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Abstract

The validity of data envelopment analysis (DEA) efficiency estimators depends on the
robustness of the production frontier to measurement errors, specification errors and
the dimension of the input-output space. It has been proven that DEA estimators, within
the interval (0, 1], are overestimated when finite samples are used while asymptotically
this bias reduces to zero. The non-parametric literature dealing with bias correction of
efficiencies solely refers to estimators that do not exceed one. We prove that efficiency
estimators, both lower and higher than one, are biased. A Bayesian DEA method is
developed to correct bias of efficiency estimators. This is a two-stage procedure of
super-efficiency DEA followed by a Bayesian approach relying on consistent efficiency
estimators. This method is applicable to ‘small’ and ‘medium’ samples. The new
Bayesian DEA method is applied to two data sets of 50 and 100 E.U. banks. The mean
square error, root mean square error and mean absolute error of the new method reduce

as the sample size increases.
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1. Introduction

Data envelopment analysis (DEA) put forth by Charnes et al. (1978) and extended by
Banker et al. (1984) is a mathematical programming methodology to evaluate the
efficiency of a sample firm relative to a reference set of all sample firms. DEA is a non-
parametric approach to construct production frontiers based on observed input and
output data of the sample firms. Despite the non-parametric nature of DEA, Banker and
Maindiratta (1992), Banker (1993), Sarath and Maindiratta (1997), Banker and
Natarajan (2008) provided statistical justification for DEA. In particular, Banker (1993)
proved that DEA (with one output and multiple inputs), under the conditions of
monotonicity and concavity, yields consistent estimators of the production frontier. The
studies of Simar and Wilson (1998, 1999), Kneip et al. (2008, 2011), Kuosmanen and
Johnson (2010) and Tsionas and Papadakis (2010) also allowed for inference on DEA

efficiency estimators.

The validity of DEA efficiency estimators depends on the robustness of the production
frontier to measurement errors, specification errors and the dimension of the input-
output space. Banker (1993) was the first to highlight the overestimation of DEA
efficiencies when finite samples are used. Banker (1993) and Grosskopf (1996) showed
that this bias asymptotically reduces to zero. In line with these studies, Simar (2007)
identified an inverse relationship between the rate of convergence of DEA efficiency
estimators and the dimensionality of the production set. Simar and Wilson (2015) stated

that the true efficiency of a firm is unknown.

Emphasizing DEA, there are six major approaches dealing with the sensitivity of
efficiency estimators: (a) Chance Constrained DEA (CCDEA); (b) Two-stage DEA-
based methods; (c) Corrected Concave Non-Parametric Least Squares (C°NLS); (d)
Stochastic Non-Smooth Envelopment of Data (StoNED); (e) Bayesian DEA; and (f)
bootstrap DEA.



CCDEA (Charnes and Cooper, 1963; Land et al., 1993; Olesen and Petersen, 1995)
specifies stochastic production frontiers by replacing the observed input and output data
with their randomly distributed counterparts. CCDEA programs are appropriate for
dealing with the presence of noise in the data. However, they lack statistical theory. A
review of CCDEA is available in Olesen and Petersen (2016). Two-stage DEA-based
procedures presented by Banker and Natarajan (2008) for estimating non-parametric
stochastic frontiers. In the first stage, a conventional DEA model is applied (e.g. the
variable returns to scale (VRS) DEA put forth by Banker et al. (1984)) to estimate the
technical efficiency of sample firms. In the second stage, the DEA efficiency estimators
obtained from the previous stage are introduced in OLS and maximum likelihood

models to yield consistent estimators.

The C?NLS (Kuosmanen and Johnson, 2010) is a least-square interpretation of the VRS
DEA model, which, in contrast to conventional DEA models constructing production
frontiers based on dominant firms, uses all available information for estimating a
production frontier. Kuosmanen and Johnson (2010) concluded that the C*NLS
estimators outperform DEA estimators when the number of firms are significantly
higher than the number of input and output variables while the C°NLS estimators
perform at least as well as the DEA estimators when dimensionality is present. The
StoNED method (Kuosmanen and Kortelainen, 2007; Kuosmanen and Kortelainen,
2012) estimates semiparametric frontiers by combining the DEA-style frontier with the
Stochastic Frontier Analysis (SFA)-style treatment of inefficiency and noise. StoNED
facilitates statistical inference while relying on regularity properties (e.g. free
disposability, convexity) and without requiring the assumption of a particular

production function.

A Bayesian DEA approach for CCDEA was developed by Tsionas and Papadakis
(2010). This method provides statistical inference (e.g. estimation of CCDEA
efficiencies based on an estimated prior distribution, construction of confidence
intervals) to CCDEA relying on assumptions about the distribution (e.g. multivariate
normal) of the (posterior/observed) inputs and outputs. Relying on the distribution of
the posterior input and output data, it is possible to estimate the prior distribution of the
data and then estimate CCDEA efficiencies. This approach lacks formal statistical

justification.



Bootstrap DEA is a widely used method for correcting bias and constructing confidence
intervals of efficiency estimators (Kneip et al., 2008). Bootstrap DEA, or smoothed
bootstrap, originated from Simar and Wilson (1998), combines both the virtues and
limitations of bootstrap and DEA. Smoothed bootstrap relies on pseudo-data obtained
from an estimated data generating process (DGP) (Dyson and Shale, 2010). Kneip et
al. (2008, 2011) developed improved smoothed bootstrap algorithms providing
consistent bias-corrected estimators. Major limitations of the smoothed bootstrap are
the considerably large confidence intervals, which make difficult to obtain meaningful
comparisons between the sample firms, and unsatisfactory performance when

inadequate samples for the dimension of the input-output space are available.

