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ABSTRACT: This paper develops a frequentist model averaging approach for threshold model spec-

ifications. The resulting estimator is proved to be asymptotically optimal in the sense of achieving the

lowest possible squared errors. Especially, when combining estimators from threshold autoregres-

sive models, this approach is also proved to be asymptotically optimal. Simulation results show that

for the situation where the existing model averaging approach is not applicable, our proposed model

averaging approach has a good performance; for the other situations, our proposed model averaging

approach performs marginally better than other commonly used model selection and model aver-

aging methods. An empirical application of our approach on the US unemployment data is given.
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1. Introduction

Threshold models have developed rapidly over the past three decades since the pio-

neering studies of Tong and Lim (1980) and Tong (1983, 1990). Chan (1993) studied

the consistency and limiting distribution of the estimated parameters of threshold au-

toregressive (TAR) models. Hansen (2000) developed the asymptotic distribution for

the threshold estimator with a shrinking threshold effect. Delgado and Hidalgo (2000)

proposed estimators for the location and size of structural breaks in a nonparametric re-

gression model. An important question in the study of threshold models is the selection

of a candidate model. Kapetanios (2001) compared the small sample performance of

different information criteria in threshold models. Model averaging (MA), as an alter-

native to the model selection (MS), considers model uncertainty by weighting estimators

across different models, instead of relying entirely upon a single model. The MA es-
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timator is generally more stable than the MS estimator, as a small change in data can

lead to a significant change in the selection of the optimal model (Yang 2001; Shen and

Huang 2006).

There are two strands of literature on model averaging: Bayesian model averaging

(BMA) and frequentist model averaging (FMA). Cuaresma and Doppelhofer (2007) ap-

plied the BMA to take an average over possible threshold effects and associated thresh-

old observations. From the frequentist perspective, there are two research fields on

model averaging. One is on the limiting distribution theory of FMA estimator; see, for

example, Hjort and Claeskens (2003) and Xu et al. (2013). The other is on how to

choose weights in model averaging. Hansen (2009) applied Mallows model averaging

(MMA) in weight choice of averaging threshold models. He performed averaging on

models with and without a threshold effect, but did not consider models with different

threshold parameters and explanatory variables.

In the current paper, we explore how the FMA approach can be used to obtain an

average of threshold models. Two cases are considered. In Case I, we first estimate

the threshold parameters of different candidate models, and then perform averaging on

these threshold models with different explanatory variables. In particular, we consider

the averaging of TAR models. In Case II, models with a break at different observed

threshold points are considered as different models. We do not estimate the threshold

values in this case. In MMA, the variance of random error σ2 is estimated by the model

with the largest number of variables (referred to as the largest model), which leads to

the following two problems:

(i) For Case II, the largest model is not unique.

(ii) Even if there exists a unique largest model, using it to estimate σ2 places too much

confidence on a single model.

To address these two problems, this paper develops a new MA approach based

on the approximate generalized cross-validation (GCV) method of Craven and Wahba

(1979), for which the existence of a unique largest model is unnecessary and the estima-

tion of σ2 depends on the weights of MA. The resulting averaging estimator is proved to

be asymptotically optimal in achieving the lowest possible squared error. In Case I, since

the estimator of the threshold parameter is random, the associated coefficient estimator

is not a linear combination of the dependent variable. As a result, the proof of asymptot-

ic optimality is more challenging than the existing proofs for other MA methods, such

as MMA and optimal frequentist model averaging (Liang et al. 2011).

We investigate the performance of the proposed averaging estimators numerically.
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The simulation results show that in most cases the new MA estimators have lower MSEs

than the MS estimators and other MA estimators. We also apply our method to analyse

the unemployment data for the US and show that our model averaging estimator has

better forecasting performance than its competitors.

The remainder of this paper is organized as follows. Section 2 introduces the

threshold model and the estimation method. Section 3 provides the criterion for select-

ing weights and develops the asymptotic optimality theory of the averaging estimator.

Section 4 compares our MA estimators with some commonly used MS and MA estima-

tors. Section 5 presents an empirical application of our method. Section 6 concludes the

paper. The technical proofs are relegated to the Appendix.

2. The Model

We consider a threshold regression model with a possible threshold effect,

yi = µi + ei = x′iβ1I(zi ≤ γ) + x′iβ2I(zi > γ) + ei, i = 1, . . . , n, (1)

where yi is the dependent variable, xi = (xi1, xi2, . . .) are the explanatory variables

which can be countably infinite, β1 and β2 are two vectors of coefficients, I(·) is an

indicator function, zi is the threshold variable and can be be part of xi, γ is the thresh-

old parameter, and ei’s are errors with E(ei|xi) = 0 and E(e2i |xi) = σ2. Let Y =

(y1, . . . , yn)
′, e = (e1, . . . , en)

′ and µ = (µ1, . . . , µn)
′. In application, µ is generally

approximated by

µ ≈ X(γ)β,

where X(γ) is an n×2η matrix with the ith row ((xi1, . . . , xiη)I(zi ≤ γ), (xi1, . . . , xiη)

