

# Co-integrated or not? After the Shanghai-Hong Kong and Shenzhen-Hong Kong Stock Connection Schemes

Chong, Terence Tai Leung and Wang, Qiyu

The Chinese University of Hong Kong, Zhejiang University of Finance and Economics

1 February 2018

Online at https://mpra.ub.uni-muenchen.de/92012/ MPRA Paper No. 92012, posted 12 Feb 2019 09:31 UTC

# Co-integrated or not? After the Shanghai-Hong Kong and Shenzhen-Hong Kong Stock Connection Schemes

Qiyu Wang<sup>a</sup>, Terence Tai-Leung Chong<sup>b</sup>

<sup>a</sup>Zhejiang University of Finance and Economics, Hangzhou, China.(qiyu.wang@connect.polyu.hk).

<sup>b</sup>Department of Economics and Lau Chor Tak Institute of Global Economics and Finance, The Chinese University of Hong Kong, Hong Kong. (chong2064@cuhk.edu.hk).

#### Abstract

This paper examines stock market comovements between China and Hong Kong. The integration test results confirm that a substantial number of A-share and H-share stocks began to co-integrate after the launch of the Shanghai-Hong Kong Stock Connection Scheme<sup>1</sup> and the Shenzhen-Hong Kong Stock Connection Scheme<sup>2</sup>, which demonstrates the effects of the two schemes in promoting financial integration and cross-border capital flows.

*Keywords:* cointegration, A&H shares

# 1. Introduction

The landscape of the A-share stock market has changed tremendously since it was established in 1991. As of September 2017, there were 1342 and 2044

<sup>&</sup>lt;sup>1</sup>Shanghai-Hong Kong Stock Connection Scheme is an investment scheme that connects the Shanghai Stock Exchange and the Stock Exchange of Hong Kong.

<sup>&</sup>lt;sup>2</sup>Shenzhen-Hong Kong Stock Connection Scheme is an investment scheme that connects the Shenzhen Stock Exchange and the Stock Exchange of Hong Kong.

companies listed on the Shanghai Stock Exchange and Shenzhen Stock Exchange respectively, with a market capitalization of 32.97 trillion and 24.15 trillion RMB - 5211 times the market capitalization in 1991. Rapid growth in the domestic market has exposed the demand for greater financial openness. Compared with developed capital markets, the Chinese stock exchanges still have significant room for capital internationalization and cross-border investment. A close channel and adjacent offshore capital center is the Hong Kong market. Indeed, an ensemble of companies choose an equity structure comprised of A- and H-shares. As of July 2015, 190 companies have issued both A- and H-shares, according to the China Securities Regulatory Commission (CSRC).

A number of researchers have examined the co-movement of A- and H-shares. Among them, Su et al. (2007), Chong and Su (2006) investigated the existence of co-movements between A- and H- shares after the launch of the Qualified Foreign Institutional Investors (QFII) scheme and the Closer Economic Partnership Arrangement (CEPA), implemented respectively on June 27, 2003 and January 1, 2004. They found that stocks became more cointegrated after the QFII and CEPA were implemented. In recent years, as the two economies found it necessary to further expand the market, the Shanghai-Hong Kong Stock Connect Scheme and Shenzhen-Hong Kong Stock Connect Scheme were launched respectively on November 17, 2014 and December 5, 2016. The two schemes allow the flow of northbound and southbound investment, within a quota, between the mainland stock exchanges and the Stock Exchange of Hong Kong(SEHK). This paper investigates the effects of these two schemes on A- and H-stocks; as discussed below, we find them to have become more integrated over time.

The investigation of common stochastic trends in stock markets in the literature plays an important role in both academic study and practical use. Our paper contributes to the literature in several ways. Firstly, the Efficient Market Hypothesis in Fama (1970) implies that no arbitrage of stocks from the same company can occur between stock markets. Thus the cointegration results prove that there are little long-run gains from portfolio diversification in cointegrated markets. Secondly, the market unification implied from the cointegration between A- and H- share markets with the implementation of the two schemes demonstrates the rapid development of the mainland capital market from perspectives of the scale as well as openness. Thirdly, as the Shenzhen-Hong Kong stock connect scheme is launched within one year, it is a first work to test the effects of the stock connect schemes on the two markets' co-integration.

The structure of the paper is as follows. In Section 2, we describe the data in use, the model to test and the results observed; in Section 3, a conclusion is made.

