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Abstract 

 

The validity of data envelopment analysis (DEA) efficiency estimators depends on the 

robustness of the production frontier to measurement errors, specification errors and 

the dimension of the input-output space. It has been proven that DEA estimators, within 

the interval (0, 1], are overestimated when finite samples are used while asymptotically 

this bias reduces to zero. The non-parametric literature dealing with bias correction of 

efficiencies solely refers to estimators that do not exceed one. We prove that efficiency 

estimators, both lower and higher than one, are biased. A Bayesian DEA method is 

developed to correct bias of efficiency estimators. This is a two-stage procedure of 

super-efficiency DEA followed by a Bayesian approach relying on consistent efficiency 

estimators. This method is applicable to ‘small’ and ‘medium’ samples. The new 

Bayesian DEA method is applied to two data sets of 50 and 100 E.U. banks. The mean 

square error, root mean square error and mean absolute error of the new method reduce 

as the sample size increases. 
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1. Introduction 

 

Data envelopment analysis (DEA) put forth by Charnes et al. (1978) and extended by 

Banker et al. (1984) is a mathematical programming methodology to evaluate the 

efficiency of a sample firm relative to a reference set of all sample firms. DEA is a non-

parametric approach to construct production frontiers based on observed input and 

output data of the sample firms. Despite the non-parametric nature of DEA, Banker and 

Maindiratta (1992), Banker (1993), Sarath and Maindiratta (1997), Banker and 

Natarajan (2008) provided statistical justification for DEA. In particular, Banker (1993) 

proved that DEA (with one output and multiple inputs), under the conditions of 

monotonicity and concavity, yields consistent estimators of the production frontier. The 

studies of Simar and Wilson (1998, 1999), Kneip et al. (2008, 2011), Kuosmanen and 

Johnson (2010) and Tsionas and Papadakis (2010) also allowed for inference on DEA 

efficiency estimators. 

 

The validity of DEA efficiency estimators depends on the robustness of the production 

frontier to measurement errors, specification errors and the dimension of the input-

output space. Banker (1993) was the first to highlight the overestimation of DEA 

efficiencies when finite samples are used. Banker (1993) and Grosskopf (1996) showed 

that this bias asymptotically reduces to zero. In line with these studies, Simar (2007) 

identified an inverse relationship between the rate of convergence of DEA efficiency 

estimators and the dimensionality of the production set. Simar and Wilson (2015) stated 

that the true efficiency of a firm is unknown. 

 

Emphasizing DEA, there are six major approaches dealing with the sensitivity of 

efficiency estimators: (a) Chance Constrained DEA (CCDEA); (b) Two-stage DEA-

based methods; (c) Corrected Concave Non-Parametric Least Squares (C2NLS); (d) 

Stochastic Non-Smooth Envelopment of Data (StoNED); (e) Bayesian DEA; and (f) 

bootstrap DEA. 
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CCDEA (Charnes and Cooper, 1963; Land et al., 1993; Olesen and Petersen, 1995) 

specifies stochastic production frontiers by replacing the observed input and output data 

with their randomly distributed counterparts. CCDEA programs are appropriate for 

dealing with the presence of noise in the data. However, they lack statistical theory. A 

review of CCDEA is available in Olesen and Petersen (2016). Two-stage DEA-based 

procedures presented by Banker and Natarajan (2008) for estimating non-parametric 

stochastic frontiers. In the first stage, a conventional DEA model is applied (e.g. the 

variable returns to scale (VRS) DEA put forth by Banker et al. (1984)) to estimate the 

technical efficiency of sample firms. In the second stage, the DEA efficiency estimators 

obtained from the previous stage are introduced in OLS and maximum likelihood 

models to yield consistent estimators. 

 

The C2NLS (Kuosmanen and Johnson, 2010) is a least-square interpretation of the VRS 

DEA model, which, in contrast to conventional DEA models constructing production 

frontiers based on dominant firms, uses all available information for estimating a 

production frontier. Kuosmanen and Johnson (2010) concluded that the C2NLS 

estimators outperform DEA estimators when the number of firms are significantly 

higher than the number of input and output variables while the C2NLS estimators 

perform at least as well as the DEA estimators when dimensionality is present. The 

StoNED method (Kuosmanen and Kortelainen, 2007; Kuosmanen and Kortelainen, 

2012) estimates semiparametric frontiers by combining the DEA-style frontier with the 

Stochastic Frontier Analysis (SFA)-style treatment of inefficiency and noise. StoNED 

facilitates statistical inference while relying on regularity properties (e.g. free 

disposability, convexity) and without requiring the assumption of a particular 

production function. 

 

A Bayesian DEA approach for CCDEA was developed by Tsionas and Papadakis 

(2010). This method provides statistical inference (e.g. estimation of CCDEA 

efficiencies based on an estimated prior distribution, construction of confidence 

intervals) to CCDEA relying on assumptions about the distribution (e.g. multivariate 

normal) of the (posterior/observed) inputs and outputs. Relying on the distribution of 

the posterior input and output data, it is possible to estimate the prior distribution of the 

data and then estimate CCDEA efficiencies. This approach lacks formal statistical 

justification. 
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Bootstrap DEA is a widely used method for correcting bias and constructing confidence 

intervals of efficiency estimators (Kneip et al., 2008). Bootstrap DEA, or smoothed 

bootstrap, originated from Simar and Wilson (1998), combines both the virtues and 

limitations of bootstrap and DEA. Smoothed bootstrap relies on pseudo-data obtained 

from an estimated data generating process (DGP) (Dyson and Shale, 2010). Kneip et 

al. (2008, 2011) developed improved smoothed bootstrap algorithms providing 

consistent bias-corrected estimators. Major limitations of the smoothed bootstrap are 

the considerably large confidence intervals, which make difficult to obtain meaningful 

comparisons between the sample firms, and unsatisfactory performance when 

inadequate samples for the dimension of the input-output space are available. 

 

All methods discussed above dealing with the sensitivity of DEA efficiencies refer to 

estimators lying within the interval (0, 1]. Andersen and Petersen (1993), drawing on 

the work of Banker and Gifford (1988), presented a super-efficiency DEA model, 

which makes possible efficiency estimators to exceed unity, unlike the conventional 

DEA models, as the firm under review is excluded from its own reference set. Super-

efficiency DEA procedure is used for ranking efficient units and identifying outliers 

(Banker and Chang, 2006). However, Banker and Chang (2006) and Banker et al. 