I(zi > γ)) and β is the corresponding coefficient vector. Since the threshold models can

be regarded as piecewise linear models, the estimation and averaging methods for linear

models can be employed. In a similar way to Hansen (2000), we estimate the parameters

by conditional least squares. Let

S(β, γ) = (Y −X(γ)β)′(Y −X(γ)β), (2)

which is the sum of squared errors (SSE). By minimizing (2), we obtain all the estima-

tors. We assume that γ belongs to a bounded set Γ = [γ, γ̄]. First, given γ, β̂(γ) can

be obtained by minimizing S(β, γ). We then replace β by β̂(γ), and the SSE becomes

S(β̂(γ), γ), witch is written as S(γ). The estimate of γ is defined as:

γ̂ = arg min
γ∈Γn

S(γ),
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where Γn = {z1, . . . , zn} ∩ Γ. Let z(i) be the ith smallest element in {z1, . . . , zn}. To

ensure that the model is estimable, Γ is assumed to satisfy γ ≥ z(η+1) and γ̄ ≤ z(n−η−1).

We also assume that Γn is non-empty.

3. Model Averaging and Weight Choice

In this section, we propose a new criterion for selecting the optimal weights. Two cases

are considered. For Case I, we consider the uncertainty caused only by different ex-

planatory variables, and in Case II, we perform averaging on both different threshold

parameters and different explanatory variables. All limiting processes discussed in this

section are with respect to n → ∞.

3.1. Averaging for Models with Estimated γ

In this subsection, we aim to average threshold models with different explanatory vari-

ables. We consider model averaging for threshold models that do not contain lagged

dependent variables, and model averaging for TAR models. Moreover, we show the

asymptotic optimality of the proposed MA estimators in both cases under certain regu-

larity conditions.

3.1.1. Averaging for threshold models without lagged dependent variables

Assume that the errors (e1, . . . , en) are i.i.d.. We consider a sequence of approximating

models among which the mth model includes km explanatory variables that form the

vector x(m)i. Specifically, the mth model is:

Y = X(m)(γ)β(m) + e(m), (3)

where X(m)(γ) is a matrix stacking the vectors (x′(m)iI(zi ≤ γ), x′(m)iI(zi > γ)) and of

full column rank, β(m) is the coefficient vector of X(m)(γ), e(m) = µC
(m)(γ) + e, and

the term µC
(m)(γ) = µ−X(m)(γ)β(m) of which is the approximation error of model (3).

Following the estimation method in Section 2, we can obtain the estimated thresh-

old parameter γ̂(m) and coefficient

β̂(m) = (X ′
(m)(γ̂(m))X(m)(γ̂(m)))

−1X ′
(m)(γ̂(m))Y (4)

under the mth model. Let X̂(m) = X(m)(γ̂(m)) and P̂(m) = X̂(m)(X̂
′
(m)X̂(m))

−1X̂ ′
(m),

so that the estimator of µ under the mth candidate model is given by µ̂(m) = P̂(m)Y .

Denote w = (w1, . . . , wM )′, a weight vector in the unit simplex in RM

Hn =
{
w ∈ [0, 1]M :

M∑

m=1

wm = 1
}
,
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where M is the number of candidate models. Note that Hn is a continuous set and is

different from the weight set in Hansen (2007), which is discrete. In addition, Cheng et

al. (2015) used a continues weight set, which is more general than the discrete set of

Hansen (2007) but is still a subset of Hn. The MA estimator of µ can be expressed as

µ̂(w) =
M∑

m=1

wmµ̂(m) =
M∑

m=1

wmP̂(m)Y ≡ P̂ (w)Y,

where P̂ (w) =
∑M

m=1wmP̂(m) is symmetric but not necessarily idempotent. The

squared error is Ln(w) = ‖µ̂(w) − µ‖2, and the corresponding risk is Rn(w) =

E(Ln(w)|X,Z), where X = (x1, . . . , xn)
′ and Z = (z1, . . . , zn)

′.

When σ2 is known, one may obtain weights by minimizing the following Mallows’

criterion proposed by Hansen (2007):

Cn(w) = ‖Y − µ̂(w)‖2 + 2σ2trP̂ (w).

Since σ2 is usually unknown in practice, Hansen (2007) suggested estimating it by the

largest candidate model, i.e.,

σ̂2 = (n− kM∗)−1 ‖Y − µ̂M∗‖2 ,

where M∗ = argmaxm∈{1,...,M} km. It is shown that as n → ∞, if kM∗ → ∞ and

kM∗/n → 0, then σ̂2 is consistent and the asymptotic optimality result still holds for

unknown σ2.

