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1 INTRODUCTION

Distinguishing between growth and cycles is fundamental in macroeconomics. One

can define growth as the time-varying steady state, or the permanent component,

and cycles as deviations from the steady state, or the transitory component. One

may interpret the permanent and transitory components as the natural rate and

gap, respectively, though some economists may disagree with such interpretation, in

which case one can consider the permanent component of the natural rate.1 If shocks

affecting the two components differ, then policy prescriptions for promoting growth

and stabilizing cycles differ. Thus it is useful to decompose economic fluctuations

into the two components.

Among such decomposition methods, this paper focuses on the multivariate

Beveridge–Nelson (B–N) decomposition, which decomposes a multivariate I(1) or

CI(1,1) series into a random walk permanent component and an I(0) transitory

component, assuming a linear time series model such as a VAR model or a vec-

tor error-correction model (VECM) for the differenced series. In practice, however,

some series may be I(2), e.g., log output in some countries, in which case one must

decompose I(1) and I(2) series jointly. Murasawa (2015) develops the multivariate

B–N decomposition of I(1) and I(2) series.

As Murasawa (2015) shows, for non-US data, the B–N decomposition assuming

I(1) log output often gives an unreasonable estimate of the output gap, perhaps

because of possible structural breaks in the mean output growth rate; see Figure 1.

Kamber, Morley, and Wong (2018, p. 563) explain,

. . . if there is a large reduction in the long-run growth rate, a forecasting

model that fails to account for it will keep anticipating faster growth
1 Phelps (1995) defines the natural rate as the current stationary rate (p. 16) or the equilibrium

steady state path (pp. 29–30). Woodford (2003, pp. 8–9) defines the natural rate as the equilibrium
rate under flexible prices, which may not be in the steady state. Kiley (2013) compares alternative
definitions empirically using a new Keynesian DSGE model for the US, and obtains similar esti-
mates of the output gap. Laubach and Williams (2016) and Holston, Laubach, and Williams (2017)
note that these long-run and short-run views are complementary. Del Negro, Giannone, Giannoni,
and Tambalotti (2017) also distinguish the natural rate and its low-frequency component.
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than actually occurs after the break, leading to a persistently negative

estimate of the output gap based on the BN decomposition.2

Assuming I(2) log output and hence I(1) output growth rate, one introduces a

stochastic trend in the output growth rate, which captures possible structural breaks

in the mean growth rate automatically in real time without specifying break dates

a priori. Thus the B–N decomposition assuming I(2) log output gives a more “rea-

sonable” estimate of the output gap that fluctuates around 0; see Figure 1.

Figure 1

This paper extends Murasawa (2015) in two ways. First, we allow for cointegra-

tion in the multivariate B–N decomposition of I(1) and I(2) series. Recall that the

consumption Euler equation in a simple macroeconomic model implies a dynamic

IS equation such that for all t,

Et(∆yt+1) =
1

σ
(rt − ρ) (1)

where yt is log output, rt is the real interest rate, ρ is the discount rate, and σ is the

curvature of the utility of consumption; see Gaĺı (2015, pp. 21–23). This equation

implies that if 0 < σ < ∞, then the output growth rate and the real interest rate

are of the same order of integration; thus if the real interest rate is I(1), then so

is the output growth rate with possible cointegration, and log output is I(2). This

observation motivates our development of the multivariate B–N decomposition of

I(1) and I(2) series with cointegration.

Second, we apply Bayesian analysis to obtain error bands for the components,

building on recent developments in Bayesian analysis of a VECM. Since cointegrating

2 In this quote, Kamber et al. (2018) seem to consider the output growth rate gap. If one fails
to account for a large reduction in the true mean growth rate µ∗, then the output growth rate
∆yt tends to be below the assumed mean growth rate µ; i.e., the output growth rate gap ∆yt − µ

indeed tends to be negative. If log output is I(1), so that the output growth rate is I(0), then
with positive serial correlation, the future ∆yt −µ tends to be negative, implying that the current
output gap is positive, as shown in Figure 1.
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vectors require normalization, our parameter of interest is in fact the cointegrating

space rather than cointegrating vectors. Strachan and Inder (2004) use a matrix

angular central Gaussian (MACG) distribution proposed by Chikuse (1990) as a

prior on the cointegrating space. Koop, León-González, and Strachan (2010) propose

a collapsed Gibbs sampler for posterior simulation of such a model. Since one often

has prior information on the steady state of a system, Villani (2009) specifies a

prior on the steady state form of a VECM. Since some hyperparameters such as the

tightness (shrinkage) hyperparameter on the VAR coefficients are difficult to choose,

Giannone, Lenza, and Primiceri (2015) use a hierarchical prior. We utilize these

ideas, and show how to simulate the joint posterior distribution of the components.

As an application, we simulate the joint posterior distribution of the natural

rates (or their permanent components) and gaps of output, inflation, interest, and

unemployment in the US during 1950Q1–2017Q4. To apply the Bayesian multi-

variate B–N decomposition of I(1) and I(2) series with cointegration, we assume

a four-variate VAR model for the output growth rate, the CPI inflation rate, the

short-term interest rate, and the unemployment rate, and estimate it in the VECM

form. The Bayes factors give decisive evidences that the cointegrating rank is 2. The

posterior medians of the gaps seem reasonable compared to previous works that fo-

cus on a particular natural rate or gap. The posterior probability of positive gap is

useful when the sign of the gap is uncertain. The Phillips curve and Okun’s law hold

between the gaps, though we do not impose such relations. Comparisons of alterna-

tive model specifications show not only that assuming I(2) log output gives a more

“reasonable” estimate of the output gap, but also that allowing for cointegration

gives much bigger estimates of all gaps.

The paper proceeds as follows. Section 2 reviews the literature on the B–N

decomposition. Section 3 derives the multivariate B–N decomposition of I(1) and

I(2) series with cointegration. Section 4 specifies our model and prior, and explains

our posterior simulation and model evaluation. Section 5 applies the method to US
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data. Section 6 discusses remaining issues. The Appendix gives the details of the

derivation of our algorithm.

2 LITERATURE

Beveridge and Nelson (1981) give operational definitions of the permanent and tran-

sitory components, show that one can express any I(1) series as the sum of a random

walk permanent component and an I(0) transitory component, and propose the B–N

decomposition of a univariate I(1) series, assuming an ARIMA model.3

Multivariate extension of the B–N decomposition is straightforward. Evans

(1989a, 1989b) and Evans and Reichlin (1994) apply the B–N decomposition to

a multivariate series consisting of I(0) and I(1) series, assuming a VAR model for

the stationarized series. Evans and Reichlin (1994) show that the transitory compo-

nents are no smaller with the multivariate B–N decomposition than with the univari-

ate one. This is because the transitory components are “forecastable movements”

(Rotemberg and Woodford (1996)), and multivariate models forecast no worse than

univariate models, using more information. King, Plosser, Stock, and Watson (1991)

and Cochrane (1994) apply the B–N decomposition to a CI(1,1) series, assuming a

VECM.

J. C. Morley (2002) gives a general framework for the B–N decomposition, us-

ing a state space representation of the assumed linear time series model. Garratt,

Robertson, and Wright (2006) note that if the state vector is observable as in a VAR

model or a VECM, then the transitory component is an explicit weighted sum of the

observables given the model parameters; thus the multivariate B–N decomposition

based on a VAR model or a VECM is transparent. They also note that the result of

the multivariate B–N decomposition depends strongly on the assumed cointegrating

rank.