(2017) found that super-efficiency performs unsatisfactorily in ranking efficiency units. 

It should be noted that this result has not been tested to cases of multiple inputs and 

multiple outputs and input values considerably greater than 20. Another issue of the 

traditional super-efficiency DEA model under VRS is the infeasibility. 

 

The contribution of this work is to provide statistical inference in super-efficiency DEA 

models. We develop a two-stage Bayesian DEA approach to correct bias of super-

efficiency estimators. In the first stage, we use a super-efficiency DEA model while in 

the second stage we specify consistent super-efficiency estimators. These estimators 

are introduced in the Bayesian framework to estimate bias-corrected (prior) super-

efficiencies. To the best of our knowledge, this is the first work on correction of bias of 

super-efficiency estimators. 

 

The rest of the paper unfolds as follows. In Section 2, we present the super-efficiency 

DEA model and analyze the steps of our bias-correction method (i.e. Step 1: 
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conventional statistical inference; Step 2: Bayesian statistical inference; Step 3: bias 

correction). In Section 3, we present the two data sets used in this study and analyze the 

results. Section 4 concludes and discusses future research directions. 

 

2. Methodology 

 

2.1 Super-efficiency DEA 

 

After the work of Andersen and Petersen (1993), many studies appear in the literature 

(Lovell and Rouse, 2003; Chen, 2005; Li et al., 2007; Ray, 2008; Cook et al., 2009; 

Chen et al., 2011; Lee et al., 2011; Chen and Liang, 2011) dealing with the 

measurement of super-efficiency in DEA under the condition of VRS. The latter studies 

tried to solve the problem of infeasibility of the VRS super-efficiency DEA model. 

 

In this study, we use Chen and Liang (2011)’s model to obtain super-efficiency 

estimators ( j
 ), which is as follows 

1

min  
s

r

r

M 


    

1

. .   (1 )        1, 2,...,
n

j ij io

j
j o

s t x x i m 



    

1

       (1 )      1,2,...,
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j rj r ro

j
j o

y y r s 



    

1

       1
n

j

j
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       0,  ,  0j rj o             (1) 

where M is a user-defined large positive number (e.g. 105). 

 

The super-efficiency estimators are defined as 
1 1

1
1r R

r
R




 
 , where R is the set 

of 0
r

   and R  is the cardinality of the set R. 
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For the application of this Bayesian DEA method for the correction of bias of the super-

efficiency DEA estimators, other super-efficiency models (e.g. Chen, 2005; Li et al., 

2007; Ray, 2008; Cook et al., 2009; Chen et al., 2011; Lee et al., 2011) can be used 

instead of model (1). 

 

2.2 Conventional statistical inference 

 

Let ( )
j

 , where 0  ( 1,2,..., )
j

j n   , be a random variable of independently and 

identically distributed (iid) super-efficiency estimators obtained from model (1).   is 

assumed uniformly distributed from  (0 1)
L L

    to  ( 1)
U
  

U
. The two parameters 

(i.e. L
  and U

 ) are unknown. 

 

Acknowledging the probability density function (PDF) of   as 

1
,   

( , )

    0     ,   otherwise

L j

Lj L
f

  
   

    


U

UU
         (2) 

the likelihood function is expressed as follows 

iid

1

1
( , ) ( , ) ,  ,   1,2,...,

( )

n

L U j L U L j Un
j U L

L f j n       
 



     
       (3) 

By partially differentiating the likelihood function (3)  

1

1

( , ) 0
( )

( , ) 0
( )

L n

L L

L n

U L

n
L

n
L

 
  

 
  






  

 


   

 

U

U

U

U

  

we find that it is monotone increasing for L
  and monotone decreasing for 

U
. Hence, 

the likelihood function (3) is maximized at ˆ min
L
    and ˆ max

U
   . 

 

Taking into account the maximum likelihood estimators (MLE) L̂
  and 

Û
 , we define 

the joint cumulative distribution function (CDF) as follows 

ˆ ˆ( , )

ˆ ˆ( , ) Prob( ,  ) Prob(min ,  max )
L U

L UF t s t s t s
 

          

                 Prob( max ) Prob(min ,  max )s t s             (4) 

where 
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Based on expressions (4)-(6), the joint CDF is written as follows 

ˆ ˆ( , )
( , , ) ,   

L U

n n

L
L U L U

U L U L

s s t
F t s t s
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with corresponding joint PDF 
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The marginal PDF of L̂
  is expressed as follows 

2
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( 1)( )
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                 (9) 

and the corresponding marginal PDF of 
Û
  reads as follows  

2
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L L Un
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n
s s  

 
   


               (10) 

 

As we noticed in expressions (8)-(10) 

ˆ ˆ ˆ ˆ( , )
( , , ) ( , ) ( , )

L U L U
L U L U L U

f t s f t f s
   

                       (11) 

Hence, the MLE L̂
  and 

Û
  are not independent. 

 

The expected value of L̂
  is (see Appendix 1.1 for formal mathematical analysis) 

  ˆ
1ˆ ( , )d 1

1 1

U

L

L

n L L U L U

n
E t f t t

n n






        
                  (12) 

 

Based on (12), we conclude that the MLE L̂
  is asymptotically unbiased to the 

parameter L
  as  ˆlim

n L L
n

E  


                   (13) 

 

The second moment of L̂
  is defined as follows (see Appendix 1.2 for formal 

mathematical analysis) 

 2 2 2

ˆ
2( ) ( 1)ˆ ( , )d

1 2

U

L

L

U L L U
n L L U L

n
E t f t t

n n






         
    

               (14) 

 

In addition, the variance of L̂
  is 

     2 2ˆ ˆ ˆVarn L n L n LE E      

2

2 2( ) ( 1) 1
              

1 2 1 1

U L L U
L L U

n n

n n n n

                  
             (15) 

It is straightforward that  ˆlim Var 0
n L

n



 .                 (16) 

 

The mean square error (MSE) of L̂
  is 

     2ˆ ˆ ˆMSE bias Varn L n L n L                      (17) 

and the bias is defined as follows 
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   ˆ ˆbiasn L n L LE                       (18) 

 

The MLE L̂
  is a consistent estimator of the parameter L

 . 