In time series case, Hansen (2008) applied this criterion to averaging autoregressive

models. However, the largest model may not be unique in practice. In fact, even if the

largest model is unique, using the single model to estimate σ2 may deviate, in some

sense, from the objective of model averaging. Motivated by these concerns, we develop

a new least squares MA estimator for threshold models. The criterion for selecting

weights is as follows:

Ln(w) = ‖Y − µ̂(w)‖2
(
1 + 2

trP̂ (w)

n

)
. (5)

If we set one component of the weight vector w to be 1 and the others to be 0, then (5)

reduces to a criterion for model selection. Therefore, one may approximate the GCV

criterion by the MS version of (5) and use it to relate GCV to Mallows’ Cp (Li 1987).

For any fixed w in (5), ‖Y − µ̂(w)‖2 /n is the mean of residual squared sums of the

MA estimator µ̂(w). If we take it as an estimator of σ2, then Ln(w) can be regarded as

another estimator of Cn(w). As mentioned previously, Hansen (2007, 2008) estimated
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σ2 based on the largest model. We use a averaging estimator of σ2 instead. Thus, our

criterion can be viewed as an adjusted Mallows criterion, which can be used in more

general cases because MMA would be infeasible when the largest model is not unique,

as is the case in Subsection 4.2. If the covariance matrix of the error term e is not

diagonal, to estimate the inverse of the covariance matrix, we may use the estimators

proposed by Cheng et al. (2014) and Cheng et al. (2015).

We rewrite Ln(w) as Ln(w) = w′ê′êw(1 + 2w′K/n) for simplicity, where K =

(k1, ..., kM )′, ê = (ê(1), . . . , ê(M)) and ê(m) = Y − µ̂(m). When constraining w to Hn,

we can obtain weights through minimizing Ln(w), i.e., ŵ = argminw∈Hn Ln(w). The

estimator µ̂(ŵ) is referred to as the Adjusted Mallows Model Averaging (AMMA) esti-

mator of µ hereafter. Note that although Ln(w) is a cubic function of w, the numerical

algorithms for minimizing such a criterion are actually readily available. For example,

one can use ’solnp’ in the R package ’Rsolnp’. Therefore, our AMMA approach can be

easily performed in practice.

Note that for each candidate model, the estimator of µ depends on a random item

γ̂m, thus causing problems for conducting the asymptotic optimality. So the theory in

this subsection is not just a extension of that of Hansen (2007). To solve this problem,

we try to find a properly defined limit for γ̂(m) under each candidate model. We assume

that there exists a constant γ∗(m) such that γ̂(m)
p−→ γ∗(m), where γ∗(m) is not necessarily

equal to the true value γ0. If zi = i/n and km is bounded, the convergency was proved

by Koo and Seo (2015). However, if km is related with n, it requires future work.

Let X∗
(m) = X(m)(γ

∗
(m)), P

∗
(m) = X∗

(m)

(
X∗′

(m)X
∗
(m)

)−1
X∗′

(m), P
∗(w) =

∑M
m=1wm

P ∗
(m), A

∗(w) = In − P ∗(w), and L∗
n(w) = ‖P ∗(w)Y − µ‖2. Then we have R∗

n(w) ≡
E(L∗

n(w)|X,Z) = ‖A∗(w)µ‖2 + σ2trP ∗2(w). Define ξ∗n = infw∈HnR
∗
n(w) and

λmax(A) as the maximum singular value of matrix A. The following theorem states

the asymptotic optimality of the AMMA estimator.

THEOREM 1. For some finite integer G ≥ 1, if

E(e4Gi |xi) < ∞, (6)

Mξ∗−2G
n

M∑

m=1

(
R∗

n(w
0
m)
)G p−→ 0, (7)

nξ∗−1
n max

1≤m≤M
λmax(P

∗
(m) − P̂(m))

p−→ 0, (8)

k2M∗/n ≤ a1 < ∞, (9)
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and

‖µ‖2 = Op(n), (10)

then

Ln(ŵ)

infw∈Hn Ln(w)

p−→ 1, (11)

where a1 is a constant, and w0
m is an M × 1 vector in which the mth element is one and

the others are zeros.

Proof: See the Appendix.

Condition (6) is a moment condition and requires the regression error distribution

to have sufficiently thin tails. For example, it excludes the Cauchy distribution and

holds for Gaussian distribution. Condition (9) requires that the numbers of covariates

in candidate models do not increase faster than n1/2. Condition (10) is on the sum of

µ2
1, . . . , µ

2
n and need only that µ2

1, . . . , µ
2
n do not expand with n. Condition (7) is a

commonly used condition in the model averaging literature such as Wan et al. (2010)

and Liu and Okui (2013). To explain this condition, we consider a situation with ξ∗n =

na, supw∈Hn
R∗

n(w) = nb, and 0 < a ≤ b < 1, then Condition (7) is implied by

M2nG(b−2a) → 0, which holds when b < 2a and M doest not increase with n too fast.

Cheng et al. (2015) pointed out that Condition (7) will preclude some good models with

smaller Ln(w) in linear cases. Similarly, it still may happen in the threshold models.

However, they select weights on a narrower set compared with our continuous set Hn.

