihood of attending the program,

implying that the agents who benefit the most from the JCTP are the least likely to attend

it. As a consequence of this result, my estimates suggest that ATU is greater than the ATT

for the always-employed subpopulation. Moreover, my bounds on the LATEOO are in line

with the estimates of Chen & Flores (2015) and the effect of the JCTP on employment is

positive for every agent according to the test proposed by Machado et al. (2018). Finally, as

a by product of my estimation strategy, I also find that the MTE on employment and hourly

labor earnings are decreasing on the likelihood of attending the JCTP.

I make contributions to three literatures: identification of treatment effects using an instru-
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ment, identification of treatment effects with sample selection, and the effect of job training

programs.

The literature about treatment effects with an instrument is enormous and I only briefly

discuss it. Imbens & Angrist (1994) show that we can identify the LATE. Heckman & Vytlacil

(1999), Heckman & Vytlacil (2005) and Heckman et al. (2006) define the MTE and explain

how to compute any treatment effect as a weighted average of the MTE. However, if the

support of the propensity score is not the unit interval, then it is not possible to recover some

important treatment effects, such as the ATE, the ATT and the ATU. A parametric solution

to this problem is given by Brinch et al. (2017), who identify a flexible polynomial function

for the MTE whose degree is defined by the cardinality of the propensity score support.

A nonparametric solution to the impossibility of identifying the ATE and the ATT is

bounding them. Mogstad et al. (2018) use the information contained on IV-like estimands

to construct non-parametrically worst- and best- case bounds on policy-relevant treatment

effects. Other authors focus on imposing weak monotonicity assumptions or a structural

model. In the first group, Manski (1990), Manski (1997) and Manski & Pepper (2000) propose

bounds for the ATE and ATT. Chen et al. (2017) propose an average monotonicity condition

combined with a mean dominance condition across subpopulation groups and sharpen the

bounds previously proposed. Huber et al. (2017) add a mean independence condition within

subpopulation groups and bound not only the ATE and ATT when there is noncompliance,

but also the Average Treatment Effect on the Untreated (ATU) and the ATE for always-takers

and never-takers (ATE-AT and ATE-NT).

Complementing the weak monotonicity approach, the structural approach has focused

mainly on the binary outcome case due to the need to impose bounded outcome variables.

Heckman & Vytlacil (2001a), Bhattacharya et al. (2008), Chesher (2010), Chiburis (2010),

Shaikh & Vytlacil (2011) and Bhattacharya et al. (2012) made important contributions to

this literature, bounding the ATE and the ATT. While Bhattacharya et al. (2008), Shaikh &

Vytlacil (2011) and Bhattacharya et al. (2012) consider a thresholding crossing model on the

treatment and the outcome variable, Chiburis (2010) assumes a thresholding crossing model
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only on the outcome variable.

I contribute to this literature about identifying treatment effects using an instrument by

extending the non-parametric approach by Mogstad et al. (2018) and the flexible parametric

approach by Brinch et al. (2017) to encompass a sample-selection problem. By doing so, I can

partially identify the MTE function on the outcome of interest instead of on the observable

outcome.

The literature about identification of treatment effects with sample selection is vast and

I only briefly discuss it. The control function approach is a possible solution to it and is

analyzed by Heckman (1979), Ahn & Powell (1993) and Newey et al. (1999), encompassing

parametric, semiparametric and nonparametric tools. Using auxiliary data is another pos-

sible solution and is studied by Chen et al. (2008). A nonparametric solution that requires

weaker conditions is bounding. In a seminal paper, Lee (2009) imposes a weak monotonicity

assumption on the relationship between sample selection and treatment assignment to sharply

bound the ITT for the subpopulation of always-observed individuals (ITTOO). Using tech-

niques developed by Frangakis & Rubin (2002), Blundell et al. (2007) and Imai (2008) and a

weak monotonicity assumption, Blanco et al. (2013a) bound the Intention-to-Treat Quantile

Treatment Effect for the always-observed individuals (Q − ITTOO). Moreover, by impos-

ing weak dominance assumptions across subpopulation groups, they can sharpen the ITTOO

bounds proposed by Lee (2009). Huber & Mellace (2015) additionally impose a bounded

support for the outcome variable and propose bounds on the ITT for two other subpopula-

tions: observed-only-when-treated individuals (ITTNO), and observed-only-when-untreated

individuals ITTON . Complementary to those studies, Lechner & Mell (2010) derive bounds

for the ITT and the Q-ITT for the treated-and-observed subpopulation, Mealli & Pacini

(2013) derive bounds for the ITT when the exclusion restriction is violated and there are two

outcome variables, and Behaghel et al. (2015) combines techniques developed by Heckman

(1979) and Lee (2009) to propose bounds for the ATE in a survey framework in which the

interviewer tries to contact the surveyed individual multiple times.

In the intersection of both literatures, a few authors address the problem of sample selec-
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tion and endogenous treatment simultaneously. Huber (2014) point-identifies the ATE and

the Quantile Treatment Effect (QTE) for the observed sub-population and for the entire pop-

ulation using a nested propensity score based on an instrument for sample selection. Fricke

et al. (2015) point-identify the LATE by using a random treatment assignment and a con-

tinuous exogenous variable to instrument for treatment status and sample selection. Lee &

Salanie (2016), who also include sample selection in a Generalized Roy Model, use two con-

tinuous instruments to provide control functions for the selection into treatment and sample

selection problems, allowing them to point-identify the MTE.

Although the three previous contributions are important, finding a credible instrument

for sample selection is hard, especially in Labor Economics. For this reason, it is important

to develop tools that do not rely on the existence of an instrument for sample selection.

Frolich & Huber (2014) point-identify the LATE under a predetermined sample-selection

assumption, ruling out an contemporaneous relationship between the potential outcomes and

the sample selection problem. Chen & Flores (2015) derive bounds for Average Treatment

Effect for the always-observed compliers (LATE-OO) by combining one instrument with a

double exclusion restriction with monotonicity assumptions on the sample selection and the

selection into treatment problems. Moreover, Blanco et al. (2017) and Steinmayr (2014)

extend the work by Chen & Flores (2015) by, respectively, considering a censored outcome

variable and analyzing mixture variables combining four strata.

I contribute to the literature about identification of treatment effects with sample selection

by partially identifying the MTE on the always-observed subsample allowing for a contempo-

raneous relationship between the potential outcomes and the sample selection problem, and

using only one (discrete) instrument combined with a monotonicity assumption. Doing so

is theoretically important, because it can unify, in one framework, the bounds for different

treatment effects with sample selection, and empirically relevant, because it allow us to par-

tially identify any treatment effect on the outcome of interest in many empirical problems.

For example, when analyzing the effect of a job training program on wages, it is important

to compare the ATT with the ATU in order to understand whether the workers who benefit
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the most from such policy are actually the ones who receive training.

The literature about job training programs is immense and I only briefly discuss it. Heck-

man et al. (1999) wrote an influential survey paper about it, summarizing its main results

and challenges. In particular, after a randomized experiment funded by the U.S. Department

of Labor in 1995, many papers were written about the effects of the Job Corps Training Pro-

gram, such as Schochet et al. (2001) and Schochet et al. (2008). They find that the ITT and

the LATE are positive for educational attainment (GED and vocational certificates), nega-

tive for criminal activity and, positive for employment and earnings beginning in the third

year after random assignment. With respect to the heterogeneity of treatment effects, their

most interesting result states that there were no employment or earnings effects for Hispanic

youths, a result that is further investigated by Flores-Lagunes et al. (2010). Complementing

those estimates, Chen et al. (2017) partially identifies the ATE and the ATT on earnings,

employment and welfare benefits, finding that they are positive for the first two variables and

negative for the last one. When analyzing heterogeneous treatment effects, their lower bounds

suggest that the treatment is more effective for a treated youth than for a randomly chosen

youth, while their upper bounds support the opposite conclusion.

Finally, the papers that are closer to mine were written by Lee (2009), Blanco et al.

(2013a) and Chen & Flores (2015), who analyze the effect of the Job Corps Training Program

on wages by focusing, respectively, on the ITT, the Q-ITT and the LATE parameters for

the always-observed sub-population. Lee (2009) rules out a zero effect after accounting for

the loss in labor market experience generated by the extra education acquired by Job Corps

participants. Blanco et al. (2013a) complement this analysis by finding that the statistically

significant Q−ITTOO for non-Hispanic youths is between 2.7% and 14% and relatively stable

across different quantiles, while the Q − ITTOO bounds for Hispanic youths are very wide

and include the zero. Chen & Flores (2015) find that the LATEOO on hourly wages four

years after randomization is between 5.7% and 13.9% for the entire population and between

7.7% and 17.5% for the non-Hispanic population under monotonicity and mean dominance

assumptions. Overall, all authors find positive results for the effects of the Job Corps Training
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Program.

I contribute to literature about the Job Corps Training Program by analyzing the MTE for

the Non-Hispanic group, allowing me to understand heterogeneous treatment effects over the

likelihood of attending the program. To summarize those results, I also compute estimates of

the ATEOO, the LATEOO, the ATTOO and the ATUOO. Moreover, I formally test whether

this training program has a monotone effect on employment by implementing the test proposed

by Machado et al. (2018) for the the non-Hispanic and Hispanic sub-populations. My empirical

results suggests that the agents who are more likely to benefit from the JCTP are the least

likely to attend the program.

This paper proceeds as follows: section 2 details the Generalized Roy Model with sample

selection; section 3 explains how to derive bounds for the MTEOO of interest; sections 4 and

5 discuss identification of the MTEOO bounds when the support of the propensity score is

continuous or discrete; and section 6 analyzes the effect of the Job Corps Training Program

on hourly wages. Finally, section 7 concludes.

2 Framework

I begin with the classical potential outcome framework by Rubin (1974) and modify it to

include a sample selection problem. Let Z be an instrumental variable whose support is given

by Z, X be a vector of covariates whose support is given by X , W := (X,Z) be a vector

that combines the covariates and the instrument whose support is given by W := X × Z, D

be a treatment status indicator, Y ∗
0 be the potential outcome of interest when the person is

not treated, and Y ∗
1 be the potential outcome of interest when the person is treated. The

outcome variable of interest (e.g., wages) is Y ∗ := D ·Y ∗
1 +(1−D) ·Y ∗

0 . Moreover, let S1 and

S0 be potential sample selection indicators when treated and when not treated, and define

S := D · S1 + (1−D) · S0 as the sample selection indicator (e.g., employment status). Define

Y := S · Y ∗ as the observable outcome (e.g., labor earnings). I also define Y1 := S1 · Y ∗
1

and Y0 := S0 · Y
∗
0 as the potential observable outcomes. Observe that, following Lee (2009)

and Chen & Flores (2015), my notation implicit imposes two exclusion restrictions: Z has no
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direct impact on the potential outcome of interest nor on the sample selection indicator. The

second exclusion restriction requires attention in empirical applications. On the one hand, it

may be a strong assumption in randomized control trials if sample selection is due to attrition

and initial assignment has an effect on the subject’s willingness to contact the researchers.

On the other hand, it may be a reasonable assumption in many labor market applications,

such as the evaluation of a job training program. For example, in my empirical section, it is

reasonable that the initial random assignment to the Job Corps Training Program (JCTP)

has no impact on future employment status.

I model sample selection and selection into treatment using the Generalized Roy Model

(Heckman & Vytlacil 1999). Let U and V be random variables, and P : W → R and

Q : {0, 1} × X → R be unknown functions. I assume that:

D := 1 {P (W ) ≥ U} (1)

and

S := 1 {Q (D,X) ≥ V } . (2)

As Vytlacil (2002) shows, equations (1) and (2) are equivalent to assuming monotonicity

conditions on the selection into treatment problem (Imbens & Angrist (1994)) and on the

sample selection problem (Lee (2009)). I stress that both monotonicity assumptions are

testable using the tools developed by Machado et al. (2018). Note also that, given equation

(2), S0 = 1 {Q (0, X) ≥ V } and S1 = 1 {Q (1, X) ≥ V }.

The random variables U and V are jointly continuously distributed conditional on X with

density fU,V |X : R2 ×X → R and cumulative distribution function FU,V |X : R2 ×X → R. As

is well known in the literature, equations (1) and (2) can be rewritten as

D = 1
{

FU |X (P (W ) |X ) ≥ FU |X (U |X )
}

= 1
{

P̃ (W ) ≥ Ũ
}

S = 1
{

FV |X (Q (D,X) |X ) ≥ FV |X (V |X )
}

= 1
{

Q̃ (D,X) ≥ Ṽ
}
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where P̃ (W ) := FU |X (P (W ) |X ), Ũ := FU |X (U |X ), Q̃ (D,X) := FV |X (Q (D,X) |X ), and

Ṽ := FV |X (V |X ). Consequently, the marginal distributions of Ũ and Ṽ conditional on X

follow the standard uniform distribution. Since this is merely a normalization, I drop the tilde

and mantain throughout the paper the normalization that the marginal distributions of U

and V conditional on X follow the standard uniform distribution and that (P (w) , Q (d, x)) ∈

[0, 1]2 for any (x, z, d) ∈ W × {0, 1}. I also assume that:

Assumption 1 The instrument Z is independent of all latent variables given the covariates

X, i.e., Z ⊥⊥ (U, V, Y ∗
0 , Y

∗
1 ) |X .

Assumption 2 The distribution of P (W ) given X is nondegenerate.

Assumption 3 The first and second population moments of the counterfactual variables are

finite, i.e., E [|Y ∗
d |] < +∞, E

[

(Y ∗
d )

2
]

< +∞, and E [|Sd|] < +∞ for any d ∈ {0, 1}.

Assumption 4 Both treatment groups exist for any value of X, i.e., 0 < P [D = 1 |X ] < 1.

Assumption 5 The covariates X are invariant to counterfactual manipulations, i.e., X0 =

X1 = X, where X0 and X1 are the counterfactual values of X that would be observed when

the person is, respectively, not treated or treated.

Assumption 6 The potential outcomes Y ∗
0 and Y ∗

1 have the same support, i.e., Y∗ := Y∗
0 =

Y∗
1 , where Y∗

0 ⊆ R is the support of Y ∗
0 and Y∗

1 ⊆ R is the support of Y ∗
1 .

Assumption 7 Define y∗ := inf {y ∈ Y∗} ∈ R ∪ {−∞} and y∗ := sup {y ∈ Y∗} ∈ R ∪ {∞}.

I assume that y∗ and y∗ are known, and that

1. y∗ > −∞, y∗ = ∞ and Y∗ is an interval, or

2. y∗ = −∞, y∗ < ∞ and Y∗ is an interval, or

3. y∗ > −∞, y∗ < ∞ and

(a) Y∗ is an interval or
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(b) y∗ ∈ Y∗ and y∗ ∈ Y∗.

I stress that assumption 7 is fairly general. Case 1 covers continuous random variables

whose support is convex and bounded below (e.g.: wages), while Case 3.a covers continuous

variables with bounded convex support (e.g.: test scores). Case 3.b encompasses not only

binary variables, but also any discrete variable whose support is finite (e.g.: years of educa-

tion). It also includes mixed random variables whose support is not an interval but achieves

its maximum and minimum. I also highlight that proposition 13 shows that assumption 7 is

partially necessary to the existence of bounds on the MTEOO of interest in the sense that, if

y∗ = −∞ and y∗ = +∞, then it is impossible to bound the marginal treatment effect on the

outcome of interest for the always-observed sub-population without any extra assumption.

Assumption 8 Treatment has a positive effect on the sample selection indicator for all in-

dividuals, i.e., Q (1, x) > Q (0, x) > 0 for any x ∈ X .