Proof. Based on expression (13) and (16), we find that  ˆlim bias 0
n L

n



  and 

 ˆlim MSE 0
n L

n



 .   

 

Likewise, the expected value of 
Û
  is (the formal mathematical analysis is like that in 

Appendix 1.1) 

  ˆ
1ˆ ( , )d

1 1

U

U

L

n U L U U L

n
E s f s s

n n






       
                 (19) 

where 
1

1 L
U

n

 
   to ensure that the mean value of 

Û
  is always greater than unity. 

 

Based on expression (19), we conclude that the MLE 
Û
  is asymptotically unbiased to 

the parameter U
  as  ˆlim

n U U
n

E  


 .                (20) 

 

The second moment of 
Û
  is defined as follows (the formal mathematical analysis is 

like that in Appendix 1.2) 

 2 2 2

ˆ
2( ) ( 1)ˆ ( , )d

1 2

U

U

L

U L U L
n U L U U

n
E s f s s
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and its variance is 

     2 2ˆ ˆ ˆVarn U n U n UE E     

2
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1 2 1 1

U L U L
U U L

n n

n n n n
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It is straightforward that  ˆlim Var 0
n U
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 .                (23) 

 

The MSE of 
Û
  is 

     2ˆ ˆ ˆMSE bias Varn U n U n U                     (24) 
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and the bias is defined as follows 

   ˆ ˆbiasn U n U UE                      (25) 

 

The MLE 
Û
  is consistent estimator of the parameter U

 . 

Proof. Based on expressions (20) and (23), we find that  ˆlim bias 0
n U

n



  and 

 ˆlim MSE 0
n U

n



 .  

 

Using expressions (12) and (19), the unbiased estimators of parameters L
  and U

  are 

ˆ ˆ ˆ
1

L U
L L

n

n

  
 


 (26) and, 

ˆ ˆ ˆ
1

U L
U U

n

n

  
 


 (27) respectively, which satisfy 

 n L LE    (28) and  n U UE    (29), respectively. 

 

The covariance of L̂
  and 

Û
  is defined as follows (see Appendix 2 for formal 

mathematical analysis) 

     ˆ ˆ ˆ ˆ ˆ ˆcov ( , )n L U n L U n L n UE E E         

2 2 2 2

2

( ) ( 1) ( )
                    

2 ( 1)

U L L U L U
L U

n n

n n

          
  

 
             (30) 

The covariance of L̂
  and 

Û
  facilitates the definition of the variance of the unbiased 

estimator L
 . Using property (26), the variance is 

 
ˆ

Var Var
1

L U
n L n

n

n

 
      

  

    2

2

1 ˆ ˆ ˆ ˆ               Var Var 2 cov ( , )
( 1)

n L n U n L Un n
n

     


             (31) 

which is asymptotically zero,  lim Var 0
n L

n



                 (32) 

 

In addition,    MSE Varn L n L                    (33) 

 

The unbiased estimator L
  is consistent to parameter L

 . 
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Proof. Based on expressions (28) and (32), we find that  lim MSE 0
n L

n



 .  

 

Likewise, using property (27), the variance of the unbiased estimator 
U
  is 

 
ˆ

Var Var
1

U L
n U n

n

n

 
      

 

      2

2

1 ˆ ˆ ˆ ˆ               Var Var 2 cov ,
( 1)

n U n L n L Un n
n

     


             (34) 

which is asymptotically zero  lim Var 0
n U

n



                (35) 

and    MSE Varn U n U                    (36) 

 

The unbiased estimator 
U
  is consistent to parameter U

 . 

Proof. Expressions (29) and (35) lead to  lim MSE 0
n U

n



 .  

 

Figure 1 illustrates the performance of the MSE of the unbiased estimators against that 

of the maximum likelihood estimators. This comparative analysis is obtained from 

1,000 Monte Carlo simulations. In detail, we find that    ˆMSE MSEn L n L   while 

   ˆMSE MSEn U n U  . Therefore, the unbiased estimator L
  is better than the 

corresponding MLE L̂
  for the parameter L

  while the opposite applies for the 

parameter U
 . 

 

Figure 1. Unbiased estimators vs. maximum likelihood estimators 
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The covariance of L
  and 

U
  is defined as follows (see Appendix 3 for formal 

mathematical analysis) 

     cov ( , )n L U n L U n L n UE E E         

2 2 22
2 2

2 2

( ) 2( )1
                   

( 1) 2 ( 1) ( 1)

U L U L
L U L U L U

n n

n n n n

        
    

              
 (37) 

 

Based on expression (37) we develop Figure 2 where an inverse relationship between 

the unbiased estimators L
  and 

U
  becomes explicit. These unbiased estimators are 

asymptotically uncorrelated as expression (37) is asymptotically zero (

limcov ( , ) 0
n L U

n
 


 ) 

 

Figure 2. Covariance of the unbiased estimators L
  and 

U
  

 

2.3 Bayesian statistical inference  

 

The prior 

Let the vector O I( , )     of super-efficiency scores where O 1( ,..., )
k

   , 

O 1L    , and I 1( ,..., )k n   , I1
U
  . In the absence of any information 

about the distribution of the DEA super-efficiency scores, we assume 
O L
  and 

I U
  to be uniformly distributed with PDF 
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O

1
,  1,   1,...,

1( )

0       ,  otherwise

L j

Lj L

j k
f

 
 



     


                (38) 

I

1
,  1 ,   1,...,

1( )

0       ,  otherwise

j U

Uj U

j k n
f

 
 



      


                          (39) 

and joint PDF 

O O

iid

O

1

1
( ) ( )

(1 )

k

L j L k
j L

f f  
 



  
                            (40) 

I I

iid

I

1

1
( ) ( )

( 1)

n

U j U n k
j k U

f f  
  

 

  
                            (41) 

 

The parameter L
  could be beta-distributed (see Appendix 4) with parameters 0   

and 0  . 

 

Assuming the unbiased estimator of L
  is equivalent to the expected value of the prior 

beta distribution of L
  (i.e. 


 

), we find that δ is an expression of γ 

(1 )L

L

 



                      (42) 

and the prior beta distribution is reduced to the single parameter γ. 