Thus, we need to add Condition (7) to ensure the asymptotic optimality of AMMA,

which means M can not increase with n as fast as it in Cheng et al. (2015). Condition

(8) puts some restrictions on the order of ξn and the convergence rate of the elements

of matrix P̂(m) − P ∗
(m). Note that because γ̂(m)

p−→ γ∗(m), the elements of matrix

P̂(m)− P̂ ∗
(m) converge to zeros. The proof of (58) in the Appendix shows that Condition

(8) can be satisfied when kM∗ is bounded.

3.1.2. Averaging for TAR Models

The TAR model is a special case among threshold models and is widely used in empir-

ical analysis. However, when averaging TAR models, the asymptotic theory developed

above is no longer valid due to serial dependence and the existence of lagged depen-

dent variables. This subsection develops the asymptotic optimality for averaging TAR
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models1. In the same way as in Subsection 3.1.1, we have

yi = µi + ei

= (β10 +

p1∑

j=1

β1jyi−j)I(zi ≤ γ) + (β20 +

p2∑

j=1

β2jyi−j)I(zi > γ)

+ei, i = 1, . . . , n,

where pk is the lag order for regime k (k = 1, 2), ei’s are white noise with mean zero

and variance σ2 and βkj’s are autoregressive coefficients with
∑pk

j=1 |βkj | < 1 (k =

1, 2). For simplicity, we set p1 = p2 = p, where p can be infinite. In this case,

xi = (1, yi−1, . . . , yi−p)
′ and each regime is an AR(km) process in the mth model.

We assume that for each m, km is fixed, so M is bounded.

We focus on µ and apply the AMMA method to select the weights. Let Q∗
n(w) =

‖A∗(w)µ‖2 + σ2tr(P ∗2(w)) and ζ∗n = infw∈Hn Q
∗
n(w). To study the asymptotic opti-

mality of the MA estimator, we make the following assumptions:

(a.1) {xi, zi, ei} is strictly stationary and ergodic, and E(ei|σ(xi, xi−1, . . .)) = 0, where

σ(xi, xi−1, . . .) is the σ-algebra generated by xi, xi−1, . . ..

(a.2) E|yi|4 < ∞ and E|yiei|4 < ∞.

(a.3) Let f2(z|γ̂(m)) be the conditional density of zi given γ̂(m). Uniformly for z ∈ Γ

and γ̂(m) ∈ Γ, the conditional density f2(z|γ̂(m)) is bounded by a finite constant f̄2, and

the conditional expectation E(|xijxik||zi = γ, γ̂(m)) with zi and γ̂(m) given is bounded.

(a.4) E|γ̂(m) − γ∗(m)| = O(n−ρ) for some constant 0 < ρ ≤ 1, m = 1, . . . ,M .

Assumptions (a.1) and (a.2) are common assumptions for stationary processes. In

real data analysis, if the series is non-stationary, we can use some data conversion meth-

ods, such as the differential operator and seasonal adjustment to get a stationary series.

Assumption (a.3) requires the conditional density and expectation are bounded. As-

sumption (a.4) is based on the result of Koo and Seo (2015), who showed that the con-

vergence rate of γ̂ can be as fast as T−1/3 for the structural break model. Under these

assumptions we have the following theorem.

THEOREM 2. If Assumptions (a.1)∼(a.4) and Condition (10) are satisfied and

n1−ρ/2ζ∗−1
n

p−→ 0, (12)

then (11) is valid.

1Although Hansen (2008, 2009) studied averaging estimators in time series models, they did not develop the asymp-

totic optimality.
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Proof: See the Appendix.

3.2. Averaging for Models without Estimating γ

In this subsection, we average models with different threshold parameters and different

explanatory variables simultaneously using the models set up in Subsection 3.1.1. Let

|Γn| be the size of Γn. Since there are |Γn| possible threshold points, there will be |Γn|
models with the same explanatory variables. Let γ(s) be the sth item of Γn. Assume

that the msth candidate model contains km explanatory variables, with γ(s) being the

threshold parameter. Then the threshold parameter in every candidate model can be

regarded as a fixed constant. Therefore, the coefficient estimated by the msth model is:

β̃(ms) = (X ′
(m)(γ(s))X(m)(γ(s)))

−1X ′
(m)(γ(s))Y,

and the estimator of µ is given by

µ̃(ms) = X(m)(γ(s))(X
′
(m)(γ(s))X(m)(γ(s)))

−1X ′
(m)(γ(s))Y ≡ P(m)(γ(s))Y.

Let w = (w11 , . . . , wM|Γn|
)′ and H̃n =

{
w ∈ [0, 1]M |Γn| :

∑M
m=1

∑|Γn|
s=1 wms = 1

}
,

which is also a continuous weight set, so that the averaging estimator of µ is:

µ̃(w) =
M∑

m=1

|Γn|∑

s=1

wms µ̃(ms) =
M∑

m=1

|Γn|∑

s=1

wmsP(m)(γ(s))Y ≡ P (w)Y.