All methods discussed above dealing with the sensitivity of DEA efficiencies refer to
estimators lying within the interval (0, 1]. Andersen and Petersen (1993), drawing on
the work of Banker and Gifford (1988), presented a super-efficiency DEA model,
which makes possible efficiency estimators to exceed unity, unlike the conventional
DEA models, as the firm under review is excluded from its own reference set. Super-
efficiency DEA procedure is used for ranking efficient units and identifying outliers
(Banker and Chang, 2006). However, Banker and Chang (2006) and Banker et al.
(2017) found that super-efficiency performs unsatisfactorily in ranking efficiency units.
It should be noted that this result has not been tested to cases of multiple inputs and
multiple outputs and input values considerably greater than 20. Another issue of the

traditional super-efficiency DEA model under VRS is the infeasibility.

The contribution of this work is to provide statistical inference in super-efficiency DEA
models. We develop a two-stage Bayesian DEA approach to correct bias of super-
efficiency estimators. In the first stage, we use a super-efficiency DEA model while in
the second stage we specify consistent super-efficiency estimators. These estimators
are introduced in the Bayesian framework to estimate bias-corrected (prior) super-
efficiencies. To the best of our knowledge, this is the first work on correction of bias of

super-efficiency estimators.

The rest of the paper unfolds as follows. In Section 2, we present the super-efficiency

DEA model and analyze the steps of our bias-correction method (i.e. Step 1:
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conventional statistical inference; Step 2: Bayesian statistical inference; Step 3: bias
correction). In Section 3, we present the two data sets used in this study and analyze the

results. Section 4 concludes and discusses future research directions.
2. Methodology
2.1 Super-efficiency DEA

After the work of Andersen and Petersen (1993), many studies appear in the literature
(Lovell and Rouse, 2003; Chen, 2005; Li et al., 2007; Ray, 2008; Cook et al., 2009;
Chen et al., 2011; Lee et al., 2011; Chen and Liang, 2011) dealing with the
measurement of super-efficiency in DEA under the condition of VRS. The latter studies

tried to solve the problem of infeasibility of the VRS super-efficiency DEA model.

In this study, we use Chen and Liang (2011)’s model to obtain super-efficiency

estimators (Gj ), which is as follows

min T+M><i7]r

r=1

s.t. lexij <(I+7)x, i=12,...m
j=1

j#o

Z/ljyrjz(l_nr)ym r:l’z""’s
Jj=1

Jj#o

S
j=1

Jj#o
2,20, j#0, 1,20 (1)

where M is a user-defined large positive number (e.g. 10°).

- : . 1 1 :
The super-efficiency estimators are defined as 1+7+— zreR = where R is the set

IS 7,

of 77, >0 and |R| is the cardinality of the set R.



For the application of this Bayesian DEA method for the correction of bias of the super-
efficiency DEA estimators, other super-efficiency models (e.g. Chen, 2005; Li et al.,
2007; Ray, 2008; Cook et al., 2009; Chen et al., 2011; Lee et al., 2011) can be used

instead of model (1).

2.2 Conventional statistical inference

Let ®= (Gj ), where 9 > 0 (j=12,...,n), be arandom variable of independently and

identically distributed (iid) super-efficiency estimators obtained from model (1). ® is

assumed uniformly distributed from 6, (0< 6, <1) to 6, (6, >1). The two parameters

(i.e. 6, and 6, ) are unknown.

Acknowledging the probability density function (PDF) of ® as

L, 0,<0,<0,
£5(0,]6,.6,)=16,-6, 2)
0 , otherwise

the likelihood function is expressed as follows

1

(@_—@)’” QL SH.i SQU, j:l,z,...,l’l (3)
1% L

iid_n
L(8,.0,|0)=] |f®(9j\0L,9U)=
j=1

By partially differentiating the likelihood function (3)

ilu@ﬁ$w=——ﬁ—?>o
00, ©,-6,)

2 146,.6|@)=——"<0
06, ©,-0,)"

we find that it is monotone increasing for 8, and monotone decreasing for 6, . Hence,

the likelihood function (3) is maximized at éL =min® and éU =max®.

Taking into account the maximum likelihood estimators (MLE) éL and éU , we define

the joint cumulative distribution function (CDF) as follows

F, , (t,5)=Prob(6, <t, §, <s)=Prob(min® <7, max O <s)
=Prob(max ® < s)—Prob(min® > ¢, max® <) 4
where



iid .
Prob(max © < ) = Prob(6, <s.....6, <s)={Prob(6, <s)}

:{j‘ f@(el ‘QL’HU)dHI }
o

) Y :{S‘@},1<ss% 5)
50, -0, 6, -0,

iid

Prob(min ® > 7, max®<s)=Prob(t <, <s....t <, <5)={Prob(r <, <s)}’

and

s n s 1 n
[i o] ~{j. L]
t IeU_eL

s—t !
= , 0 <t<s<@ (6)
ot asiessa,

Based on expressions (4)-(6), the joint CDF is written as follows

s—0. " s—t |
0.,0,)= L L — , 0 <t<s<@, 7
L U) {QU_QL} {HU—QL} L s U ()

with corresponding joint PDF

(s

F, .
()

o o0
Fa i 8100, 00) === F(; 5, (1-8) = _(_F@L,éy)(t, s)j

Ot \ Os

_0 n(is—6,)" _n(s —1)"!
Cot\ (8,-6,)"  (6,-6,)"

_nn=D(s—)""
- 6,-0,)"

, 0,<t<s<9, ®)

The marginal PDF of éL is expressed as follows

Oy Oy n(n _ 1)(S _ t)n—Z
. (110,,0,)= .~ (t,5|60,,6,)ds = d
@(|LU)Jﬁ%M<sL , )ds ! ooy
n n—1
=(6’——6’)”(9U_t) , 0,<t<, )
U L

and the corresponding marginal PDF of éU reads as follows

QL’HU )dt = j n(n_l)(s _t)n—

6, (0U - 9L )"

féu (S|HL’0U) = .[f(éuéu)(t’s
o,



n

:m(s—eL)H, 0, <s<0, (10)
U L

As we noticed in expressions (8)-(10)

(t,s HL,QU)¢féL(t|49L,9U)-féU (s16,.6,) (11)

Y.

Hence, the MLE éL and éU are not independent.