Assumption 8 goes beyond the monotonicity condition implicitly imposed by equation (2)

by assuming that the direction of the effect of treatment on the sample selection indicator

is known and positive, i.e., Q (1, x) ≥ Q (0, x) for any x ∈ X . In this sense, it is a standard

assumption in the literature.1 Most importantly, it is also a testable assumption using the tools

developed by Machado et al. (2018), because, under monotone sample selection (equation (2)),

identification of the sign of the ATE on the selection indicator provides a test for Assumption

8. However, Assumption 8 is slightly stronger than what is usually imposed in the literature,

because it additionally imposes Q (0, x) > 0 and Q (1, x) > Q (0, x) for any x ∈ X . I stress

that the first inequality implies that there is a sub-population who is always observed, allowing

me to properly define my target parameter — the marginal treatment effect on the outcome

of interest for the always-observed population (MTEOO). I also highlight that the second

inequality implies that there is a sub-population who is observed only when treated, making

the problem theoretically interesting by eliminating trivial cases of point-identification of the

MTEOO of interest as discussed in proposition 10. Finally, I emphasize that all my results can

1Lee (2009) and Chen & Flores (2015) write it in an equivalent way as S1 ≥ S0, while Manski (1997) and
Manski & Pepper (2000) call it the “monotone treatment response” assumption.
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be stated and derived with some obvious changes if I impose Q (0, x) > Q (1, x) > 0 for any

x ∈ X instead of Assumption 8, as it is done in Appendix C. I also discuss, in Appendix D, an

agnostic approach to monotonicity in the sample selection problem (equation (2)) and show,

in Appendix E, that bounds derived with non-monotone sample selection are uninformative

(i.e., equal to
(

y∗ − y∗, y∗ − y∗
)

) under mild regularity conditions.

In my empirical application, Assumption 8 imposes that the JCTP has a positive effect on

employment for all individuals, which is plausible given the objectives and services provided

by this training program. As discussed by Chen & Flores (2015), the two potential threats

against it — the “lock-in” effect (van Ours (2004)) and an increase in the reservation wage of

treated individuals — are likely to become less relevant in the long-run, justifying my focus

on the hourly wage after 208 weeks from randomization. Most importantly, this assumption

is formally tested by the method developed by Machado et al. (2018) and I reject, at the

1%-significance level, the null hypothesis that Assumption 8 is invalid for the Non-Hispanic

group.

Finally, in partial identification contexts, extra assumptions may have a lot of identification

power. In the specific case of identifying treatment effects with sample selection, it is common

to use mean or stochastic dominance assumptions to tighten the bounds on the parameter of

interest (Imai (2008), Blanco et al. (2013a), Huber & Mellace (2015) and Huber et al. (2017))

and justify them based on the intuitive argument that some population sub-groups have more

favorable underlying characteristics than others. In particular, I discuss the identifying power

of the following mean dominance assumption2:

Assumption 9 The potential outcome when treated for the always-observed sub-population is

greater than or equal to the same parameter for the observed-only-when-treated sub-population:

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≥ E [Y ∗

1 |X = x, U = u, S0 = 0, S1 = 1]

for any x ∈ X and u ∈ [0, 1].

2In appendix F, I derive bounds on the MTE of interest when the above inequality holds in the other
direction.
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Unfortunately, such assumption is empirically untestable, implying that its use must be jus-

tified for each application based on qualitative or theoretical arguments. In particular, in

my empirical application, it imposes that the marginal treatment response function of wages

when treated for the always-employed population is greater than the same object for the

employed-only-when-treated population. Similarly to the case discussed by Chen & Flores

(2015, section 2.3), Assumption (9) implies a positive correlation between employment and

wages, which is supported by standard models of labor supply.

3 Bounds on the MTEOO on the outcome of interest

The target parameter, the MTE on the outcome of interest for the sub-population who is

always observed (MTEOO), is given by

∆OO
Y ∗ (x, u) := E [Y ∗

1 − Y ∗
0 |X = x, U = u, S0 = 1, S1 = 1]

= E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]− E [Y ∗

0 |X = x, U = u, S0 = 1, S1 = 1]

(3)

for any u ∈ [0, 1] and any x ∈ X , and is a natural parameter of interest. In labor market

applications where sample selection is due to observing wages only when agents are employed,

it is the effect on wages for the subpopulation who is always employed. In medical applications

where sample selection is due to the death of a patient, it is the effect on health quality for

the subpopulation who survives regardless of the treatment status. In the education literature

where sample selection is due to students quiting school, it is the effect on test scores for the

subpopulation who do not drop out of school regardless of the treatment status. In all those

cases, the target parameter captures the intensive margin of the treatment effect.3

Other possibly interesting parameters are the MTE on the outcome of interest for the

sub-population who is never observed (E [Y ∗
1 − Y ∗

0 |X = x, U = u, S0 = 0, S1 = 0], MTENN ),

3If the researcher is interested in the extensive margin of the treatment effect, captured by the
MTE on the observable outcome (E [Y1 − Y0 |X = x, U = u ]) and by the MTE on the selection indicator
(E [S1 − S0 |X = x, U = u ]), he or she can apply the identification strategies described by Heckman et al.
(2006), Brinch et al. (2017) and Mogstad et al. (2018).
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the MTR function under no treatment for the outcome of interest for the sub-population

who is observed only when treated (E [Y ∗
0 |X = x, U = u, S0 = 0, S1 = 1], MTRNO

0 ) and MTR

function under treatment for the outcome of interest for the sub-population who is observed

only when treated (E [Y ∗
1 |X = x, U = u, S0 = 0, S1 = 1], MTRNO

1 ). While the last parameter

can be partially identified (Appendix B), the first two parameters are impossible to point-

identify or bound in a informative way because the outcome of interest (Y ∗
0 or Y ∗

1 ) is never

observed for the conditioning sub-populations. Note also that the sub-population who is

observed only when not treated (S0 = 1 and S1 = 0) do not exist by Assumption 8. I

also stress that the conditioning subpopulations in all the above-mentioned parameters are

determined by post-treatment outcomes and, as a consequence, are connected to the statistical

literature known as principal stratification (Frangakis & Rubin (2002)).

I, now, focus on the target parameter ∆OO
Y ∗ (x, u) given by equation (3). While subsec-

tion 3.1 derives bounds on the MTEOO of interest (equation (3)) using only a monotonicity

assumption (assumptions 1-8), subsection 3.2 tighten those bounds by additionally imposing

the Mean Dominance Assumption 9. Finally, subsection 3.3 discusses the empirical relevance

of such bounds.

3.1 Partial Identification with only a Monotonicity Assumption

Here, my goal is to derive bounds on ∆OO
Y ∗ (x, u) under assumptions 1-8. Note that the

second right-hand term in equation (3) can be written as4

E [Y ∗
0 |X = x, U = u, S0 = 1, S1 = 1] =

mY
0 (x, u)

mS
0 (x, u)

, (4)

where I define mY
0 (x, u) := E [Y0 |X = x, U = u ] and mS

0 (x, u) := E [S0 |X = x, U = u ] as

the MTR functions associated to the counterfactual variables Y0 and S0 respectively. In this

section, I assume that all terms in the right-hand side of equation (4) are point-identified,

postponing the discussion about their identification to sections 4 and 5.

4Appendix A.1 contains a proof of this claim.
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The first right-hand term in equation (3) can be written as5

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] =

mY
1 (x, u)−∆NO

Y (x, u) ·∆S (x, u)

mS
0 (x, u)

, (5)

where mY
1 (x, u) := E [Y1 |X = x, U = p ] is the MTR function associated to the counterfac-

tual variable Y1, ∆
NO
Y (x, u) := E [Y1 − Y0 |X = x, U = u, S0 = 0, S1 = 1] is the MTE on the

observable outcome Y for the sub-population who is observed only when treated, ∆S (x, u) :=

E [S1 − S0 |X = x, U = u ] = mS
1 (x, u) − mS

0 (x, u) is the MTE on the selection indicator,

and mS
1 (x, u) := E [S1 |X = x, U = u ] is the MTR function associated to the counterfactual

variable S1. In this section, I also assume that mY
1 (x, u) and ∆S (x, u) are point-identified,

postponing the discussion about their identification to sections 4 and 5.

Although point-identification of E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] is not possible, I can

find identifiable bounds for it.6

Proposition 10 Suppose that mY
0 (x, u), mY

1 (x, u), mS
0 (x, u) and ∆S (x, u) are point-identified.

Under Assumptions 1-6, 7.1 and 8, E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] must satisfy

y∗ ≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

. (6)

Under Assumptions 1-6, 7.2 and 8, E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] must satisfy

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤ y∗. (7)

Under Assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]

must satisfy

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]

≤
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

. (8)

5Appendix A.2 contains a proof of this claim.
6Appendix A.3 contains a proof of this proposition.
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There is a important remark to be made about the bounds of proposition 10. Note that,

even when the support is bounded in only one direction (assumptions 7.1 and 7.2), it is

possible to derive lower and upper bounds on E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1].

At this point, it is also important to understand the determinants of the width of those

bounds. First, if there is no sample selection problem at all (P [S0 = 1, S1 = 1 |X = x, U = u ] =

1), then mS
0 (x, u) = 1, ∆S (x, u) = 0, implying tighter bounds in equations (6) and (7) and

point-identification in equation (8). Second and most importantly, if there is no problem of dif-

ferential sample selection with respect to treatment status (P [S0 = 0, S1 = 1 |X = x, U = u ] =

0), then ∆S (x, u) = 0, once more implying tighter bounds in equations (6) and (7) and point-

identification in equation (8). Both cases are theoretically uninteresting and ruled out by

Assumption 8.

Finally, combining equations (3) and (4) and proposition 10, I can partially identify the

target parameter ∆OO
Y ∗ (x, u):

Corollary 11 Suppose that mY
0 (x, u), mY

1 (x, u), mS
0 (x, u) and ∆S (x, u) are point-identified.

Under Assumptions 1-6, 7.1 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (9)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (10)

Under Assumptions 1-6, 7.2 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (11)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (12)

Under Assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on ∆OO
Y ∗ (x, u) are
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given by

∆OO
Y ∗ (x, u) ≥ max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (13)

and that

∆OO
Y ∗ (x, u) ≤ min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (14)

Most importantly, I can show that7:

Proposition 12 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under Assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)) and 8,

the bounds ∆OO
Y ∗ and ∆OO

Y ∗ , given by corollary 11, are point-wise sharp, i.e., for any u ∈ [0, 1],

x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (15)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (16)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (17)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Intuitively, proposition 12 says that, for any δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, it is

possible to create candidate random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

that generate the candidate

marginal treatment effect δ (x, u) (equation (15)), satisfy the bounded support condition —

a restriction imposed by my model (Assumption 7) and summarized in equation (16) — and

7Appendix A.4 contains the proof of this proposition. Note that, if the functions mY
0 , mY

1 , mS
0 and ∆S are

point-identified only in a subset of the unit interval, then point-wise sharpness holds only in that subset.
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generate the same distribution of the observable variables — a restriction imposed by the

data and summarized in equation (17). In other words, the data and the model in section

2 do not generate enough restrictions to refute that the true target parameter ∆OO
Y ∗ (x, u) is

equal to the candidate target parameter δ (x, u).

Moreover, the bounded support condition (Assumption 7) is partially necessary to the

existence of bounds on the target parameter ∆OO
Y ∗ (x, u). When the support is unbounded in

both directions (i.e., y∗ = −∞ and y∗ = +∞), then it is impossible to derive bounds on the

target parameter ∆OO
Y ∗ (x, u) without any extra assumption. Proposition 13 formalizes this

last statement.8

Proposition 13 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and 8. If Y∗ = R, then, for any

u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (18)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (19)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (20)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

In other words, when the support of the potential outcome is the entire real line, the data

and the model in section 2 do not generate enough restrictions to refute that the true target

parameter ∆OO
Y ∗ (x, u) is equal to an arbitrarily large effect in magnitude. This impossibility

result is interesting in light of the previous literature about partial identification of treatment

effects with sample selection. In the case of the ITTOO (Lee (2009)) and the LATEOO (Chen

& Flores (2015)), it is possible to construct informative bounds even when the support of the

8Appendix A.5 contains the proof of this proposition.
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potential outcome is the entire real line. However, when focusing on a specific point of the

MTEOO function, it is impossible to construct informative bounds when Y∗ = R due to the

local nature of the target parameter.

There is one important remark about the results I have just derived. Note that propo-

sitions 12 and 13 do not impose any smoothness condition on the joint distribution of

(Y ∗
0 , Y

∗
1 , U, V, Z,X). In particular, the conditional cumulative distribution functions FV |X,U ,

FY ∗
0
|X,U,V and FY ∗

1
|X,U,V are allowed to be discontinuous functions of U at the point u. Ap-

pendix G states and proves a sharpness result similar to proposition 12 and an impossibility

result similar to proposition 13 when FV |X,U , FY ∗
0
|X,U,V and FY ∗

1
|X,U,V must be continuous

functions of U.

3.2 Partial Identification with an Extra Mean Dominance Assumption

Here, I use the Mean Dominance Assumption 9 to tighten the bounds on the target

parameter ∆OO
Y ∗ (equation (3)) given by corollary 11. Note that Assumption 9 implies that

∆NO
Y (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] by equations (A.4) and (A.5).

As a consequence, by following the same steps of the proof of corollary 11, I can derive:

Corollary 14 Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified.

Under Assumptions 1-6, 7.1, 8 and 9, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (21)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (22)

Under Assumptions 1-6, 7.2, 8 and 9, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (23)
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and that

∆OO
Y ∗ (x, u) ≤ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (24)

Under Assumptions 1-6, 7.3 (sub-case (a) or (b)), 8 and 9, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (25)

and that

∆OO
Y ∗ (x, u) ≤ min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (26)

When Y∗ = R and Assumptions 1-6, 8 and 9 hold, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (27)

and that

∆OO
Y ∗ (x, u) ≤ ∞ =: ∆OO

Y ∗ (x, u) . (28)

Notice that, under Mean Dominance Assumption 9, I can increase the lower bounds pro-

posed in corollary 11 under Assumption 7 and provide an informative lower bound even when

the support of the outcome of interest is the entire real line, a result in stark contrast with

proposition 13. These improvements clearly show the identifying power of the Mean Domi-

nance Assumption 9.

As in subsection 3.1, I assume thatmY
0 (x, u), mY

1 (x, u), mS
0 (x, u), mS

1 (x, u), and ∆S (x, u)

are point-identified, postponing the discussion about their identification to sections 4 and 5.

Now, using the above corollary, I can combine the sharpness and the impossibility results

of subsection 3.1 in one single proposition9:

Proposition 15 Suppose that the functions mY
0 , m

Y
1 , m

S
0 , m

S
1 and ∆S are point-identified

at every pair (x, u) ∈ X × [0, 1]. Under Assumptions 1-6, 8 and 9, the bounds ∆OO
Y ∗ and ∆OO

Y ∗ ,

9Appendix A.6 contains a proof of this proposition.
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given by corollary 14, are point-wise sharp, i.e., for any u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (29)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (30)

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

≥ E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 0, S̃1 = 1
]

, (31)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (32)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Note that, in addition to all the restriction imposed by proposition 12, the candidate

random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

must also satisfy an extra model restriction (equation (31))

associated to the Mean Dominance Assumption 9.

3.3 Empirical Relevance of Bounds on the MTEOO of Interest

Now, it is important to discuss the empirical relevance of partially identifying the MTEOO

of interest. First, bounds on the MTEOO can illuminate the heterogeneity of the treatment

effect, allowing the researcher to understand who benefits and who loses with a specific treat-

ment. This is important because common parameters (e.g.: ATEOO, ATTOO, ATUOO,

LATEOO) can be positive even when most people lose with a policy if the few winners have

very large gains. Moreover, knowing, even partially, the MTEOO function can be useful to

optimally design policies that provides incentives to agents to take some treatment. Second,

I can use the MTEOO bounds to partially identify any treatment effect that is described as

a weighted integral of ∆OO
Y ∗ (x, u) because

∫ 1

0

(

∆OO
Y ∗ (x, u)

)

· ω (x, u) du ≤

∫ 1

0
∆OO

Y ∗ (x, u) · ω (x, u) du
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≤

∫ 1

0

(

∆OO
Y ∗ (x, u)

)

· ω (x, u) du, (33)

where ω(x, ·) is a known or identifiable weighting function. Even though such bounds may

not be sharp for any specific parameter, they are a general and off-the-shelf solution to many

empirical problems. As a consequence of this trade-off, I recommend the applied researcher to

use a specialized tool if he or she is interested in a parameter that already has specific bounds

for it (e.g., ITT by Lee (2009) and LATE by Chen & Flores (2015)). However, I suggest the

applied research to easily compute a weighted integral of point-wise sharp bounds on the MTE

of interest if he or she is interested in parameters without specialized bounds (e.g., ATE, ATT

and ATU in the case with imperfect compliance). In other words, facing a trade-off between

empirical flexibility and sharpness, the partial identification tool proposed in this paper focus

on empirical flexibility while still ensuring point-wise sharpness of the bounds on the MTE of

interest.