The squared error is L̃n(w) = ‖µ̃(w) − µ‖2, and the corresponding risk is R̃n(w) =

E(L̃n(w)|X,Z). Let ξ̃n = inf
w∈H̃n

R̃n(w). In this subsection, the largest model is not

unique, so the Mallows’ criterion does not apply. In light of this concern, we make use

of the AMMA idea, that is, we select weights by the following criterion:

L̃n(w) = ‖Y − µ̃(w)‖2
(
1 + 2

trP (w)

n

)
.

Let w̃ = argmin
w∈H̃n

L̃n(w) and the corresponding AMMA estimator be µ̃(w̃). The

following theorem guarantees the asymptotic optimality of the AMMA estimator.

THEOREM 3. For some finite integer G ≥ 1, if Conditions (6), (9) and

M |Γn|ξ̃−2G
n

M∑

m=1

|Γn|∑

s=1

(
R̃n(w

0
ms

)
)G p−→ 0, (13)

hold, then

L̃n(w̃)

inf
w∈H̃n

L̃n(w)

p−→ 1. (14)
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In the current case, since the threshold parameter is known in every candidate mod-

el, the proof of Theorem 3 is more straightforward than that of Theorem 1. We only

provide a simple explanation in the Appendix. The detailed proof is available on request

from the authors. Note that Condition (13) is similar to Condition (7).

4. Simulations

In this section, we conduct three simulation studies to compare the performance of the

MA estimator and the MS estimator. The first simulation performs averaging for mod-

els with different explanatory variables and i.i.d errors, the second simulation performs

averaging for models with different explanatory variables and threshold parameters, and

the third simulation performs averaging for TAR models with different orders.

4.1. Simulation I: Averaging for Models with Estimated γ

The data generating process is:

yi = µi + ei =

∞∑

j=1

xijβ1jI(xi3 ≤ γ) +

∞∑

j=1

xijβ2jI(xi3 > γ) + ei, i = 1, . . . , n,

where γ = 0, xi1 = 1, all other xij’s and ei’s come from N(0, 1) and are independent

of one another, and the coefficients β11 = c, the remaining β1j = cj−ζ with ζ =

0.25, 0.5, 0.75 controlling the decay rate of the coefficients, and β2 = aβ1 with a = 1.5

and c > 0. The difference between coefficients is denoted by a. The parameter c is set

to make the population R2 = var(yi − ei)/var(yi) vary on a grid from 0.1 to 0.9. To

let the threshold variable xi3 appear in each candidate model, we set the mth candidate

model to include the first m+2 explanatory variables (m = 1, . . . ,M ), and M = 3n1/3.

When estimating γ, we restrict it to the set containing the 20%, 25%, . . . , 80% quantiles

of {xi3} for decreasing computation time, as suggested by Hansen (2000). The sample

size is set at 60, 100, 250 and 400. To evaluate the performance of the estimators, we

simulate 500 replications and compute mean squared risk by

1

500

500∑

r=1

n∑

i=1

(µ̂
(r)
i − µi)

2, (15)

where µ̂
(r)
i is the estimates of µ in the rth replication. For each parameterization, we

normalize the risks by dividing the risk by the infeasible optimal risk (the risk of the

best single model).

We compare our averaging estimator with the AIC and BIC model selection es-

timators. The AIC score for the mth model is given by AICm = n log σ̂2
m + 2km,
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where σ̂2
m = ‖Y − µ̂(m)‖2/n, and the BIC score for the mth model is BICm =

n log σ̂2
m + km log n. We also compare our averaging estimator with the existing model

averaging methods: MMA, Smoothed AIC (S-AIC), and Smoothed BIC (S-BIC), pro-

posed in Buckland et al. (1997) and ARM (Adaptive Regression by Mixing), an adap-

tive method developed by Yang (2001). The S-AIC method assigns weight wAIC,m =

exp(−AICm/2)/
∑M

m=1 exp(−AICm/2) to the mth model and the S-BIC method as-

signs weight wBIC,m = exp(−BICm/2)/
∑M

s=1 exp(−BICm/2) to the mth model.

The ARM method divides samples into a training part and a testing part. The parame-

ters are estimated by the training samples while the weights are obtained by the testing

samples. For more details, one can refer to Yang (2001).

The simulation results are displayed in Figs 1 - 3. In each panel, the relative risk is

displayed on the y axis and the population R2 is displayed on the x axis. Since the MA

methods are always better than the MS methods, we only show the MA results to distin-

guish different lines clearly. In addition, we cut off part of the figures to make it easier

to compare AMMA and MMA in some cases. Although some risks do not appear in the

figures, they are all bounded actually. The factors that affect the relative performances

of the competitors include n (sample size), ζ ( the decay rate of the coefficient) and

R2 (population). First, in the majority of cases of {n, ζ, R2}, the AMMA outperforms

S-AIC and S-BIC. Second, the AMMA performs better than the MMA and ARM when

R2 is large; while when R2 is small, the AMMA performs worse than the MMA and

ARM. Third, when n or ζ decreases, the region of R2 where the AMMA outperforms

the MMA and ARM becomes wider. Fourth, when n increases, the AMMA and MMA

perform more closely. In addition, we also conduct simulations for a = 0.2 and a = 3.