## 2. Data and Model Interpretation

The daily adjusted closing prices of A-shares, H-shares, the Shanghai A- share Index (SHA) and the Hong Kong Hang Seng Index (HSI) from November 30, 2012 to September 8, 2017 were collected from the Yahoo Finance. We convert the H-share prices to Chinese RMB prices with the daily exchange rate presented by the Pacific Exchange Rate Service, Sauder School of Business, University of British Columbia. Of the 190 companies that have issued Aand H- shares as of July 2015, 32 companies with 64 stocks have complete data prices during the sampling period. Tables 1 and 2 list their names, stock codes, and IPO dates in the Hong Kong and Mainland China markets. Since stock markets in mainland China and Hong Kong have different calendars, we keep both trading prices available.

The tests are carried out in several steps. First, we perform the Augmented Dickey-Fuller test for the unit root, since it is the pre-requisite for the cointegration test. Secondly, we use Johansen (1988)'s method to test for cointegration. We repeat the tests for two samples. The first sample covers all days from Nov 30, 2012 to September 8, 2017. The second sample is from November 18, 2014, the launch day of the Shanghai-Hong Kong Stock Connect Scheme, to September 8, 2017, the end of the sample. This period covers the launches of both the Shanghai-Hong Kong and Shenzhen-Hong Kong stock connection schemes.

We test for the presence of unit root on the daily prices of the A- and H- shares of each firm and the log of HSI and SHA, using the Augmented Dickey-Fuller test. The model with a drift and trend term is

(1) 
$$P_t = c_0 + c_1 t + \gamma_c P_{t-1} + \sum_{i=1}^p \phi_i \triangle P_{t-i} + e_t,$$

with the null hypothesis  $\gamma_c = 1$  or

(2) 
$$\Delta P_t = c_0 + c_1 t + \gamma P_{t-1} + \sum_{i=1}^p \phi_i \Delta P_{t-i} + e_t,$$

with the null hypothesis  $\gamma = 0$ , after Tsay (2010). If the null hypothesis holds, then the time series contains a unit root. The critical value at the 0.05 significance level is -3.4145. The test results in Tables 3 and 4 contain statistics for the Augmented Dickey-Fuller tests, and show that only stock codes 0177.HK and 600377.SS do not contain a unit root. All other stocks have unit roots. The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) give the autoregressive order. The Breusch-Godfrey Lagrange Multiplier tests confirm the model selected.

For firms that satisfy the unit root test, we perform the Johansen (1988) cointegration test for each firm's stocks. For each firm, we consider four time series  $x_t$ , namely  $(P_t^H, P_t^A, P_t^{HSI}, P_t^{SHA})$ . The model is written as

(3) 
$$\Delta x_t = \sum_{i=1}^{p-1} \Gamma_i \Delta x_{t-i} + \Pi x_{t-p} + \varepsilon_t,$$

where  $\triangle$  is the first-difference lag operator,  $\Gamma_i$  and  $\Pi$  are  $(n \times n)$  matrices,  $\varepsilon_t$ is an *n*-dimensional white noise vector with a zero mean. The null hypothesis is that the number of cointegrating vectors is at most r, which is the rank of the matrix  $\Pi$ , which is  $H_0: r \leq j - 1$  against  $H_1: r \geq j$  for j = 1, 2, 3 for trace test. For the maximal eigenvalue test, the hypothesis is  $H_0: r \leq j - 1$ against  $H_1: r = j$ . The test statistics are  $\lambda_{trace}(r)$  and  $\lambda_{max}(r)$ , which are calculated as

(4) 
$$\lambda_{trace}(r) = -T \sum_{i=r+1}^{n} \ln(1 - \hat{\lambda}_i),$$

and

(5) 
$$\lambda_{max}(r) = -T\ln(1-\hat{\lambda}_r),$$

with T being the number of observations and  $\hat{\lambda}_i$  being the estimated eigenvalue obtained from the  $\Pi$  matrix. The price series are cointegrated if the null hypothesis is rejected.

The test results for j = 1 and 2 are listed in Tables 5 and 6. The critical value for  $\lambda_{trace}(0)$  and  $\lambda_{max}(0)$  at the 10% level are 37.0354 and 21.8370. The critical value for  $\lambda_{trace}(1)$  and  $\lambda_{max}(1)$  at the 10% level are 21.7774 and 15.7178. The two schemes allow the northbound and southbound cross border investment. From the maximal eigenvalue/trace statistics for r = 0, there are 21/22 cointegrated companies in the second sample period, when the two stock connect schemes were launched, and 18 cointegrated companies over the whole sample period. This demonstrates that cointegration was a more frequent phenomenon after the two stock connection schemes were launched.

