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Abstract

We consider a Stackelberg type symmetric dynamic three-players zero-sum game. One

player is the leader and two players are followers. All players have the symmetric payoff

functions. The game is a two-stages game. In the first stage the leader determines the

value of its strategic variable. In the second stage the followers determine the values of

their strategic variables given the value of the leader’s strategic variable. On the other

hand, in the static game all players simultaneously determine the values of their strategic

variable. We do not assume differentiability of players’ payoff functions. We show that

the sub-game perfect equilibrium of the Stackelberg type symmetric dynamic zero-sum

game with a leader and two followers is equivalent to the equilibrium of the static game if

and only if the game is fully symmetric.

Keywords: symmetric zero-sum game, Stackelberg equilibrium, leader, follower.

1 Introduction

It is well known that the equilibrium of the Stackelberg type dynamic game and that of the

static game are equivalent in a two-person zero-sum game. See, for example, Korzhyk et. al.

(2014), Ponssard and Zamir (1973), Tanaka (2014) and Yin et. al. (2010). We examine this

problem in a three-players zero-sum game, and show that the equilibrium of the Stackelberg

type dynamic zero-sum game and that of the static zero-sum game are equivalent if and only if
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the game is fully symmetric. We do not assume differentiability of players’ payoff functions1.

However, we do not assume that the payoff functions are not differentiable. We do not use

differentiability of payoff functions.

In the next section we show the main result. All players have symmetric payoff functions.

One player is the leader and two players are followers. The game is a two-stages game as

follows;

1. In the first stage the leader determines the value of its strategic variable.

2. In the second stage the followers determine the values of their strategic variables given

the value of the leader’s strategic variable.

On the other hand, in the static game all players simultaneously determine the values of their

strategic variables. We show that if the game is fully symmetric, the equilibrium of the

Stackelberg type dynamic game and that of the static game are equivalent.

As we will show in Section 3 using a model of relative profit maximization in an oligopoly,

the Stackelberg equilibrium is not equivalent to the static (Cournot) equilibrium in the following

cases which are not fully symmetric.

1. All firms are asymmetric, that is, they have different cost functions.

2. Two followers are symmetric, that is, they have the same cost functions.

3. The leader and one follower are symmetric.

If and only if all firms are symmetric, that is, they have the same cost functions, the Stackelberg

equilibrium is equivalent to the static (Cournot) equilibrium.

2 Symmetric dynamic zero-sum game

There is a three-players and two-stages game. Players are called Player 1, Player 2 and Player

3. The strategic variable of Player i is si ; i 2 f1; 2; 3g . The set of strategic variable of Player

i is Si ; i 2 f1; 2; 3g, which is a convex and compact set of a linear topological space. One of

players is the leader and other players are followers.

The structure of the game is as follows.

1. The first stage

The leader determines the value of its strategic variable.

2. The second stage

Followers determine the values of their strategic variables given the value of the leader’s

strategic variable.

1In Tanaka (2018) we analyzed a similar problem when payoff functions of players are differentiable.

2



Thus, the game is a Stackelberg type dynamic game. We investigate a sub-game perfect

equilibrium of this game.

On the other hand, there is a static game in which three players simultaneously determine

the values of their strategic variables.

The payoff of Player i is denoted by ui.s1; s2; s3/. ui is jointly continuous in si and sj ; j ¤ i .

We assume
n

X

iD1

ui.s1; s2; s3/ D 0 given .s1; s2; s3/:

Therefore, the game is a zero-sum game.

We do not assume differentiability of players’ payoff functions2. We also assume that the

game is symmetric in the sense that the payoff functions of all players are symmetric, and

assume that the sets of strategic variables for all players are the same. Denote them by S .

We show the following theorem

Theorem 1. The sub-game perfect equilibrium of the symmetric Stackelberg type dynamic

zero-sum game with a leader and two followers is equivalent to the equilibrium of the static

game.