The corresponding results are qualitatively similar to those obtained for a = 1.5.

4.2. Simulation II: Averaging for Models without estimating γ

The setup of this simulation is the same as that in Subsection 4.1. However, in this sub-

section, we do not estimate the threshold parameter. We average or select among models

with different explanatory variables at all possible threshold points, and do not compare

the AMMA method with the MMA method as MMA is infeasible in this example.

The simulation results are displayed in Figs 4-6. Again, we can find the AMMA

outperforms S-AIC, S-BIC and ARM. The detailed comparison findings are very similar

to those in Simulation I.

4.3. Simulation III: Averaging for TAR Models
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We now investigate the performance of the averaging estimator for TAR models. The

data generating process is as follows:

yi = (β10+

p∑

j=1

β1jyi−j)I(yi−d ≤ γ)+(β20+

p∑

j=1

β2jyi−j)I(yi−d > γ)+ei, i = 1, . . . , n,

where yi−d is the threshold variable and d is the lag order. We set ei to be i.i.d. N(0, σ2),

d = 3, γ = 0, p = 6, β10 = 0.5, and β20 = −0.5. The coefficients are generated

by the rule βkj =
5(1 + j)αk(−φ)j

6
∑p

i=1(1 + i)αkφi
, where φ and αk are constants and k = 1, 2,

j = 1, . . . , p, which is similar to the setting in Hansen (2008). As
∑p

j=1 |βkj | < 1,

{yn} is stationary. Note that βki/βkj =
(
1+i
1+j

)αk(−φ)i−j (i > j), so the item (−φ)i−j

determines the convergence rate of the coefficients. We let α1 = 0.1, α2 = 0.3, n ∈
{60, 100, 250, 400}, σ2 = 0.5, 1, 2 and φ vary on a grid from 0.6 to 0.9.

Candidate models differ in their lag orders. Identical orders are used in the two

regimes and the threshold parameter is estimated, so we have M = p = 6 candidate

models. Unlike the previous simulations, we also need to estimate d here. Denote by

d̂m the estimator of d under the mth candidate model. According to the mth candidate

model, the one-step-ahead out-of-sample forecast of yn+1 given yn, yn−1, . . . is:

ŷn+1(m) =(β̂(m)10 +

m∑

j=1

β̂(m)1jyn+1−j)I(yn+1−d̂m
≤ γ̂(m))

+ (β̂(m)20 +

m∑

j=1

β̂(m)2jyn+1−j)I(yn+1−d̂m
> γ̂(m)),

where β̂(m)rj is the estimator of β(m)rj for r = 1, 2 and j = 0, . . . , p. The combined

forecast is given by ŷn+1(w) =
∑M

m=1wmŷn+1(m). To compare the performance of

model selection and averaging methods, we use 500 replications. For each replication,

we generate a series of size n+ 1 and use the first n samples to get the averaged coeffi-

cients. Then we calculate the one-step-ahead out-of-sample prediction and get the mean

squared forecast error (MSFE) given by

1

500

500∑

r=1

(y
(r)
n+1 − ŷ

(r)
n+1)

2, (16)

where r denotes the rth replication.

Figs 7-9 show the simulation results. As the ARM method can not be used for

time series prediction, we choose another adaptive method, named AFTER (Aggregated

Forecast Through Exponential Reweighting, Yang 2004) instead. We can see that the
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MMA and AMMA always perform better than the other methods. The factors that

affect the relative performances of the competitors include n (sample size), σ2 (noise

level) and φ (the convergence rate of the coefficients). First, in the majority of cases

of {n, σ2, φ}, the AMMA and MMA outperform S-AIC, S-BIC and AFTER. Second,

when n = 60, 100, the MMA performs better than AMMA in most of values of φ, while

when n = 250, 400, the AMMA performs better than the MMA in most of values of φ.

Third, for different σ2, the comparison results are very similar.

5. Empirical Application

In this section, we apply the averaging approach to a monthly data set for US unemploy-

ment from January 1970 to Dec 2012. The sample size is 516 in total. The unit root test

for threshold model (Caner and Hansen 2001) suggests that the process is a stationary

nonlinear threshold autoregression. The model selection and averaging methods are the

same as those in Simulation III, with the largest order set to be 12. The candidate set

for d is {1, 2, . . . , 12}. We use {y1, . . . , yn} to fit the model and predict yn+1. Then,

we use {y2, . . . , yn+1} to fit the model and predict yn+2. By pushing on this procedure

step by step, we can get 516 − n predictions at last. n is set at 60, 150, 250, and 400.

We compare the AMMA method with the AIC, BIC, S-AIC, S-BIC, AFTER and MMA

methods using the MSFE. We also report the standard deviation (SD) of the squared

forecast error. The results are shown in Table 1.