We also use Gregory and Hansen (1996)'s method to test if the break date has occurred after Shanghai-Hong Kong and Shenzhen-Hong Kong Stock Connection Schemes were launched. There are 22 companies among the total 32 companies whose break dates are after the Shanghai-Hong Kong Stock Connection Scheme launched. The detected break dates for these companies are reported in Table 7. It further supports that the two stock connection schemes promote the co-integration of the two markets.

| Code                | Company name           | China exchange | IPO in China | IPO in HK  |
|---------------------|------------------------|----------------|--------------|------------|
| 323.HK              | MaanshanIron           | SSE            | 1994/1/6     | 1993/11/3  |
| 600808.SS           |                        |                |              |            |
| $300.\mathrm{HK}$   | ShenjiGrpkunm          | SSE            | 1994/1/3     | 1993/12/7  |
| 600806.SS           |                        |                |              |            |
| 1065.HK             | TianjinCapEnv          | SSE            | 1995/6/30    | 1994/5/17  |
| 600874.SS           |                        |                | / / /        |            |
| 525.HK              | GuangshenRailwayCo.Ltd | SSE            | 2006/12/22   | 1996/5/14  |
| 601333.SS           |                        |                | 2002 /1 /=   | 1000/11/10 |
| 995.HK              | AnhuiExpressway        | SSE            | 2003/1/7     | 1996/11/13 |
| 600012.SS           | CNIE + A:              |                | 1007/11/5    | 1007/0/5   |
| 670.HK              | CNEasternAir           | SSE            | 1997/11/5    | 1997/2/5   |
| 600115.55           | Shangh an Fun          | COF            | 2001/12/25   | 1007/2/19  |
| 540.NK              | ShenzhenExp            | SSE            | 2001/12/23   | 1997/3/12  |
| 000348.55<br>001 HK | DatangIntlPwr          | SSE            | 2006/12/20   | 1007/3/21  |
| 601001 SS           | Datangintii wi         | 100            | 2000/12/20   | 1997/9/21  |
| 358 HK              | JiangyiCopper          | SSE            | 2002/1/11    | 1997/6/12  |
| 600362 SS           | JungAlcopper           | SSE            | 2002/1/11    | 1001/0/12  |
| 177.HK              | JiangsuExpress         | SSE            | 2001/1/16    | 1997/6/27  |
| 600377.SS           | 0.000-00-0-F- 000      |                |              |            |
| 107.HK              | SichuanExpress         | SSE            | 2009/7/27    | 1997/10/7  |
| 601107.SS           | 1                      |                | / /          | , ,        |
| 1071.HK             | HuadianPower           | SSE            | 2005/2/3     | 1999/6/30  |
| 600027.SS           |                        |                |              |            |
| $857.\mathrm{HK}$   | Petrochina             | SSE            | 2007/11/5    | 2000/4/7   |
| 601857.SS           |                        |                |              |            |
| $386.\mathrm{HK}$   | CNPetroChem            | SSE            | 2001/8/8     | 2000/10/19 |
| 600028.SS           |                        |                |              |            |
| 2883.HK             | ChinaOilfield          | SSE            | 2007/9/28    | 2002/11/20 |
| 601808.SS           |                        |                |              |            |
| 2333.HK             | GrtWallMotor           | SSE            | 2011/9/28    | 2003/12/15 |
| 601633.SS           |                        |                |              |            |
| 2338.HK             | WeichaiPower           | SZE            | 2007/4/30    | 2004/3/11  |
| 000338.SZ           |                        |                | 2006/0/10    | 0004/10/17 |
| 753.HK              | AirChina               | SSE            | 2006/8/18    | 2004/12/15 |
| 601111.SS           |                        |                |              |            |