 

The vector O  has a joint PDF 

O O

1

O O

0

( , )
( ) ( ) ( )d

( , )LL
L L L

k
f f f

   
  

 
   

                            (43) 

where k   (beta function is defined in Appendix 4). 

 

Then, the parameter γ is lower bounded 
1

L

L

k






               (44) 

 

With respect to I , the parameter U
  is assumed to be shifted gamma-distributed (see 

Appendix 5) with parameters 0   and 0  . 
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Assuming the unbiased estimator is identical to the expected value 1   of the prior 

shifted gamma-distribution of U
 , then the parameter   is an expression of   

1U



                      (45) 

Hence, the prior shifted gamma-distribution is reduced to the single parameter  . 

 

The vector 
I  has a joint PDF 

I I
I I

1

( )
( ) ( ) ( )d

( )UU
U U U

n k
f f f

  




 

  
   

                           (46) 

where n k   . 

 

Then, the parameter   is upper bounded 
1U

n k

 



               (47) 

 

The posterior 

The Bayesian PDF of 
OL

   is Ο

Ο

Ο

Ο
Ο

Ο

( ) ( )
( )

( )

L

L

L L

L

f f
f

f





 
 





 


                         (48) 

 

According to the joint PDF (40), the Bayesian PDF (48) becomes 

1 ( ) 11
(1 )

( , )

k

L L
k

  
 

  
 

                   (49) 

which refers to a posterior beta distribution with parameters   and k  . 

 

The posterior beta distribution shifts the corresponding prior beta distribution, with 

parameters   and  , to the right, which is justified by the following expected values 

   Ok L k L
E E     as  

k

 
   


  

                            (50) 

 

Emphasizing I , the Bayesian PDF of IU
   is  
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I

I

I

1

I

I

I

1
( 1) exp

( ) ( )
( )

( ) ( )

U

U

n k U
U

U U

U n k

f f
f

f n k







  


 

  


 



  
      

   
                         (51) 

which refers to a posterior shifted gamma distribution with parameters 0n k     

and 0  . 

 

The posterior shifted gamma distribution shifts the corresponding prior distribution to 

the left, which justifies the underestimation of the DEA efficiencies that are greater than 

one. This underestimation is explained as follows 

   In k U n k U
E E      as  ( ) 1 1n k                      (52) 

 

2.4 Bias correction 

 

Let a correction parameter ˆ/
L L L
    where 1

L
                 (53) 

 

Elaborating on expressions (42), (44) and (53), we estimate parameters   and   as 

follows 

ˆ / (1 )
L L

k                                 (54) 

and 
ˆ(1 )ˆ L

L

 



                     (55) 

 

Two random data sets of size k  are generated, where k  expresses the number of DMUs 

assigned efficiencies (e.g. obtained from DEA program (1)) lower than unity. The first 

randomly generated data set is drawn from a prior beta distribution of L
  with 

parameters ̂  and ̂  (see expressions (54) and (55)). The second randomly generated 

data set is drawn from a posterior beta distribution 
OL

   with parameters ̂  and ˆ k   

. The prior to posterior distribution 
O

L
L

L




 


 is fitted by a gamma distribution with 

parameters O 0z   and O 0e  . The maximum likelihood estimates of these two 

parameters (i.e. Oẑ  and Oê ) are obtained from the MATLAB function gamfit. The 

goodness-of-fit is calculated using the Wilcoxon rank sum test for equal medians. 
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The corrected estimator is  

O O
ˆˆ( , )

p p
Gamma z e  , 1,...,   ( )p k p j                   (56) 

with confidence interval 
( ) ( )

cv cv
p p

p p p

s s

w w

 
                               (57) 

where w  expresses the number of Monte Carlo iterations and cv denotes the critical 

value of t-distribution with 1w  degrees of freedom.  

 

The Monte Carlo simulated mean and standard deviation are defined as follows 

1

,

1

w

p p l

l

w 



                      (58) 

and 1 2

,

1

( ) ( 1) ( )
w

p p l p

l

s w  



                    (59) 

 

With respect to the DEA estimators that are greater than unity, we define a correction 

parameter ˆ/
U U U
    that satisfies 1

U
                  (60) 

 

We already know that n k    (46) and 
1u




  (45). To estimate the two 

parameters of the shifted gamma distribution we introduce 
( 1)

1ˆ( )

U

U U


 





 in (46), which 

leads to 
( )( 1)ˆ ˆ( )

U

U U

n k 
 
 




 (61) and 
1ˆ

ˆ
U



  (62). 

 

Similar to the correction process followed for the DEA estimators lying within the 

interval (0,1), for the estimators exceeding one, we generate two random data sets for 

both the prior shifted gamma distribution with parameters ̂  and ̂ , and the posterior 

shifted gamma distribution with parameters ˆ n k    and ̂ . The prior to posterior 

distribution 
I

U
U

U




 


 is fitted by a gamma distribution with parameters I 0z   and 

I 0e  . The maximum likelihood estimates of these two parameters (i.e. Iẑ  and Iê ) are 
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obtained from the MATLAB function gamfit. Like above, the goodness-of-fit is 

calculated using the Wilcoxon rank sum test for equal medians. 

 

The corrected estimator is 

I Î
ˆ( , )

q q
Gamma z e  , 1,...,   ( )q n k q j                    (63) 

with confidence interval 
( ) ( )

cv cv
q q

q q q

s s

w w

 
                               (64) 

where 1

,

1

w

q q l

l

w 



   and 1 2

,

1

( ) ( 1) ( )
w

q q l q

l

s w  



   .  

 

3. Application to E.U. banks 

 

3.1 Data set and selection of variables 

 

In this study, we used two data sets to test the performance of the Bayesian DEA method 

in correcting bias of DEA estimators. The first data set consists of 50 banks while the 

second one is expanded to 100 banks. In practice, the second data set includes 50 new 

banks in addition to those of the first data set. Both data sets include three inputs (i.e. 

(a) Deposits & Short-term funding; (b) Equity; (c) Overheads) and two outputs (i.e. (a) 

Other operating income; (b) Total earning assets). The data come from Orbis Bank 

Focus (the two data sets are available in the online version of this article; see Table E1). 