Proof. (1) Suppose that the leader is Player 1. Let .s2.s1/; s3.s1// be a solution of the

following equation;

(

s2.s1/ D arg maxs22S u2.s1; s2; s3.s1//

s3.s1/ D arg maxs32S u3.s1; s2.s1/; s3/;

given s1. Assume that arg maxs22S u2.s1; s2; s3.s1// and arg maxs32S u3.s1; s2.s1/; s3/

are unique. .s2.s1/; s3.s1// is a fixed point of a function of .s; s0/ from S � S to S � S ;

�

arg maxs22S u2.s1; s2; s0/

arg maxs32S u3.s1; s; s3/

�

;

given s1. Since S is compact, u2.s1; s2; s3/ and u3.s1; s2; s3/ are jointly continuous, by

the maximum theorem s2.s1/ is continuous. We have

max
s22S

u2.s1; s2; s3.s1// D u2.s1; s2.s1/; s3.s1//;

and

max
s32S

u3.s1; s2.s1/; s3/ D u3.s1; s2.s1/; s3.s1//:

By symmetry of the game

s2.s1/ D s3.s1/;

and

u2.s1; s2.s1/; s3.s1// D u3.s1; s2.s1/; s3.s1//;

2As we said in the introduction, we do not assume that the payoff function is not differentiable. We do not use

differentiability of payoff functions.
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given s1. s1.s2/, s1.s3/, s2.s3/ and s2.s3/ are similarly defined, and by symmetry of the

game we have

s1.s2/ D s3.s2/; s1.s3/ D s2.s3/:

s2.s1/ is also obtained as a fixed point of the following function

max
s2S

u2.s1; s; s2.s1//:

(2) The Nash equilibrium of the static game is obtained as a fixed point of a function of

.s; s0; s00/ from S � S � S to S � S � S ;

0

@

arg maxs12S u1.s1; s0; s00/

arg maxs22S u2.s; s2; s00/

arg maxs32S u3.s; s0; s3/

1

A :

By symmetry of the game for all players we assume that s1 D s2 D s3 at the equilibrium.

Denote the equilibrium by .Qs; Qs; Qs/. Qs is also obtained as a fixed point of the following

function.

max
s2S

u1.s; Qs; Qs/:

We assume uniqueness of the Nash equilibrium of the static game. At the equilibrium

of the static game .Qs; Qs; Qs/, we have

u1.Qs; Qs; Qs/ > u1.s; Qs; Qs/ for any s 2 S; s ¤ Qs; (1)

and

u1.Qs; Qs; Qs/ D 0:

Similarly,

u2.Qs; Qs; Qs/ > u2.Qs; s; Qs/ for any s 2 S; s ¤ Qs;

u3.Qs; Qs; Qs/ > u3.Qs; Qs; s/ for any s 2 S; s ¤ Qs;

and

u2.Qs; Qs; Qs/ D u3.Qs; Qs; Qs/ D 0:

Note that

s2.Qs/ D arg max
s22S

u2.Qs; s2; Qs/ D Qs:

Since the game is zero-sum and symmetric for Players 2 and 3, we have

u1.s; Qs; Qs/ D �2u2.s; Qs; Qs/:

Thus, (1) means

u2.s; Qs; Qs/ > 0:

By symmetry for Players 1 and 2, we get

u1.Qs; s; Qs/ > 0:
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Therefore,

u1.s; Qs; Qs/ < 0 < u1.Qs; s; Qs/: (2)

Similarly,

u1.s; Qs; Qs/ < 0 < u1.Qs; Qs; s/: (3)

Also we have

ju1.s; Qs; Qs/j D 2ju1.Qs; s; Qs/j D 2ju1.Qs; s; Qs/j: (4)

(3) The equilibrium strategy of Player 1 in the dynamic game is written as

arg max
s12S

u1.s1; s2.s1/; s3.s1//:

Let

s�

1 D arg max
s12S

u1.s1; s2.s1/; s3.s1//:

.s�

1 ; s2.s�

1 /; s3.s�

1 // is the Stackelberg equilibrium of the dynamic game when Player 1 is

the leader. We assume uniqueness of the Stackelberg equilibrium. Similarly, we get s�

2

and s�

3 such that

s�

2 D arg max
s22S

u2.s1.s2/; s2; s3.s2//;

and

s�

3 D arg max
s32S

u3.s1.s3/; s2.s3/; s3/:

s�

2 (s�

3 ) is the Stackelberg equilibrium strategy of Player 2 (Player 3) if he is the leader.

By symmetry of the game

s�

1 D s�

2 D s�

3 :

Denote them by s�.