Tables 1 and 2 show some of the treatment effect parameters that can be partially identified

using inequality (33). More examples are given by Heckman et al. (2006, Tables 1A and 1B)

and Mogstad et al. (2018, Table 1).

Table 1: Treatment Effects as Weighted Integrals of the Marginal Treatment Effect

ATEOO = E [Y ∗
1 − Y ∗

0 |S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) du

ATTOO = E [Y ∗
1 − Y ∗

0 |D = 1, S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) · ωATT (u) du

ATUOO = E [Y ∗
1 − Y ∗

0 |D = 0, S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) · ωATU (u) du

LATEOO(u, u) = E [Y ∗
1 − Y ∗

0 |U ∈ [u, u] , S0 = 1, S1 = 1] =
∫ 1
0 ∆OO

Y ∗ (u) · ωLATE (u) du
Source: Heckman et al. (2006) and Mogstad et al. (2018). Note: Conditioning on X is kept implicit in
this table for brevity.
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Table 2: Weights

ωATT (x, u) =

∫ 1
u
fP (W )|X (p |x) dp

E [P (W ) |X = x ]

ωATU (x, u) ==

∫ u

0 fP (W )|X (p |x) dp

1− E [P (W ) |X = x ]

ωLATE (x, u) =
1 {u ∈ [u, u]}

u− u
Source: Heckman et al. (2006) and Mogstad
et al. (2018).

4 Partial identification when the support of the propensity score is an

interval

Here, I fix x ∈ X and impose that the support of the propensity score, defined by

Px := {P (x, z) : z ∈ Z}, is an interval10. Then, under assumptions 1-5, the MTR functions

associated to any variable A ∈ {Y, S} are point-identified by11:

mA
0 (x, p) = E [A |X = x, P (W ) = p,D = 0]−

∂E [A |X = x, P (W ) = p,D = 0]

∂p
· (1− p) ,

(34)

and

mA
1 (x, p) = E [A |X = x, P (W ) = p,D = 1] +

∂E [A |X = x, P (W ) = p,D = 1]

∂p
· p (35)

for any p ∈ Px.

Finally, the point-wise sharp bounds on ∆OO
Y ∗ (x, p) are point-identified by combining equa-

tions (34) and (35), the fact that ∆S (x, p) = mS
1 (x, p)−mS

0 (x, p), and Corollaries 11 or 14.

10Px as an interval may be achieved by a continuous instrument Z or by the existence of independent
covariates (Carneiro et al. 2011).

11Appendix A.7 contains a proof of this claim based on the Local Instrumental Variable (LIV) approach
described by Heckman & Vytlacil (2005).
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5 Partial identification when the support of the propensity score is discrete

When the support of the propensity score is not an interval, I cannot point-identify

mY
0 (x, u), mY

1 (x, u), mS
0 (x, u), mS

1 (x, u), and ∆S (x, u) without extra assumptions, implying

that I cannot identify the bounds on ∆OO
Y ∗ (x, u) given by Corollaries 11 or 14. There are two

solutions for such lack of identification: I can non-parametrically bound those four objects

(Mogstad et al. (2018)) or I can impose flexible parametric assumptions (Brinch et al. (2017))

to point-identify them. While the first approach is discussed in subsection 5.1, the second one

is detailed in subsection 5.2.

5.1 Non-parametric outer set around the MTEOO of interest

For any u ∈ [0, 1] and x ∈ X , I can bound mY
0 (x, u), mY

1 (x, u), mS
0 (x, u), mS

1 (x, u), and

∆S (x, u) using the machinery proposed by Mogstad et al. (2018). To do so, fix A ∈ {Y, S}

and d ∈ {0, 1} and define the pair of functions mA :=
(

mA
0 ,m

A
1

)

and the set of admissible

MTR functions MA ∋ mA. Furthermore, fix (x, u) ∈ X × [0, 1] and define the functions

Γ∗
1 : M

Y → R, Γ∗
2 : M

Y → R, Γ∗
3 : M

S → R, Γ∗
4 : M

S → R and Γ∗
5 : M

S → R as:

Γ∗
1

(

m̃Y
)

= m̃Y
1 (x, u) + 0 · m̃Y

0 (x, u)

Γ∗
2

(

m̃Y
)

= 0 · m̃Y
1 (x, u) + m̃Y

0 (x, u)

Γ∗
3

(

m̃S
)

= 0 · m̃S
1 (x, u) + m̃S

0 (x, u)

Γ∗
4

(

m̃S
)

= m̃S
1 (x, u) + 0 · m̃S

0 (x, u)

Γ∗
5

(

m̃S
)

= m̃S
1 (x, u)− m̃S

0 (x, u) ,

and observe that Γ∗
1

(

mY
)

= mY
1 (x, u), Γ∗

2

(

mY
)

= mY
0 (x, u), Γ∗

3

(

mS
)

= mS
0 (x, u), Γ∗

4

(

mS
)

=

mS
1 (x, u), and Γ∗

5

(

mS
)

= ∆S (x, u). Moreover, define, for each A ∈ {Y, S}, GA to be a collec-

tion of known or identified measurable functions gA : {0, 1}×X×Z → R whose second moment

is finite. For each IV-like specification gA ∈ GA, define also βgA := E [gA (D,Z)A |X = x ].
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According to proposition 1 by Mogstad et al. (2018), the function ΓgA : MA → R, defined as

ΓgA

(

m̃A
)

= E

[∫ 1

0
m̃A

0 (X,u) · gA (0, Z) · 1 {p (W ) < u} du

∣

∣

∣

∣

X = x

]

+ E

[∫ 1

0
m̃A

1 (X,u) · gA (1, Z) · 1 {p (W ) ≥ u} du

∣

∣

∣

∣

X = x

]

,

satisfies ΓgA

(

mA
)

= βgA . As a result, mA must lie in the set MGA
of admissible functions

that satisfy the restrictions imposed by the data through the IV-like specifications, where:

MGA
:=
{

m̃A ∈ MA : ΓgA

(

m̃A
)

= βgA for all gA ∈ GA

}

.

Assuming thatMA is convex andMGA
6= ∅ for every A ∈ {Y, S}, proposition 2 by Mogstad

et al. (2018) ensures that:

inf
m̃Y ∈MGY

Γ∗
1

(

m̃Y
)

=: mY
1 (x, u) ≤ mY

1 (x, u) ≤ mY
1 (x, u) := sup

m̃Y ∈MGY

Γ∗
3

(

m̃Y
)

inf
m̃Y ∈MGY

Γ∗
2

(

m̃Y
)

=: mY
0 (x, u) ≤ mY

0 (x, u) ≤ mY
0 (x, u) := sup

m̃Y ∈MGY

Γ∗
2

(

m̃Y
)

inf
m̃S∈MGS

Γ∗
3

(

m̃S
)

=: mS
0 (x, u) ≤ mS

0 (x, u) ≤ mS
0 (x, u) := sup

m̃S∈MGS

Γ∗
3

(

m̃S
)

inf
m̃S∈MGS

Γ∗
4

(

m̃S
)

=: mS
1 (x, u) ≤ mS

1 (x, u) ≤ mS
1 (x, u) := sup

m̃S∈MGS

Γ∗
4

(

m̃S
)

inf
m̃S∈MGS

Γ∗
5

(

m̃S
)

=: ∆S (x, u) ≤ ∆S (x, u) ≤ ∆S (x, u) := sup
m̃S∈MGS

Γ∗
5

(

m̃S
)

(36)

As a consequence, I can combine Corollary 11 and inequalities (36) to provide a non-

parametrically identified outer set around ∆OO
Y ∗ (x, u):

Corollary 16 Fix u ∈ [0, 1] and x ∈ X arbitrarily.

Under assumptions 1-6, 7.1 and 8, the bounds of an outer set around ∆OO
Y ∗ (x, u) are given

by

∆OO
Y ∗ (x, u) ≥ y∗ −

mY
0 (x, u)

mS
0 (x, u)

, (37)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

. (38)
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Under assumptions 1-6, 7.2 and 8, the bounds of an outer set around ∆OO
Y ∗ (x, u) are given

by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

, (39)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

mY
0 (x, u)

mS
0 (x, u)

. (40)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds of an outer set around

∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ max

{

max

{

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

, y∗ − y∗

}

, (41)

and that

∆OO
Y ∗ (x, u) ≤ min

{

min

{

mY
1 (x, u)

mS
0 (x, u)

−
y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

}

−
mY

0 (x, u)

mS
0 (x, u)

, y∗ − y∗

}

. (42)

Note that I can obviously combine Corollary 14 and inequalities (36) to derive the bounds

of an outer set around ∆OO
Y ∗ (x, u) under the Mean Dominance Assumption 9. Moreover, I

stress that the cost of non-parametric partial identification of mY
0 (x, u), mY

1 (x, u), mS
0 (x, u),

mS
1 (x, u), and ∆S (x, u) is losing the point-wise sharpness of the bounds around the target

parameter ∆OO
Y ∗ . For that reason, Corollary 16 is stated in terms of bounds of an outer set

around ∆OO
Y ∗ (x, u), that contains the true target parameter ∆OO

Y ∗ (x, u) by construction.

5.2 Parametric identification of the MTEOO bounds

The fully non-parametric approach explained in subsection 5.1 may provide an uninfor-

mative outer set (e.g., equal to y∗−y∗ or y∗−y∗ when the support of the potential outcome is

bounded). In such cases, parametric assumptions on the marginal treatment response function

may buy a lot of identifying power. Although restrictive in principle, parametric assumptions

may be flexible enough to provide credible bounds on ∆OO
Y ∗ (x, u).

I fix x ∈ X and assume that the support of the propensity score P (x, Z) is discrete and
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given by Px = {px,1, . . . , px,N} for some N ∈ N. I could directly apply the identification

strategy proposed by Brinch et al. (2017) by assuming that the MTR functions associated to

Y and S are polynomial functions of U . However, this assumption is problematic for binary

variables, such as the selection indicator S. For this reason, I make a small modification to the

procedure created by Brinch et al. (2017): for d ∈ {0, 1} and A ∈ {Y, S}, the MTR function

is given by

mA
d (x, u) = MA

(

u,θA
x,d

)

(43)

for any u ∈ [0, 1], where ΘA
x ⊂ R

2L is a set of feasible parameters, L ∈ {1, . . . , N} is the

number of parameters for each treatment group d,
(

θ
A
x,0,θ

A
x,1

)

∈ ΘA
x is a vector of pseudo-

true unknown parameters, and MA : [0, 1] × R
2L → R is a known function. For example,

in the case of a binary variable, a reasonable choice of MA is the Bernstein Polynomial
(

MA
(

u,θA
x,d

)

=
∑L−1

l=0 θAx,d,l ·
(

L−1
l

)

· ul · (1− u)L−1−l
)

with feasible set ΘA
x = [0, 1]2L. In the

case of the selection indicator, the feasible set would be further restricted by Assumption

8 to ΘA
x =

{(

θ̃
A

x,0, θ̃
A

x,1

)

∈ [0, 1]2L : θ̃
A

x,1 ≥ θ̃
A

x,0

}

. I stress that the only difference between

the Bernstein polynomial model and the simple polynomial model proposed by Brinch et al.

(2017) is that it is easier to impose feasibility restrictions on the former model.

Back to the parametric model given by equation (43), I define the parameters
(

θ
A
x,0,θ

A
x,1

)

as

pseudo-true parameters in the sense that the parametric model in equation (43) is an approxi-

mation to the true data generating process via the moments E [A |X = x, P (W ) = pn, D = d ]

for any d ∈ {0, 1} and n ∈ {1, . . . , N}. Formally, I define

(

θ
A
x,0,θ

A
x,1

)

:= argmin
(

θ̃
A

x,0,θ̃
A

x,1

)

∈ΘA
x

N
∑

n=1













E [A |X = x, P (W ) = pn, D = 0]−

∫ 1
pn

MA
(

u, θ̃
A

x,0

)

du

1− pn





2

+



E [A |X = x, P (W ) = pn, D = 1]−

∫ pn
0 MA

(

u, θ̃
A

x,1

)

du

pn





2










.

(44)

Note that, to estimate parameters
(

θ
A
x,0,θ

A
x,1

)

, I can simply use the sample analogue of
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equation (44), i.e., I only have to estimate a constrained OLS regression whose restrictions are

given by the set ΘA
x . If the model restrictions imposed through the set of feasible parameters

ΘA
x are valid and L = N , then my parametric model collapses to the model proposed by

Brinch et al. (2017) and I find that12, for any pn ∈ Px,

E [A |X = x, P (W ) = pn, D = 0] =

∫ 1
pn

MA
(

u,θA
x,0

)

du

1− pn
(45)

E [A |X = x, P (W ) = pn, D = 1] =

∫ pn
0 MA

(

u,θA
x,1

)

du

pn
. (46)

I can, then, combine Corollary 11 and equations (43) and (44) to bound ∆OO
Y ∗ (x, u):

Corollary 17 Fix u ∈ [0, 1] and x ∈ X arbitrarily.

Under assumptions 1-6, 7.1 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥ y∗ −

MY
(

u,θY
x,0

)

MS
(

u,θS
x,0

) , (47)

and that

∆OO
Y ∗ (x, u) ≤

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) −
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) . (48)

Under assumptions 1-6, 7.2 and 8, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) −
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) , (49)

and that

∆OO
Y ∗ (x, u) ≤ y∗ −

MY
(

u,θY
x,0

)

MS
(

u,θS
x,0

) . (50)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on ∆OO
Y ∗ (x, u) are

12Appendix A.8 contains a proof of this claim.
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given by

∆OO
Y ∗ (x, u) ≥ max

{

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) , y∗

}

−
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) ,

(51)

and that

∆OO
Y ∗ (x, u) ≤ min

{

MY
(

u,θY
x,1

)

− y∗ ·
[

MS
(

u,θS
x,1

)

−MS
(

u,θS
x,0

)]

MS
(

u,θS
x,0

) , y∗

}

−
MY

(

u,θY
x,0

)

MS
(

u,θS
x,0

) .

(52)

Note that I can obviously combine Corollary 14 and equations (43) and (44) to bound

∆OO
Y ∗ (x, u) under the Mean Dominance Assumption 9.

6 Empirical Application: Job Corps Training Program

Active Labor Market Programs are a common way to possibly fight unemployment and

increase wages by providing public employment services, labor market training and subsidized

employment. Given their economic importance, they were extensively studied in the literature:

Heckman et al. (1999), Heckman & Smith (1999), Abadie et al. (2002) and van Ours (2004).

In particular, the Job Corps Training Program (JCTP) received great academic attention

(Schochet et al. (2001), Schochet et al. (2008), Flores-Lagunes et al. (2010), Flores et al.

(2012), Blanco et al. (2013a), Blanco et al. (2013b), Chen & Flores (2015), Chen et al. (2017),

Blanco et al. (2017)) due to its randomized evaluation funded by the U.S. Department of

Labor in the mid 1990’s.

For its social and academic importance, I focus on analyzing the Marginal Treatment Effect

of the JCTP on wages for the always-employed sub-population (MTEOO). This program

provides free education and vocational training to individuals who are legal residents of the

U.S., are between the ages of 16 and 24 and come from a low-income household (Schochet

et al. (2001) and Lee (2009)). Besides receiving education and vocational training, the trainees

reside in the Job Corps center, that offers meals and a small cash allowance.

In the mid 1990’s, the U.S. Department of Labor hired Mathematica Policy Resarch, Inc.,
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to evaluate the JCTP through a randomized experiment. According to Chen & Flores (2015),

eligible people who applied to JCTP for the first time between November 1994 and December

1995 (80,833 applicants) were randomly assigned into a treatment group and a control group.

People in the control group (5,977) were embargoed from the program for 3 years, while those

in the treatment group (74,856) were allowed to enroll in JC. However, in this randomized

control trial, there was non-compliance (selection into treatment) because some individuals

in the treated group decided not to participate in the program and some individuals in the

control group were able to attend the JCTP even though they were officially embargoed.