Table 1: The A- and H- share companies examined

| Code                 | Company name                    | China exchange | IPO in China | IPO in HK    |
|----------------------|---------------------------------|----------------|--------------|--------------|
| 939.HK               | ChinaConstrctBk                 | SSE            | 2007/9/25    | 2005/10/27   |
| 601939.SS            |                                 |                |              |              |
| $3968.\mathrm{HK}$   | ChinaMerchtBk                   | SSE            | 2002/4/9     | 2006/9/22    |
| 600036.SS            |                                 |                |              |              |
| 1398.HK              | ICBC                            | SSE            | 2006/10/27   | 2006/10/27   |
| 601398.SS            |                                 |                |              |              |
| 1800.HK              | ChinaCommunicationsConstruction | SSE            | 2012/3/9     | 2006/12/15   |
| 601800.SS            |                                 |                |              |              |
| 3993.HK              | ChinaMolybdenum                 | SSE            | 2012/10/9    | 2007/4/26    |
| 603993.SS            |                                 | aar            |              |              |
| 998.HK               | ChinaciticBank                  | SSE            | 2007/4/27    | 2007/4/27    |
| 601998.SS            |                                 | aan            | 2011 /2 /1   | 2000 /= /20  |
| 2009.HK              | BBMG                            | SSE            | 2011/3/1     | 2009/7/29    |
| 601992.SS            |                                 | COD            | 2000/12/10   | 0000 /11 /00 |
| 1988.HK              | CNMinsnengBank                  | SSE            | 2000/12/19   | 2009/11/26   |
| 000010.55<br>2601 HK | ChinaDacifa                     | CCE            | 2007/12/25   | 2000/12/22   |
| 2001.HK              | Chinarachic                     | SOL            | 2007/12/23   | 2009/12/23   |
| 1988 HK              | A gricul BkChina                | SSE            | 2010/7/15    | 2010/7/16    |
| 601288 SS            | AgricuibkCiinia                 | 100            | 2010/7/15    | 2010/7/10    |
| 2208.HK              | XinijangGoldwind                | SZE            | 2007/12/26   | 2010/10/8    |
| 002202.SZ            |                                 |                |              | _0_0/_0/0    |
| 1057.HK              | ZhjShibaoCo                     | SZE            | 2012/11/2    | 2006/5/16    |
| 002703.SZ            | ,                               |                | , ,          | . ,          |
| 2607.HK              | ShanghaiPharma                  | SSE            | 1994/3/24    | 2011/5/20    |
| 601607.SS            |                                 |                |              |              |
| $6030.\mathrm{HK}$   | CITICSecurities                 | SSE            | 2003/1/6     | 2011/10/6    |
| 600030.SS            |                                 |                |              |              |
| 6837.HK              | HAITONGSecuritiesCompany        | SSE            | 1994/2/24    | 2012/4/27    |
| 600837.SS            |                                 |                |              |              |

Table 2: The A- and H- share companies examined

|                     |           |           |                   | 1                 | ADF               |
|---------------------|-----------|-----------|-------------------|-------------------|-------------------|
|                     | Lag (AIC) | Lag (BIC) | Godfrey test(AIC) | Godfrey test(BIC) | $H_0$ : Unit root |
| 0323.HK             | 1         | 1         | 0.0050            | 0.0050            | -1.2295           |
| 600808.SS           | 10        | 4         | 0.1651            | 0.0087            | -1.7934           |
| $1065.\mathrm{HK}$  | 3         | 2         | 0.2115            | 0.0859            | -2.8060           |
| 600874.SS           | 9         | 4         | 0.6677            | 0.0690            | -2.9835           |
| $0525.\mathrm{HK}$  | 3         | 1         | 0.0143            | 0.0078            | -2.8345           |
| 601333.SS           | 9         | 6         | 0.4066            | 0.1226            | -2.8884           |
| $0995. \mathrm{HK}$ | 10        | 1         | 0.5101            | 0.0121            | -2.6914           |
| 600012.SS           | 8         | 2         | 0.4510            | 0.0197            | -3.3205           |
| $0670.\mathrm{HK}$  | 1         | 1         | 0.0183            | 0.0183            | -2.3586           |
| 600115.SS           | 9         | 6         | 0.2618            | 0.0736            | -2.1948           |
| $0548.\mathrm{HK}$  | 10        | 1         | 0.6422            | 0.0167            | -2.8516           |
| 600548.SS           | 10        | 10        | 0.9009            | 0.9009            | -2.2465           |
| $0991.\mathrm{HK}$  | 1         | 1         | 0.0132            | 0.0132            | -2.4731           |
| 601991.SS           | 9         | 6         | 0.2632            | 0.1085            | -2.0362           |
| $0358.\mathrm{HK}$  | 3         | 3         | 0.5553            | 0.5553            | -2.1726           |
| 600362.SS           | 9         | 1         | 0.0489            | 0.0092            | -2.8565           |
| $0177.\mathrm{HK}$  | 7         | 2         | 0.1819            | 0.0202            | -3.6329           |
| 600377.SS           | 9         | 3         | 0.5895            | 0.0277            | -3.9160           |
| $0107. { m HK}$     | 4         | 2         | 0.0043            | 0.0034            | -2.9026           |
| 601107.SS           | 5         | 1         | 0.0231            | 0.0052            | -2.7708           |
| 1071.HK             | 3         | 3         | 0.0149            | 0.0149            | -1.3380           |
| 600027.SS           | 8         | 7         | 0.0861            | 0.0529            | -1.4642           |
| $0857.\mathrm{HK}$  | 7         | 1         | 0.2114            | 0.0319            | -2.2862           |
| 601857.SS           | 8         | 6         | 0.0080            | 0.0074            | -1.8534           |
| $0386.\mathrm{HK}$  | 3         | 1         | 0.0347            | 0.0188            | -2.3401           |
| 600028.SS           | 8         | 5         | 0.1671            | 0.0323            | -2.3533           |
| 2883.HK             | 1         | 1         | 0.0228            | 0.0228            | -2.2615           |
| 601808.SS           | 6         | 3         | 0.0221            | 0.0358            | -2.4010           |
| 2333.HK             | 1         | 1         | 0.0217            | 0.0217            | -2.2941           |
| 601633.SS           | 3         | 1         | 0.2505            | 0.0426            | -2.6141           |
| 2338.HK             | 3         | 1         | 0.0757            | 0.0286            | -1.2210           |
| 000338.SZ           | 9         | 3         | 0.0179            | 0.0154            | -1.8847           |
| 0753.HK             | 1         | 1         | 0.0648            | 0.0648            | -2.3008           |
| 601111.SS           | 10        | 2         | 0.1264            | 0.0113            | -1.8774           |
| 0939.HK             | 1         | 1         | 0.0140            | 0.0140            | -2.1611           |
| 601939.SS           | 10        | 6         | 0.2207            | 0.0144            | -1.9380           |
| 3988.HK             | 2         | 1         | 0.0220            | 0.0118            | -2.0814           |
| 601988.SS           | 6         | 3         | 0.0608            | 0.0063            | -1.9273           |