3 Beveridge and Nelson (1981) reverse the sign of the transitory component. Nelson (2008)
explains why they had to do so.
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The B–N decomposition also applies to an I(2) series. Newbold and Vougas

(1996), Oh and Zivot (2006), and Oh, Zivot, and Creal (2008) extend the B–N

decomposition to a univariate I(2) series. Murasawa (2015) extends the method to

a multivariate series consisting of I(1) and I(2) series.

One can apply Bayesian analysis to obtain error bands for the components. This

approach is useful especially when the state vector is observable as in a VAR model

or a VECM, in which case the components are explicit functions of the model param-

eters and observables; thus the joint posterior distribution of the model parameters

directly translates into that of the components. Murasawa (2014) uses a Bayesian

VAR model to obtain error bands for the components.

Kiley (2013) uses a Bayesian DSGE model, but gives no error band for the com-

ponents. Del Negro et al. (2017) use a Bayesian DSGE model and give error bands

for the components. They also use a multivariate unobserved components (UC)

model, where the permanent components have a factor structure and the transitory

components follow a VAR model. Bayesian analysis of a UC model requires state

smoothing, since the state vector is unobservable given the model parameters; thus

it is less straightforward than that of a VAR model. J. Morley and Wong (2018) use

a large Bayesian VAR model and give error bands for the components, but they do

not take parameter uncertainty into account. There seems no previous work that

uses a Bayesian VECM to obtain error bands for the components.4

4 Cogley, Primiceri, and Sargent (2010) use a Bayesian time-varying parameter VAR model,
which is a nonlinear time series model. They still apply the B–N decomposition and give error
bands for the components, pretending at each date that the VAR coefficients no longer vary. They
justify their approach as an approximation based on an “anticipated-utility” model. See also
Cogley and Sargent (2002, 2005) and Cogley, Morozov, and Sargent (2005).
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3 MODEL SPECIFICATION

3.1 VAR model

Let for d = 1, 2, {xt,d} be an Nd-variate I(d) sequence. Let N := N1 +N2. Let for

all t, xt := (x′
t,1,x

′
t,2)

′, yt,1 := xt,1, yt,2 := ∆xt,2, and yt := (y′
t,1,y

′
t,2)

′, so that {yt}

is I(1). Assume also that {yt} is CI(1,1) with cointegrating rank r. Let for d = 1, 2,

µd := E(∆yt,d). Let µ := (µ′
1,µ

′
2)

′. Let {y∗
t } be such that for all t,

yt = α+ µt+ y∗
t (2)

Assume a VAR(p+ 1) model for {y∗
t } such that for all t,

Π(L)y∗
t = ut (3)

{ut} ∼ WN(Σ) (4)

3.2 VECM representation

Write

Π(L) =Π(1)L +Φ(L)(1− L)

where Φ(L) := (Π(L) −Π(1)L)/(1 − L). Then we have a VECM of order p for

{∆y∗
t } such that for all t,

Φ(L)∆y∗
t = −Π(1)y∗

t−1 + ut

= −ΛΓ ′y∗
t−1 + ut (5)

where Λ,Γ ∈ R
N×r. Since {y∗

t } is CI(1,1), the roots of det(Π(z)) = 0 must lie

on or outside the unit circle. This requirement gives an implicit restriction on the

VECM parameters (Φ(.),Λ,Γ ).
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We can write for all t,

Φ(L)(∆yt − µ) = −ΛΓ ′[yt−1 −α− µ(t− 1)] + ut

= −Λ[Γ ′yt−1 − β − δ(t− 1)] + ut (6)

where β := Γ ′α and δ := Γ ′µ. Though slightly different, the last expression is

essentially a steady state VECM suggested by Villani (2009, p. 633). We have for

all t,

E(∆yt) = µ (7)

E(Γ ′yt) = β + δt (8)

which help us to specify an informative prior on (µ,β, δ). Thus a steady state

VECM is useful for Bayesian analysis.

3.3 State space representation

Assume that p ≥ 1. We have for all t,

Γ ′y∗
t = Γ ′(y∗

t−1 +Φ1∆y
∗
t−1 + · · ·+Φp∆y

∗
t−p −ΛΓ

′y∗
t−1 + ut)

= Γ ′Φ1∆y
∗
t−1 + · · ·+ Γ ′Φp∆y

∗
t−p + (Ir − Γ

′Λ)Γ ′y∗
t−1 + Γ

′ut

or

Γ ′yt − β − δt = Γ ′Φ1(∆yt−1 − µ) + · · ·+ Γ ′Φp(∆yt−p − µ)

+ (Ir − Γ
′Λ)[Γ ′yt−1 − β − δ(t− 1)] + Γ ′ut (9)
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Let st be a state vector such that for all t,

st :=



















∆yt − µ

...

∆yt−p+1 − µ

Γ ′yt − β − δt



















which is I(0) and observable given the model parameters. A state space representa-

tion of the steady state VECM is for all t,

st = Ast−1 +Bzt (10)

∆yt = µ+Cst (11)

{zt} ∼ WN(IN) (12)

where

A :=













Φ1 . . . Φp −Λ

I(p−1)N O(p−1)N×N O(p−1)N×r

Γ ′Φ1 . . . Γ ′Φp Ir − Γ
′Λ













B :=













Σ1/2

O(p−1)N×N

Γ ′Σ1/2













C :=

[

IN ON×(p−1)N ON×r

]

Note that {st} is I(0) if and only if the eigenvalues of A lie inside the unit circle.

We have for all t, for h ≥ 0,

Et(∆yt+h) = µ+CAhst
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or

Et(∆xt+h,1) = µ1 +C1A
hst (13)

Et

(

∆2xt+h,2

)

= µ2 +C2A
hst (14)

where

C1 :=

[

IN1
ON1×N2

ON1×(p−1)N ON1×r

]

C2 :=

[

ON2×N1
IN2

ON2×(p−1)N ON2×r

]

3.4 Multivariate B–N decomposition

Introducing cointegration changes the state space model, but the formulae for the

multivariate B–N decomposition of I(1) and I(2) series given by Murasawa (2015,

Theorem 1) remain almost unchanged. Let x∗
t and ct be the B–N permanent and

transitory components in xt, respectively.

Theorem 1. Suppose that the eigenvalues of A lie inside the unit circle. Then for

all t,

x∗
t,1 = lim

T→∞
(Et(xt+T,1)− Tµ1) (15)

x∗
t,2 = lim

T→∞

{

Et(xt+T,2)− T 2µ2

2
− T

[µ2

2
+ ∆xt,2 +C2(IpN+r −A)−1Ast

]}

(16)

ct,1 = −C1(IpN+r −A)−1Ast (17)

ct,2 = C2(IpN+r −A)−2A2st (18)

Proof. See Murasawa (2015, pp. 158–159).

Let

W :=







−C1(IpN+r −A)−1A

C2(IpN+r −A)−2A2






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Then for all t,

ct =Wst (19)

where W depends only on the VECM coefficients and {st} is observable given the

model parameters. This observation is useful for Bayesian analysis of {ct}.