(4) Since, by symmetry for Players 2 and 3, s3.s/ D s2.s/ for any s, we have

s� D arg max
s2S

u1.s; s2.s/; s2.s//:

This is equivalent to

u1.s�; s2.s�/; s2.s�// > u1.s; s2.s/; s2.s// for any s 2 S; s ¤ s�:

Suppose a state such that s1 D s2 D s3 D Qs. From (2) and (3), for s ¤ Qs,

u1.s; Qs; Qs/ < 0; u1.Qs; s; Qs/ > 0; u1.Qs; Qs; s/ > 0:

Since u1.s1; s2; s3/ is jointly continuous, there exists a neighborhood V 0.Qs/ of Qs such

that, for s0 2 V 0.Qs/; s0 ¤ Qs

ju1.Qs; s0; s0/j < ju1.Qs; s; Qs/j;
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and

u1.Qs; s0; s0/ > 0;

for s which satisfies (2) and (3). Since the game is zero-sum,

u1.Qs; s0; s0/ C u2.Qs; s0; s0/ C u3.Qs; s0; s0/ D 0:

By symmetry

u1.Qs; s0; s0/ D �2u2.Qs; s0; s0/ D �2u1.s0; Qs; s0/:

Thus,

u1.s0; Qs; s0/ < 0; u1.s0; s0; Qs/ < 0:

Also we have

ju1.Qs; s0; s0/j D 2ju1.s0; Qs; s0/j D 2ju1.s0; s0; Qs/j:

Since u1.s1; s2; s3/ is jointly continuous, if V.Qs/ is sufficiently small, we can assume

ju1.Qs; s0; s0/ � u1.Qs; Qs; Qs/j � 2ju1.Qs; s0; Qs/ � u1.Qs; Qs; Qs/j:

or

ju1.Qs; s0; s0/j � 2ju1.Qs; s0; Qs/j:

Consequently, from (4)

ju1.Qs; s0; s0/j � ju1.s0; Qs; Qs/j:

Then, there exists a neighborhood V.Qs/ of Qs such that for s 2 V.Qs/

ju1.s; s2.s/; s2.s//j < ju1.s0; Qs; Qs/j; for s0 2 V 0.Qs/:

It seems to be that

js2.s/ � Qsj < js � Qsj:

Since

u1.s; Qs; Qs/ < 0;

and

u1.Qs; s2.s/; s2.s// > 0;

we get

u1.s; s2.s/; s2.s// < 0:

This means

u1.Qs; Qs; Qs/ > u1.s; s2.s/; s2.s//; for s 2 V.s/:

Thus, .Qs; Qs; Qs/ is the Stackelberg equilibrium.

We have completed the proof.
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3 Example: relative profit maximization in a

Stackelberg oligopoly

3.1 Case 1: three firms are different each other

Consider a three firms Stackelberg oligopoly with a homogeneous good3. There are Firms A,

B and C. The outputs of the firms are xA, xB and xC . The price of the good is p. The inverse

demand function is

p D a � xA � xB � xC ; a > 0:

The cost functions of the firms are c2
AxA, c2

BxB and c2
C xC . cA, cB and cC are positive

constants. We assume that cA, cB and cC are all different. The relative profit of Firm A is

'A D pxA � cAx2
A �

1

2
.pxB � cBx2

B C pxC � cC x2
C /:

The relative profit of Firm B is

'B D pxB � cBx2
B �

1

2
.pxA � cAx2

A C pxC � cC x2
C /:

The relative profit of Firm C is

'C D pxC � cC x2
C �

1

2
.pxA � cAx2

A C pxB � cBx2
B/:

The firms maximize their relative profits. We see

'A C 'B C 'C D 0:

Thus, the game is a zero-sum game. Firm A is the leader and Firms B and C are followers.

In the first stage of the game Firm A determines xA, and in the second stage Firms B and C

determine xB and xC given xA.