To evaluate the JCTP, I start by describing the dataset, providing summary statistics

and, most importantly, formally testing the assumptions that the potential treatment sta-

tus is monotone on the instrument (equation (1)) and that the potential employment (sample

selection status) is positively monotone on the treatment (Assumption 8) using the test elabo-

rated by Machado et al. (2018). I, then, estimate and discuss the marginal treatment responses

and effects on employment and labor earnings using the parametric tool developed by Brinch

et al. (2017). Finally, I estimate and discuss the bounds on the MTEOO on wages without

and with the mean dominance assumption (Assumption 9), given, respectively, by Corollaries

11 and 14.

6.1 Descriptive Statistics and the Monotonicity Assumptions

The National Job Corps Study (NJCS) sample contains 15,386 individuals — all 5,977

control group individuals and 9,409 randomly selected treatment group individuals. All of

them were interviewed at random assignment and at 12, 30 and 48 months after random

assignment. Following Lee (2009), I only keep individuals with non-missing values for weekly

earnings and weekly hours worked for every week after randomization (9,145). Following

Chen & Flores (2015), I also add to the dataset a dummy variable that is equal to one if the

individual was ever enrolled in the JCTP during the 208 weeks after random assignment. As

a consequence, I drop 51 observations with missing values for the enrollment variable. I stress

that this variable is my treatment dummy (D), while random treatment assignment is my
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instrument (Z).

The dataset contains information about demographic covariates (sex, age, race, marriage,

number of children, years of schooling, criminal behavior, personal income) and pre- and

post-treatment labor market outcomes (employment and earnings). Following Chen & Flores

(2015), hourly wages at week 208 are created by dividing weekly earnings by weekly hours

worked at that week, implying that a missing wage is equivalent to zero weekly hours worked.

I consider the person to be unemployed (S = 0) when the wage is missing and to be employed

(S = 1) when the wage is non-missing. Differently from Lee (2009) and Chen & Flores (2015),

who use log hourly wages as their main outcome variable, my outcome of interest (Y ∗) is the

level of the hourly wage because Assumption 7.1 requires that the support Y∗ has a finite

lower bound. As a consequence, the observable outcome Y is defined as hourly labor earnings.

Finally, I use the NJCS design weights in my empirical analysis because some subpopulations

were randomized with different, but known, probabilities (Schochet et al. (2001)).

Considering the results found by Flores-Lagunes et al. (2010), who focus on explaining

the negative but insignificant effects on employment and labor earnings for the Hispanic sub-

population, I separately analyze two subsamples from the NJCS sample: the Non-Hispanics

subsample and the Hispanics subsample. Table 3 shows descriptive statistics for both sub-

samples. Note that, as expected, the pre-treatment covariates are, on average, very similar

between the groups defined by the random treatment assignment. Consequently, both sub-

samples maintains the balance of baseline variables. When comparing Non-Hispanics and

Hispanics, I find numerically small differences with respect to the variables female, never

married, has children, ever arrested, has a job at baseline, and had a job, suggesting that it is

important to separately analyze those two groups.

Table 4 shows preliminary effects for the Non-Hispanic and the Hispanic subsamples.

The first row shows that a large number of individuals did not comply to their treatment

assignment. As is expected for any voluntary treatment, a large share of individuals (around

30% for both subsamples) decided not to take the treatment even though they were assigned

to the treatment group. There are also some individuals (5% among Non-Hispanics and 3%
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Table 3: Summary Statistics of Selected Baseline Variables

Non-Hispanic Sample Hispanic Sample
Z = 1 Z = 0 Diff. Z = 1 Z = 0 Diff.

Female .443 .454 -.011 .502 .473 .030
(.011) (.025)

Age at baseline 18.436 18.342 .095* 18.438 18.398 .040
(.049) (.109)

White .318 .318 .000 — — —
(.011)

Black .595 .592 .002 — — —
(.011)

Never married .926 .924 .002 .875 .874 .001
(.006) (.017)

Has children .186 .190 -.004 .201 .206 -.004
(.009) (.020)

Years of Schooling 10.137 10.115 .022 10.022 10.057 -.034
(.036) (.084)

Ever arrested .255 .257 -.002 .216 .211 .005
(.010) (.021)

Personal Inc.: <3000 .787 .788 -.001 .789 .794 -.005
(.010) (.022)

Has a job at baseline .204 .188 .016* .170 .211 -.041**
(.009) (.020)

A year before baseline:
Had a job .642 .627 .015 .601 .630 -.029

(.011) (.025)
Months employed 3.652 3.513 .140 3.344 3.616 -.272

(.098) (.214)
Earnings 2899.41 2795.62 103.79 2956.38 2885.47 70.91

(103.81) (477.08)
Observations 4554 2977 Total: 7531 942 621 Total: 1563

Note: Z indicates random treatment assignment. Standard errors are in parenthesis. ***, ** and * denote that
difference is statistically significant at the 1%, at 5% and 10% level, respectively. Estimation uses design weights.
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among Hispanics) who attended the JCTP even though their were embargoed. Moreover, the

instrument (treatment assignment) is clearly strong for both subsamples. When analyzing

the treatment effects and similarly to the previous literature (e.g.: Schochet et al. (2008),

Flores-Lagunes et al. (2010) and Chen & Flores (2015)), we find that the JCTP has a positive

and significant effect on Non-Hispanics and a negative but insignificant effect on Hispanics.

Table 4: Preliminary Effects

Non-Hispanic Sample Hispanic Sample
Z = 1 Z = 0 Diff. Z = 1 Z = 0 Diff.

Ever enrolled in JCTP .737 .047 .689*** .747 .028 .719***
(.008) (.016)

ITT estimates
Hours per week 28.06 25.54 2.52*** 26.63 27.30 -.670

(.60) (1.28)
Earnings per week 230.24 194.72 35.52*** 218.34 228.63 -1.29

(5.49) (12.68)
Employed .613 .564 .049*** .605 .607 -.002

(.011) (.025)
LATE estimates
Hours per week 3.66*** -.930

(.880) (1.78)
Earnings per week 51.52*** -14.31

(8.00) (17.64)
Employed .071*** -.003

(.016) (.034)
Note: Z indicates random treatment assignment. Outcome variables are measured at week 208 after
randomization. Standard errors are in parenthesis. ***, ** and * denote that difference is statistically
significant at the 1%, at 5% and 10% level, respectively. Estimation uses design weights.

This last result, particularly with respect to the employment status, is paramountly im-

portant for my analysis. Similarly to Lee (2009) and Chen & Flores (2015), I assume that

the effect of the treatment on employment (i.e., sample selection) is monotone and positive.

However, a negative effect of JCTP on employment is evidence against this assumption as

discussed by Flores-Lagunes et al. (2010) and Chen & Flores (2015). For this reason, it

important to formally test it. To do so, I implement the procedure developed by Machado

et al. (2018), that simultaneously tests instrument exogeneity (Assumption 1), monotonicity

of treatment take-up on treatment assignment (equation (1)) and monotonicity of employment

on the treatment (equation (2)). Their procedure also uses this last test as a gate-keeper to
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test that the effect of the treatment on employment is positive (Assumption (8)).

In a more detailed way, the test proposed by Machado et al. (2018) has three steps. In

the first step, the null hypothesis is that the instrument is not exogenous, or treatment take-

up is not monotone on treatment assignment, or employment is not monotone on treatment

take-up. As a consequence, the alternative hypothesis is that Assumption 1 and equations

(1) and (2) hold. In the second step, that is implemented only if the first step rejects its

null hypothesis, the second null hypothesis is that the effect of the treatment on employment

is non-positive. Consequently, its alternative hypothesis is that Assumptions 1 and 8 and

equations (1) and (2) hold. Finally, in the third step, that is implemented only if the second

step does not reject its null hypothesis, the third null hypothesis is that the effect of the

treatment on employment is non-negative. Consequently, its alternative hypothesis is that,

while Assumption 1 and equations (1) and (2) are valid, Assumption 8 holds in the opposite

direction (see Assumption C.1).

Table 5 shows the results of the test described above. For the Non-Hispanics subsample,

steps 1 and 2 reject their null hypotheses at the 1%-significance level, implying that Assump-

tions 1 and 8 and equations (1) and (2) are valid. Consequently, I can use Corollary 11 to

bound the MTEOO of the JCTP on wages for the Non-Hispanics subsample. For the His-

panics subsample, step 1 rejects its null hypothesis at the 1%-significance level, while neither

step 2 nor step 3 reject their null hypotheses at the 10%-significance level. As a consequence,

Assumption 1 and equations (1) and (2) are valid, but it seems that there is no effect of

the treatment on employment, i.e., S1 = S0 for all individuals. With no differential sample

selection for the Hispanic population, partial identification of the MTE of interest is trivial

as discussed immediately after proposition 10. For this reason, I focus my empirical analysis

on the Non-Hispanic subsample.
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Table 5: Testing the Identification Assumptions

Non-Hispanics Subsample Hispanics Subsample
Estimated Critical Value Estimated Critical Value

Test Statistic 10% 5% 1% Test Statistic 10% 5% 1%

Step 1 .282 .034 .039 .043 .308 .044 .047 .050
Step 2 .070 .033 .036 .039 -.003 .032 .036 .038
Step 3 -.070 .033 .036 .039 .003 .032 .036 .038

Note: The alternative hypothesis of step 1 is that Assumption 1 and equations (1) and (2) are
valid. The alternative hypothesis of step 2 is that Assumptions 1 and 8 and equations (1) and (2)
are valid. The alternative hypothesis of step 3 is that Assumptions 1 and C.1 and equations (1)
and (2) are valid. Critical values were computed using 10,000 bootstrap repetitions and are related
to the 10%, 5% and 1% significance levels. Estimation uses design weights.

6.2 MTR and MTE on Employment and Labor Earnings: Non-Hispanics

Sub-population

As a preliminary step to estimate the bounds on the MTEOO of the JCTP on hourly

wages for the Non-Hispanic subsample, I need to estimate the MTR functions on employment

and hourly labor earnings, i.e., I need to estimate the functions mS
0 , m

S
1 , m

Y
0 , and mY

1 . To

do so, I use the procedure described in Subsection 5.2, that adapts the method developed

by Brinch et al. (2017) to a constrained framework. Specifically, I model the MTR functions

of Y and S using Bernstein polynomials with four parameters, i.e., MA
(

u,θA
d

)

= θAd,0 ·

(1− u) + θAd,1 · u for any A ∈ {Y, S} and d ∈ {0, 1} with feasible sets ΘY = R
4
+ and ΘS =

{

(

θ
S
0 ,θ

S
1

)

∈ [0, 1]4 : θS
1 ≥ θ

S
0

}

. To estimate
(

θ
A
0 ,θ

A
1

)

. I run the following constrained OLS

model:13

A = aA0 · (1−D) + bA0 · (1−D) · P (Z) + aA1 ·D + bA1 ·D · P (Z) + e, (53)

where e is the error term, θA0,0 = aA0 − bA0 , θ
A
0,1 = aA0 + bA0 , θ

A
1,0 = aA1 , θ

A
1,1 = aA1 +2 · bA1 and the

constraints on
(

aA0 , b
A
0 , a

A
1 , b

A
1

)

are given by ΘA.

Tabel 6 reports the point-estimates and confidence intervals of the parametric models

for the MTR functions on employment and hourly labor earnings. Note that the feasibility

constraint θS1,0 ≥ θS0,0 is binding even though Assumption 8 is valid according to the test

13Appendix A.9 connects the above OLS model to the minimization problem (44) when the instrument is
binary and there are no covariates.
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proposed by Machado et al. (2018). Moreover, for the upper bound of the 90%-confidence

interval, the feasibility constraint θS1,0 ≤ 1 is also binding.

Table 6: Parametric MTR Functions: Non-Hispanic Subsample

Outcome Parameters for any for any A ∈ {Y, S}
Variable θA0,0 θA0,1 θA1,0 θA1,1

Employment (S)
0.46 0.66 0.46 0.89

[0.39, 0.47] [0.64, 0.71] [0.39, 0.47] [0.84, 1.00]

Labor Earnings (Y)
2.96 5.74 3.00 8.39

[1.45, 3.69] [4.98, 6.94] [2.20, 3.41] [7.54, 9.81]
Note: The MTR on Employment is given by MS

(

u,θS
d

)

= θSd,0 · (1− u) + θSd,1 · u

with feasibility set given by ΘS =
{(

θ
S
0 ,θ

S
1

)

∈ [0, 1]4 : θS
1 ≥ θ

S
0

}

. The MTR on Labor

Earnings is given by MY
(

u,θY
d

)

= θYd,0 · (1− u) + θYd,1 · u with feasibility set given

by ΘY = R
4
+. In brackets, I report 90%-confidence interval based on 5,000 bootstrap

repetitions. Estimation uses design weights.

It is easier to understand and interpret those estimate using Figure 1. The solid lines are

the point-estimates of the MTR and MTE functions based on the parameters reported in Table

6. The dotted lines are point-wise 90%-confidence intervals around the estimated functions

based on 5,000 bootstrap repetitions. Blue colored lines are associated with treated potential

outcomes, while red colored lines are associated with untreated outcomes. In Subfigure 1a, I

find that, although the employment probability for the agents who are most likely to attend

the JCTP is similar between treated and untreated individuals, the employment probability

for the agents who are less likely to attend the JCTP is much higher for treated individuals

than for untreated ones. As a consequence, the MTE on employment for the Non-Hispanic

subsample (Subfigure 1b) is a increasing function of the latent heterogeneity. Similarly, in

Subfigure 1c, I find that, although expected hourly labor earnings for the agents who are

most likely to attend the JCTP is similar between treated and untreated individuals, expected

hourly labor earnings for the agents who are less likely to attend the JCTP is much higher

for treated individuals than for untreated ones. As a consequence, the MTE on hourly labor

earnings for the Non-Hispanic subsample (Subfigure 1d) is a increasing function of the latent

heterogeneity.
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Figure 1: Parametric MTR and MTE Functions: Non-Hispanic subsample

(a) MTR on Employment
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(b) MTE on Employment
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(c) MTR on Labor Earnings
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(d) MTE on Labor Earnings
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Notes: The solid lines are the point-estimates of the MTR and MTE functions based on the parameters
reported in Table 6. The dotted lines are point-wise 90%-confidence intervals around the estimated functions
based on 5,000 bootstrap repetitions. Blue colored lines are associated with treated potential outcomes, while
red colored lines are associated with untreated outcomes. The vertical dashed lines represent the sample values
of the propensity score P [D = 1|Z]. Estimation uses design weights.
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6.3 Bounds on the MTEOO on Wages: Non-Hispanic Sub-population

To partially identify the MTEOO of the JCTP on wages for the Non-Hispanic subsample,

I can combine the functions estimated in Subsection 6.2 with Corollaries 11 and 14. I stress

that, while the first corollary imposes only assumptions that are valid by the experimental

design (Assumption 1), technical (Assumptions 3-7) or testable (Assumptions 2 and 8, and

equation 1), Corollary 14 additionally uses the Mean Dominance Assumption 9. This last

assumption imposes that the marginal treatment response function of wages when treated for

the always-employed population is greater than the same object for the employed-only-when-

treated population, implying a positive correlation between employment and wages, which is

supported by standard models of labor supply according to Chen & Flores (2015).

Another important issue when estimating bounds on a parameter of interest is that there

are two ways to construct confidence intervals. The conservative method finds the ζ-confidence

intervals around the upper and lower MTEOO bounds and, then, uses their upper most and

lower most bounds to construct a confidence interval that contains the identified region with

probability ζ. Since the parameter of interest has to be inside the identified region, such

confidence interval contain the parameter of interest with probability at least ζ. An alternative

method is proposed by Imbens & Manski (2004), who directly construct a ζ-confidence interval

that contains the parameter of interest. Since they take into account that the parameter of

interest has to be inside the identified region by construction, their confidence interval is

tighter than the conservative method.

Figure 2 shows the parametric bounds of the MTEOO on wages using Corollary 11 (Sub-

figure 2a) and using Corollary 14 (Subfigure 2b). The solid lines are the point-estimates of the

parametric bounds of the MTE on wages, while the dotted lines are point-wise conservative

90%-confidence intervals around the identified region based on 5,000 bootstrap repetitions

and the dashed lines (that are almost on top of the solid lines) are point-wise 90%-confidence

intervals of the parameter of interest (Imbens & Manski (2004)) based also on 5,000 bootstraps

repetitions.