4 BAYESIAN ANALYSIS

4.1 Conditional likelihood function

Assume Gaussian innovations for Bayesian analysis, and write the VECM as for all

t,

∆yt − µ = Φ1(∆yt−1 − µ) + · · ·+Φp(∆yt−p − µ)

−Λ[Γ ′yt−1 − β − Γ ′µ(t− 1)] + ut (20)

{ut} ∼ INN

(

0N ,P
−1
)

(21)

Let ψ := (β′,µ′)′, Φ := [Φ1, . . . ,Φp], and Y := [y0, . . . ,yT ]. By the prediction error

decomposition, the joint pdf of Y is

p(Y |ψ,Φ,P ,Λ,Γ ) = p(∆yT , . . . ,∆yp+1, sp|ψ,Φ,P ,Λ,Γ )

=
T
∏

t=p+1

p(∆yt|st−1,ψ,Φ,P ,Λ,Γ )p(sp|ψ,Φ,P ,Λ,Γ ) (22)

Our Bayesian analysis relies on
∏T

t=p+1 p(∆yt|st−1,ψ,Φ,P ,Λ,Γ ), the conditional

likelihood function of (ψ,Φ,P ,Λ,Γ ) given sp.

4.2 Identification

To specify a prior on the cointegrating space, we assume that Γ ′Γ = Ir. This

restriction does not identify the sign of Γ , however. If identification of Γ is necessary,
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then we can apply linear normalization. Write Γ := [Γ ′
1,Γ

′
2]

′, where Γ1 is r× r and

Γ2 is (N − r)× r. Let

Λ̄ := ΛΓ1

Γ̄ := ΓΓ−1
1

Then we can identify
(

Λ̄, Γ̄
)

. Let β̄ := Γ̄ ′α =
(

Γ−1
1

)′
β and ψ̄ :=

(

β̄′,µ′
)′

corre-

spondingly. Note that α is not identifiable from the VECM.

4.3 Prior

4.3.1 Steady state parameters

Assume a normal prior on (α,µ) independent of (Φ,P ,Λ,Γ ) such that







α

µ






∼ N2N













α0

µ0






,







Q−1
0,α ON×N

ON×N Q−1
0,µ












(23)

Since β := Γ ′α, this prior implies a prior on ψ such that

ψ|Γ ∼ Nr+N

(

ψ0,Q
−1
0

)

(24)

where

ψ0 :=







Γ ′α0

µ0






, Q0 :=







(

Γ ′Q−1
0,αΓ

)−1
Or×r

ON×N Q0,µ







which depends on Γ in general.5 The joint pdf of ψ is

p(ψ) = (2π)−(r+N)/2 det(Q0)
1/2 exp

(

−
1

2
(ψ −ψ0)

′Q0(ψ −ψ0)

)

(25)

5 If α0 := 0N and Q0,α ∝ IN , then since Γ ′Γ = Ir, the prior on ψ becomes independent of Γ .
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4.3.2 VAR parameters

Let S be the set of (Φ,Λ,Γ ) such that the eigenvalues of A lie inside the unit circle,

so that {y∗
t } is CI(1,1). Assume a hierarchical normal–Wishart prior on (Φ,P )

independent of ψ but dependent on (Λ,Γ ) such that

Φ|P , ν,Λ,Γ ∼ NN×pN

(

M0;P
−1, (νD0)

−1
)

[(Φ,Λ,Γ ) ∈ S] (26)

P ∼ WN

(

k0;S
−1
0

)

(27)

ν ∼ Gam

(

A0

2
,
B0

2

)

(28)

where ν is a hyperparameter that controls the tightness of the prior on the VAR

coefficients, which is often difficult to choose a priori, and we assume a gamma prior

on ν. The joint pdf of (Φ,P , ν) conditional on (Λ,Γ ) is

p(Φ,P , ν|Λ,Γ ) = p(Φ|P , ν,Λ,Γ )p(P )p(ν) (29)

where

p(Φ|P , ν,Λ,Γ ) =
etr(−P (Φ−M0)νD0(Φ−M0)

′/2)

(2π)pN2/2 det(νD0)−N/2 det(P )−pN/2
[(Φ,Λ,Γ ) ∈ S] (30)

p(P ) =
det(P )(k0−N−1)/2/ etr((S0/2)P )

ΓN(k0/2) det(S0/2)−k0/2
(31)

p(ν) =
νA0/2−1/e(B0/2)ν

Γ(A0/2)(B0/2)−A0/2
(32)

where ΓN(.) is the N -variate gamma function. See Gupta and Nagar (1999) on the

pdfs of the matrix normal and Wishart distributions.

4.3.3 Cointegrating space

Let Vr

(

R
N
)

be the r-dimensional Steifel manifold in R
N , i.e.,

Vr

(

R
N
)

:=
{

H ∈ R
N×r :H ′H = Ir

}

13



Its volume is

Vol
(

Vr

(

R
N
))

=
2rπNr/2

Γr(N/2)
(33)

See Muirhead (1982, p. 70). Following Strachan and Inder (2004), we assume a prior

not on the elements of Γ directly but on Vr

(

R
N
)

. Let H0 ∈ Vr

(

R
N
)

. Let H(.) be

s.th. ∀τ ≥ 0,

H(τ) :=H0H
′
0 + τH0⊥H

′
0⊥

so that H(0) = H0H
′
0 is of rank r and H(1) = IN . Assume a prior on (Λ,Γ )

conditionally independent of (ψ,P ) given Φ such that6

Λ|Γ ,Φ ∼ NN×r

(

Λ0;G
−1
0 , (Γ ′η0H(τ0)Γ )−1

)

[(Φ,Λ,Γ ) ∈ S] (34)

Γ |Φ ∼ MACGN×r

(

H(τ0)
−1
)

(35)

The joint pdf of (Λ,Γ ) conditional on Φ is

p(Λ,Γ |Φ) = p(Λ|Γ ,Φ)p(Γ |Φ) (36)

where

p(Λ|Γ ,Φ) =
etr(−G0(Λ−Λ0)Γ

′η0H(τ0)Γ (Λ−Λ0)
′/2)

(2π)Nr/2 det(Γ ′η0H(τ0)Γ )−N/2 det(G0)−r/2
[(Φ,Λ,Γ ) ∈ S] (37)

p(Γ |Φ) =
det(Γ ′H(τ0)Γ )−N/2/ det(H(τ0))

−r/2

Vol(Vr(RN))
(38)

If τ0 := 1, then p(Γ ) = 1/Vol
(

Vr

(

R
N
))

, i.e., the flat prior on Γ . See Chikuse (1990)

on the MACG distribution.

6 Apart from the restriction that (Φ,Λ,Γ ) ∈ S, if τ0 := 1, then since Γ ′Γ = Ir, the prior on
Λ becomes independent of Γ .

14



The following transformation is useful for posterior simulation. Let

Λ∗ := (Λ−Λ0)[(Λ−Λ0)
′(Λ−Λ0)]

−1/2

Γ∗ := Γ [(Λ−Λ0)
′(Λ−Λ0)]

1/2

Then Λ∗Γ
′
∗ = (Λ − Λ0)Γ

′ and Γ ′
∗Γ∗ = (Λ − Λ0)

′(Λ − Λ0). Following Koop et al.