 

The size of both samples is considered adequate for the dimension of the input-output 

space. The sample size (e.g. 50 banks) satisfies the ‘rule of thumb’ put forth by Cooper 

et al. (2007): max{ ,  3( )}n xy x y  , where n stands for the number of firms and x and 

y are the number of inputs and output, respectively. However, the DEA efficiency 

estimators assigned to the banks are expected to be biased as the samples of 50 and 100 

firms are regarded as small and medium (Banker et al., 2010). 

 

Descriptive statistics of the two-real-world data sets we used in this study are presented 

in Table 1. 
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Table 1. Descriptive statistics 
Descriptive Input 1 Input2 Input 3 Output 1 Output 2 

Statistics Deposits & Short- 

term funding  

(th. USD) 

Equity           

(th. USD) 

Overheads 

(th. USD) 

Other operating 

income  

(th. USD) 

Total earning 

assets 

(th. USD) 

Data set #1 

Min 70,297,253.75 3,206,983.76 441,606.19 39,519.81 78,756,562.06 

Max 1,123,647,327.88 107,512,396.64 35,575,451.73 22,855,080.28 1,863,483,249.28 

St. Deviation 269,719,167.56 27,256,863.52 8,724,429.52 5,444,032.81 448,968,188.58 

N 50 
    

Data set #2 

Min 19,990,191.12 489,577.57 28,905.31 24,895.92 19,748,600.00 

Max 1,123,647,327.88 107,512,396.64 35,575,451.73 22,855,080.28 1,863,483,249.28 

St. Deviation 236,768,787.66 23,063,500.59 7,146,079.09 4,406,831.52 384,593,187.45 

N 100 
    

 

 

3.2 Empirical results 

 

The empirical results of the first data set, consisting of 50 banks, are reported in Table 

2. The actual efficiencies refer to the results obtained from the traditional super-

efficiency model of Andersen and Petersen (1993) and Chen and Liang (2011)’s super-

efficiency model (see model (1)). The bias-corrected super-efficiency estimators 

yielded by our Bayesian DEA approach are presented on the right side column of the 

actual efficiencies followed by the 95% Monte Carlo confidence intervals of the bias-

corrected estimators and the significance of the bias correction process (p-value). 

 

According to Table 2, the Bayesian DEA approach presented in Section 2 yields 

reduced estimators for actual efficiencies lower than one and increased estimators for 

actual efficiencies exceeding one. The mean bias of efficiency estimators below one is 

higher (i.e. mean bias: -0.0533; min bias: -0.0325 and max bias: -0.0723) than the bias 

of the estimators above one (i.e. mean bias: 0.0209; min bias: 0.0137 and max bias: 

0.0363). Moreover, in the case of estimators below one, the bias is higher for those 

getting closer to unity while lower for the estimators with higher deviation from one. 

The opposite applies to the super-efficiency estimators as the bias becomes lower when 

the estimator approaches one and higher when it moves far from one. All bias-corrected 

estimators are statistically significant (p-value <0.001). 
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In the case of the sample of 50 banks, the mean square error (MSE), root mean square 

error (RMSE) and mean absolute error (MAE) of the Bayesian DEA estimators are 

0.0021, 0.0453 and 0.0416, respectively. 

 

Table 2. Empirical results 

# Banks Actual efficiencies Bias-

corrected 

estimators 

 95% 

Confidence 

interval 

 p-value 

  
Traditional 

SE 

Chen & 

Liang 

(2011) SE 

Bayesian 

DEA 

 Lower Upper  
 

1 BNP Paribas Infeasible 2.2909 2.3210  2.3078 2.3342  <0.001 

2 Banco Santander SA 0.7417 0.7417 0.6834  0.6743 0.6925  <0.001 

3 Barclays Bank Plc 1.0130 1.0130 1.0268  1.0201 1.0334  <0.001 

4 ING Bank NV 1.3874 1.3874 1.4070  1.3980 1.4159  <0.001 

5 Lloyds Bank Plc 0.8489 0.8489 0.7888  0.7797 0.7980  <0.001 

6 Deutsche Bank AG 1.2194 1.2194 1.2475  1.2403 1.2547  <0.001 

7 Société Générale SA 1.2382 1.2382 1.2555  1.2476 1.2633  <0.001 

8 Royal Bank of Scotland Plc (The) 0.8295 0.8295 0.7733  0.7624 0.7843  <0.001 

9 UniCredit SpA 0.7808 0.7808 0.7282  0.7192 0.7371  <0.001 

10 HSBC Bank plc 0.9568 0.9568 0.8943  0.8832 0.9054  <0.001 

11 Banco Bilbao Vizcaya Argentaria 

SA-BBVA 

0.7322 0.7322 0.6839  0.6739 0.6939  <0.001 

12 Standard Chartered Bank 0.5999 0.5999 0.5557  0.5485 0.5629  <0.001 

13 Bank of Scotland Plc 0.7334 0.7334 0.6826  0.6736 0.6917  <0.001 

14 Credit Mutuel (Combined - IFRS) 1.1112 1.1112 1.1329  1.1254 1.1405  <0.001 

15 Commerzbank AG 0.6867 0.6867 0.6500  0.6420 0.6581  <0.001 

16 National Westminster Bank Plc - 

NatWest 

0.5776 0.5776 0.5394  0.5320 0.5468  <0.001 

17 Intesa Sanpaolo 1.0047 1.0047 1.0207  1.0136 1.0278  <0.001 

18 ABN AMRO Bank NV 0.6262 0.6262 0.5865  0.5793 0.5937  <0.001 

19 Credit Agricole Corporate and 

Investment Bank SA-Credit 

Agricole CIB 

1.4231 1.4231 1.4392  1.4298 1.4486  <0.001 

20 Natixis SA 1.1560 1.1560 1.1787  1.1706 1.1867  <0.001 

21 Caixabank, S.A. 0.7899 0.7899 0.7291  0.7193 0.7390  <0.001 

22 Crédit Industriel et Commercial 
SA - CIC 

0.8282 0.8282 0.7786  0.7696 0.7877  <0.001 

23 Banque Fédérative du Crédit 
Mutuel 

1.0571 1.0571 1.0759  1.0691 1.0827  <0.001 

24 Danske Bank A/S 1.0505 1.0505 1.0711  1.0637 1.0784  <0.001 

25 La Banque Postale 0.9979 0.9979 0.9347  0.9250 0.9445  <0.001 

26 UniCredit Bank AG 0.6974 0.6974 0.6513  0.6424 0.6603  <0.001 

27 KBC Bank NV 0.6686 0.6686 0.6283  0.6199 0.6367  <0.001 

28 Svenska Handelsbanken 0.5994 0.5994 0.5555  0.5490 0.5621  <0.001 
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29 Banco de Sabadell SA 0.8004 0.8004 0.7395  0.7303 0.7487  <0.001 