As a way to understand the magnitude of the effects, I compare the estimated MTEOO
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bounds against the average observed hourly wage of the Non-Hispanics assigned to the con-

trol group, ✩7.72. Note that the bounds that do not use the mean dominance assumption

(Subfigure 2a) are implausibly negative. Even for the agents who are the least likely to attend

the JCTP, the lower bound of the MTEOO on wages (-✩6.51) imply that the JCTP would

drive their hourly wages almost to zero. Such implausibly negative lower bound is based on

the worst-case scenario of a perfectly negative correlation between employment and wages,

which is not supported by standard labor models as pointed out by Chen & Flores (2015).

By imposing the Mean Dominance Assumption 9, I rule out this extreme case and can

increase the lower bound from equation (9) to equation (21), narrowing the bounds of the

MTEOO on wages (Subfigure 2b). Under this extra assumption, the MTEOO on wages

is significant at the 10%-confidence level for latent heterogeneity values between 0.34 and

0.66 even when I use the conservative confidence interval given by the dotted lines. When

considering the confidence interval based on Imbens & Manski (2004), I find that the JCTP

has a significantly positive effect for all agents. Most interestingly, the MTEOO on wages

seems to be larger for the agents who are least likely to attend the JCTP.

To better understand the magnitude of those effects and compare my results with the pre-

vious literature, I summarize the bounds on the MTEOO function using four key parameters

— ATEOO, ATTOO, ATUOO and LATEOO — that are described in Tables 1 and 2 as inte-

grals of the MTEOO function. Table 7 reports those bounds in brackets, the 90%-conservative

confidence intervals of the identified region in parenthesis and the 90%-confidence intervals

of the parameter of interest (Imbens & Manski (2004)) in braces. As expected, the bounds

without the mean dominance assumption are wide and uninformative, while, when imposing

Assumption 9, the LATE is significant at 10% according to the conservative confidence in-

terval, and all treatment effects are significant at 10% according to the confidence intervals

proposed by Imbens & Manski (2004).

I stress that my LATEOO estimates represent an effect between 7.51% and 24.74% of

the average observed hourly wage of the Non-Hispanics assigned to the control group, which

are comparable to the bounds of the LATEOO parameter derived by Chen et al. (2017) —
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Figure 2: Parametric Bounds of the MTEOO on Wages: Non-Hispanic subsample

(a) Without Mean Dominance Assumption
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(b) With Mean Dominance Assumption
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Notes: The solid lines are the point-estimates of the parametric bounds of the MTEOO on wages. The dotted
lines are point-wise conservative 90%-confidence intervals around the identified region based on 5,000 bootstrap
repetitions. The dashed lines (that are almost on top of the solid lines) are point-wise 90%-confidence intervals
of the parameter of interest (Imbens & Manski (2004)) based on 5,000 bootstraps repetitions. The vertical
dashed lines represent the sample values of the propensity score P [D = 1|Z]. Estimation uses design weights.

Table 7: Bounds of the ATEOO, ATTOO, ATUOO and LATEOO on Wages: Non-Hispanic
subsample

Mean Dominance Treatment Effect
Asssumption 9 ATEOO ATTOO ATUOO LATEOO

NO
[−7.73, 2.28] [−7.11, 1.17] [−8.20, 3.14] [−7.52, 1.91]
(−7.88, 3.14) (−8.19, 3.09) (−8.55, 4.32) (−7.96, 2.97)
{−7.73, 2.29} {−7.13, 1.19} {−8.21, 3.15} {−7.53, 1.92}

YES
[0.61, 2.28] [0.38, 1.17] [0.73, 3.14] [0.58, 1.91]
(0.38, 3.13) (−1.19, 3.17) (−0.01, 4.29) (0.11, 2.96)
{0.61, 2.29} {0.37, 1.19} {0.72, 3.15} {0.57, 2.96}

Note: In brackets, I report the bounds on the parameter of interest that are integrals of the bounds
on the MTEOO function. In parenthesis, I report conservative 90%-confidence intervals around the
identified region based on 5,000 bootstrap repetitions, while, in braces, I report 90%-confidence in-
tervals of the parameter of interest (Imbens & Manski (2004)) based on 5,000 bootstraps repetitions
Estimation uses design weights.
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approximately between 7.7% and 17.5% under a similar set of assumptions. The finding that

their bounds are tighter than mine for the LATEOO is not surprising because their method

leverages all the available information to specifically identify the LATEOO while my tool

bounds the MTEOO function and, then, flexibly bounds the other treatment effects for the

always-employed population.

As a consequence of such flexibility, I can partially identify other treatment effects that

may be policy-relevant. For example, the ATEOO is bounded between 7.90% and 29.30% of

the average observed hourly wage of the Non-Hispanics assigned to the control group. Most

interestingly, the ATTOO and the ATUOO are, respectively, bounded between 4.92% and

15.16%, and 9.46% and 40.67%, suggesting that the agents who do not to attend the JCTP

are the ones who benefit the most from it. To conclude, I stress that, even though the upper

bound of the treatment effects on wages may be unrealistically large, the magnitude of the

lower bounds are similar to the results found by Chen et al. (2017) and are reasonable when

compared to an ITT effect of 16.70% on earnings per week and of 9.87% on hours per week.

7 Conclusion

My main empirical findings suggest that the marginal treatment effect on hourly labor

earnings, employment and hourly wages increases with the latent heterogeneity variable for

the Non-Hispanic group. More specifically, while MTEs for the agents who are the most likely

to attend the JCTP are very small, the MTEs for the agents who are least likely to attend the

JCTP are considerably large. Economically, this result implies that the agents who are more

likely to benefit from the JCTP are not attending it due to some unobserved constraint. As a

consequence, providing stronger incentives for attendance (e.g.: a larger monetary allowance)

is possibly efficient.
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Supporting Information
(Online Appendix)

A Proofs of the main results

A.1 Proof of Equation (4)

Note that

E [Y ∗
0 |X = x, U = u, S0 = 1, S1 = 1] = E [Y ∗

0 |X = x, U = u, S0 = 1]

by Assumption 8

=
E [S0 · Y

∗
0 |X = x, U = u ]

P [S0 = 1 |X = x, U = u ]

by the definition of conditional expectation

=
E [Y0 |X = x, U = u ]

E [S0 |X = x, U = u ]

=
mY

0 (x, u)

mS
0 (x, u)

. �

A.2 Proof of Equation (5)

First, observe that

mS
0 (x, u) := E [S0 |X = x, U = u ]

= P [Q (0, X) ≥ V |X = x, U = u ] (A.1)

by equation (2),

mS
1 (x, u) := E [S1 |X = x, U = u ]

= P [Q (1, X) ≥ V |X = x, U = u ] (A.2)

by equation (2),

∆S (x, u) := E [S1 − S0 |X = x, U = u ]

= mS
1 (x, u)−mS

0 (x, u)
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= P [Q (1, X) ≥ V > Q (0, X) |X = x, U = u ]

by equations (A.1) and (A.2) and Assumption (8)

= P [S0 = 0, S1 = 1 |X = x, U = u ] (A.3)

by equation (2), and

∆NO
Y (x, u) := E [Y1 − Y0 |X = x, U = u, S0 = 0, S1 = 1]

= E [S1 · Y
∗
1 − S0 · Y

∗
0 |X = x, U = u, S0 = 0, S1 = 1]

= E [Y ∗
1 |X = x, U = u, S0 = 0, S1 = 1] . (A.4)

Note also that:

mY
1 (x, u) := E [Y1 |X = x, U = u ]

= E [S1 · Y
∗
1 |X = x, U = u ]

= E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] · P [S0 = 1 |X = x, U = u ]

+ E [Y ∗
1 |X = x, U = u, S0 = 0, S1 = 1] · P [S0 = 0, S1 = 1 |X = x, U = u ]

by Assumption 8 and the Law of Iterated Expectations

= E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ·mS

0 (x, u) + ∆NO
Y (x, u) ·∆S (x, u) (A.5)

by equations (A.1), (A.3) and (A.4),

implying equation (5) after some rearrangement. �

A.3 Proof of Proposition 10

Note that

y∗ ≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤ y∗ (A.6)

by the definition of y∗ and y∗. Observe also that

y∗ ≤ ∆NO
Y (x, u) ≤ y∗
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by equation (A.4) and the definition of y∗ and y∗, implying, by equation (5), that

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

(A.7)

under assumption 7.1,

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] (A.8)

under assumption 7.2, and

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

≤ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1]

≤
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

. (A.9)

under assumption 7.3 (sub-case (a) or (b)). Combining equations (A.6)-(A.9), it is easy to

show that proposition 10 holds. �

A.4 Proof of Proposition 12

First, I prove proposition 12 under assumption 7.3 (sub-cases (a) and (b)). At the end of

this section, I prove proposition 12 under assumptions 7.1 and 7.2.

A.4.1 Proof under Assumption 7.3 (sub-cases (a) and (b))

Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

arbitrarily. For brevity,

define α (x, u) := δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

and γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
.
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Note that

δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

⇔ α (x, u) ∈

(

max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

,

min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

})

⊆
(

y∗, y∗
)

,

(A.10)

and that

α (x, u) ∈

(

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⇔ γ (x, u) ∈
(

y∗, y∗
)

.

(A.11)

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

through

their joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X and, then, checking that equations

(15), (16) and (17) are satisfied. I fix (y0, y1, u, v, z, x) ∈ R
6 and define FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X in

twelve steps:

Step 1. For x /∈ X , FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FY ∗

0
,Y ∗

1
,U,V,Z,X (y0, y1, u, v, z, x).

Step 2. From now on, consider x ∈ X . Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) · FX (x) ,

it suffices to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

|X
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by writing

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) = FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) · FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) = FY ∗

0
,Y ∗

1
,U,V |X (y0, y1, u, v |x).

Step 4. From now on, consider u ∈ [0, 1]. Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) = F

Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) · FŨ |X (u |x) ,

it suffices to define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u 6= u, I define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = FY ∗
0
,Y ∗

1
,V |X,U (y0, y1, v |x, u).

Step 7. For any v /∈ [0, 1], I define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = FY ∗
0
,Y ∗

1
,V |X,U (y0, y1, v |x, u).

Step 8. From now on, consider v ∈ [0, 1]. Since

F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) · FṼ |X,Ũ

(v |x, u) ,

it is sufficient to define F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) and F

Ṽ |X,Ũ
(v |x, u).

Step 9. I define

F
Ṽ |X,Ũ

(v |x, u) =























































mS
0 (x, u) ·

v

Q (0, x)
if v ≤ Q (0, x)

mS
0 (x, u) + ∆S (x, u) ·

v −Q (0, x)

Q (1, x)−Q (0, x)
if Q (0, x) < v ≤ Q (1, x)

mS
1 (x, u) +

(

1−mS
1 (x, u)

) v −Q (1, x)

1−Q (1, x)
if Q (1, x) < v

.
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Step 10. I write F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) · FỸ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ), im-

plying that I can separately define F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) and F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ).

Step 11. When Y∗ is a bounded interval (sub-case (a) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























1

{

y0 ≥
mY

0 (x, u)

mS
0 (x, u)

}

if v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (0, x) < v

.

When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























































































0 if y0 < y∗ and v ≤ Q (0, x)

1−

mY
0 (x, u)

mS
0 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y0 and v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (0, x) < v

.

which are valid cumulative distribution functions because
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

.

Step 12. When Y∗ is a bounded interval (case (a) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



















































1 {y1 ≥ α (x, u)} if v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−

1 {y1 ≥ γ (x, u)} if Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (1, x) < v

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and v ≤ Q (0, x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y1 and v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1 if y∗ ≤ y1 and Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (1, x) < v

.

which are valid cumulative distribution functions because of equations (A.10) and (A.11).

Having defined the joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X , note that equa-

tions (A.10) and (A.11),
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

and steps 7-12 ensure that equation (16) holds.

Now, I show, in three steps, that equation (15) holds.

Step 13. Observe that

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u,Q (0, x) ≥ Ṽ

]

by the definition of S̃0 and S̃1

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
1

∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]
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by the definition of conditional expectation

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, Ṽ
] ∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by the Law of Iterated Expectations

=

Q(0,x)
∫

0

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, Ṽ = v
]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by the definition of expectation and by step 7

=

Q(0,x)
∫

0

α (x, u) dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by step 12

= α (x, u) (A.12)

by linearity of the Lebesgue Integral

Step 14. Similarly to the last step, notice that

E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u,Q (0, x) ≥ Ṽ

]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
0

∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, Ṽ

] ∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, Ṽ = v

]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]
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=

Q(0,x)
∫

0

mY
0 (x, u)

mS
0 (x, u)

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
] by step 11

=
mY

0 (x, u)

mS
0 (x, u)

. (A.13)

Step 15. Note that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

− E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= α (x, u)−
mY

0 (x, u)

mS
0 (x, u)

by equations (A.12) and (A.13)

= δ (x, u)

by the definition of α (x, u) ,

ensuring that equation (15) holds.

Finally, I show, in two steps, that equation (17) holds.

Step 16. Fix (y, d, s, z) ∈ R
4 arbitrarily and observe that equation (17) can be simplified to:

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x)

⇔FỸ ,D̃,S̃,Z|X (y, d, s, z |x) · FX (x) = FY,D,S,Z|X (y, d, s, z |x) · FX (x)

⇔FỸ ,D̃,S̃,Z|X (y, d, s, z |x) = FY,D,S,Z|X (y, d, s, z |x) (A.14)

Step 17. Notice that

FỸ ,D̃,S̃,Z|X (y, d, s, z |x)
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= E

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}∣

∣

∣X = x
]

=

∫

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

dFỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

because
(

Ỹ , D̃, S̃, Z
)

are functions of
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ , Z

)

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u 6= u}
]

dFỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

+

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u = u}
]

dFỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

by linearity of the Lebesgue Integral

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u 6= u}
]

dFỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x)

because P

[

Ũ = u
∣

∣

∣X = x
]

= 0 by step 5

=

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u 6= u}] dFY ∗
0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x)

by steps 2-6

=

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u 6= u}] dFY ∗
0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x)

+

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u = u}] dFY ∗
0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x)

because P [U = u |X = x ] = 0

=

∫

1 {(Y,D, S, Z) ≤ (y, d, s, z)} dFY ∗
0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x)

by linearity of the Lebesgue Integral

= E [1 {(Y,D, S, Z) ≤ (y, d, s, z)}|X = x]

= FY,D,S,Z|X (y, d, s, z |x) ,

implying equation (17) according to equation (A.14).

I can, then, conclude that proposition 12 is true. �

As a remark, the above constructive proof defines random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

that

matches other important moments of the true data generating process besides the ones im-

posed by proposition 12.
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Remark 1. Note that

P

[

S̃0 = 1, S̃1 = 1
∣

∣

∣X = x, Ũ = u
]

= P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by the definition of S̃0 and S̃1

= mS
0 (x, u) (A.15)

by step 9,

and, similarly, that

P

[

S̃0 = 0, S̃1 = 1
∣

∣

∣
X = x, Ũ = u

]

= P

[

Q (1, x) ≥ Ṽ > Q (0, x)
∣

∣

∣
X = x, Ũ = u

]

= ∆S (x, u) . (A.16)

Remark 2. Analogously to equation (A.12), I find that

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 0, S̃1 = 1

]

= γ (x, u) . (A.17)

Remark 3. Combining equations (A.5), (A.12) and (A.15)-(A.17), I have that

E

[

Ỹ1

∣

∣

∣
X = x, Ũ = u

]

= mY
1 (x, u) .

A.4.2 Proof under Assumptions 7.1 and 7.2

I, now, prove Proposition 12 under Assumptions 7.1 and 7.2. In particular, I focus on

the case y∗ > −∞ and y∗ = +∞ (Assumption 7.1) because it is more common in empirical

applications. The case y∗ = −∞ and y∗ < +∞ (Assumption 7.2) is symmetric.

The proof under Assumption 7.1 is equal to the proof under Assumption 7.3(a). The only
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difference is that

δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

⇔ α (x, u) ∈

(

y∗,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⊆
(

y∗,+∞
)

,

(A.18)

and that

α (x, u) ∈

(

y∗,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⇔ γ (x, u) ∈
(

y∗,+∞
)

.

(A.19)

A.5 Proof of Proposition 13

This proof is essentially the same proof of Proposition 12 under Assumption 7.3.(a) (ap-

pendix A.4.1). Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R arbitrarily. For brevity, define

α (x, u) := δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

and γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
. Note that

α (x, u) ∈ R = Y∗ and γ (x, u) ∈ R = Y∗.