The performance of the AMMA estimation is always better than that of the AIC,

BIC, S-AIC and S-BIC methods, since its means are lowest. When n = 250 and n =

400, the AMMA estimator has lower means than the MMA estimator, while the MMA

performs better when n = 60 and n = 150.

Table 1: Squared Forecast Errors of Different Methods (×10−2)

Method
n = 60 n = 150 n = 250 n = 400

MSFE SD MSFE SD MSFE SD MSFE SD

AIC 9.6844 32.27 2.8071 4.999 2.1979 3.276 2.6816 3.610

BIC 5.4289 15.92 2.9072 5.284 2.5954 4.913 2.8980 3.894

S-AIC 7.8667 26.22 2.7287 4.872 2.1697 3.316 2.6597 3.540

S-BIC 5.5677 15.34 2.8495 5.209 2.5803 4.857 2.7529 3.850

AFTER 5.9782 17.15 2.7696 4.900 2.3260 3.708 2.7379 3.796

MMA 4.7168 8.714 2.5690 4.612 2.1750 3.401 2.5248 3.406

AMMA 5.3363 8.683 2.6127 4.647 2.1662 3.354 2.5193 3.396
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6. Conclusion

Threshold models have wide empirical applications. In this paper, two cases of averag-

ing are considered: Case I studies models with different explanatory variables and a giv-

en estimated threshold parameter and Case II studies models with different explanatory

variables at all possible threshold parameters. A new least squares MA estimator–the

AMMA estimator–based on an approximation of GCV is developed. Compared with

the MMA, our AMMA method has wider application because it does not require a u-

nique largest model. When the threshold is estimated, the coefficient estimator in each

candidate model is not a linear combination of the dependent variable Y , and the proof

of asymptotic optimality is challenging. Both the simulations and the empirical analysis

show the superiority of the AMMA estimator over some commonly used MS and MA

estimators.

For future research along this line, one could extend our method to allow for mul-

tiple thresholds. For the case of TAR model averaging, one could allow the largest lag

order of the TAR model to be unbounded asymptotically. As this paper mainly focuses

on the asymptotic optimality of the AMMA estimator, the derivation of the consistency

and asymptotic distribution of the AMMA estimator would also be an interesting fu-

ture research topic. Hansen and Racine (2012) developed a jackknife model averaging

(JMA) estimator under heteroscedastic error settings, and Zhang et al. (2013) studied

the JMA in models with dependent data. Therefore, the development of a model av-

eraging method for threshold models with heteroscedastic errors also warrants future

research. Lastly, although we have developed theoretical properties for our model av-

eraging method, they only hold in large sample sense. Understanding the asymptotic

results when the sample size is limited and developing finite sample properties are also

very necessary in the future research.
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Lemma 1. Let W be a weight vector set which can be related to the sample size n.

Define

w∗ = argmin
w∈W

(Ln(w) + an(w)) . (17)

If

sup
w∈W

|an(w)|
Rn(w)

p−→ 0, (18)

sup
w∈W

∣∣∣∣
Ln(w)

Rn(w)
− 1

∣∣∣∣
p−→ 0, (19)

and there exists a constant κ3 such that

inf
w∈W

Rn(w) ≥ κ3 > 0, (20)

then

Ln(w
∗)

infw∈WLn(w)

p−→ 1. (21)

Proof. From the definition of the infimum, there exist a non-negative series ϑn and a

vector w(n) ∈ W such that ϑn → 0 and

inf
w∈W

Ln(w) = Ln(w(n))− ϑn. (22)

In addition, it follows from (19) that

inf
w∈W

Ln(w)

Rn(w)
= inf

w∈W

(
Ln(w)

Rn(w)
− 1

)
+ 1

≥ − sup
w∈W

∣∣∣∣
Ln(w)

Rn(w)
− 1

∣∣∣∣+ 1
p−→ 1. (23)

From (20), (23) and ϑn → 0, we have

inf
w∈W

|Ln(w)− ϑn|
Rn(w)

≥ inf
w∈W

Ln(w)− ϑn

Rn(w)
≥ inf

w∈W
Ln(w)

Rn(w)
− ϑn

infw∈WRn(w)

≥ − sup
w∈W

∣∣∣∣
Ln(w)

Rn(w)
− 1

∣∣∣∣+ 1− ϑn

infw∈WRn(w)
p−→ 1. (24)

Now, by the definition of w∗, (18), (20), (22)∼(24), and ϑn → 0, we have, for any
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δ > 0,

Pr

{∣∣∣∣
infw∈W Ln(w)

Ln(w∗)
− 1

∣∣∣∣ > δ

}
= Pr

{
Ln(w

∗)− infw∈W Ln(w)

Ln(w∗)
> δ

}

= Pr

{
infw∈W (Ln(w) + an(w))− an(w

∗)− infw∈W Ln(w)