30 Bankia, SA 0.5714 0.5714 0.5388  0.5319 0.5458  <0.001 

31 UniCredit Bank Austria AG-Bank 

Austria 

0.7621 0.7621 0.7053  0.6954 0.7151  <0.001 

32 Deutsche Postbank AG 0.7525 0.7525 0.7003  0.6919 0.7088  <0.001 

33 ING-DiBa AG 0.5462 0.5462 0.5057  0.4987 0.5128  <0.001 

34 Skandinaviska Enskilda Banken 

AB 

1.0449 1.0449 1.0627  1.0556 1.0699  <0.001 

35 Banco Popular Espanol SA 0.6505 0.6505 0.6097  0.6017 0.6178  <0.001 

36 Le Crédit Lyonnais (LCL) SA 0.8824 0.8824 0.8131  0.8023 0.8239  <0.001 

37 ING Belgium SA/NV-ING 0.7142 0.7142 0.6624  0.6545 0.6704  <0.001 

38 Banca Monte dei Paschi di Siena 

SpA-Gruppo Monte dei Paschi di 

Siena 

1.1716 1.1716 1.1977  1.1896 1.2058  <0.001 

39 Deutsche Bank Privat-und 

Geschaftskunden AG 

1.5377 1.5377 1.5564  1.5454 1.5675  <0.001 

40 Banco BPM SPA 0.9995 0.9995 0.9390  0.9267 0.9512  <0.001 

41 Belfius Banque SA/NV-Belfius 

Bank SA/NV 

0.8518 0.8518 0.7938  0.7833 0.8043  <0.001 

42 Raiffeisen Bank International AG 0.9183 0.9183 0.8549  0.8444 0.8655  <0.001 

43 Bank Austria Creditanstalt AG 0.9260 0.9260 0.8624  0.8511 0.8737  <0.001 

44 Dexia Crédit Local SA 2.4948 2.4948 2.5311  2.5143 2.5479  <0.001 

45 Caixa Geral de Depositos 1.1182 1.1182 1.1368  1.1305 1.1432  <0.001 

46 Allied Irish Banks plc 0.9073 0.9073 0.8350  0.8229 0.8471  <0.001 

47 Piraeus Bank SA 0.9216 0.9216 0.8615  0.8509 0.8721  <0.001 

48 Abbey National Treasury 

Services Plc 

1.1857 1.1857 1.2032  1.1955 1.2109  <0.001 

49 National Bank of Greece SA 0.9647 0.9647 0.8942  0.8826 0.9059  <0.001 

50 Deutsche Kreditbank AG (DKB) 1.2066 1.2066 1.2235  1.2147 1.2323  <0.001 
 

MSE 
  

0.0021  
  

 
 

 
RMSE 

  
0.0453  

  
 

 

 
MAE 

  
0.0416  

  
 

 

 

In the case of the extended sample of 100 banks (Table A1 in Appendix 6), the MSE, 

RMSE and MAE of the Bayesian DEA estimators are 0.0013, 0.0355 and 0.0321, 

respectively. All three measures are lower than the corresponding measures referring 

to the sample of 50 banks (Table 2). It should be noted that this Bayesian DEA approach 

is appropriate for small and medium samples where the estimators, lower and greater 

than unity, are dependent. Based on expression (37) and Figure 2, it is straightforward 

that the unbiased estimators are asymptotically uncorrelated. 

 

 

 

 



21 

 

4. Concluding remarks and future research 

 

The purpose of this study was to develop a Bayesian DEA approach for correcting bias 

of super-efficiency estimators. The new method uses consistent estimators to the 

unknown efficiency parameters to correct the bias of the actual efficiencies. The 

assumptions made for the development of the Bayesian DEA method are regarded as 

realistic. 

 

The new method draws on Chen and Liang (2011)’s super-efficiency model. However, 

other super-efficiency models that tackle the infeasibility problem could be used 

instead. The new Bayesian DEA method is appropriate for small and medium data sets 

where dependence among the estimators below and above one is present. The empirical 

results showed a decrease in MSE, RMSE and MAE when the sample size increases. 

In addition, the range of the 95% Monte Carlo confidence intervals of the estimators 

decreases while the sample size becomes larger. The empirical analysis presented in 

this study was based on two real-world data sets of 50 and 100 firms coming from the 

E.U. banking sector. The two data sets included three inputs and two outputs. 

 

Further research is needed to test the performance of the new Bayesian DEA bias-

corrected estimators when real-world data sets of different dimensions and scales than 

those used in this study are employed. The Bayesian DEA method presented in this 

work should be modified to become appropriate for large samples as well. Furthermore, 

the application of outlier-detection methods in conjunction with the new Bayesian DEA 

method would prevent distortion of the bias-corrected estimators - especially in cases 

where observed efficiency estimators are significantly higher than one. Addressing 

these limitations would improve the performance, applicability and generalizability of 

the new method. 
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Appendices 

 

Appendix 1.1 

The expected value of L̂
  is as follows 
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Appendix 1.2 

The second moment of L̂
  is defined as follows 
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Appendix 2 

The covariance of L̂
  and 

Û
  is defined as follows 
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By replacing (A2.c) and (A2.d) in (A2.b), we obtain 
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Appendix 3 

The covariance of L
  and 

U
  is defined as follows 

     cov ( , )n L U n L U n L n UE E E         

Based on expressions (26) and (27), we obtain 
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given expressions (14), (21) and (A2.e), (A3.a) is rewritten as follows 
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where 
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Since the estimators are unbiased we find 
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Appendix 4 

The prior beta distribution of L
  with parameters 0   and 0   has a PDF 
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Appendix 5 

Let a random variable v  be gamma-distributed with parameters 0a   and 0  . The 

PDF is 
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Appendix 6 

 