I define the random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

using the joint cumulative distribution func-

tion FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X described by steps 1-12 in Appendix A.4.1 for the case of convex support

Y∗. Note that equation (19) is trivially true when Y∗ = R. Moreover, equations (18) and

(20) are valid by the argument described in steps 13-17 in Appendix A.4.1.

I can, then, conclude that proposition 13 is true. �

A.6 Proof of Proposition 15

This proof is essentially the same proof of Propositions 12 and 13 (Appendices A.4 and

A.5). Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

arbitrarily. For brevity,

define α (x, u) := δ (x, u)+
mY

0 (x, u)

mS
0 (x, u)

and γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
. The only
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difference from the previous proofs is that, now,

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= α (x, u)

by equation (A.12)

≥
mY

1 (x, u)

mS
1 (x, u)

(A.20)

because δ (x, u) ≥ ∆OO
Y ∗ (x, u)

and that

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 0, S̃1 = 1

]

= γ (x, u)

by equation (A.17)

=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)

≤

mY
1 (x, u)−

mY
1 (x, u)

mS
1 (x, u)

·mS
0 (x, u)

∆S (x, u)

by equation (A.20)

=
mY

1 (x, u)

mS
1 (x, u)

,

implying that the model restriction (31) holds.

A.7 Proof of Equations (34) and (35)

I first prove that equation (34) holds. For any A ∈ {Y, S}, observe that

E [A |X = x, P (W ) = p,D = 0] = E [A0 |X = x, P (W ) = p,D = 0]

= E [A0 |X = x, P (W ) = p, P (W ) < U ]

by equation (1)

= E [A0 |X = x, P (W ) = p, p < U ]

= E [A0 |X = x, p < U ]
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by assumption (1)

=
E [1 {p < U} ·A0 |X = x ]

P [p < U |X = x ]

by the definition of conditional expectation

=
E [1 {p < U} ·A0 |X = x ]

1− p

by the normalization U |X ∼ Uniform [0, 1]

=
E [1 {p < U} · E [A0 |X = x, U = u ] |X = x ]

1− p

by the Law of Iterated Expectations

=

∫ 1
p
mA

0 (x, u) du

1− p

by the normalization U |X ∼ Uniform [0, 1] ,

implying that

∂E [A |X = x, P (W ) = p,D = 0]

∂p
=

−mA
0 (x, p)

1− p
+

E [1 {p < U} ·A0 |X = x ]

(1− p)2

=
−mA

0 (x, p)

1− p
+

E [1 {p < U} ·A0 |X = x ]

(1− p) · P [p < U |X = x ]

by the normalization U |X ∼ Uniform [0, 1]

=
−mA

0 (x, p)

1− p
+

E [A |X = x, P (W ) = p,D = 0]

1− p

Rearranging the last expression, I can derive equation (34):

mA
0 (x, p) = E [A |X = x, P (W ) = p,D = 0]

−
∂E [A |X = x, P (W ) = p,D = 0]

∂p
· (1− p) .

Equation (35) is derived in an analogous way using E [A |X = x, P (W ) = p,D = 1] and

its derivative with respect to the propensity score. �

61



A.8 Proof of Equations (45) and (46)

We first prove that equation (45) holds. For any A ∈ {Y, S}, observe that

E [A |X = x, P (W ) = pn, D = 0] =

∫ 1
pn

mA
0 (x, u) du

1− pn

according to Appendix A.7

=

∫ 1
pn

MA
(

u,θA
x,0

)

du

1− pn

by equation (43).

Equation (46) is derived in an analogous way using E [A |X = x, P (W ) = pn, D = 1]. �

A.9 Connecting OLS Model (53) to the Minimization Problem (44)

Note that, for any z ∈ {0, 1},

∫ 1
P (z)M

A
(

u, θ̃
A

0

)

du

1− P (z)
=

∫ 1
P (z)

(

θA0,0 · (1− u) + θA0,1 · u
)

du

1− P (z)

=
θA0,0 + θA0,1

2
+

−θA0,0 + θA0,1
2

· P (z)

= aA0 + bA0 · P (z) , (A.21)

where aA0 :=
θA0,0 + θA0,1

2
and bA0 :=

−θA0,0 + θA0,1
2

, and

∫ P (z)
0 MA

(

u, θ̃
A

1

)

du

P (z)
=

∫ P (z)
0

(

θA1,0 · (1− u) + θA1,1 · u
)

du

P (z)

= θA1,0 +
−θA1,0 + θA1,1

2
· P (z)

= aA1 + bA1 · P (z) , (A.22)

where aA1 := θA1,0 and bA1 :=
−θA1,0 + θA1,1

2
.

When I combine equations (44), (A.21) and (A.22), I find the OLS model given by equation
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(53). Moreover, by solving the linear system given by aA0 =
θA0,0 + θA0,1

2
, bA0 =

−θA0,0 + θA0,1
2

,

aA1 = θA1,0 and bA1 =
−θA1,0 + θA1,1

2
, I find that θA0,0 = aA0 − bA0 , θ

A
0,1 = aA0 + bA0 , θ

A
1,0 = aA1 ,

θA1,1 = aA1 + 2 · bA1 .
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B Bounds on the MTE for the Observed-only-when-treated Sub-population

Here, I use the same notation of section 3 and I am interested in the following target

parameter: mNO
1 (x, u) := E [Y ∗

1 |X = x, U = u, S0 = 0, S1 = 1], which is equal to ∆NO
Y ac-

cording to equation (A.4). Following the same steps of the proof of Proposition 10, I can

show that:

Corollary B.1 Suppose that the mY
0 (x, u), mY

1 (x, u), mS
0 (x, u) and ∆S (x, u) are point-

identified.

Under assumptions 1-6, 7.1 and 8, the bounds on mNO
1 (x, u) are given by

mNO
1 (x, u) := y∗ ≤ mNO

1 (x, u) ≤
mY

1 (x, u)− y∗ ·mS
0 (x, u)

∆S (x, u)
=: mNO

1 (x, u) . (B.1)

Under assumptions 1-6, 7.2 and 8, the bounds on mNO
1 (x, u) are given by

mNO
1 (x, u) :=

mY
1 (x, u)− y∗ ·mS

0 (x, u)

∆S (x, u)
≤ mNO

1 (x, u) ≤ y∗ =: mNO
1 (x, u) . (B.2)

Under assumptions 1-6, 7.3 (sub-case (a) or (b)) and 8, the bounds on mNO
1 (x, u) are

given by

mNO
1 (x, u) :=

mY
1 (x, u)− y∗ ·mS

0 (x, u)

∆S (x, u)
≤ mNO

1 (x, u) ≤
mY

1 (x, u)− y∗ ·mS
0 (x, u)

∆S (x, u)
=: mNO

1 (x, u) .

(B.3)

Following the same proof of proposition 12 (see Remark 2 at the end of Appendix A.4.1),

I can also show that:

Proposition B.2 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)) and

8, the bounds mNO
1 and mNO

1 , given by Proposition B.1, are point-wise sharp, i.e., for any

u ∈ [0, 1], x ∈ X and γ (x, u) ∈
(

mNO
1 (x, u) ,mNO

1 (x, u)
)

, there exist random variables
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(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

m̃NO
1 (x, u) := E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 0, S̃1 = 1

]

= γ (x, u) , (B.4)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (B.5)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (B.6)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Finally, following the same proof of proposition 13, I can also show that:

Proposition B.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and 8. If Y∗ = R, then, for any

u ∈ [0, 1], x ∈ X and γ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

m̃NO
1 (x, u) := E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 0, S̃1 = 1
]

= γ (x, u) , (B.7)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (B.8)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (B.9)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.
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C Negative Treatment Effect on the Selection Indicator

Even when sample selection is monotone (equation (2)), Assumption 8 may be invalid in

some empirical applications. In particular, it might be the case that the following assumption

holds:

Assumption C.1 Treatment has a negative effect on the sample selection indicator for all

individuals, i.e., Q (0, x) > Q (1, x) > 0 for any x ∈ X .

I stress that this assumption is testable according to Machado et al. (2018).

With obvious modifications to the proofs of Corollary 11 and Propositions 12 and 13 (see

the proofs of Propositions D.3 and D.4), I can show that the target parameter in section 3

can be bounded, that its bounds are sharp and that it is impossible to derive bounds for the

target parameter with only assumptions 1-6 and C.1. First, I state a result that is analogous

to Corollary 11.

Corollary C.2 Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified.

Under Assumptions 1-6, 7.1 and C.1, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

=: ΛOO
Y ∗ (x, u) (C.1)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

− y∗ =: ΛOO
Y ∗ (x, u) . (C.2)

Under Assumptions 1-6, 7.2 and C.1, the bounds on ∆OO
Y ∗ (x, u) are given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

− y∗ =: ΛOO
Y ∗ (x, u) (C.3)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

=: ΛOO
Y ∗ (x, u) . (C.4)
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Under Assumptions 1-6, 7.3 (sub-case (a) or (b)) and C.1, the bounds on ∆OO
Y ∗ (x, u) are

given by

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

−min

{

mY
0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

, y∗

}

=: ΛOO
Y ∗ (x, u) (C.5)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−max

{

mY
0 (x, u)− y∗ · (−∆S (x, u))

mS
1 (x, u)

, y∗
}

=: ΛOO
Y ∗ (x, u) . (C.6)

Second, I state a result that is analogous to Proposition 12.

Proposition C.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under Assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b))

and C.1, the bounds ΛOO
Y ∗ and ΛOO

Y ∗ , given by Proposition C.2, are point-wise sharp, i.e., for

any u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

ΛOO
Y ∗ (x, u) ,ΛOO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (C.7)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (C.8)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (C.9)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Finally, I state a result that is analogous to Proposition 13.

Proposition C.4 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose Assumptions 1-6 and C.1. If Y∗ = R, then, for any
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u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (C.10)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (C.11)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (C.12)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.
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D Monotone Sample Selection

Depending on the results of the test proposed by Machado et al. (2018), a researcher

may want to be agnostic about the direction of the monotone selection problem and impose

only equation (2), while ruling out uninteresting cases. In such situation, it is reasonable to

assume:

Assumption D.1 Treatment has a monotone effect on the sample selection indicator for all

individuals, i.e., either (i) Q (1, x) > Q (0, x) > 0 for any x ∈ X or (ii) Q (0, x) > Q (1, x) >

0 for any x ∈ X .

I stress that assumption D.1 only strengthens equation (2) by ruling out the theoretically

uninteresting cases mentioned after Assumption (8).

By combining Corollaries 11 and C.2, I find that:

Corollary D.2 Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified. Under Assumptions 1-6, 7 and D.1, the bounds

on ∆OO
Y ∗ (x, u) are given by

ΥOO
Y ∗ (x, u) := min

{

∆OO
Y ∗ (x, u) ,ΛOO

Y ∗ (x, u)
}

≤ ∆OO
Y ∗ (x, u) (D.1)

≤ max
{

∆OO
Y ∗ (x, u) ,ΛOO

Y ∗ (x, u)
}

=: ΥOO
Y ∗ (x, u)

Most importantly, those bounds are also point-wise sharp:14

Proposition D.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under Assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b))

and D.1, the bounds ΥOO
Y ∗ and ΥOO

Y ∗ , given by Corollary D.2, are point-wise sharp, i.e., for

any u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

ΥOO
Y ∗ (x, u) ,ΥOO

Y ∗ (x, u)
)

, there exist random variables

14The proof of propositions D.3 and D.4 are located at the end of Appendix D.
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(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (D.2)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] , (D.3)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (D.4)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Finally, I state an impossibility result that is analogous to Proposition 13.

Proposition D.4 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose assumptions 1-6 and D.1. If Y∗ = R, then, for any

u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= δ (x, u) , (D.5)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (D.6)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (D.7)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Proof of Proposition D.3. I only prove proposition D.3 under assumption 7.3 (sub-

cases (a) and (b)).The proofs of proposition D.3 under assumptions 7.1 and 7.2 are trivial

modifications of the proof presented below.

Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

ΥOO
Y ∗ (x, u) ,ΥOO

Y ∗ (x, u)
)

arbitrarily. For brevity,
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define

α (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

−δ (x, u) +
mY

1 (x, u)

mS
1 (x, u)

)

,

γ (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

mY
1 (x, u)− α (x, u) ·mS

0 (x, u)

∆S (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

mY
0 (x, u)− α (x, u) ·mS

1 (x, u)

−∆S (x, u)

)

,

Q (x) = min {Q (0, x) , Q (1, x)} ,

Q (x) = max {Q (0, x) , Q (1, x)} ,

mS (x, u) = min
{

mS
0 (x, u) ,mS

1 (x, u)
}

for any x ∈ X ,

and

mS (x, u) = max
{

mS
0 (x, u) ,mS

1 (x, u)
}

for any x ∈ X .

Note that

α (x, u) ∈
(

y∗, y∗
)

, (D.8)

and that

γ (x, u) ∈
(

y∗, y∗
)

. (D.9)

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

through

their joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X and, then, checking that equations

(D.2), (D.3) and (D.4) are satisfied. I fix (y0, y1, u, v, z, x) ∈ R
6 and define FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X in

twelve steps:

Step 1. For x /∈ X , FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FY ∗

0
,Y ∗

1
,U,V,Z,X (y0, y1, u, v, z, x).
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Step 2. From now on, consider x ∈ X . Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) · FX (x) ,

it suffices to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

|X

by writing

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) = FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) · FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) = FY ∗

0
,Y ∗

1
,U,V |X (y0, y1, u, v |x).

Step 4. From now on, consider u ∈ [0, 1]. Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) = F

Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) · FŨ |X (u |x) ,

it suffices to define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u 6= u, I define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = FY ∗
0
,Y ∗

1
,V |X,U (y0, y1, v |x, u).

Step 7. For any v /∈ [0, 1], I define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = FY ∗
0
,Y ∗

1
,V |X,U (y0, y1, v |x, u).

Step 8. From now on, assume that v ∈ [0, 1]. Since

F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) · FṼ |X,Ũ

(v |x, u) ,

it is sufficient to define F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) and F

Ṽ |X,Ũ
(v |x, u).
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Step 9. I define

F
Ṽ |X,Ũ

(v |x, u) =



























































mS (x, u) ·
v

Q (x)
if v ≤ Q (x)

mS (x, u) +
(

mS (x, u)−mS (x, u)
)

·
v −Q (x)

Q (x)−Q (x)
if Q (x) < v ≤ Q (x)

mS (x, u) +
(

1−mS (x, u)
) v −Q (x)

1−Q (x)
if Q (x) < v

.

Step 10. I write F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) · FỸ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ), im-

plying that I can separately define F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) and F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ).

Step 11. When Q (1, x) > Q (0, x) and Y∗ is a bounded interval (sub-case (a) in assumption 7.3),

I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























1

{

y0 ≥
mY

0 (x, u)

mS
0 (x, u)

}

if v ≤ Q (x)

−−−−−−−−−− −−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) > Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























































































0 if y0 < y∗ and v ≤ Q (x)

1−

mY
0 (x, u)

mS
0 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y0 and v ≤ Q (x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (x) < v

.
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which are valid cumulative distribution functions because
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

.

When Q (1, x) < Q (0, x) and Y∗ is a bounded interval (case (a) in assumption 7.3), I

define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



















































1 {y0 ≥ α (x, u)} if v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1 {y0 ≥ γ (x, u)} if Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) < Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



































































































































































0 if y0 < y∗ and v ≤ Q (x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y0 and v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y0 < y∗ and Q (x) < v ≤ Q (x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and Q (x) < v ≤ Q (x)

1 if y∗ ≤ y0 and Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (x) < v

.

which are valid cumulative distribution functions because of equations (D.8) and (D.9).
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Step 12. When Q (1, x) > Q (0, x) and Y∗ is a bounded interval (case (a) in assumption 7.3), I

define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



















































1 {y1 ≥ α (x, u)} if v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1 {y1 ≥ γ (x, u)} if Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) > Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and v ≤ Q (x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y1 and v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y1 < y∗ and Q (x) < v ≤ Q (x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and Q (x) < v ≤ Q (x)

1 if y∗ ≤ y1 and Q (x) < v ≤ Q (x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (x) < v

.

which are valid cumulative distribution functions because of equations (A.10) and (A.11).