(2010, p.230), we have

p(Λ,Γ |Φ) = p(Λ∗,Γ∗|Φ)

= p(Γ∗|Λ∗,Φ)p(Λ∗|Φ) (39)

where

Γ∗|Λ∗,Φ ∼ NN×r

(

ON×r; (η0H(τ0))
−1, (Λ′

∗G0Λ∗)
−1
)

[(Φ,Λ∗,Γ∗) ∈ S] (40)

Λ∗|Φ ∼ MACGN×r

(

G−1
0

)

(41)

so that

p(Γ∗|Λ∗,Φ) =
etr(−η0H(τ0)Γ∗Λ

′
∗G0Λ∗Γ∗/2)

(2π)Nr/2 det(Λ′
∗G0Λ∗)−N/2 det(η0H(τ0))−r/2

[(Φ,Λ∗,Γ∗) ∈ S] (42)

p(Λ∗|Φ) =
det(Λ′

∗G0Λ∗)
−N/2/ det(G0)

−r/2

Vol(Vr(RN))
(43)

This is essentially because

p(Λ|Γ ,Φ)p(Γ |Φ) ∝ etr

(

−
1

2
G0(Λ−Λ0)Γ

′η0H(τ0)Γ (Λ−Λ0)
′

)

[(Φ,Λ,Γ ) ∈ S]

= etr

(

−
1

2
G0Λ∗Γ

′
∗η0H(τ0)Γ∗Λ

′
∗

)

[(Φ,Λ∗,Γ∗) ∈ S]

= etr

(

−
1

2
η0H(τ0)Γ∗Λ

′
∗G0Λ∗Γ

′
∗

)

[(Φ,Λ∗,Γ∗) ∈ S]
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4.4 Posterior simulation

We simulate p(ψ,Φ,P ,Λ,Γ , ν|Y ) by a Gibbs sampler consisting of five blocks:

1. Draw ψ from p(ψ|Φ,P ,Λ,Γ , ν,Y ) = p(ψ|Φ,P ,Λ,Γ ,Y ).

2. Draw (Φ,P ) from p(Φ,P |ψ,Λ,Γ , ν,Y ).

3. Draw Λ from p(Λ|ψ,Φ,P ,Γ , ν,Y ) = p(Λ|ψ,Φ,P ,Γ ,Y ). Let Λ∗ := (Λ −

Λ0)[(Λ−Λ0)
′(Λ−Λ0)]

−1/2.

4. Draw Γ∗ from p(Γ∗|ψ,Φ,P ,Λ, ν,Y ) = p(Γ∗|ψ,Φ,P ,Λ,Y ). Discard Λ. Let

Γ := Γ∗(Γ
′
∗Γ∗)

−1/2 andΛ := Λ0+Λ∗(Γ
′
∗Γ∗)

1/2. Accept the draw if (Φ,Λ,Γ ) ∈

S; otherwise go back to step 2 and draw another (Φ,P ,Λ,Γ ).

5. Draw ν from p(ν|ψ,Φ,P ,Λ,Γ ,Y ) = p(ν|Φ,P ).

The first block builds on Villani (2009); the second block is standard; the third

and fourth blocks come from the collapsed Gibbs sampler proposed by Koop et al.

(2010); the fifth block is standard. See the Appendix for the details of each block.

4.5 Bayes factor

We use the Bayes factor for Bayesian model selection. When choosing between

nested models with certain priors, the Savage–Dickey (S–D) density ratio gives

the Bayes factor without estimating the marginal likelihoods; see Wagenmakers,

Lodewyckx, Kuriyal, and Grasman (2010) for a tutorial on the S–D method.

We choose the cointegrating rank r. Consider comparing the following two mod-

els (hypotheses):

H0 : rk(Π) = 0 vs Hr : rk(Π) = r (44)

Koop, León-González, and Strachan (2008, pp. 451–452) note that the problem is

the same as comparing the following two nested models:

H0 : Λ = ON×r vs Hr : Λ ̸= ON×r (45)
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Ignoring the constraint that (Φ,Λ,Γ ) ∈ S for the moment and assuming that

τ0 := 1, so that the priors on Λ and Γ are independent,7 the S–D density ratio for

H0 vs Hr is

B0,r =
p(Λ = ON×r|Y ;Hr)

p(Λ = ON×r|Hr)
(46)

The prior gives the denominator directly. For the numerator, we have

p(Λ|Y ;Hr) = E(p(Λ|ψ,Φ,P ,Γ ,Y ;Hr)|Y ;Hr) (47)

Let {ψl,Φl,Pl,Γl}
L
l=1 be posterior draws. Let

p̂(Λ = ON×r|Y ;Hr) :=
1

L

L
∑

l=1

p(Λ = ON×r|ψl,Φl,Pl,Γl,Y ;Hr)

An estimator of the the S–D density ratio for H0 vs Hr is

B̂0,r =
p̂(Λ = ON×r|Y ;Hr)

p(Λ = ON×r|Hr)
(48)

5 APPLICATION

5.1 Data

We consider joint estimation of the natural rates (or their permanent components)

and gaps of the following four macroeconomic variables in the US:

Output Let Yt be output. Assume that {lnYt} is I(2), so that {∆ lnYt} is I(1).

Inflation rate Let Pt be the price level and πt := ln(Pt/Pt−1) be the inflation rate.

Assume that {πt} is I(1).

Interest rate Let It be the 3-month nominal interest rate (annual rate in per cent),

it := ln(1 + It/400), rt := it − Et(πt+1) be the ex ante real interest rate, and

7 If the priors on Λ and Γ are dependent, then we can use the generalized S–D density ratio
proposed by Verdinelli and Wasserman (1995).

17



TABLE 1: Data
Variable Description

Yt Real GDP (billions of chained 2009 dollars, SA, AR)
Pt CPI for all urban consumers: all items (1982–84=100, SA)
it 3-month treasury bill: secondary market rate (%, AR)
Lt Civilian labor force (thousands of persons, SA)
Et Civilian employment level (thousands of persons, SA)

Note: SA means ‘seasonally-adjusted’; AR means ‘annual rate’.

r̂t := it − πt+1 be the ex post real interest rate. Assume that {rt} is I(1).8

Unemployment rate Let Lt be the labor force, Et be employment, and Ut :=

− ln(Et/Lt) be the unemployment rate. Assume that {Ut} is I(1).

Table 1 describes the data, which are available from FRED (Federal Reserve

Economic Data). When monthly series are available, i.e., except for real GDP, we

take the 3-month arithmetic means of monthly series each quarter to obtain quarterly

series, from which we construct the quarterly inflation, interest, and unemployment

rates as defined above.

Let for all t,

xt :=



















πt

r̂t

Ut

lnYt



















, yt :=



















πt

r̂t

Ut

∆ lnYt



















The sample period of {yt} is 1948Q1–2017Q4 (280 observations).