The expected value of éL is (see Appendix 1.1 for formal mathematical analysis)

A~y % 1
En{HL}:Jt-féL(t|0L,0U)dt=0L%+6’U—<1 (12)

Based on (12), we conclude that the MLE éL is asymptotically unbiased to the

A

parameter 6, as limE, {HL} =0, (13)

n—>0

The second moment of éL is defined as follows (see Appendix 1.2 for formal

mathematical analysis)

6,
A [ .2 o 20,-6,) 0,(n+)+0,
In addition, the variance of éL 18
Var,{,} = E,{6; |- E {0,
2
:HL2+2(9U_9L)~0L(H+D+9U— QLL-FGU 1 (15)
n+l1 n+2 n+l1 n+1
It is straightforward that lim Var, {éL} =0. (16)
The mean square error (MSE) of éL is
MSE, {6, | =bias’ {0, }+ Var, {4, | (17)

and the bias is defined as follows



bias, {6, | = £, {6, |-, (18)

The MLE éL is a consistent estimator of the parameter 6, .

Proof. Based on expression (13) and (16), we find that limbias”{éL}=0 and

n—o

lim MSE, {6,}=0.0

n—0
Likewise, the expected value of éU is (the formal mathematical analysis is like that in

Appendix 1.1)

A % n 1
En{eu}=9{S'féu(s|9L’9u)d5=9u 10 (19)

1-6,
n

where 6, >1+ to ensure that the mean value of éU is always greater than unity.
Based on expression (19), we conclude that the MLE éU is asymptotically unbiased to
the parameter 6, as lim E, {éu} =0,. (20)

n—0

The second moment of éU is defined as follows (the formal mathematical analysis is

like that in Appendix 1.2)

[
A2 _ ¢ 2 2 2(HU_0L) QU(n+1)+0L
E, {ey}_g{s Sy, (5, 0,)ds = 6 + =S S 1)
and its variance is
Va, {6,}=E, (02~ £2{6, )
2
:95+2(9U_9L).9U(n+1)+0L_(QU n ‘0, 1 j 22)
n+1 n+2 n+1 n+l1
It is straightforward that lim Var, {év} =0. (23)
The MSE of 6, is
MSE, {0, | =bias’ {8, } + Var, {4, | (24)



and the bias is defined as follows

bias, {0, | = {éU}-eu (25)

n

The MLE éU is consistent estimator of the parameter 6, .

Proof. Based on expressions (20) and (23), we find that limbiasn{év}:o and

n—0

lim MSE, {0, }=0.0

n—o0

Using expressions (12) and (19), the unbiased estimators of parameters #, and 6, are

g, = "% _1‘9U <6, (26) and, G, ="% =%

n— n—1

>éU (27) respectively, which satisfy

E, {éL} =0, (28)and E, {éU} =0, (29), respectively.

The covariance of éL and éU is defined as follows (see Appendix 2 for formal
mathematical analysis)

cov,6,.0,)=E,{6,6,)-E,{6,}£,{0,}

g+ -6, 6,0, +1)+(0; +0))n

=60 30
L n+2 (n+1)? (30)

The covariance of éL and éU facilitates the definition of the variance of the unbiased

estimator éL . Using property (26), the variance is

Var, {éL} = Var, {n&l——é]}

n—1
—_— 1 2 2 2] 2] 2]
ST (n Var, {GL} + Var, {GU } —2ncov,(6,,6, )) (31)
which is asymptotically zero, lim Var, {éL} =0 (32)
In addition, MSE, {6, | = Var, {6, } (33)

The unbiased estimator 9~L is consistent to parameter 6, .
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Proof. Based on expressions (28) and (32), we find that lim MSE {6’1} =0.o

n—o0

Likewise, using property (27), the variance of the unbiased estimator 49~U is

Var, {67[]} = Var, {néU—_éL}

n-1

- _11)2 (nzVarn {6, }+Var,{,}-2ncov, {6,.4, }) (34)
which is asymptotically zero lim Var, {0,}=0 (35)
and MSE, {6, | = Var, {4, | (36)

The unbiased estimator 6?~U is consistent to parameter 6, .

Proof. Expressions (29) and (35) lead to limMSE, {6, } =0.0

n—0

Figure 1 illustrates the performance of the MSE of the unbiased estimators against that

of the maximum likelihood estimators. This comparative analysis is obtained from

1,000 Monte Carlo simulations. In detail, we find that MSE, {6, } <MSE, {4, } while

MSE, {éU}<MSEn {6’:,} Therefore, the unbiased estimator 6, is better than the

corresponding MLE éL for the parameter 6, while the opposite applies for the

parameter 6, .

002
0.015 4. i
1S 001X
=
o

2 0005

[-MIE [unbiased }

Figure 1. Unbiased estimators vs. maximum likelihood estimators
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The covariance of (9~L and éU is defined as follows (see Appendix 3 for formal

mathematical analysis)

cov (6,,0,)=E, {éLéU } —E, {éL} E, {éU}

2 a2 2 g2
_n +12 0,0, + @, -6)" ) n : 0+ + 2(6;-6,)
(n-1 n+2 (n—-1) (n+1)

J_QLQU (37)
Based on expression (37) we develop Figure 2 where an inverse relationship between
the unbiased estimators éL and éU becomes explicit. These unbiased estimators are
asymptotically uncorrelated as expression (37) 1is asymptotically zero (

limcov, (6,,6,)=0)

n—x0

Figure 2. Covariance of the unbiased estimators éL and éU

2.3 Bayesian statistical inference

The prior
Let the vector ©@=(0,,0,) of super-efficiency scores where ®,=(6,,....6,),
0,<0,<1, and O, =(6,,,,....0,), 1<O, <0,. In the absence of any information

about the distribution of the DEA super-efficiency scores, we assume @O‘HL and

©, |6, to be uniformly distributed with PDF

12



L, 0, <0, <1, j=1,...k
f,, 6,6)=11-6, (38)
0 , otherwise
! j=k+1,..,n
£, @l0)=16,-1"" "7 " (39)
0 , otherwise
and joint PDF
iid
0,0 0 40
f(\)Hf(\L)(IQ) (40)
iid _n 1
fo,©10)=11 1., ©,|6,) = @ (41)

k
J=k+1 _1)’1

The parameter 6, could be beta-distributed (see Appendix 4) with parameters y >0

and 6 >0.