When Q (1, x) < Q (0, x) and Y∗ is a bounded interval (sub-case (a) in assumption 7.3),
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I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



























1

{

y1 ≥
mY

1 (x, u)

mS
1 (x, u)

}

if v ≤ Q (x)

−−−−−−−−−− −−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (x) < v

.

When Q (1, x) < Q (0, x) and y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in

assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



























































































0 if y1 < y∗ and v ≤ Q (x)

1−

mY
1 (x, u)

mS
1 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (x)

1 if y∗ ≤ y1 and v ≤ Q (x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (x) < v

.

which are valid cumulative distribution functions because
mY

1 (x, u)

mS
1 (x, u)

∈
[

y∗, y∗
]

.

Having defined the joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X , note that equa-

tions (D.8) and (D.9), the facts
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

and
mY

1 (x, u)

mS
1 (x, u)

∈
[

y∗, y∗
]

, and steps 7-12

ensure that equation (D.3) holds.

Now, I show, in three steps, that equation (D.2) holds.

Step 13. Observe that

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= 1 {Q (1, x) > Q (0, x)} · α (x, u) + 1 {Q (1, x) < Q (0, x)} ·
mY

1 (x, u)

mS
1 (x, u)

. (D.10)
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Step 14. Notice that

E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= 1 {Q (1, x) > Q (0, x)} ·
mY

0 (x, u)

mS
0 (x, u)

+ 1 {Q (1, x) < Q (0, x)} · α (x, u) . (D.11)

Step 15. Note that Steps 13 and 14 imply that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) ,

ensuring that equation (D.2) holds.

Finally, to show that equation (D.4) holds, it suffices to follow steps 16 and 17 in Appendix

A.4.1.

I can, then, conclude that proposition D.3 is true.

Proof of Proposition D.4. This proof is essentially the same proof of proposition D.3

under assumption 7.3.(a). Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R arbitrarily. For brevity,

define

α (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

−δ (x, u) +
mY

1 (x, u)

mS
1 (x, u)

)

,

and

γ (x, u) := 1 {Q (1, x) > Q (0, x)} ·

(

mY
1 (x, u)− α (x, u) ·mS

0 (x, u)

∆S (x, u)

)

+ 1 {Q (1, x) < Q (0, x)} ·

(

mY
0 (x, u)− α (x, u) ·mS

1 (x, u)

−∆S (x, u)

)

.

Note that α (x, u) ∈ R = Y∗ and γ (x, u) ∈ R = Y∗.

I define the random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

using the joint cumulative distribution func-

tion FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X described by steps 1-12 in the last proof for the case of convex support
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Y∗. Note that equation (D.6) is trivially true when Y∗ = R. Moreover, equations (D.5) and

(D.7) are valid by the argument described in the last proof

I can, then, conclude that proposition D.4 is true.
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E Uninformative Bounds with Non-monotone Sample Selection

In the main text and in appendices C and D, I impose some monotonicity condition on

the sample selection problem through equation (2). However, in some empirical applications,

this assumption may be invalid. For example, in the short run, a job training program may

move some individuals from unemployment to employment by increasing their human capital

or from employment to unemployment by decreasing their labor market experience. Since

this is a frequent feature in empirical economics, it is important to understand what can be

discovered about the marginal treatment effect when sample selection is not monotone. To

do so, I drop equation (2) and impose equation (1), Assumptions 1-6, a small generalization

of Assumption 7

Assumption E.1 I assume that y∗ and y∗ are known, and that

1. y∗ = −∞, y∗ = ∞ and Y∗ = R, or

2. y∗ > −∞, y∗ = ∞ and Y∗ is an interval, or

3. y∗ = −∞, y∗ < ∞ and Y∗ is an interval, or

4. y∗ > −∞, y∗ < ∞ and

(a) Y∗ is an interval or

(b) y∗ ∈ Y∗ and y∗ ∈ Y∗.

and mild regularity conditions to ensure that all objects are well-defined

Assumption E.2 For any x ∈ X and u ∈ [0, 1],

P [S0 = 1, S1 = 1] > 0, (E.1)

P [S0 = 1, S1 = 0] > 0, (E.2)

P [S0 = 0, S1 = 1] > 0, (E.3)

79



y∗ ·mS
d (x, u)−mY

d (x, u) > 0 for any d ∈ {0, 1} , (E.4)

and

mY
d (x, u)− y∗ ·mS

d (x, u) > 0 for any d ∈ {0, 1} . (E.5)

I stress that conditions (E.4) and (E.5) are implied by a non-degenerate conditional dis-

tribution for each potential outcome of interest. Most importantly, the above assumptions

are sufficient to construct bounds for the ITTOO (Horowitz & Manski (2000)) and for the

LATEOO (Chen & Flores 2015, section 2.4) that are shorter than the entire support of the

treatment effect.

I, now, show that, differently from the ITTOO and the LATEOO, the bounds on the

MTEOO on the outcome of interest (equation (3)) without equation (2) are uninformative,

i.e., the bounds without monotone sample selection are equal to
(

y∗ − y∗, y∗ − y∗
)

. Formally,

I have that:

Proposition E.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose equation (1) and assumptions 1-6 and E.1-E.2. Then,

for any u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

y∗ − y∗, y∗ − y∗
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , S̃0, S̃1

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (E.6)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , S̃0, S̃1

)

∈ Y∗ × Y∗ × {0, 1} × {0, 1}
∣

∣

∣
X = x, Ũ = u

]

= 1 for any u ∈ [0, 1] ,

(E.7)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (E.8)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃ = D̃·S̃1+
(

1− D̃
)

·S̃0, Ỹ0 = S̃0 ·Ỹ
∗
0 ,

Ỹ1 = S̃1 · Ỹ
∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Proof of Proposition E.3. I only prove proposition E.3 under assumption E.1.4 (sub-cases

(a) or (b)) because this is the more demanding case and because the other cases are trivial
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extensions of this one.

Fix u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

y∗ − y∗, y∗ − y∗
)

arbitrarily. For brevity, define

(α0 (x, u) , α1 (x, u)) ∈
(

y∗, y∗
)2

such that δ (x, u) = α1 (x, u) − α0 (x, u), π (x, u) :=
1

2
·

min
d∈{0,1}

{

min

{

mS
d (x, u) ,

y∗ ·mS
d (x, u)−mY

d (x, u)

y∗ − αd (x, u)
,
mY

d (x, u)− y∗ ·mS
d (x, u)

αd (x, u)− y∗

}}

, γ0 (x, u) :=

mY
0 (x, u)− α0 (x, u) · π (x, u)

mS
0 (x, u)− π (x, u)

and γ1 (x, u) :=
mY

1 (x, u)− α1 (x, u) · π (x, u)

mS
1 (x, u)− π (x, u)

. Note that, by

construction, π (x, u) > 0 and (γ0 (x, u) , γ1 (x, u)) ∈
(

y∗, y∗
)2
.

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , S̃0, S̃1

)

through

their joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

and, then, checking that equa-

tions (E.6), (E.7) and (E.8) are satisfied. I fix (y0, y1, u, s0, s1, z, x) ∈ R
7 and define FỸ ∗

0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

in twelve steps:

Step 1. For x /∈ X , FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

(y0, y1, u, s0, s1, z, x) = FY ∗
0
,Y ∗

1
,U,S0,S1,Z,X (y0, y1, u, s0, s1, z, x).

Step 2. From now on, consider x ∈ X . Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

(y0, y1, u, s0, s1, z, x) = FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z|X (y0, y1, u, s0, s1, z |x)·FX (x) ,

it suffices to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

(y0, y1, u, s0, s1, z, x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , S̃0, S̃1

)

|X

by writing

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

(y0, y1, u, s0, s1, z, x) = FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1|X

(y0, y1, u, s0, s1 |x)·FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1|X

(y0, y1, u, s0, s1 |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1|X

(y0, y1, u, s0, s1 |x) = FY ∗
0
,Y ∗

1
,U,S0,S1|X (y0, y1, u, s0, s1 |x).

Step 4. From now on, consider u ∈ [0, 1]. Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1|X

(y0, y1, u, s0, s1 |x) = F
Ỹ ∗
0
,Ỹ ∗

1
,S̃0,S̃1|X,Ũ

(y0, y1, s0, s1 |x, u) · FŨ |X (u |x) ,
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it suffices to define F
Ỹ ∗
0
,Ỹ ∗

1
,S̃0,S̃1|X,Ũ

(y0, y1, s0, s1 |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u 6= u, I define F
Ỹ ∗
0
,Ỹ ∗

1
,S̃0,S̃1|X,Ũ

(y0, y1, s0, s1 |x, u) = FY ∗
0
,Y ∗

1
,S0,S1|X,U (y0, y1, s0, s1 |x, u).

Step 7. For any (s0, s1) /∈ {0, 1}2, I define F
Ỹ ∗
0
,Ỹ ∗

1
,S̃0,S̃1|X,Ũ

(y0, y1, s0, s1 |x, u) = FY ∗
0
,Y ∗

1
,S0,S1|X,U (y0, y1, s0, s1 |x, u).

Step 8. From now on, consider (s0, s1) ∈ {0, 1}2. Since

F
Ỹ ∗
0
,Ỹ ∗

1
,S̃0,S̃1|X,Ũ

(y0, y1, s0, s1 |x, u) = F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,S̃0,S̃1
(y0, y1 |x, u, s0, s1 )·FS̃0,S̃1|X,Ũ

(s0, s1 |x, u) ,

it is sufficient to define F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,S̃0,S̃1
(y0, y1 |x, u, s0, s1 ) and F

S̃0,S̃1|X,Ũ
(s0, s1 |x, u).

Step 9. I define F
S̃0,S̃1|X,Ũ

(s0, s1 |x, u) by writing

P

[

S̃0 = 1, S̃1 = 1
∣

∣

∣
X = x, Ũ = u

]

= π (x, u) > 0,

P

[

S̃0 = 1, S̃1 = 0
∣

∣

∣
X = x, Ũ = u

]

= mS
0 (x, u)− π (x, u) > 0,

P

[

S̃0 = 0, S̃1 = 1
∣

∣

∣X = x, Ũ = u
]

= mS
1 (x, u)− π (x, u) > 0, and

P

[

S̃0 = 0, S̃1 = 0
∣

∣

∣X = x, Ũ = u
]

= 1−mS
1 (x, u)−mS

0 (x, u) + π (x, u) .

Step 10. I write F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,S̃0,S̃1
(y0, y1 |x, u, s0, s1 ) = F

Ỹ ∗
0 |X,Ũ,S̃0,S̃1

(y0 |x, u, s0, s1 )·FỸ ∗
1 |X,Ũ,S̃0,S̃1

(y1 |x, u, s0, s1 ),

implying that I can separately define F
Ỹ ∗
0 |X,Ũ,S̃0,S̃1

(y0 |x, u, s0, s1 ) and F
Ỹ ∗
1 |X,Ũ,S̃0,S̃1

(y1 |x, u, s0, s1 ).

Step 11. When Y∗ is a bounded interval (sub-case (a) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,S̃0,S̃1

(y0 |x, u, s0, s1 ) =



















































1 {y0 ≥ α0 (x, u)} if (s0, s1) = (1, 1)

−−−−−−−−−− −−−−−−−−−−−−

1 {y0 ≥ γ0 (x, u)} if (s0, s1) = (1, 0)

−−−−−−−−−− −−−−−−−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if (s0, s1) ∈ {(0, 0) , (0, 1)}

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



































































































































































0 if y0 < y∗ and (s0, s1) = (1, 1)

1−
α0 (x, u)− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and (s0, s1) = (1, 1)

1 if y∗ ≤ y0 and (s0, s1) = (1, 1)

−−−−−−−−−− −−−−−−−−−−−−−−−−

0 if y0 < y∗ and (s0, s1) = (1, 0)

1−
γ0 (x, u)− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and (s0, s1) = (1, 0)

1 if y∗ ≤ y0 and (s0, s1) = (1, 0)

−−−−−−−−−− −−−−−−−−−−−−−−−−

1 {y0 ≥ y∗} (s0, s1) ∈ {(0, 0) , (0, 1)}

.

which are valid cumulative distribution functions because α0 (x, u) ∈
(

y∗, y∗
)

and γ0 (x, u) ∈
(

y∗, y∗
)

.

Step 12. When Y∗ is a bounded interval (sub-case (a) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,S̃0,S̃1

(y1 |x, u, s0, s1 ) =



















































1 {y1 ≥ α1 (x, u)} if (s0, s1) = (1, 1)

−−−−−−−−−− −−−−−−−−−−−−

1 {y1 ≥ γ1 (x, u)} if (s0, s1) = (0, 1)

−−−−−−−−−− −−−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if (s0, s1) ∈ {(0, 0) , (1, 0)}

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and (s0, s1) = (1, 1)

1−
α1 (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and (s0, s1) = (1, 1)

1 if y∗ ≤ y1 and (s0, s1) = (1, 1)

−−−−−−−−−− −−−−−−−−−−−−−−−−

0 if y1 < y∗ and (s0, s1) = (0, 1)

1−
γ1 (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and (s0, s1) = (0, 1)

1 if y∗ ≤ y1 and (s0, s1) = (0, 1)

−−−−−−−−−− −−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} (s0, s1) ∈ {(0, 0) , (1, 0)}

.

which are valid cumulative distribution functions because α1 (x, u) ∈
(

y∗, y∗
)

and γ1 (x, u) ∈
(

y∗, y∗
)

.

Having defined the joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,S̃0,S̃1,Z,X

, note that

steps 7-12 ensure that equation (E.7) holds.

Now, observe equation (E.6) holds because steps 11 and 12 ensure that α1 (x, u) =

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

and α0 (x, u) = E

[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

.

Finally, equation (E.8) holds according to the same argument described at the end of

appendix A.4.1.

I can, then, conclude that proposition E.3 is true.
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F MTE bounds under a Mean Dominance Assumption

Here, I modify the Mean Dominance Assumption (9) by changing the direction of the

inequality, i.e., I assume that:

Assumption F.1 The potential outcome when treated for the always-observed sub-population

is less than or equal to the same parameter for the observed-only-when-treated sub-population:

E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1] ≤ E [Y ∗

1 |X = x, U = u, S0 = 0, S1 = 1]

for any x ∈ X and u ∈ [0, 1].

Note that assumption F.1 implies that ∆NO
Y (x, u) ≥

mY
1 (x, u)

mS
1 (x, u)

≥ E [Y ∗
1 |X = x, U = u, S0 = 1, S1 = 1].

As a consequence, by following the same steps of the proof of Corollary 14, I can derive:

Corollary F.2 Fix u ∈ [0, 1] and x ∈ X arbitrarily. Suppose that the mY
0 (x, u), mY

1 (x, u),

mS
0 (x, u) and ∆S (x, u) are point-identified.

Under assumptions 1-6, 7.1, 8 and F.1, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥ y∗ −

mY
0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (F.1)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (F.2)

Under assumptions 1-6, 7.2, 8 and F.1, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (F.3)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (F.4)
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Under assumptions 1-6, 7.3 (sub-case (a) or (b)), 8 and F.1, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥ max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) (F.5)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (F.6)

When Y∗ = R and assumptions 1-6, 8 and F.1 hold, ∆OO
Y ∗ (x, u) must satisfy

∆OO
Y ∗ (x, u) ≥ −∞ =: ∆OO

Y ∗ (x, u) (F.7)

and that

∆OO
Y ∗ (x, u) ≤

mY
1 (x, u)

mS
1 (x, u)

−
mY

0 (x, u)

mS
0 (x, u)

=: ∆OO
Y ∗ (x, u) . (F.8)

I highlight that the bounds in corollary F.2 can be identified using the strategies that were

described in sections 4 and 5. Most importantly, I can derive a result similar to proposition

15:

Proposition F.3 Suppose that the functions mY
0 , m

Y
1 , m

S
0 , m

S
1 and ∆S are point-identified

at every pair (x, u) ∈ X × [0, 1]. Under assumptions 1-6, 8 and F.1, the bounds ∆OO
Y ∗ and

∆OO
Y ∗ , given by corollary F.2, are point-wise sharp, i.e., for any u ∈ [0, 1], x ∈ X and δ (x, u) ∈

(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= δ (x, u) , (F.9)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (F.10)

E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

≤ E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 0, S̃1 = 1

]

, (F.11)

and

FỸ ,D̃,S̃,Z,X (y, d, s, z, x) = FY,D,S,Z,X (y, d, s, z, x) (F.12)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =
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1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

I stress that the proof of proposition F.3 is symmetric to the proof of proposition 15

(Appendix A.6).
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G Sharpness and Impossibility Results with Smoothness Restrictions

In the main text, I imposed no smoothness condition on the joint distribution of (Y ∗
0 , Y

∗
1 , U, V, Z,X).