Table 3: Unit Root test on A- share and H- share prices

|                    |           |           |                   | I I I I I I I I I I I I I I I I I I I | ADF               |
|--------------------|-----------|-----------|-------------------|---------------------------------------|-------------------|
|                    | Lag (AIC) | Lag (BIC) | Godfrey test(AIC) | Godfrey test(BIC)                     | $H_0$ : Unit root |
| 3968.HK            | 7         | 1         | 0.9690            | 0.0525                                | -1.9185           |
| 600036.SS          | 10        | 1         | 5.8466            | 0.1544                                | -1.5205           |
| $1398. { m HK}$    | 3         | 1         | 0.0336            | 0.0151                                | -1.9584           |
| 601398.SS          | 9         | 8         | 0.5837            | 0.4196                                | -1.5909           |
| $1800.\mathrm{HK}$ | 2         | 2         | 0.0099            | 0.0099                                | -2.5393           |
| 601800.SS          | 9         | 1         | 0.2775            | 0.0086                                | -2.4038           |
| 3993.HK            | 7         | 1         | 7.7511            | 1.2613                                | -0.0705           |
| 603993.SS          | 4         | 1         | 0.0095            | 0.0105                                | -2.0951           |
| 2009.HK            | 2         | 1         | 0.0086            | 0.0041                                | -2.9334           |
| 601992.SS          | 9         | 2         | 0.1062            | 0.0528                                | -2.8993           |
| 1988.HK            | 1         | 1         | 0.0290            | 0.0290                                | -2.5626           |
| 600016.SS          | 7         | 1         | 0.6811            | 0.0044                                | -2.6017           |
| $2601.\mathrm{HK}$ | 5         | 1         | 0.0214            | 0.0089                                | -2.3918           |
| 601601.SS          | 8         | 3         | 0.0234            | 0.0400                                | -1.7028           |
| 1288.HK            | 2         | 1         | 0.0771            | 0.0408                                | -2.2358           |
| 601288.SS          | 10        | 6         | 0.2351            | 0.0240                                | -2.3018           |
| $2208.\mathrm{HK}$ | 3         | 1         | 0.2380            | 0.0429                                | -2.2971           |
| 002202.SZ          | 1         | 1         | 0.0242            | 0.0242                                | -2.4501           |
| $1057. { m HK}$    | 2         | 2         | 0.0508            | 0.0508                                | -2.3905           |
| 002703.SZ          | 2         | 2         | 0.0125            | 0.0125                                | -2.5435           |
| $2607.\mathrm{HK}$ | 10        | 1         | 0.3750            | 0.0119                                | -2.9647           |
| 601607.SS          | 9         | 3         | 0.5801            | 0.0240                                | -2.7235           |
| $6030.\mathrm{HK}$ | 7         | 1         | 0.0450            | 0.0087                                | -2.3580           |
| 600030.SS          | 10        | 1         | 0.2752            | 0.0073                                | -2.1653           |
| $6837.\mathrm{HK}$ | 3         | 2         | 0.0026            | 0.0022                                | -2.3427           |
| 600837.SS          | 3         | 3         | 0.0054            | 0.0054                                | -1.6880           |