Assuming the unbiased estimator of 6, is equivalent to the expected value of the prior

beta distribution of 8, (i.e. ), we find that ¢ is an expression of y

1-6,)y
§=~— Ll 42
0, (42)

and the prior beta distribution is reduced to the single parameter y.

The vector ®, has a joint PDF

B(y,0—k)
® (ONI 6,)dg, =————= 43
£, ©g)= jf 10, (©@o]0)£,,0) BG.5) 43)
where 0 > k (beta function is defined in Appendix 4).
Then, the parameter y is lower bounded y > k 44)

L

With respect to O, , the parameter 6, is assumed to be shifted gamma-distributed (see

Appendix 5) with parameters « >0 and £>0.
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Assuming the unbiased estimator is identical to the expected value af +1 of the prior

shifted gamma-distribution of 6, , then the parameter /£ is an expression of o

p=tt (45)
a

Hence, the prior shifted gamma-distribution is reduced to the single parameter o .
The vector ®, has a joint PDF

K _T(a—-n+k)
f,, @)= jf (©,6,)f,, 6,36, =——F == (46)
where o >n—k.

: 6, -1
Then, the parameter £ is upper bounded f < P 47)
n —

The posterior

. , £, (©]6,)f, (6,
The Bayesian PDF of 0L| 0O, is (9L| O,)=—2 (48)

0 f,,(©0)
0y O
According to the joint PDF (40), the Bayesian PDF (48) becomes
1

—— 7' 1-0,)" 49
so o nd -0 (49)

which refers to a posterior beta distribution with parameters y and 6 —k .

The posterior beta distribution shifts the corresponding prior beta distribution, with

parameters ¥ and o, to the right, which is justified by the following expected values

E 6,10} >E{6,} as 7/+g—k>7/15 (50)

Emphasizing ©,, the Bayesian PDF of 6?U|®I is

14



a-n+k-1 01/_1
f, @85, @) @D e"P[‘ ; j
f,®)  Ta-n+k)pt

TANCAIRE (51)

which refers to a posterior shifted gamma distribution with parameters a —n+k >0

and >0.

The posterior shifted gamma distribution shifts the corresponding prior distribution to
the left, which justifies the underestimation of the DEA efficiencies that are greater than

one. This underestimation is explained as follows

E, 16,|0,}<E, {6,} as (a—n+k)B+1<ap+1 (52)
2.4 Bias correction
Let a correction parameter &, =6, / éL where &, <1 (53)

Elaborating on expressions (42), (44) and (53), we estimate parameters y and o as

follows
p=k6, /(1-&) (54)
and § = (l_éﬂ (55)

L

Two random data sets of size k are generated, where k expresses the number of DMUs
assigned efficiencies (e.g. obtained from DEA program (1)) lower than unity. The first
randomly generated data set is drawn from a prior beta distribution of 6, with

parameters 7 and 5 (see expressions (54) and (55)). The second randomly generated

data set is drawn from a posterior beta distribution ¢9L| ©®, with parameters y and 5—k

. The prior to posterior distribution ¥, = —%—

| is fitted by a gamma distribution with
L (6]

parameters z, >0 and e, >0. The maximum likelihood estimates of these two
parameters (i.e. Z, and ¢.) are obtained from the MATLAB function gamfit. The

goodness-of-fit is calculated using the Wilcoxon rank sum test for equal medians.
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The corrected estimator is

8, =0 Gamma(Z,,e,), p=1L...k (pcj) (56)

s(8,) s(8,)

I G

where w expresses the number of Monte Carlo iterations and cv denotes the critical

with confidence interval §p - cv< Sp < ,§p + cv 57

value of t-distribution with w—1 degrees of freedom.

The Monte Carlo simulated mean and standard deviation are defined as follows

w

3, =w'>39, (58)

I=1

and s(8,)= \/(w—l)li(SN -3, (59)

With respect to the DEA estimators that are greater than unity, we define a correction

parameter &, = éU / éU that satisfies &, >1 (60)

We already know that ¢ >n—k (46) and S :E (45). To estimate the two
a

), —1
parameters of the shifted gamma distribution we introduce (NQU—A)

U U

>1 in (46), which

(=R =D 61y and j= !

0,-6,) a

leads to & =

(62).

Similar to the correction process followed for the DEA estimators lying within the

interval (0,1), for the estimators exceeding one, we generate two random data sets for

both the prior shifted gamma distribution with parameters ¢ and ﬁ , and the posterior

shifted gamma distribution with parameters & —n+k and ﬁ . The prior to posterior

distribution ¥, = |—U is fitted by a gamma distribution with parameters z; >0 and
U 1

e, > 0. The maximum likelihood estimates of these two parameters (i.e. Z;, and ¢, ) are

16



obtained from the MATLAB function gamfit. Like above, the goodness-of-fit is

calculated using the Wilcoxon rank sum test for equal medians.

The corrected estimator is

19q zﬁanmma(él,éI), g=1,...n—k (gc)) (63)

S('gq)CVSS <9 +S(9q)

\/; =Y W

where gq :W’IZSqJ and s(94)=\/(w—1)"12(19q,, _§q ).
I=l1 I=l

with confidence interval §q - cv (64)

3. Application to E.U. banks

3.1 Data set and selection of variables

In this study, we used two data sets to test the performance of the Bayesian DEA method
in correcting bias of DEA estimators. The first data set consists of 50 banks while the
second one is expanded to 100 banks. In practice, the second data set includes 50 new
banks in addition to those of the first data set. Both data sets include three inputs (i.e.
(a) Deposits & Short-term funding; (b) Equity; (c) Overheads) and two outputs (i.e. (a)
Other operating income; (b) Total earning assets). The data come from Orbis Bank

Focus (the two data sets are available in the online version of this article; see Table E1).