5.2 Preliminary analyses

We perform some preliminary analyses to check our assumption that {yt} is I(1).9

Table 2 shows the results of the ADF and ADF-GLS tests for unit root, with or

without constant and/or trend terms in the ADF regression. The results depend on

8 We can estimate the interest rate gap even if we observe {r̂t} instead of {rt}. See Murasawa
(2014, pp. 499–500).

9 We use gretl 2018d for the preliminary analyses.
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TABLE 2: Unit root tests
Variable Const. Trend ADF ADF-GLS

Lags τ p-value Lags τ
πt yes yes 4 −3.71 .02 4 −3.38∗∗

r̂t yes yes 7 −3.74 .02 5 −2.57
Ut yes yes 13 −2.89 .17 12 −2.27
∆ lnYt yes yes 0 −11.49 .00 1 −8.42∗∗∗

πt yes no 4 −3.68 .00 4 −2.09∗∗

r̂t yes no 7 −3.74 .00 5 −1.65∗

Ut yes no 13 −3.01 .03 12 −1.49
∆ lnYt yes no 0 −11.26 .00 1 −6.52∗∗∗

∆πt yes no 3 −11.79 .00 0 −14.04∗∗∗

∆r̂t yes no 8 −8.70 .00 0 −21.49∗∗∗

∆Ut yes no 12 −5.15 .00 0 −7.42∗∗∗

∆2 lnYt yes no 14 −7.55 .00 0 −24.30∗∗∗

∆πt no no 3 −11.82 .00
∆r̂t no no 8 −8.73 .00
∆Ut no no 12 −5.16 .00
∆2 lnYt no no 14 −7.56 .00

Note: For the ADF-GLS test, *, **, and *** denote significance at the 10%, 5%,
and 1% levels, respectively. For the number of lags included in the ADF
regression, we use the default choice in gretl 2018d with maximum 15, where the
lag order selection criteria are AIC for the ADF test, and a modified AIC using the
Perron and Qu (2007) method for the ADF-GLS test. With no constant nor trend
in the ADF regression, the ADF test is asymptotically point optimal; hence the
ADF-GLS test is unnecessary.

the number of lags included in the ADF regression, since the ADF test suffers from

size distortion with short lags and low power with long lags. The ADF-GLS test

remedies the problem except when there is no constant nor trend term in the ADF

regression, in which case the ADF test is asymptotically point optimal. The level

.05 ADF-GLS test rejects H0 : {yt,i} ∼ I(1) in favor of H1 : {yt,i} ∼ I(0) for {πt}

and {∆ lnYt}. Hence these unit root tests do not support our assumption that {yt}

is I(1).

Table 3 shows the results of the KPSS stationarity tests, with or without a trend

term. The results depend on the lag truncation parameter for the Newey–West

estimator of the long-run error variance. With a trend term, the level .05 KPSS test

rejects H0 : {yt,i} ∼ I(0) in favor of H1 : {yt,i} ∼ I(1) except for {∆ lnYt}. With no
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TABLE 3: KPSS stationarity tests
Variable Trend LM
πt yes .53∗∗∗

r̂t yes .33∗∗∗

Ut yes .22∗∗∗

∆ lnYt yes .03
πt no .57∗∗

r̂t no .34
Ut no .71∗∗

∆ lnYt no .49∗∗

∆πt no .03
∆r̂t no .06
∆Ut no .06
∆2 lnYt no .01

Note: ** and *** denote significance at the 5% and 1% levels, respectively. The
lag truncation parameter for the Newey–West estimator of the long-run error
variance is 5 (the default value for our sample length in gretl 2018d).

trend term, the test rejects H0 : {yt,i} ∼ I(0) in favor of H1 : {yt,i} ∼ I(1) except for

{r̂t}. Though the results for {r̂t} and {∆ lnYt} are mixed, these stationarity tests

support our assumption that {yt} is I(1).

Overall, these unit root and stationarity tests confirm that {∆yt} is I(0), but

are inconclusive if each component of {yt} is I(1). With no strong counter-evidence,

we proceed with our prior belief that each component of {yt} is I(1). See Murasawa

(2014) for an analysis based on an alternative assumption.

We also perform some preliminary analyses of cointegration in {yt}. Table 4

shows the results of the Engle–Granger cointegration tests, with or without a trend

term in the cointegrating regression. The results depend on the number of lags

included in the ADF regression for the residual series, but overall, the tests fail to

reject the null of no cointegration (the residual series is I(1)) against the alternative

of cointegration (the residual series is I(0)).

Table 5 shows the results of Johansen’s cointegration tests, with unrestricted

constant and restricted trend terms in the VECM. The results depend on the number

of lags included in the VECM, but overall, the tests suggest that the cointegrating
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TABLE 4: Engle–Granger cointegration tests
Trend τ p-value
yes −3.75 .22
no −3.56 .17

Note: The number of lags included in the ADF regression is 4 (the default value
for our sample length in gretl 2018d).

TABLE 5: Johansen’s cointegration tests (unrestricted constant and restricted
trend in the VECM)

Rank Trace p-value λ-max p-value
0 141.91 .00 83.45 .00
1 58.46 .00 40.08 .00
2 18.39 .33 12.50 .38
3 5.89 .48 5.89 .49

Note: The number of lags included in the VECM is 4 (the default value for our
sample length in gretl 2018d).

rank is 2.

Since the results are mixed, we estimate models with different cointegrating

ranks, and use the Bayes factor to choose the cointegrating rank. Table 6 shows

summary statistics of {yt} and {∆yt} multiplied by 100. Note that {πt}, {r̂t}, and

{∆ lnYt} are quarterly rates of change (not annualized).

5.3 Model specification

For our data, N := 4. To select p, we fit VAR models to {yt} up to VAR(8),

i.e., p = 7, and check model selection criteria. The common estimation period is

TABLE 6: Summary statistics
Variable Min. 1st qu. Median Mean 3rd qu. Max.

100πt −2.32 .39 .75 .85 1.13 3.98
100r̂t −3.65 −.25 .23 .19 .57 2.69
100Ut 2.64 4.77 5.74 5.98 7.08 11.28
100∆ lnYt −2.63 .32 .76 .78 1.28 3.91
100∆πt −3.85 −.26 .00 .00 .29 1.98
100∆r̂t −1.95 −.27 .02 .00 .25 3.81
100∆Ut −1.03 −.22 −.06 .00 .13 1.79
100∆2 lnYt −2.84 −.71 −.02 .00 .00 4.81
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TABLE 7: Lag order selection
Lag Log-lik LR p-value AIC BIC HQC
1 4329.73 −31.66 −31.34 −31.53
2 4676.38 693.31 .00 −34.09 −33.56∗ −33.88
3 4705.68 58.61 .00 −34.19 −33.45 −33.89∗

4 4723.70 36.02 .00 −34.20 −33.25 −33.82
5 4737.87 28.35 .03 −34.19 −33.02 −33.72
6 4757.53 39.31 .00 −34.22 −32.84 −33.66
7 4777.70 40.34 .00 −34.25∗ −32.66 −33.61
8 4790.17 24.95 .07 −34.22 −32.42 −33.50

Note: For AIC, BIC, and HQC, * denotes the selected model. The LR test
statistic for testing H0 : {yt} ∼ VAR(p− 1) vs H1 : {yt} ∼ VAR(p) follows χ2(16)
under H0.

1950Q1–2017Q4. Table 7 summarizes the results of lag order selection.10 The level

.05 LR test fails to reject H0 : {yt} ∼ VAR(7) against H1 : {yt} ∼ VAR(8) and AIC

selects VAR(7), whereas BIC and HQC select much smaller models. Since a high-

order VAR model covers low-order VAR models as special cases, to be conservative,

we assume a VAR(8) model for {yt}, i.e., we choose p = 7, and impose a shrinkage

prior on the VAR coefficients.

For the prior on α, we set α0 := 0N and Q0,α := IN ; hence the prior on β is

Nr(0r, Ir) independent of Γ . For the prior on µ, we set µ0 := µ̂, where µ̂ is the

sample mean of {∆ lnyt}, and Q0,µ := IN .