Table 4: Unit Root test on A- share and H- share prices

| Table 5: Johansen cointegration test on A- share and H- share prices |                              |           |                    |                 |  |
|----------------------------------------------------------------------|------------------------------|-----------|--------------------|-----------------|--|
| -                                                                    | After the two schemes launch |           | <u>h</u> The whole | e sample period |  |
|                                                                      | Trace                        | Max       | Tace               | Max             |  |
| 0323.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 29.8850                      | 20.8034   | 24.8406            | 18.9097         |  |
| $r \leq 1$                                                           | 9.0816                       | 8.0063    | 5.9309             | 4.4140          |  |
| $1065.\mathrm{HK}$                                                   |                              |           |                    |                 |  |
| r = 0                                                                | 32.9046                      | 23.4367   | 22.3148            | 12.2932         |  |
| $r \leq 1$                                                           | 9.4679                       | 7.3239    | 10.0216            | 7.2168          |  |
| $0525.\mathrm{HK}$                                                   |                              |           |                    |                 |  |
| r = 0                                                                | 48.0147                      | 35.6394   | 49.5380            | 36.2452         |  |
| $r \leq 1$                                                           | 12.3753                      | 8.6490    | 13.2928            | 8.1772          |  |
| $0995.\mathrm{HK}$                                                   |                              |           |                    |                 |  |
| r = 0                                                                | 56.3753                      | 31.2557   | 51.6046            | 36.9981         |  |
| $r \leq 1$                                                           | 25.1197                      | 19.4146   | 14.6065            | 8.0091          |  |
| $0670.\mathrm{HK}$                                                   |                              |           |                    |                 |  |
| r = 0                                                                | 71.5948                      | 46.5826   | 74.5715            | 44.6567         |  |
| $r \leq 1$                                                           | 25.0123                      | 16.0438   | 29.9147            | 23.6855         |  |
| $0548.\mathrm{HK}$                                                   |                              |           |                    |                 |  |
| r = 0                                                                | 31.4486                      | 17.8997   | 28.1973            | 18.6914         |  |
| $r \leq 1$                                                           | 13.5489                      | 8.9555    | 9.5059             | 5.5430          |  |
| 0991.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 52.5707                      | 38.6056   | 33.0417            | 20.9578         |  |
| $r \leq 1$                                                           | 13.9651                      | 9.4628    | 12.0838            | 6.7652          |  |
| 0358.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 45.5209                      | 27.0789   | 39.9158            | 27.1664         |  |
| $r \leq 1$                                                           | 18.4420                      | 11.9567   | 12.7494            | 9.4662          |  |
| 0177.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 65.6672                      | 49.1912   | 38.0470            | 25.0680         |  |
| $r \leq 1$                                                           | 16.4760                      | 11.3897   | 12.9789            | 5.8273          |  |
| 0107.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 66.2949                      | 44.1360   | 78.3331            | 60.2588         |  |
| $r \leq 1$                                                           | 22.1589                      | 15.1293   | 18.0743            | 14.0199         |  |
| 1071.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 71.7248                      | 46.0548   | 69.9040            | 54.8499         |  |
| r < 1                                                                | 25.6701                      | 21.0280   | 15.0540            | 9.7640          |  |
| 0857.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 44.2773                      | 27.6438   | 26.6663            | 15.9081         |  |
| r < 1                                                                | 16.6335                      | 12.1601   | 10.7582            | 5.6396          |  |
| 0386.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 26.1764                      | 13.5061   | 38.6604            | 25.2758         |  |
| r < 1                                                                | 12.6704                      | 9.0859    | 13.3846            | 9.0400          |  |
| 2883.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 75.9664                      | 47.0385   | 60.7261            | 50.6069         |  |
| r < 1                                                                | 28.9279                      | 23.1609 1 | 0 10.1192          | 5.6940          |  |
|                                                                      |                              | ···· 1    | <u>-</u>           | -               |  |
| r = 0                                                                | 69.3217                      | 42.5852   | 49.7585            | 23.1709         |  |
| r < 1                                                                | 26.7366                      | 17.1955   | 26.5876            | 17.8516         |  |
| 2338.HK                                                              |                              |           |                    |                 |  |
| r = 0                                                                | 26.7096                      | 13.2195   | 33.7222            | 20.3669         |  |
| $r \leq 1$                                                           | 13.4901                      | 10.3083   | 13.3554            | 8.0287          |  |