The size of both samples is considered adequate for the dimension of the input-output
space. The sample size (e.g. 50 banks) satisfies the ‘rule of thumb’ put forth by Cooper
et al. (2007): n>max{xy, 3(x+ y)}, where n stands for the number of firms and x and
y are the number of inputs and output, respectively. However, the DEA efficiency
estimators assigned to the banks are expected to be biased as the samples of 50 and 100

firms are regarded as small and medium (Banker et al., 2010).

Descriptive statistics of the two-real-world data sets we used in this study are presented

in Table 1.
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Table 1. Descriptive statistics

Descriptive Input 1 Input2 Input 3 Output 1 Output 2
Statistics Deposits & Short- Equity Overheads Other operating Total earning
term funding (th. USD) (th. USD) income assets
(th. USD) (th. USD) (th. USD)
Data set #1
Min 70,297,253.75 3,206,983.76 441,606.19 39,519.81 78,756,562.06
Max 1,123,647,327.88  107,512,396.64  35,575,451.73 22,855,080.28 1,863,483,249.28
St. Deviation 269,719,167.56 27,256,863.52 8,724,429.52 5,444,032.81 448,968,188.58
N 50
Data set #2
Min 19,990,191.12 489,577.57 28,905.31 24,895.92 19,748,600.00
Max 1,123,647,327.88  107,512,396.64  35,575,451.73 22,855,080.28 1,863,483,249.28
St. Deviation 236,768,787.66 23,063,500.59 7,146,079.09 4,406,831.52 384,593,187.45
N 100

3.2 Empirical results

The empirical results of the first data set, consisting of 50 banks, are reported in Table
2. The actual efficiencies refer to the results obtained from the traditional super-
efficiency model of Andersen and Petersen (1993) and Chen and Liang (2011)’s super-
efficiency model (see model (1)). The bias-corrected super-efficiency estimators
yielded by our Bayesian DEA approach are presented on the right side column of the
actual efficiencies followed by the 95% Monte Carlo confidence intervals of the bias-

corrected estimators and the significance of the bias correction process (p-value).

According to Table 2, the Bayesian DEA approach presented in Section 2 yields
reduced estimators for actual efficiencies lower than one and increased estimators for
actual efficiencies exceeding one. The mean bias of efficiency estimators below one is
higher (i.e. mean bias: -0.0533; min bias: -0.0325 and max bias: -0.0723) than the bias
of the estimators above one (i.e. mean bias: 0.0209; min bias: 0.0137 and max bias:
0.0363). Moreover, in the case of estimators below one, the bias is higher for those
getting closer to unity while lower for the estimators with higher deviation from one.
The opposite applies to the super-efficiency estimators as the bias becomes lower when
the estimator approaches one and higher when it moves far from one. All bias-corrected

estimators are statistically significant (p-value <0.001).
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In the case of the sample of 50 banks, the mean square error (MSE), root mean square

error (RMSE) and mean absolute error (MAE) of the Bayesian DEA estimators are

0.0021, 0.0453 and 0.0416, respectively.

Table 2. Empirical results

# Banks Actual efficiencies Bias- 95% p-value
corrected Confidence
estimators interval
Traditional Chen & Bayesian Lower Upper
SE Liang DEA
(2011) SE
1 BNP Paribas Infeasible 2.2909 2.3210 2.3078 2.3342 <0.001
2 Banco Santander SA 0.7417 0.7417 0.6834 0.6743 0.6925 <0.001
3 Barclays Bank Plc 1.0130 1.0130 1.0268 1.0201 1.0334 <0.001
4 ING Bank NV 1.3874 1.3874 1.4070 1.3980 1.4159 <0.001
5 Lloyds Bank Plc 0.8489 0.8489 0.7888 0.7797 0.7980 <0.001
6 Deutsche Bank AG 1.2194 1.2194 1.2475 1.2403 1.2547 <0.001
7 Société Générale SA 1.2382 1.2382 1.2555 1.2476 1.2633 <0.001
8 Royal Bank of Scotland Plc (The) 0.8295 0.8295 0.7733 0.7624 0.7843 <0.001
9 UniCredit SpA 0.7808 0.7808 0.7282 0.7192 0.7371 <0.001
10 HSBC Bank plc 0.9568 0.9568 0.8943 0.8832 0.9054 <0.001
11 Banco Bilbao Vizcaya Argentaria 0.7322 0.7322 0.6839 0.6739 0.6939 <0.001
SA-BBVA
12 Standard Chartered Bank 0.5999 0.5999 0.5557 0.5485 0.5629 <0.001
13 Bank of Scotland Plc 0.7334 0.7334 0.6826 0.6736 0.6917 <0.001
14  Credit Mutuel (Combined - IFRS) 1.1112 1.1112 1.1329 1.1254 1.1405 <0.001
15 Commerzbank AG 0.6867 0.6867 0.6500 0.6420 0.6581 <0.001
16 National Westminster Bank Plc - 0.5776 0.5776 0.5394 0.5320 0.5468 <0.001
NatWest
17 Intesa Sanpaolo 1.0047 1.0047 1.0207 1.0136 1.0278 <0.001
18 ABN AMRO Bank NV 0.6262 0.6262 0.5865 0.5793 0.5937 <0.001
19 Credit Agricole Corporate and 1.4231 1.4231 1.4392 1.4298 1.4486 <0.001
Investment Bank SA-Credit
Agricole CIB
20 Natixis SA 1.1560 1.1560 1.1787 1.1706 1.1867 <0.001
21 Caixabank, S.A. 0.7899 0.7899 0.7291 0.7193 0.7390 <0.001
22 Crédit Industriel et Commercial 0.8282 0.8282 0.7786 0.7696 0.7877 <0.001
SA - CIC
23 Banque Fédérative du Crédit 1.0571 1.0571 1.0759 1.0691 1.0827 <0.001
Mutuel
24  Danske Bank A/S 1.0505 1.0505 1.0711 1.0637 1.0784 <0.001
25 La Banque Postale 0.9979 0.9979 0.9347 0.9250 0.9445 <0.001
26 UniCredit Bank AG 0.6974 0.6974 0.6513 0.6424 0.6603 <0.001
27 KBC Bank NV 0.6686 0.6686 0.6283 0.6199 0.6367 <0.001
28 Svenska Handelsbanken 0.5994 0.5994 0.5555 0.5490 0.5621 <0.001
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29 Banco de Sabadell SA 0.8004 0.8004 0.7395 0.7303 0.7487 <0.001
30 Bankia, SA 0.5714 0.5714 0.5388 0.5319 0.5458 <0.001
31 UniCredit Bank Austria AG-Bank 0.7621 0.7621 0.7053 0.6954 0.7151 <0.001
Austria
32 Deutsche Postbank AG 0.7525 0.7525 0.7003 0.6919 0.7088 <0.001
33 ING-DiBa AG 0.5462 0.5462 0.5057 0.4987 0.5128 <0.001
34 Skandinaviska Enskilda Banken 1.0449 1.0449 1.0627 1.0556 1.0699 <0.001
AB
35 Banco Popular Espanol SA 0.6505 0.6505 0.6097 0.6017 0.6178 <0.001
36 Le Crédit Lyonnais (LCL) SA 0.8824 0.8824 0.8131 0.8023 0.8239 <0.001
37 ING Belgium SA/NV-ING 0.7142 0.7142 0.6624 0.6545 0.6704 <0.001
38 Banca Monte dei Paschi di Siena 1.1716 1.1716 1.1977 1.1896 1.2058 <0.001
SpA-Gruppo Monte dei Paschi di
Siena
39 Deutsche Bank Privat-und 1.5377 1.5377 1.5564 1.5454 1.5675 <0.001
Geschaftskunden AG
40 Banco BPM SPA 0.9995 0.9995 0.9390 0.9267 0.9512 <0.001
41 Belfius Banque SA/NV-Belfius 0.8518 0.8518 0.7938 0.7833 0.8043 <0.001
Bank SA/NV
42 Raiffeisen Bank International AG 0.9183 0.9183 0.8549 0.8444 0.8655 <0.001
43 Bank Austria Creditanstalt AG 0.9260 0.9260 0.8624 0.8511 0.8737 <0.001
44  Dexia Crédit Local SA 2.4948 2.4948 2.5311 2.5143 2.5479 <0.001
45 Caixa Geral de Depositos 1.1182 1.1182 1.1368 1.1305 1.1432 <0.001
46 Allied Irish Banks plc 0.9073 0.9073 0.8350 0.8229 0.8471 <0.001
47 Piracus Bank SA 0.9216 0.9216 0.8615 0.8509 0.8721 <0.001
48 Abbey National Treasury 1.1857 1.1857 1.2032 1.1955 1.2109 <0.001
Services Plc
49 National Bank of Greece SA 0.9647 0.9647 0.8942 0.8826 0.9059 <0.001
50 Deutsche Kreditbank AG (DKB) 1.2066 1.2066 1.2235 1.2147 1.2323 <0.001
MSE 0.0021
RMSE 0.0453
MAE 0.0416