Here, I impose the following smoothness condition:

Assumption G.1 The conditional cumulative distribution functions FV |X,U are FY ∗
0
,Y ∗

1
|X,U,V

are continuous functions of the value of U.

As a consequence of this new assumption, Propositions 12 and 13 have to be modified

to accommodate infinitesimal violations of the data restriction and to ensure that the extra

model restrictions imposed by assumption G.1 are also satisfied.

Proposition G.2 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Under Assumptions 1-6, 7 (sub-cases 1, 2, 3(a) or 3(b)), 8 and

G.1, the bounds ∆OO
Y ∗ and ∆OO

Y ∗ , given by Corollary 11 are infinitesimally point-wise sharp,

i.e., for any ǫ ∈ R++, u ∈ [0, 1], x ∈ X and δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

, there exist

random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= δ (x, u) , (G.1)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (G.2)

F
Ṽ |X,Ũ

is a continuous function of the value of Ũ , (G.3)

F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
is a continuous function of the value of Ũ , (G.4)

and
∣

∣

∣FỸ ,D̃,S̃,Z,X (y, d, s, z, x)− FY,D,S,Z,X (y, d, s, z, x)
∣

∣

∣
≤ ǫ (G.5)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

Proposition G.3 Suppose that the functions mY
0 , mY

1 , mS
0 and ∆S are point-identified at

every pair (x, u) ∈ X × [0, 1]. Impose Assumptions 1-6, 8 and G.1. If Y∗ = R, then, for any
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ǫ ∈ R++, u ∈ [0, 1], x ∈ X and δ (x, u) ∈ R, there exist random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

such

that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= δ (x, u) , (G.6)

P

[(

Ỹ ∗
0 , Ỹ

∗
1 , Ṽ

)

∈ Y∗ × Y∗ × [0, 1]
∣

∣

∣X = x, Ũ = u
]

= 1 for any u ∈ [0, 1] , (G.7)

F
Ṽ |X,Ũ

is a continuous function of the value of Ũ , (G.8)

F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
is a continuous function of the value of Ũ , (G.9)

and
∣

∣

∣FỸ ,D̃,S̃,Z,X (y, d, s, z, x)− FY,D,S,Z,X (y, d, s, z, x)
∣

∣

∣ ≤ ǫ (G.10)

for any (y, d, s, z) ∈ R
4, where D̃ := 1

{

P (X,Z) ≥ Ũ
}

, S̃0 = 1
{

Q (0, X) ≥ Ṽ
}

, S̃1 =

1
{

Q (1, X) ≥ Ṽ
}

, Ỹ0 = S̃0 · Ỹ
∗
0 , Ỹ1 = S̃1 · Ỹ

∗
1 and Ỹ = D̃ · Ỹ1 +

(

1− D̃
)

· Ỹ0.

The proofs of propositions G.2 and G.3 are below. They are small modification of the

previous proofs.

Proof of Proposition G.2. I only prove proposition G.2 under assumption 7.3 (sub-

cases (a) and (b)).The proofs of proposition G.2 under assumptions 7.1 and 7.2 are trivial

modifications of the proof presented below.

Fix any u ∈ [0, 1], any x ∈ X , any δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

and any ǫ ∈ R++

such that min

{

u−
ǫ

2 · FX (x)
, 1−

(

u−
ǫ

2 · FX (x)

)}

> 0. For brevity, define α (x, u) :=

δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

, γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
and ǫ :=

ǫ

2 · FX (x)
.
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Note that

δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

⇔ α (x, u) ∈

(

max

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗
}

,

min

{

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

, y∗

})

⊆
(

y∗, y∗
)

,

(G.11)

and that

α (x, u) ∈

(

mY
1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

,
mY

1 (x, u)− y∗ ·∆S (x, u)

mS
0 (x, u)

)

⇔ γ (x, u) ∈
(

y∗, y∗
)

.

(G.12)

The strategy of this proof consists of defining random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

through

their joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X and, then, checking that conditions

(G.1)-(G.5) are satisfied. I fix (y0, y1, u, v, z, x) ∈ R
6 and define FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X in fourteen

steps:

Step 1. For x /∈ X , FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FY ∗

0
,Y ∗

1
,U,V,Z,X (y0, y1, u, v, z, x).

Step 2. From now on, consider x ∈ X . Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X (y0, y1, u, v, z, x) = FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) · FX (x) ,

it suffices to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x). Moreover, I impose

Z ⊥⊥
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

|X
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by writing

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x) = FỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) · FZ|X (z |x) ,

implying that it is sufficient to define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x).

Step 3. For u /∈ [0, 1], I define FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) = FY ∗

0
,Y ∗

1
,U,V |X (y0, y1, u, v |x).

Step 4. From now on, consider u ∈ [0, 1]. Since

FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ |X (y0, y1, u, v |x) = F

Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) · FŨ |X (u |x) ,

it suffices to define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) and FŨ |X (u |x).

Step 5. I define FŨ |X (u |x) = FU |X (u |x) = u.

Step 6. For any u /∈ (u− ǫ, u+ ǫ), I define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = FY ∗
0
,Y ∗

1
,V |X,U (y0, y1, v |x, u).

Step 7. For any v /∈ [0, 1], I define F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = FY ∗
0
,Y ∗

1
,V |X,U (y0, y1, v |x, u).

Step 8. From now on, consider v ∈ [0, 1]. Since

F
Ỹ ∗
0
,Ỹ ∗

1
,Ṽ |X,Ũ

(y0, y1, v |x, u) = F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) · FṼ |X,Ũ

(v |x, u) ,

it is sufficient to define F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) and F

Ṽ |X,Ũ
(v |x, u).

Step 9. I define

F
Ṽ |X,Ũ

(v |x, u) =























































mS
0 (x, u) ·

v

Q (0, x)
if v ≤ Q (0, x)

mS
0 (x, u) + ∆S (x, u) ·

v −Q (0, x)

Q (1, x)−Q (0, x)
if Q (0, x) < v ≤ Q (1, x)

mS
1 (x, u) +

(

1−mS
1 (x, u)

) v −Q (1, x)

1−Q (1, x)
if Q (1, x) < v

.
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Step 10. For any u ∈ (u− ǫ, u), I define

F
Ṽ |X,Ũ

(v |x, u) = F
Ṽ |X,Ũ

(v |x, u− ǫ) ·

(

u− u

ǫ

)

+ F
Ṽ |X,Ũ

(v |x, u) ·

(

u− u+ ǫ

ǫ

)

,

which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

For any u ∈ (u, u+ ǫ), I define

F
Ṽ |X,Ũ

(v |x, u) = F
Ṽ |X,Ũ

(v |x, u) ·

(

u+ ǫ− u

ǫ

)

+ F
Ṽ |X,Ũ

(v |x, u+ ǫ) ·

(

u− u

ǫ

)

,

which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

Note that F
Ṽ |X,Ũ

is a continuous function of the value of Ũ , i.e., it satisfies restriction

(G.3).

Step 11. I write F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) · FỸ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ), im-

plying that I can separately define F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) and F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ).

Step 12. When Y∗ is a bounded interval (sub-case (a) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























1

{

y0 ≥
mY

0 (x, u)

mS
0 (x, u)

}

if v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−

1

{

y0 ≥
y∗ + y∗

2

}

if Q (0, x) < v

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
0 |X,Ũ,Ṽ

(y0 |x, u, v ) =



























































































0 if y0 < y∗ and v ≤ Q (0, x)

1−

mY
0 (x, u)

mS
0 (x, u)

− y∗

y∗ − y∗
if y∗ ≤ y0 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y0 and v ≤ Q (0, x)

−−−−−−−−−− −−−−−−−−−−−−−−

1 {y0 ≥ y∗} if Q (0, x) < v

.

which are valid cumulative distribution functions because
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

.

Step 13. When Y∗ is a bounded interval (case (a) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



















































1 {y1 ≥ α (x, u)} if v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−

1 {y1 ≥ γ (x, u)} if Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−

1

{

y1 ≥
y∗ + y∗

2

}

if Q (1, x) < v

.
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When y∗ = max {y ∈ Y∗} and y∗ = min {y ∈ Y∗} (case (b) in assumption 7.3), I define

F
Ỹ ∗
1 |X,Ũ,Ṽ

(y1 |x, u, v ) =



































































































































































0 if y1 < y∗ and v ≤ Q (0, x)

1−
α (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and v ≤ Q (0, x)

1 if y∗ ≤ y1 and v ≤ Q (0, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

0 if y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1−
γ (x, u)− y∗

y∗ − y∗
if y∗ ≤ y1 < y∗ and Q (0, x) < v ≤ Q (1, x)

1 if y∗ ≤ y1 and Q (0, x) < v ≤ Q (1, x)

−−−−−−−− −−−−−−−−−−−−−−−−−−

1 {y1 ≥ y∗} if Q (1, x) < v

.

which are valid cumulative distribution functions because of equations (G.11) and (G.12).

Step 14. For any u ∈ (u− ǫ, u), I define

F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u− ǫ, v ) ·

(

u− u

ǫ

)

+ F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) ·

(

u− u+ ǫ

ǫ

)

,

which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

For any u ∈ (u, u+ ǫ), I define

F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) = F

Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u, v ) ·

(

u+ ǫ− u

ǫ

)

+ F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
(y0, y1 |x, u+ ǫ, v )

(

u− u

ǫ

)

,
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which are valid cumulative distribution functions because a convex combination of cu-

mulative distribution functions is a cumulative distribution function.

Note that F
Ỹ ∗
0
,Ỹ ∗

1 |X,Ũ,Ṽ
is a continuous function of the value of Ũ , i.e., it satisfies re-

striction (G.4).

Having defined the joint cumulative distribution function FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X , note that equa-

tions (G.11) and (G.12),
mY

0 (x, u)

mS
0 (x, u)

∈
[

y∗, y∗
]

and steps 7-14 ensure that equation (G.2)

holds.

Now, I show, in three steps, that equation (G.1) holds.

Step 15. Observe that

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u,Q (0, x) ≥ Ṽ
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, Ṽ
] ∣

∣

∣X = x, Ũ = u
]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

=

Q(0,x)
∫

0

E

[

Ỹ ∗
1

∣

∣

∣X = x, Ũ = u, Ṽ = v
]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

α (x, u) dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

by step 13

= α (x, u) . (G.13)
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Step 16. Notice that

E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u,Q (0, x) ≥ Ṽ
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

=
E

[

1
{

Q (0, x) ≥ Ṽ
}

· E
[

Ỹ ∗
0

∣

∣

∣
X = x, Ũ = u, Ṽ

] ∣

∣

∣
X = x, Ũ = u

]

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, Ṽ = v
]

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣
X = x, Ũ = u

]

=

Q(0,x)
∫

0

mY
0 (x, u)

mS
0 (x, u)

dF
Ṽ |X,Ũ

(v |x, u)

P

[

Q (0, x) ≥ Ṽ
∣

∣

∣X = x, Ũ = u
]

by step 12

=
mY

0 (x, u)

mS
0 (x, u)

. (G.14)

Step 17. Note that

∆OO
Ỹ ∗ (x, u) := E

[

Ỹ ∗
1 − Ỹ ∗

0

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

= E

[

Ỹ ∗
1

∣

∣

∣
X = x, Ũ = u, S̃0 = 1, S̃1 = 1

]

− E

[

Ỹ ∗
0

∣

∣

∣X = x, Ũ = u, S̃0 = 1, S̃1 = 1
]

= α (x, u)−
mY

0 (x, u)

mS
0 (x, u)

by equations (G.13) and (G.14)

= δ (x, u)

by the definition of α (x, u) ,
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ensuring that equation (G.1) holds.

Finally, I show, in four steps, that equation (G.5) holds.

Step 18. Fix (y, d, s, z) ∈ R
4 arbitrarily and observe that expression (G.5) can be simplified to:

∣

∣

∣
FỸ ,D̃,S̃,Z,X (y, d, s, z, x)− FY,D,S,Z,X (y, d, s, z, x)

∣

∣

∣
≤ ǫ

⇔
∣

∣

∣FỸ ,D̃,S̃,Z|X (y, d, s, z |x) · FX (x)− FY,D,S,Z|X (y, d, s, z |x) · FX (x)
∣

∣

∣ ≤ ǫ

⇔
∣

∣

∣FỸ ,D̃,S̃,Z|X (y, d, s, z |x)− FY,D,S,Z|X (y, d, s, z |x)
∣

∣

∣ ≤
ǫ

FX (x)

⇔
∣

∣

∣FỸ ,D̃,S̃,Z|X (y, d, s, z |x)− FY,D,S,Z|X (y, d, s, z |x)
∣

∣

∣ ≤ 2 · ǫ (G.15)

by the definition of ǫ.

Step 19. Notice that

FỸ ,D̃,S̃,Z|X (y, d, s, z |x )− FY,D,S,Z|X (y, d, s, z |x )

= E

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}∣

∣

∣
X = x

]

− E [1 {(Y,D, S, Z) ≤ (y, d, s, z)}|X = x]

=

∫

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

1 {(Y,D, S, Z) ≤ (y, d, s, z)} dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u /∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

+

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u /∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

by linearity of the Lebesgue Integral

=

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u /∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

+

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u /∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

by steps 2-6

97



=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

≤

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

=

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFŨ |X (u |x )

= 2 · ǫ

by step 5.

Step 20. Following the same procedure of step 19, I have that:

FỸ ,D̃,S̃,Z|X (y, d, s, z |x )− FY,D,S,Z|X (y, d, s, z |x )

=

∫

[

1
{(

Ỹ , D̃, S̃, Z
)

≤ (y, d, s, z)
}

· 1 {u ∈ (u− ǫ, u+ ǫ)}
]

dFỸ ∗

0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z|X (y0, y1, u, v, z |x )

−

∫

[1 {(Y,D, S, Z) ≤ (y, d, s, z)} · 1 {u ∈ (u− ǫ, u+ ǫ)}] dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

≥ −

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFY ∗

0
,Y ∗

1
,U,V,Z|X (y0, y1, u, v, z |x )

= −

∫

1 {u ∈ (u− ǫ, u+ ǫ)} dFU |X (u |x )

= −2 · ǫ

Step 21. Combining steps 19 and 20, I find that

∣

∣

∣FỸ ,D̃,S̃,Z|X (y, d, s, z |x)− FY,D,S,Z|X (y, d, s, z |x)
∣

∣

∣
≤ 2 · ǫ,

implying equation (G.5) according to equation (G.15).

I can, then, conclude that proposition G.2 is true.

Proof of Proposition G.3. This proof is essentially the same proof of Proposition G.2 un-

der assumption 7.3.(a). Fix any u ∈ [0, 1], any x ∈ X , any δ (x, u) ∈
(

∆OO
Y ∗ (x, u) ,∆OO

Y ∗ (x, u)
)

and any ǫ ∈ R++ such that min

{

u−
ǫ

2 · FX (x)
, 1−

(

u−
ǫ

2 · FX (x)

)}

> 0. For brevity,
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define α (x, u) := δ (x, u) +
mY

0 (x, u)

mS
0 (x, u)

, γ (x, u) :=
mY

1 (x, u)− α (x, u) ·mS
0 (x, u)

∆S (x, u)
and ǫ :=

ǫ

2 · FX (x)
. Note that α (x, u) ∈ R = Y∗ and γ (x, u) ∈ R = Y∗.

I define the random variables
(

Ỹ ∗
0 , Ỹ

∗
1 , Ũ , Ṽ

)

using the joint cumulative distribution func-

tion FỸ ∗
0
,Ỹ ∗

1
,Ũ ,Ṽ ,Z,X described by steps 1-14 in the proof of proposition G.2 for the case of

convex support Y∗. Note that equation (G.7) is trivially true when Y∗ = R. Moreover, equa-

tions (G.6) and (G.10) are valid by the argument described in steps 15-21 in the previous

proof.

I can, then, conclude that proposition G.3 is true.
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