| Table 6: Johansen cointegration test on A- share and H- share prices |                              |            |                         |         |                   |
|----------------------------------------------------------------------|------------------------------|------------|-------------------------|---------|-------------------|
| -                                                                    | After the two schemes launch |            | The whole sample period |         |                   |
|                                                                      | Trace                        | Max        |                         | Tace    | Max               |
| 0753.HK                                                              |                              |            |                         |         |                   |
| r = 0                                                                | 51.0221                      | 37.5232    |                         | 46.4951 | 31.1418           |
| $r \leq 1$                                                           | 13.4989                      | 8.9191     |                         | 15.3533 | 11.1009           |
| 0939.HK                                                              |                              |            |                         |         |                   |
| r = 0                                                                | 37.3502                      | 23.5029    |                         | 26.1495 | 14.8980           |
| r < 1                                                                | 13.8473                      | 8.7481     |                         | 11.2515 | 7.3160            |
| 3988.HK                                                              |                              |            |                         |         |                   |
| r = 0                                                                | 37.1226                      | 20.3860    |                         | 43.6098 | 24.2306           |
| r < 1                                                                | 16.7366                      | 10.9693    |                         | 19.3792 | 15.1354           |
| 3968.HK                                                              |                              |            |                         |         |                   |
| r = 0                                                                | $35\ 1493$                   | $23\ 5170$ |                         | 28 5174 | 19 3651           |
| r < 1                                                                | 11 6323                      | 9.3708     |                         | 9 1523  | 6.0360            |
| 1398 HK                                                              | 11.0020                      | 5.0100     |                         | 0.1020  | 0.0000            |
| r = 0                                                                | 34 3146                      | 20 8604    |                         | 25 8684 | 15 1802           |
| r = 0<br>r < 1                                                       | 134542                       | 8 5756     |                         | 10.6882 | 6 6092            |
| / 1<br>1800 HK                                                       | 10.1012                      | 0.0100     |                         | 10.0002 | 0.0052            |
| r = 0                                                                | 50 4456                      | 33 0576    |                         | 44 3880 | 32 1118           |
| r = 0<br>r < 1                                                       | $17\ 3881$                   | 12 7608    |                         | 11.0/31 | 0 7203            |
| 3003  HK                                                             | 11.0001                      | 12.7030    |                         | 11.9491 | 9.1295            |
| 5995.11<br>n = 0                                                     | 20 4007                      | 15 /196    |                         | 20.0842 | 10.0507           |
| r = 0                                                                | 29.4997                      | 0.0527     |                         | 29.9043 | 19.0007           |
| $7 \ge 1$                                                            | 14.0011                      | 9.9521     |                         | 10.9550 | 0.0095            |
| 2009.HK                                                              | 41 4990                      | 94 2074    |                         | 11 2002 | 21 2040           |
| $r \equiv 0$                                                         | 41.4320<br>17.1946           | 24.3074    |                         | 44.8903 | 31.2840<br>0.4621 |
| $T \leq 1$                                                           | 17.1240                      | 12.8100    |                         | 13.0003 | 9.4031            |
| 1988.ПК                                                              | 22 0502                      | 11 7096    |                         | 00 1710 | 14 6492           |
| $r \equiv 0$                                                         | 22.9008                      | 11.7230    |                         | 20.1710 | 14.0425           |
| $r \leq 1$                                                           | 11.2273                      | 8.2088     |                         | 13.5295 | 9.8305            |
| 2601.HK                                                              | 47 00 40                     | 05 7050    |                         | 10.0050 | 00.0050           |
| r = 0                                                                | 47.9049                      | 25.7653    |                         | 40.8050 | 20.3050           |
| $r \leq 1$                                                           | 22.1396                      | 14.7425    |                         | 14.4395 | 11.7419           |
| 1288.HK                                                              | 540401                       | 20.0202    |                         |         | 1 4 5 401         |
| r = 0                                                                | 54.0401                      | 39.9302    |                         | 29.8267 | 14.7481           |
| $r \leq 1$                                                           | 14.1099                      | 8.3301     |                         | 15.0786 | 10.3508           |
| 2208.HK                                                              | ~                            |            |                         |         |                   |
| r = 0                                                                | 29.4307                      | 13.2134    |                         | 25.3973 | 14.3595           |
| $r \leq 1$                                                           | 16.2173                      | 11.3097    |                         | 11.0377 | 6.5662            |
| 1057.HK                                                              |                              |            |                         |         |                   |
| r = 0                                                                | 45.0181                      | 23.0109    |                         | 38.3932 | 23.3970           |
| $r \leq 1$                                                           | 22.0072                      | 15.1854    |                         | 14.9963 | 11.4489           |
| $2607.\mathrm{HK}$                                                   |                              |            |                         |         |                   |
| r = 0                                                                | 27.5665                      | 16.3788    |                         | 22.9170 | 12.6755           |
| $r \leq 1$                                                           | 11.1877                      | 8.5147     | 11                      | 10.2415 | 5.7526            |
| $6030.\mathrm{HK}$                                                   |                              |            |                         |         |                   |
| r = 0                                                                | 50.3085                      | 30.1783    |                         | 44.4615 | 21.8559           |
| $r \leq 1$                                                           | 20.1302                      | 13.8301    |                         | 22.6056 | 15.6293           |
| 6837.HK                                                              |                              |            |                         |         |                   |
| r = 0                                                                | 54.8414                      | 26.8421    |                         | 56.6407 | 29.6518           |
| $r \leq 1$                                                           | 27.9993                      | 21.4790    |                         | 26.9890 | 20.4937           |