In the case of the extended sample of 100 banks (Table A1l in Appendix 6), the MSE,
RMSE and MAE of the Bayesian DEA estimators are 0.0013, 0.0355 and 0.0321,

respectively. All three measures are lower than the corresponding measures referring

to the sample of 50 banks (Table 2). It should be noted that this Bayesian DEA approach

is appropriate for small and medium samples where the estimators, lower and greater

than unity, are dependent. Based on expression (37) and Figure 2, it is straightforward

that the unbiased estimators are asymptotically uncorrelated.
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4. Concluding remarks and future research

The purpose of this study was to develop a Bayesian DEA approach for correcting bias
of super-efficiency estimators. The new method uses consistent estimators to the
unknown efficiency parameters to correct the bias of the actual efficiencies. The
assumptions made for the development of the Bayesian DEA method are regarded as

realistic.

The new method draws on Chen and Liang (2011)’s super-efficiency model. However,
other super-efficiency models that tackle the infeasibility problem could be used
instead. The new Bayesian DEA method is appropriate for small and medium data sets
where dependence among the estimators below and above one is present. The empirical
results showed a decrease in MSE, RMSE and MAE when the sample size increases.
In addition, the range of the 95% Monte Carlo confidence intervals of the estimators
decreases while the sample size becomes larger. The empirical analysis presented in
this study was based on two real-world data sets of 50 and 100 firms coming from the

E.U. banking sector. The two data sets included three inputs and two outputs.

Further research is needed to test the performance of the new Bayesian DEA bias-
corrected estimators when real-world data sets of different dimensions and scales than
those used in this study are employed. The Bayesian DEA method presented in this
work should be modified to become appropriate for large samples as well. Furthermore,
the application of outlier-detection methods in conjunction with the new Bayesian DEA
method would prevent distortion of the bias-corrected estimators - especially in cases
where observed efficiency estimators are significantly higher than one. Addressing
these limitations would improve the performance, applicability and generalizability of

the new method.
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Appendices

Appendix 1.1

The expected value of éL is as follows
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Appendix 1.2
The second moment of éL is defined as follows
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Appendix 2
The covariance of éL and éU is defined as follows
cov (0,.6,)=E, {éLéU } _E, {éL}En {é,, } (A2.2)
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By replacing (A2.c) and (A2.d) in (A2.b), we obtain
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Introducing  expressions  (A2.e), E { AL} =0, LI 6, Ll (12), and

A n 1
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Appendix 3

The covariance of 9~L and 67U is defined as follows
cov,(0,.6,)=E,{6,6,}-E,{6,} E,{6,]

Based on expressions (26) and (27), we obtain
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given expressions (14), (21) and (A2.e), (A3.a) is rewritten as follows
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Since the estimators are unbiased we find
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Appendix 4

The prior beta distribution of §, with parameters y >0 and 6 >0 has a PDF

1
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Appendix 5

Let a random variable v be gamma-distributed with parameters @ >0 and £ >0. The

PDF is
v exp(—v/ B) )50
Gamma(v|a, §) = () p”
0 , otherwise

where I'(a) = J‘t“*1 exp(—t)dt
0

The expected value of v is E(v) =af
The shifted random variable v, = v +1 is shifted gamma-distributed with PDF