Nash equilibrium of the static game

The equilibrium outputs are

xA D
a.4cB C 3/.4cC C 3/

32cAcBcC C 32cBcC C 32cAcC C 30cC C 32cAcB C 30cB C 30cA C 27
;

xB D
a.4cA C 3/.4cC C 3/

32cAcBcC C 32cBcC C 32cAcC C 30cC C 32cAcB C 30cB C 30cA C 27
;

xC D
a.4cA C 3/.4cB C 3/

32cAcBcC C 32cBcC C 32cAcC C 30cC C 32cAcB C 30cB C 30cA C 27
:

3In this example payoff functions are differentiable.
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Sub-game perfect equilibrium of the dynamic game

The equilibrium outputs are

xA D
4a.4cB C 3/.4cC C 3/.4cBcC C 4cC C 4cB C 3/

A
;

xB D
2a.4cC C 3/.32cAcBcC C 24cBcC C 32cAcC C 21cC C 32cAcB C 21cB C 30cA C 18/

A
;

xC D
2a.4cB C 3/.32cAcBcC C 24cBcC C 32cAcC C 21cC C 32cAcB C 21cB C 30cA C 18/

A
;

where

A D512cAc2
Bc2

C C 512c2
Bc2

C C 1024cAcBc2
C C 944cBc2

C C 512cAc2
C C 432c2

C

C 1024cAc2
BcC C 944c2

BcC C 1984cAcBcC C 1680cBcC C 960cAcC C 747cC C 512cAc2
B

C 432c2
B C 960cAcB C 747cB C 450cA C 324:

The Nash equilibrium of the static game and the sub-game perfect equilibrium of the dynamic

game are not equivalent.

3.2 Case 2: the leader and one follower are symmetric

Assume cC D cA.

Nash equilibrium of the static game

The equilibrium outputs are

xA D
a.4cB C 3/

8cAcB C 10cB C 8cA C 9
;

xB D
a.4cA C 3/

8cAcB C 10cB C 8cA C 9
;

xC D
a.4cB C 3/

8cAcB C 10cB C 8cA C 9
:

Sub-game perfect equilibrium of the dynamic game

The equilibrium outputs are

xA D
4a.4cA C 3/.4cB C 3/.4cAcB C 4cB C 4cA C 3/

B
;

xB D
2a.4cA C 3/.32c2

AcB C 56cAcB C 21cB C 32c2
A C 51cA C 18/

B
;

xC D
2a.4cB C 3/.32c2

AcB C 56cAcB C 21cB C 32c2
A C 51cA C 18/

B
;
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where

B D512c3
Ac2

B C 1536c2
Ac2

B C 1456cAc2
B C 432c2

B C 1024c3
AcB C 2928c2

AcB

C 2640cAcB C 747cB C 512c3
A C 1392c2

A C 1197cA C 324:

The Nash equilibrium of the static game and the sub-game perfect equilibrium of the dynamic

game are not equivalent.

3.3 Case 3: two followers are symmetric

Assume cC D cB .

Nash equilibrium of the static game

The equilibrium outputs are

xA D
a.4cB C 3/

8cAcB C 8cB C 10cA C 9
;

xB D
a.4cA C 3/

8cAcB C 8cB C 10cA C 9
;

xC D
a.4cA C 3/

8cAcB C 8cB C 10cA C 9
:

Sub-game perfect equilibrium of the dynamic game

The equilibrium outputs are

xA D
2a.2cB C 1/.2cB C 3/

16cAc2
B C 16c2

B C 40cAcB C 35cB C 25cA C 18
;

xB D
2a.4cAcB C 3cB C 5cA C 3/

16cAc2
B C 16c2

B C 40cAcB C 35cB C 25cA C 18
;

xC D
2a.4cAcB C 3cB C 5cA C 3/

16cAc2
B C 16c2

B C 40cAcB C 35cB C 25cA C 18
:

The Nash equilibrium of the static game and the sub-game perfect equilibrium of the dynamic

game are not equivalent.

3.4 Case 4: all firms are symmetric

Nash equilibrium of the static game

Assume cA D cB D cC .

The equilibrium outputs are

xA D
a

2cA C 3
; xB D

a

2cA C 3
; xC D

a

2cA C 3
:

9



Sub-game perfect equilibrium of the dynamic game

The equilibrium outputs are

xA D
a

2cA C 3
; xB D

a

2cA C 3
; xC D

a

2cA C 3
:

The Nash equilibrium of the static game and the sub-game perfect equilibrium of the dynamic

game are equivalent.

4 Concluding Remark

As we said in the introduction, the equivalence of the Stackelberg type dynamic game and the

static game in a two-players zero-sum game is a widely known result. But, this problem in a

multi-players case has not been analyzed. In this paper we have analyzed a three-players game.

In the future research we want to extend the analysis in this paper to more general n-players

zero-sum game.
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