|                     |                | Pre-break period           |                        | Post-break period          |                        |
|---------------------|----------------|----------------------------|------------------------|----------------------------|------------------------|
|                     | Gregory-Hansen | Trace $\lambda_{trace}(0)$ | Max $\lambda_{max}(0)$ | Trace $\lambda_{trace}(0)$ | Max $\lambda_{max}(0)$ |
| Company             | break date     | $H_0$ : no in              |                        | ntegration                 |                        |
| 323.HK              | 2015/4/1       | 55.63                      | 39.26                  | 26.04                      | 15.02                  |
| $300.\mathrm{HK}$   | 2015/4/1       | 30.74                      | 19.93                  | 32.18                      | 18.23                  |
| $1065.\mathrm{HK}$  | 2015/4/15      | 46.97                      | 25.11                  | 40.31                      | 28.23                  |
| $525.\mathrm{HK}$   | 2015/4/1       | 32.51                      | 17.86                  | 48.78                      | 27.51                  |
| $670.\mathrm{HK}$   | 2015/4/1       | 44.82                      | 30.64                  | 23.69                      | 12.84                  |
| $991.\mathrm{HK}$   | 2015/4/1       | 47.57                      | 30.90                  | 42.14                      | 22.78                  |
| 177.HK              | 2015/4/1       | 72.99                      | 51.72                  | 61.23                      | 36.92                  |
| $107.\mathrm{HK}$   | 2015/4/20      | 45.80                      | 26.44                  | 70.07                      | 44.41                  |
| $1071.\mathrm{HK}$  | 2015/4/2       | 44.95                      | 32.44                  | 42.50                      | 19.22                  |
| 857.HK              | 2015/4/23      | 86.26                      | 58.42                  | 35.63                      | 21.80                  |
| 386. HK             | 2015/4/1       | 40.88                      | 24.65                  | 76.79                      | 45.67                  |
| 2333.HK             | 2015/4/13      | 50.10                      | 29.56                  | 24.70                      | 14.14                  |
| 753.HK              | 2015/4/9       | 29.12                      | 17.41                  | 26.75                      | 14.01                  |
| 939.HK              | 2015/4/9       | 44.87                      | 26.50                  | 34.92                      | 17.13                  |
| $3968. \mathrm{HK}$ | 2015/4/9       | 47.20                      | 22.16                  | 28.18                      | 13.66                  |
| $1398. { m HK}$     | 2015/4/9       | 39.45                      | 26.30                  | 27.56                      | 13.26                  |
| 3993.HK             | 2015/4/1       | 28.08                      | 17.53                  | 26.92                      | 13.06                  |
| 2009.HK             | 2014/12/1      | 30.21                      | 17.23                  | 24.13                      | 14.10                  |
| $2601.\mathrm{HK}$  | 2015/4/9       | 43.28                      | 20.82                  | 46.84                      | 30.88                  |
| 2208.HK             | 2015/4/1       | 29.79                      | 17.52                  | 39.32                      | 20.67                  |
| $2607.\mathrm{HK}$  | 2015/1/15      | 48.69                      | 27.26                  | 62.57                      | 33.03                  |
| $6030. { m HK}$     | 2014/12/4      | 25.36                      | 13.44                  | 62.05                      | 30.25                  |

Table 7: Gregory and Hansen break date test

## 3. Conclusion

In contrast to the strict capital controls in mainland China, schemes such as QFII in 2003 and CEPA in 2004 have gradually opened passages for capital to flow across the border. The Shanghai-Hong Kong Stock Connection Scheme, implemented on November 17, 2014, and the Shenzhen-Hong Kong Stock Connection Scheme, implemented on December 5, 2016, are two recent policies designed to facilitate capital flow. This paper has investigated the financial integration between Hong Kong and Chinese stock markets. The Johansen test results show that a large number of A-shares and H-shares have begun to cointegrate after the launch of these two schemes.

# References

- Chong, T.T.L., Su, Q., 2006. On the comovement of A and H shares. Chinese Economy 39, 68–86.
- Fama, E.F., 1970. Efficient capital markets: A review of theory and empirical work. Journal of Finance 25, 383–417.
- Gregory, A.W., Hansen, B.E., 1996. Residual-based tests for cointegration in models with regime shifts. Journal of Econometrics 70, 99–126.
- Johansen, S., 1988. Statistical analysis of cointegration vectors. Journal of Economic Dynamics and Control 12, 231–254.
- Su, Q., Chong, T.T.L., Yan, I.K.M., 2007. On the convergence of the Chinese and Hong Kong stock markets: A cointegration analysis of the A and H shares. Applied Financial Economics 17, 1349–1357.
- Tsay, R.S., 2010. Analysis of Financial Time Series. 3rd ed., John Wiley & Sons.