Table A1. Efficiency estimators 

# Banks Actual efficiencies Bias-

corrected 

estimators 

 95% 

Confidence 

interval 

 p-value 

  
Traditional 

SE 

Chen & 

Liang 

(2011) SE 

Bayesian 

DEA 

 Lower Upper  
 

1 BNP Paribas Infeasible 2.2909 2.3060  2.2971 2.3150  <0.001 

2 Banco Santander SA 0.7417 0.7417 0.7089  0.7012 0.7165  <0.001 

3 Barclays Bank Plc 1.0130 1.0130 1.0227  1.0187 1.0268  <0.001 

4 ING Bank NV 1.3874 1.3874 1.3994  1.3941 1.4047  <0.001 

5 Lloyds Bank Plc 0.8489 0.8489 0.7972  0.7893 0.8050  <0.001 

6 Deutsche Bank AG 1.2194 1.2194 1.2315  1.2267 1.2363  <0.001 

7 Société Générale SA 1.2382 1.2382 1.2442  1.2395 1.2490  0.0067 

8 Royal Bank of Scotland Plc 

(The) 

0.8295 0.8295 0.7806  0.7730 0.7882  <0.001 

9 UniCredit SpA 0.7808 0.7808 0.7332  0.7261 0.7402  <0.001 

10 HSBC Bank plc 0.9568 0.9568 0.9135  0.9047 0.9223  <0.001 

11 Banco Bilbao Vizcaya 

Argentaria SA-BBVA 

0.7322 0.7322 0.6974  0.6909 0.7039  <0.001 

12 Standard Chartered Bank 0.5999 0.5999 0.5730  0.5675 0.5785  <0.001 

13 Bank of Scotland Plc 0.7334 0.7334 0.6963  0.6896 0.7031  <0.001 

14 Credit Mutuel (Combined - 

IFRS) 

1.1112 1.1112 1.1186  1.1140 1.1232  <0.001 

15 Commerzbank AG 0.6867 0.6867 0.6510  0.6449 0.6572  <0.001 

16 National Westminster Bank Plc - 

NatWest 

0.5776 0.5776 0.5403  0.5341 0.5464  <0.001 

17 Intesa Sanpaolo 1.0047 1.0047 1.0152  1.0113 1.0191  <0.001 

18 ABN AMRO Bank NV 0.6262 0.6262 0.5964  0.5900 0.6029  <0.001 

19 Credit Agricole Corporate and 

Investment Bank SA-Credit 

Agricole CIB 

1.4231 1.4231 1.4368  1.4307 1.4429  <0.001 

20 Natixis SA 1.1544 1.1544 1.1637  1.1596 1.1679  <0.001 

21 Caixabank, S.A. 0.7850 0.7850 0.7377  0.7297 0.7457  <0.001 

22 Crédit Industriel et Commercial 
SA - CIC 

0.7893 0.7893 0.7459  0.7387 0.7531  <0.001 

23 Banque Fédérative du Crédit 
Mutuel 

1.0556 1.0556 1.0655  1.0615 1.0694  <0.001 

24 Danske Bank A/S 1.0505 1.0505 1.0591  1.0549 1.0633  <0.001 

25 La Banque Postale 0.9715 0.9715 0.9132  0.9053 0.9210  <0.001 

26 UniCredit Bank AG 0.6644 0.6644 0.6306  0.6238 0.6374  <0.001 

27 KBC Bank NV 0.6345 0.6345 0.6031  0.5976 0.6086  <0.001 

28 Svenska Handelsbanken 0.5939 0.5939 0.5622  0.5568 0.5675  <0.001 

29 Banco de Sabadell SA 0.7385 0.7385 0.6985  0.6908 0.7062  <0.001 

30 Bankia, SA 0.5377 0.5377 0.5083  0.5039 0.5128  <0.001 
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31 UniCredit Bank Austria AG-