Following Kadiyala and Karlsson (1997) and Bańbura, Giannone, and Reichlin

(2010), we set

M0 := ON×pN

D0 := diag(1, . . . , p)2 ⊗ diag(s1, . . . , sN)
2

k0 := N + 2

S0 := (k0 −N − 1) diag(s1, . . . , sN)
2

10 The standard lag order selection criteria are valid even when {yt} is I(1); see Kilian and
Lütkepohl (2017, pp. 99–100).
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where for i = 1, . . . , N , s2i is an estimate of var(ut,i) based on the univariate AR(p+1)

model with constant and trend terms for {yt,i}.

For the prior on (Λ,Γ ), we set Λ0 := ON×r, G0 := IN , η0 := .01, and τ0 := 1.

Since τ0 := 1, we have a flat prior on the cointegrating space, and the priors on Λ

and Γ are independent.

For the prior on ν, we set A0 := 1 and B0 := 1, i.e., ν ∼ χ2(1); hence the tightness

hyperparameter on the VAR coefficients tends to be small, implying potentially mild

shrinkage toward M0 := ON×pN .

Overall, our priors are weakly informative in the sense of Gelman et al. (2014,

p. 55).

5.4 Bayesian computation

We run our Gibbs sampler on R 3.5.2 developed by R Core Team (2018). We use

the ML estimate of (Φ,P ,Λ,Γ ) for their initial values.11 With poor initial values,

the restriction that the eigenvalues of A lie inside the unit circle does not hold,

and the iteration cannot start. Hence the choice of initial values is important when

one applies the B–N decomposition. Once the iteration starts, the restriction rarely

binds for our sample.

To check convergence of the Markov chain generated by our Gibbs sampler to its

stationary distribution, we perform convergence diagnoses discussed in Robert and

Casella (2009, ch. 8) and available in the coda package for R. Given the diagnoses,

we discard the initial 1,000 draws, and use the next 4,000 draws for the posterior

inference.

To select the cointegrating rank r, we set p := 7, assume the above priors,

and compute the S–D density ratios for r = 1, 2, 3, from which we compute the

posterior probabilities of r = 0, 1, 2, 3, assuming equal prior probabilities. We find

that the posterior probability of r = 2 is numerically 1, consistent with the results

11 The urca package for R is useful for ML estimation of a VECM.
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of Johansen’s cointegration tests. Thus we set r := 2 in the following analysis.

5.5 Empirical results

Figure 2 plots the actual rates and our point estimates (posterior medians) of the

natural rates (or their permanent components) of the four variables. For ease of

comparison of the actual and natural rates, we omit error bands for the natural

rates, which are identical to those for the gaps. Figure 3 plots our point estimates

of the gaps and their 95% error bands.

Figure 2

Figure 3

Our estimate of the natural rate of inflation is smoother than typical univariate

estimates of trend inflation in the CPI; e.g., Faust and Wright (2013, p. 22). It

looks close to a recent estimate of trend inflation in the US CPI in J. Morley,

Piger, and Rasche (2015, p. 894) based on a bivariate UC model for the inflation

and unemployment rates, which assumes independent shocks to the trend and gap

components and allows for structural breaks in the variances of these shocks. It is

more volatile, however, than a recent estimate of trend inflation in the PCE price

index by Chan, Clark, and Koop (2018, p. 21) that uses information in survey

inflation expectations.

Our estimate of the natural rate of interest is more volatile than a recent estimate

by Del Negro et al. (2017, p. 237) based on a VAR model with common trends, i.e.,

a multivariate UC model with independent shocks to the trend and gap components

and a factor structure for the trend components, for short- and long-term interest

rates, inflation and its survey expectations, and some other variables. Their estimate

is smooth partly because they impose tight priors on the variances of the shocks to

the trend components. Indeed, their estimate with the loosest possible prior is as

volatile as ours; see Del Negro et al. (2017, p. 272). Interestingly, their estimate based
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on a DSGE model looks close to ours despite different definitions of the natural rate;

see Del Negro et al. (2017, p. 237).12 Estimates by Laubach and Williams (2016,

p. 60), Holston et al. (2017, p. S61), and Lewis and Vazquez-Grande (2019) are

close to trend output growth by construction, and quite different from estimates by

Del Negro et al. (2017) and ours, especially before 1980.13

Our estimate of the natural rate of unemployment looks more volatile than a

recent estimate in J. Morley et al. (2015, p. 898), obtained as a by-product of esti-

mation of trend inflation. A possible reason for the difference is that they assume

independent shocks to the trend and gap components, which may not hold in prac-

tice. If one allows for dependence between the shocks, then the two estimates may

coincide, as J. C. Morley, Nelson, and Zivot (2003) show for the univariate trend–

cycle decomposition. Our estimate of the unemployment rate gap looks close to

the estimate in J. Morley et al. (2015, p. 901) in terms of the sign and magnitude,

despite the difference in the volatility.

Our estimate of the output gap is at most about ±5% of the output level, and

looks close to a recent estimate by J. Morley and Wong (2018, Fig. 2) based on a

large Bayesian VAR(4) model with 23 variables. It also looks close to their estimate

based on a Bayesian VAR(4) model with four variables using output growth, the

unemployment rate, the CPI inflation rate, and the growth rate of industrial pro-

duction, assuming that they are all I(0). Though output growth may or may not be

I(0) in the US, it may be clearly I(1) in some countries or regions, in which case their

method may give an unreasonable estimate of the output gap with a strong upward

or downward trend. See Murasawa (2015) for such an example for the Japanese

data.

12 Del Negro et al. (2017) clearly distinguish the natural rate and its low-frequency component,
estimating the former by a DSGE model and the latter by a VAR model.

13 Holston et al. (2017, p. S63) writes,

. . . we assume a one-for-one relationship between the trend growth rate of output and
the natural rate of interest, which corresponds to assuming σ = 1 in Eq. (1).

where Eq. (1) in their paper is the consumption Euler equation in a steady state.
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Figure 4 plots the posterior probability of positive gap for the four variables.

This probability index is useful if the sign of the gap is of interest. Even if the 95%

error band for the gap covers 0, the posterior probability of positive gap may be

close to .025 or .975. Indeed, the probability index is often below .25 or above .75;

hence we are often quite sure about the sign of the gap. Moreover, Figure 4 shows

the relation between the gaps more clearly than Figure 3.

Figure 4

Figure 5 shows the relation between the gaps more directly. The left panels are

the scatter plots of the posterior medians of the gaps in each quarter. The right

panels are the posterior pdfs of the correlation coefficients between the gaps. We

see that the Phillips curves and Okun’s law hold between the gaps, though we do

not impose such relations. Thus our estimates of the gaps seem mutually consistent

from a macroeconomic point of view.

Figure 5

5.6 Comparison of alternative model specifications

Figure 6 compares point estimates of the gaps under three alternative assumptions,

i.e., I(1) log output, I(2) log output with no cointegration, and I(2) log output with

cointegration. For ease of comparison, we omit error bands here.

Figure 6

The result assuming I(1) log output is similar to that in Murasawa (2014), who

uses a VAR model with no constant term for the differenced and centered series, sets

p := 12, and chooses the tightness hyperparameter by the empirical Bayes method.