(v, -« exp {—(vs -1/ ﬂ}
a, ) = Gamma(v, -1, B) = I(a)p”

0 , otherwise

v. >1
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Its expected value is E(v,) =aff +1
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Appendix 6

Table A1l. Efficiency estimators

# Banks Actual efficiencies Bias- 95% p-value
corrected Confidence
estimators interval
Traditional Chen & Bayesian Lower Upper
SE Liang DEA
(2011) SE
1 BNP Paribas Infeasible 2.2909 2.3060 2.2971 2.3150 <0.001
2 Banco Santander SA 0.7417 0.7417 0.7089 0.7012 0.7165 <0.001
3 Barclays Bank Plc 1.0130 1.0130 1.0227 1.0187 1.0268 <0.001
4 ING Bank NV 1.3874 1.3874 1.3994 1.3941 1.4047 <0.001
5 Lloyds Bank Plc 0.8489 0.8489 0.7972 0.7893 0.8050 <0.001
6 Deutsche Bank AG 1.2194 1.2194 1.2315 1.2267 1.2363 <0.001
7 Société Générale SA 1.2382 1.2382 1.2442 1.2395 1.2490 0.0067
8 Royal Bank of Scotland Plc 0.8295 0.8295 0.7806 0.7730 0.7882 <0.001
The
9 %IniC)redit SpA 0.7808 0.7808 0.7332 0.7261 0.7402 <0.001
10 HSBC Bank plc 0.9568 0.9568 0.9135 0.9047 0.9223 <0.001
11 Banco Bilbao Vizcaya 0.7322 0.7322 0.6974 0.6909 0.7039 <0.001
Argentaria SA-BBVA
12 Standard Chartered Bank 0.5999 0.5999 0.5730 0.5675 0.5785 <0.001
13 Bank of Scotland Plc 0.7334 0.7334 0.6963 0.6896 0.7031 <0.001
14 Credit Mutuel (Combined - 1.1112 1.1112 1.1186 1.1140 1.1232 <0.001
IFRS
15 Comr)nerzbank AG 0.6867 0.6867 0.6510 0.6449 0.6572 <0.001
16 National Westminster Bank Plc - 0.5776 0.5776 0.5403 0.5341 0.5464 <0.001
NatWest
17 Intesa Sanpaolo 1.0047 1.0047 1.0152 1.0113 1.0191 <0.001
18 ABN AMRO Bank NV 0.6262 0.6262 0.5964 0.5900 0.6029 <0.001
19 Credit Agricole Corporate and 1.4231 1.4231 1.4368 1.4307 1.4429 <0.001
Investment Bank SA-Credit
Agricole CIB
20 Natixis SA 1.1544 1.1544 1.1637 1.1596 1.1679 <0.001
21 Caixabank, S.A. 0.7850 0.7850 0.7377 0.7297 0.7457 <0.001
22 Crédit Industriel et Commercial 0.7893 0.7893 0.7459 0.7387 0.7531 <0.001
SA - CIC
23 Banque Fédérative du Crédit 1.0556 1.0556 1.0655 1.0615 1.0694 <0.001
Mutuel
24 Danske Bank A/S 1.0505 1.0505 1.0591 1.0549 1.0633 <0.001
25 La Banque Postale 0.9715 0.9715 0.9132 0.9053 0.9210 <0.001
26 UniCredit Bank AG 0.6644 0.6644 0.6306 0.6238 0.6374 <0.001
27 KBC Bank NV 0.6345 0.6345 0.6031 0.5976 0.6086 <0.001
28 Svenska Handelsbanken 0.5939 0.5939 0.5622 0.5568 0.5675 <0.001
29 Banco de Sabadell SA 0.7385 0.7385 0.6985 0.6908 0.7062 <0.001
30 Bankia, SA 0.5377 0.5377 0.5083 0.5039 0.5128 <0.001
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31

32
33
34

35
36
37
38

39

40
41

42

43
44
45
46
47
48

49
50
51
52

53
54

55
56
57
58
59
60
61
62
63

64
65
66
67
68

UniCredit Bank Austria AG-
Bank Austria
Deutsche Postbank AG

ING-DiBa AG

Skandinaviska Enskilda Banken
AB
Banco Popular Espanol SA

Le Crédit Lyonnais (LCL) SA
ING Belgium SA/NV-ING

Banca Monte dei Paschi di Siena
SpA-Gruppo Monte dei Paschi di
Siena

Deutsche Bank Privat-und
Geschaftskunden AG

Banco BPM SPA

Belfius Banque SA/NV-Belfius
Bank SA/NV

Raiffeisen Bank International
AG

Bank Austria Creditanstalt AG

Dexia Crédit Local SA
Caixa Geral de Depositos
Allied Irish Banks plc
Piracus Bank SA

Abbey National Treasury
Services Plc
National Bank of Greece SA

Deutsche Kreditbank AG (DKB)
Eurobank Ergasias SA

Banca Nazionale del Lavoro
SpA-BNL
HSBC France SA

Banco Comercial Portugués, SA-
Millennium becp
Alpha Bank AE

SNS Bank N.V.