Bank Austria 

0.7204 0.7204 0.6805  0.6733 0.6877  <0.001 

32 Deutsche Postbank AG 0.6735 0.6735 0.6362  0.6297 0.6426  <0.001 

33 ING-DiBa AG 0.4104 0.4104 0.3888  0.3848 0.3929  <0.001 

34 Skandinaviska Enskilda Banken 

AB 

0.9987 0.9987 0.9464  0.9363 0.9565  <0.001 

35 Banco Popular Espanol SA 0.5486 0.5486 0.5193  0.5140 0.5245  <0.001 

36 Le Crédit Lyonnais (LCL) SA 0.7613 0.7613 0.7181  0.7117 0.7245  <0.001 

37 ING Belgium SA/NV-ING 0.5325 0.5325 0.5046  0.4994 0.5099  <0.001 

38 Banca Monte dei Paschi di Siena 

SpA-Gruppo Monte dei Paschi di 

Siena 

1.0716 1.0716 1.0872  1.0826 1.0917  <0.001 

39 Deutsche Bank Privat-und 

Geschaftskunden AG 

1.0945 1.0945 1.1038  1.0993 1.1083  <0.001 

40 Banco BPM SPA 0.9447 0.9447 0.8974  0.8885 0.9063  <0.001 

41 Belfius Banque SA/NV-Belfius 

Bank SA/NV 

0.6500 0.6500 0.6160  0.6099 0.6221  <0.001 

42 Raiffeisen Bank International 

AG 

0.6788 0.6788 0.6433  0.6365 0.6502  <0.001 

43 Bank Austria Creditanstalt AG 0.6849 0.6849 0.6486  0.6422 0.6549  <0.001 

44 Dexia Crédit Local SA 2.4948 2.4948 2.5147  2.5060 2.5234  <0.001 

45 Caixa Geral de Depositos 0.8878 0.8878 0.8435  0.8355 0.8516  <0.001 

46 Allied Irish Banks plc 0.4556 0.4556 0.4308  0.4266 0.4350  <0.001 

47 Piraeus Bank SA 0.3890 0.3890 0.3709  0.3671 0.3747  <0.001 

48 Abbey National Treasury 

Services Plc 

0.8700 0.8700 0.8252  0.8179 0.8324  <0.001 

49 National Bank of Greece SA 0.4045 0.4045 0.3860  0.3821 0.3898  <0.001 

50 Deutsche Kreditbank AG (DKB) 0.5329 0.5329 0.5078  0.5028 0.5129  <0.001 

51 Eurobank Ergasias SA 0.4360 0.4360 0.4141  0.4100 0.4181  <0.001 

52 Banca Nazionale del Lavoro 

SpA-BNL 

0.5846 0.5846 0.5556  0.5499 0.5612  <0.001 

53 HSBC France SA 1.0171 1.0171 1.0253  1.0213 1.0294  <0.001 

54 Banco Comercial Português, SA-

Millennium bcp 

0.9004 0.9004 0.8517  0.8435 0.8598  <0.001 

55 Alpha Bank AE 0.4538 0.4538 0.4322  0.4278 0.4367  <0.001 

56 SNS Bank N.V. 0.5847 0.5847 0.5487  0.5430 0.5544  <0.001 

57 Nykredit Realkredit A/S 1.3530 1.3530 1.3625  1.3570 1.3679  <0.001 

58 CACEIS Bank Luxembourg 0.9121 0.9121 0.8682  0.8590 0.8773  <0.001 

59 Crédit du Nord SA 0.7184 0.7184 0.6752  0.6685 0.6819  <0.001 

60 Ibercaja Banco SAU 1.4488 1.4488 1.4594  1.4534 1.4653  <0.001 

61 Kutxabank SA 0.5622 0.5622 0.5332  0.5278 0.5386  <0.001 

62 Novo Banco 0.6055 0.6055 0.5708  0.5654 0.5762  <0.001 

63 Abanca Corporacion Bancaria 

SA 

0.8723 0.8723 0.8213  0.8133 0.8294  <0.001 

64 Clydesdale Bank Plc 0.5678 0.5678 0.5367  0.5313 0.5421  <0.001 

65 Bankinter SA 0.6786 0.6786 0.6423  0.6360 0.6486  <0.001 

66 Ulster Bank Limited 0.6602 0.6602 0.6238  0.6175 0.6300  <0.001 

67 Virgin Money Plc 0.6979 0.6979 0.6578  0.6509 0.6647  <0.001 

68 TSB Bank Plc 0.6466 0.6466 0.6122  0.6061 0.6184  <0.001 



27 

 

69 Bank of New York Mellon 

SA/NV 

0.7982 0.7982 0.7551  0.7468 0.7634  <0.001 

70 Co-operative Bank Plc (The) 0.6823 0.6823 0.6405  0.6337 0.6474  <0.001 

71 BGL BNP Paribas 0.6587 0.6587 0.6214  0.6152 0.6276  <0.001 

72 Mediobanca SpA-

MEDIOBANCA - Banca di 

Credito Finanziario Società per 
Azioni 

0.9987 0.9987 0.9464  0.9363 0.9565  <0.001 

73 Bank Polska Kasa Opieki SA-

Bank Pekao SA 

0.6734 0.6734 0.6409  0.6350 0.6469  <0.001 

74 Lyonnaise de Banque SA 0.9797 0.9797 0.9293  0.9204 0.9381  <0.001 

75 OP Corporate Bank plc 1.3976 1.3976 1.4046  1.4001 1.4092  0.0015 

76 Jyske Bank A/S (Group) 0.9055 0.9055 0.8552  0.8472 0.8632  <0.001 

77 Ceska Sporitelna a.s. 0.6957 0.6957 0.6592  0.6522 0.6662  <0.001 

78 OTP Bank Plc 1.1127 1.1127 1.1203  1.1158 1.1248  <0.001 

79 Bank für Arbeit und Wirtschaft 
und Österreichische 
Postsparkasse 

Aktiengesellschaft-BAWAG 

P.S.K. AG 

0.7754 0.7754 0.7301  0.7229 0.7372  <0.001 

80 Komercni Banka 0.7662 0.7662 0.7286  0.7217 0.7354  <0.001 

81 Banque CIC Est SA 1.0218 1.0218 1.0314  1.0270 1.0358  <0.001 

82 SEB AG 0.8577 0.8577 0.8094  0.8014 0.8174  <0.001 

83 Banco di Napoli SpA 0.8153 0.8153 0.7719  0.7642 0.7795  <0.001 

84 Bank Zachodni WBK S.A. 0.8070 0.8070 0.7577  0.7496 0.7658  <0.001 

85 Permanent TSB Plc 0.8130 0.8130 0.7669  0.7598 0.7740  <0.001 

86 Sumitomo Mitsui Banking 

Corporation Europe Limited-

SMBCE 

0.8248 0.8248 0.7847  0.7768 0.7926  <0.001 

87 Ceskoslovenska Obchodni 

Banka A.S.- CSOB 

0.8442 0.8442 0.7966  0.7879 0.8053  <0.001 

88 Credito Emiliano SpA-

CREDEM 

0.8893 0.8893 0.8369  0.8287 0.8450  <0.001 

89 KfW Ipex-Bank Gmbh 0.9140 0.9140 0.8631  0.8553 0.8709  <0.001 

90 Banca Mediolanum SpA 1.2666 1.2666 1.2777  1.2729 1.2825  <0.001 

91 mBank SA 0.8761 0.8761 0.8313  0.8224 0.8401  <0.001 

92 Danske Bank Plc 0.9320 0.9320 0.8864  0.8774 0.8953  <0.001 

93 Citibank International Limited 0.9092 0.9092 0.8498  0.8419 0.8577  <0.001 

94 Banco Cooperativo Espanol 2.4548 2.4548 2.4821  2.4733 2.4910  <0.001 

95 CIC Ouest SA 1.1469 1.1469 1.1559  1.1507 1.1611  <0.001 

96 Erste Bank der Oesterreichischen 

Sparkassen AG 

0.9982 0.9982 0.9509  0.9425 0.9592  <0.001 

97 Montepio Investimento SA 1.0670 1.0670 1.0732  1.0686 1.0777  0.0041 

98 Bank of Cyprus Public Company 

Limited-Bank of Cyprus Group 

0.9973 0.9973 0.9410  0.9314 0.9507  <0.001 

99 ABH Financial Limited 1.2521 1.2521 1.2654  1.2607 1.2701  <0.001 

100 Banca Carige SpA 1.0916 1.0916 1.1000  1.0959 1.1041  <0.001 
 

MSE 
  

0.0013  
  

 
 

 
RMSE 

  
0.0355  

  
 

 

 
MAE 

  
0.0321  
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