In contrast to the result for the Japanese data in Murasawa (2015), for the US data,

the multivariate B–N decomposition assuming I(1) log output gives “reasonable”

estimates of the gaps, except that the output gap is persistently positive since 2010.
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Assuming I(2) log output with no cointegration changes the estimate of the

output gap, but hardly changes the estimates of other gaps, which is similar to the

result for the Japanese data in Murasawa (2015). In particular, the output gap now

keeps fluctuating around 0 since 2010, which seems more “reasonable”.

Allowing for cointegration changes the estimates of all gaps, and we obtain much

bigger gaps. The result makes sense because the B–N transitory components are

“forecastable movements”, and a VECM forecasts better than a VAR model, espe-

cially for our data. Moreover, these bigger gaps seem close to other recent estimates

that focus on a particular gap, as already noted.

6 DISCUSSION

The consumption Euler equation implies that if the real interest rate is I(1), then

so is the output growth rate with possible cointegration, and log output is I(2).

We extend the multivariate B–N decomposition to such a case. To obtain error

bands for the components, we apply Bayesian analysis. In particular, we assume

hierarchical weakly informative priors, and develop a Gibbs sampler for posterior

simulation. Application of the method to US data gives a reasonable joint estimate

of the natural rates (or their permanent components) and gaps of output, inflation,

interest, and unemployment.

The B–N decomposition assuming I(1) log output often gives an unreasonable

estimate of the output gap, perhaps because of possible structural breaks in the

mean output growth rate. Assuming I(2) log output, i.e., I(1) output growth rate,

we introduce a stochastic trend in the output growth rate, which captures possible

structural breaks in the mean growth rate automatically in real time without spec-

ifying break dates a priori, leading to a more reasonable estimate of the output gap

that fluctuates around 0. Moreover, since the B–N transitory components are “fore-

castable movements” and a VECM forecasts no worse than a VAR model, allowing
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for cointegration gives larger estimates of all gaps.

Since a reduced-form VECM is the most basic forecasting model for cointegrated

series, the multivariate B–N decomposition based on a VECM gives a benchmark

joint estimate of the natural rates (or their permanent components) and gaps. One

can compare this benchmark estimate with alternative estimates based on other

forecasting models or DSGE models such as those in Del Negro et al. (2017). We

conjecture that our method is useful especially for non-US data, where log output is

often clearly I(2). Confirming this conjecture is an interesting and important issue

for future work.

One can possibly refine our estimate in two ways. First, one can use a larger

model with more variables, assuming a factor structure if necessary. Second, one

can introduce Markov-switching, stochastic volatility, or more general time-varying

parameters to our VECM. Since the B–N decomposition may not apply to nonlinear

models, and nonlinear models may become unnecessary with more variables, the first

direction seems more promising.

Lastly, to obtain a monthly instead of quarterly joint estimate of the natural

rates and gaps of output and other variables, it seems straightforward to extend the

B–N decomposition of mixed-frequency series proposed by Murasawa (2016) to I(1)

and I(2) series with cointegration.
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A APPENDIX: GIBBS SAMPLER

A.1 Useful lemmas

Our Gibbs sampler relies on the following two familiar results in Bayesian analysis

of normal linear models, which we state as lemmas for ease of reference.

Lemma 1. Suppose that

y =Xβ + u

u ∼ Nn

(

0n,P
−1
)

and

β ∼ Nk

(

µ0,D
−1
0

)

Then

β|P ,y,X ∼ Nk

(

µ1,D
−1
1

)

where

D1 :=X
′PX +D0

µ1 :=D
−1
1 (X ′PXbGLS +D0µ0)

with bGLS := (X ′PX)−1X ′Py.

Proof. See Koop (2003, pp. 118–121).

Lemma 2. Suppose that

Y =XB′ +U

U ∼ Nn×m

(

On×m; In,P
−1
)
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and

B|P ∼ Nm×k

(

M0;P
−1,D−1

0

)

P ∼ Wm

(

k0;S
−1
0

)

Then

B|P ,Y ,X ∼ Nm×k

(

M1;P
−1,D−1

1

)

P |Y ,X ∼ Wm

(

k1;S
−1
1

)

where

D1 :=X
′X +D0

M1 := (BOLSX
′X +M0D0)D

−1
1

k1 := n+ k0

S1 := (BOLS −M0)
[

(X ′X)−1 +D−1
0

]−1
(BOLS −M0)

′ + S + S0

with BOLS := Y ′X(X ′X)−1 and S := (Y −XB′
OLS)

′(Y −XB′
OLS).

Proof. See Drèze and Richard (1983, pp. 539–541).

A.2 Steady state parameters

Write the VECM as for all t,

Φ(L)∆yt −Φ(1)µ = −Λ[Γ ′yt−1 − β − Γ ′µ(t− 1)] + ut

or

Φ(L)∆yt +ΛΓ
′yt−1 = Λβ + [Φ(1) + (t− 1)ΛΓ ′]µ+ ut (49)
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Let for all t,

wt := Φ(L)∆yt +ΛΓ
′yt−1

Zt :=

[

Λ Φ(1) + (t− 1)ΛΓ ′

]

Then for all t,

wt = Ztψ + ut

Let

w :=













wp+1

...

wT













, Z :=













Zp+1

...

ZT













, u :=













up+1

...

uT













Then we have a normal linear model for w given Z such that

w = Zψ + u (50)

u ∼ NN(T−p)

(

0N(T−p), (IT−p ⊗ P )−1
)

(51)

Let ψGLS := [Z ′(IT−p ⊗ P )Z]−1Z ′(IT−p ⊗ P )w.

Theorem 2.

ψ|Φ,P ,Λ,Γ ,w ∼ Nr+N

(

ψ1,Q
−1
1

)

(52)

where

Q1 := Z
′(IT−p ⊗ P )Z +Q0

ψ1 := Q
−1
1 [Z ′(IT−p ⊗ P )ZψGLS +Q0ψ0]

Proof. Apply Lemma 1.

36



A.3 VAR parameters

Let for all t,

et := Γ
′yt − β − δt, s∗t :=













∆yt − µ

...

∆yt−p+1 − µ













Write the VECM as for all t,

∆yt − µ+Λet−1 = Φs
∗
t−1 + ut (53)

Let

Y ∗ :=













(∆yp+1 − µ+Λep)
′

...

(∆yT − µ+ΛeT−1)
′













, X :=













s∗′p
...

s∗′T−1













, U :=













u′
p+1

...

u′
T













Then we have a normal linear model for Y ∗ given X such that

Y ∗ =XΦ′ +U (54)

U ∼ N(T−p)×N

(

O(T−p)×N ; IT−p,P
−1
)

(55)

Let ΦOLS := Y ∗′X(X ′X)−1 and S := (Y ∗ −XΦ′
OLS)

′(Y ∗ −XΦ′
OLS).

Theorem 3.

Φ|P ,ψ,Λ,Γ , ν,Y ∗,X ∼ NN×pN

(

M1;P
−1,D−1

1

)

[(Φ,Λ,Γ ) ∈ S] (56)

P |ψ,Λ,Γ , ν,Y ∗,X ∼ WN

(

k1;S
−1
1

)

(57)
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where

D1 :=X
′X + νD0

M1 := (ΦOLSX
′X +M0νD0)D

−1
1

k1 := T − p+ k0

S1 := (ΦOLS −M0)
[

(X ′X)−1 + (νD0)
−1
]−1

(ΦOLS −M0)
′ + S + S0

Proof. Apply Lemma 2.