Nykredit Realkredit A/S
CACEIS Bank Luxembourg
Crédit du Nord SA

Ibercaja Banco SAU
Kutxabank SA

Novo Banco

Abanca Corporacion Bancaria
SA
Clydesdale Bank Plc

Bankinter SA
Ulster Bank Limited
Virgin Money Plc
TSB Bank Plc

0.7204

0.6735
0.4104
0.9987

0.5486
0.7613
0.5325
1.0716

1.0945

0.9447
0.6500

0.6788

0.6849
2.4948
0.8878
0.4556
0.3890
0.8700

0.4045
0.5329
0.4360
0.5846

1.0171
0.9004

0.4538
0.5847
1.3530
0.9121
0.7184
1.4488
0.5622
0.6055
0.8723

0.5678
0.6786
0.6602
0.6979
0.6466

0.7204

0.6735
0.4104
0.9987

0.5486
0.7613
0.5325
1.0716

1.0945

0.9447
0.6500

0.6788

0.6849
2.4948
0.8878
0.4556
0.3890
0.8700

0.4045
0.5329
0.4360
0.5846

1.0171
0.9004

0.4538
0.5847
1.3530
0.9121
0.7184
1.4488
0.5622
0.6055
0.8723

0.5678
0.6786
0.6602
0.6979
0.6466

0.6805

0.6362
0.3888
0.9464

0.5193
0.7181
0.5046
1.0872

1.1038

0.8974
0.6160

0.6433

0.6486
2.5147
0.8435
0.4308
0.3709
0.8252

0.3860
0.5078
0.4141
0.5556

1.0253
0.8517

0.4322
0.5487
1.3625
0.8682
0.6752
1.4594
0.5332
0.5708
0.8213

0.5367
0.6423
0.6238
0.6578
0.6122

0.6733

0.6297
0.3848
0.9363

0.5140
0.7117
0.4994
1.0826

1.0993

0.8885
0.6099

0.6365

0.6422
2.5060
0.8355
0.4266
0.3671
0.8179

0.3821
0.5028
0.4100
0.5499

1.0213
0.8435

0.4278
0.5430
1.3570
0.8590
0.6685
1.4534
0.5278
0.5654
0.8133

0.5313
0.6360
0.6175
0.6509
0.6061

0.6877

0.6426
0.3929
0.9565

0.5245
0.7245
0.5099
1.0917

1.1083

0.9063
0.6221

0.6502

0.6549
2.5234
0.8516
0.4350
0.3747
0.8324

0.3898
0.5129
0.4181
0.5612

1.0294
0.8598

0.4367
0.5544
1.3679
0.8773
0.6819
1.4653
0.5386
0.5762
0.8294

0.5421
0.6486
0.6300
0.6647
0.6184
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<0.001

<0.001
<0.001
<0.001

<0.001
<0.001
<0.001
<0.001

<0.001

<0.001
<0.001

<0.001

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

<0.001
<0.001
<0.001
<0.001

<0.001
<0.001

<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001

<0.001
<0.001
<0.001
<0.001
<0.001



69 Bank of New York Mellon 0.7982 0.7982 0.7551 0.7468 0.7634 <0.001
SA/NV
70 Co-operative Bank Plc (The) 0.6823 0.6823 0.6405 0.6337 0.6474 <0.001
71 BGL BNP Paribas 0.6587 0.6587 0.6214 0.6152 0.6276 <0.001
72 Mediobanca SpA- 0.9987 0.9987 0.9464 0.9363 0.9565 <0.001
MEDIOBANCA - Banca di
Credito Finanziario Societa per
Azioni
73 Bank Polska Kasa Opieki SA- 0.6734 0.6734 0.6409 0.6350 0.6469 <0.001
Bank Pekao SA
74 Lyonnaise de Banque SA 0.9797 0.9797 0.9293 0.9204 0.9381 <0.001
75 OP Corporate Bank plc 1.3976 1.3976 1.4046 1.4001 1.4092 0.0015
76 Jyske Bank A/S (Group) 0.9055 0.9055 0.8552 0.8472 0.8632 <0.001
77 Ceska Sporitelna a.s. 0.6957 0.6957 0.6592 0.6522 0.6662 <0.001
78 OTP Bank Plc 1.1127 1.1127 1.1203 1.1158 1.1248 <0.001
79  Bank fiir Arbeit und Wirtschaft 0.7754 0.7754 0.7301 0.7229 0.7372 <0.001
und Osterreichische
Postsparkasse
Aktiengesellschaft-BAWAG
PSK. AG
80 Komercni Banka 0.7662 0.7662 0.7286 0.7217 0.7354 <0.001
81 Banque CIC Est SA 1.0218 1.0218 1.0314 1.0270 1.0358 <0.001
82 SEB AG 0.8577 0.8577 0.8094 0.8014 0.8174 <0.001
83 Banco di Napoli SpA 0.8153 0.8153 0.7719 0.7642 0.7795 <0.001
84 Bank Zachodni WBK S.A. 0.8070 0.8070 0.7577 0.7496 0.7658 <0.001
85 Permanent TSB Plc 0.8130 0.8130 0.7669 0.7598 0.7740 <0.001
86 Sumitomo Mitsui Banking 0.8248 0.8248 0.7847 0.7768 0.7926 <0.001
Corporation Europe Limited-
SMBCE
87 Ceskoslovenska Obchodni 0.8442 0.8442 0.7966 0.7879 0.8053 <0.001
Banka A.S.- CSOB
88 Credito Emiliano SpA- 0.8893 0.8893 0.8369 0.8287 0.8450 <0.001
CREDEM
89 KfW Ipex-Bank Gmbh 0.9140 0.9140 0.8631 0.8553 0.8709 <0.001
90 Banca Mediolanum SpA 1.2666 1.2666 1.2777 1.2729 1.2825 <0.001
91 mBank SA 0.8761 0.8761 0.8313 0.8224 0.8401 <0.001
92 Danske Bank Plc 0.9320 0.9320 0.8864 0.8774 0.8953 <0.001
93 Citibank International Limited 0.9092 0.9092 0.8498 0.8419 0.8577 <0.001
94 Banco Cooperativo Espanol 2.4548 2.4548 2.4821 24733 2.4910 <0.001
95 CIC Ouest SA 1.1469 1.1469 1.1559 1.1507 1.1611 <0.001
96 Erste Bank der Oesterreichischen 0.9982 0.9982 0.9509 0.9425 0.9592 <0.001
Sparkassen AG
97 Montepio Investimento SA 1.0670 1.0670 1.0732 1.0686 1.0777 0.0041
98 Bank of Cyprus Public Company 0.9973 0.9973 0.9410 0.9314 0.9507 <0.001
Limited-Bank of Cyprus Group
99 ABH Financial Limited 1.2521 1.2521 1.2654 1.2607 1.2701 <0.001
100 Banca Carige SpA 1.0916 1.0916 1.1000 1.0959 1.1041 <0.001
MSE 0.0013
RMSE 0.0355
MAE 0.0321
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