A.4 Loading matrix

Write the VECM as for all t,

Φ(L)(∆yt − µ) = −Λet−1 + ut (58)

Let

W :=













[Φ(L)(∆yp+1 − µ)]
′

...

[Φ(L)(∆yT − µ)]′













, E :=













−e′p
...

−e′T−1













Then we have a normal linear model for W given E such that

W = EΛ′ +U

U ∼ N(T−p)×N

(

O(T−p)×N ; IT−p,P
−1
)

or

W ′ = ΛE′ +U ′

U ′ ∼ NN×(T−p)

(

ON×(T−p);P
−1, IT−p

)
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Let λ := vec(Λ). Then we have a normal linear model for vec(W ′) such that

vec(W ′) = (E ⊗ IN)λ+ vec(U ′) (59)

vec(U ′) ∼ NN(T−p)

(

0N(T−p), IT−p ⊗ P
−1
)

(60)

Let λ0 := vec(Λ0) and

U0 := Γ
′η0H(τ0)Γ ⊗G0

so that

λ|Γ ,Φ ∼ NNr

(

λ0,U
−1
0

)

[(Φ,Λ,Γ ) ∈ S] (61)

Theorem 4.

λ|ψ,Φ,P ,Γ ,W ,E ∼ NNr

(

λ1,U
−1
1

)

[(Φ,Λ,Γ ) ∈ S] (62)

where

U1 = E
′E ⊗ P +U0 (63)

λ1 = U
−1
1 vec(PW ′E +G0Λ0Γ

′η0H(τ0)Γ ) (64)

Proof. Let ΛOLS :=W ′E(E′E)−1 and λOLS := vec(ΛOLS). By Lemma 1,

U1 := (E ⊗ IN)
′(IT−p ⊗ P )(E ⊗ IN) +U0

= E′E ⊗ P +U0

λ1 := U
−1
1 [(E′E ⊗ P )λOLS +U0λ0]

39



where

(E′E ⊗ P )λOLS = (E′E ⊗ P ) vec
(

W ′E(E′E)−1
)

= (E′E ⊗ P )
[

(E′E)−1 ⊗W ′
]

vec(E)

= (Ir ⊗ PW
′) vec(E)

= vec(PW ′E)

U0λ0 = (Γ ′η0H(τ0)Γ ⊗G0) vec(Λ0)

= vec(G0Λ0Γ
′η0H(τ0)Γ )

A.5 Cointegrating matrix

Write the VECM as for all t,

Φ(L)(∆yt − µ)−Λβ = −Λ∗Γ
′
∗[yt−1 − µ(t− 1)] + ut (65)

Let

W∗ :=













[Φ(L)(∆yp+1 − µ)−Λβ]
′

...

[Φ(L)(∆yT − µ)−Λβ]′













, Z∗ :=













−(yp − pµ)′

...

−[yT−1 − (T − 1)µ]′













Then we have a normal linear model for W∗ given Z∗ such that

W∗ = Z∗Γ∗Λ
′
∗ +U

U ∼ N(T−p)×N

(

O(T−p)×N ; IT−p,P
−1
)
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Let γ∗ := vec(Γ∗). Then we have a normal linear model for vec(W∗) such that

vec(W∗) = (Λ∗ ⊗Z∗)γ∗ + vec(U ) (66)

vec(U ) ∼ NN(T−p)

(

0N(T−p),P
−1 ⊗ IT−p

)

(67)

Let

V0 := Λ
′
∗G0Λ∗ ⊗ η0H(τ0)

so that

γ∗|Λ∗,Φ ∼ NNr

(

0Nr,V
−1
0

)

[(Φ,Λ∗,Γ∗) ∈ S] (68)

Theorem 5.

γ∗|ψ,Φ,P ,Λ∗,W∗,Z∗ ∼ NNr

(

γ1,V
−1
1

)

[(Φ,Λ∗,Γ∗) ∈ S] (69)

where

V1 = Λ
′
∗PΛ∗ ⊗Z

′
∗Z∗ + V0 (70)

γ1 = V
−1
1 vec(Z ′

∗W∗PΛ∗) (71)

Proof. Let γ∗,GLS be the GLS estimator of γ∗, i.e.,

γ∗,GLS = [(Λ∗ ⊗Z∗)
′(P ⊗ IT−p)(Λ∗ ⊗Z∗)]

−1(Λ∗ ⊗Z∗)
′(P ⊗ IT−p) vec(W∗)

= (Λ′
∗P∗Λ∗ ⊗Z

′
∗Z∗)

−1(Λ′
∗P ⊗Z ′

∗) vec(W∗)
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By Lemma 1,

V1 := (Λ∗ ⊗Z∗)
′(P ⊗ IT−p)(Λ∗ ⊗Z∗) + V0

= Λ′
∗PΛ∗ ⊗Z

′
∗Z∗ + V0

γ1 := V
−1
1 (Λ′

∗PΛ∗ ⊗Z
′
∗Z∗)γ∗,GLS

= V −1
1 (Λ′

∗P ⊗Z ′
∗) vec(W∗)

= V −1
1 vec(Z ′

∗W∗PΛ∗)

A.6 Tightness hyperparameter

We have

p(ν|ψ,Φ,P ,Λ,Γ ,Y )

∝ p(Y |ψ,Φ,P ,Λ,Γ , ν)p(ψ|Φ,P ,Λ,Γ , ν)p(Λ,Γ |Φ,P , ν)p(Φ,P |ν)p(ν)

= p(Y |ψ,Φ,P ,Λ,Γ )p(ψ|Φ,P ,Λ,Γ )p(Λ,Γ |Φ,P )p(Φ,P |ν)p(ν)

∝ p(Φ,P |ν)p(ν)

Thus p(ν|ψ,Φ,P ,Λ,Γ ,Y ) = p(ν|Φ,P ).

Theorem 6.

ν|Φ,P ∼ Gam

(

A1

2
,
B1

2

)

(72)

where

A1 := pN2 + A0

B1 := tr(P (Φ−M0)D0(Φ−M0)
′) + B0
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Proof. The result follows because

p(Φ,P |ν)p(ν) ∝ νpN2/2 etr

(

−
P (Φ−M0)νD0(Φ−M0)

′

2

)

νA0/2−1

e(B0/2)ν

=
ν(pN

2+A0)/2−1

e{[tr(P (Φ−M0)D0(Φ−M0)′)+B0]/2}ν
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FIGURE 1: Output gap estimates in Japan given by the multivariate B–N decom-
position assuming I(1) or I(2) log output. The plots replicate those in Murasawa
(2015, Figures 2 and 3).
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FIGURE 2: Actual rates (thin) and the posterior medians of the natural rates
(thick). The shaded areas are the NBER recessions.
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FIGURE 3: Posterior medians of the gaps and their 95% error bands (posterior
.025- and .975-quantiles). The shaded areas are the NBER recessions.
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FIGURE 4: Posterior probability of positive gap. The shaded areas are the NBER
recessions.
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FIGURE 5: Phillips curves and Okun’s law.
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FIGURE 6: Posterior medians of the gaps assuming I(1) log output (dashed),
I(2) log output with no cointegration (thin), and I(2) log output with cointegration
(thick). The shaded areas are the NBER recessions.
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