Ln(w∗)
> δ

}

≤ Pr

{
Ln(w(n)) + an(w(n))− an(w

∗)− Ln(w(n)) + ϑn

Ln(w∗)
> δ

}

≤ Pr

{ |an(w(n))|
Ln(w∗)

+
|an(w∗)|
Ln(w∗)

+
ϑn

Ln(w∗)
> δ

}

≤ Pr

{ |an(w(n))|
infw∈W Ln(w)

+
|an(w∗)|
Ln(w∗)

+
ϑn

Ln(w∗)
> δ

}

= Pr

{ |an(w(n))|
Ln(w(n))− ϑn

+
|an(w∗)|
Ln(w∗)

+
ϑn

Ln(w∗)
> δ

}

≤ Pr

{
sup
w∈W

|an(w)|
Ln(w)− ϑn

+ sup
w∈W

|an(w)|
Ln(w)

+ sup
w∈W

ϑn

Ln(w)
> δ

}

≤ Pr

{
sup
w∈W

|an(w)|
Rn(w)

sup
w∈W

Rn(w)

|Ln(w)− ϑn|
+ sup

w∈W

|an(w)|
Rn(w)

sup
w∈W

Rn(w)

Ln(w)

+ sup
w∈W

ϑn

Rn(w)
sup
w∈W

Rn(w)

Ln(w)
> δ

}

= Pr

{
sup
w∈W

|an(w)|
Rn(w)

[
inf
w∈W

|Ln(w)− ϑn|
Rn(w)

]−1

+ sup
w∈W

|an(w)|
Rn(w)

[
inf
w∈W

Ln(w)

Rn(w)

]−1

+
ϑn

infw∈W Rn(w)

[
inf
w∈W

Ln(w)

Rn(w)

]−1

> δ

}

→ 0. (25)

Therefore, infw∈WLn(w)/Ln(w
∗)

p−→ 1, which implies (21).

Proof of Theorem 1. First, from the fact that X(m)(γ) is of full column rank, we have

trP̂ (w) = trP ∗(w) ≤ 2
∑M

m=1wmkm. Let Â(w) = In − P̂ (w), so that

Ln(w) =‖Y − µ̂(w)‖2
(
1 + 2

trP̂ (w)

n

)

=Ln(w) + ‖e‖2 + 2µ′(Â(w)−A∗(w))e+ 2µ′A∗(w)e

+ 2
(
σ2trP ∗(w)− e′P ∗(w)e

)
+ 2e′

(
P ∗(w)− P̂ (w)

)
e

+ 2trP ∗(w)
(
‖A∗(w)Y ‖2/n− σ2

)

+ 2trP ∗(w)
(
‖Â(w)Y ‖2 − ‖A∗(w)Y ‖2

)
/n.

Since ‖e‖2 is unrelated to w and Condition (20) with W = Hn is implied by Condition
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(7), according to Lemma1, Theorem 1 is valid if

sup
w∈Hn

|µ′A∗(w)e|/R∗
n(w)

p−→ 0, (26)

sup
w∈Hn

|e′P ∗(w)e− σ2trP ∗(w)|/R∗
n(w)

p−→ 0, (27)

sup
w∈Hn

|L∗
n(w)/R

∗
n(w)− 1| p−→ 0, (28)

sup
w∈Hn

|trP ∗(w)(‖A∗(w)Y ‖2/n− σ2)|/R∗
n(w)

p−→ 0, (29)

sup
w∈Hn

∣∣µ′(P ∗(w)− P̂ (w)
)
e
∣∣/R∗

n(w)
p−→ 0, (30)

sup
w∈Hn

∣∣e′
(
P ∗(w)− P̂ (w)

)
e
∣∣/R∗

n(w)
p−→ 0, (31)

sup
w∈Hn

|Ln(w)− L∗
n(w)|/R∗

n(w)
p−→ 0, (32)

and

sup
w∈Hn

∣∣trP ∗(w)
(
‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2

)∣∣/nR∗
n(w)

p−→ 0. (33)

(26)∼(28) can been shown by following the proof of Theorem 1′ of Wan et al. (2010).

Therefore, we only need to verify (29)∼(33). First, we prove (29). Note that

sup
w∈Hn

|trP ∗(w)
(
‖A∗(w)Y ‖2/n− σ2

)
|/R∗

n(w)

= sup
w∈Hn

{ trP ∗(w)
nR∗

n(w)

∣∣‖µ− P ∗(w)Y ‖2 + ‖e‖2 + 2µ′A∗(w)e− 2e′P ∗(w)e− nσ2
∣∣
}

≤ sup
w∈Hn

L∗
n(w)

R∗
n(w)

sup
w∈Hn

trP ∗(w)
n

+ sup
w∈Hn

2|µ′A∗(w)e|
R∗

n(w)
sup
w∈Hn

trP ∗(w)
n

+
|‖e‖2 − nσ2|√

n
sup
w∈Hn

1

R∗
n(w)

sup
w∈Hn

trP ∗(w)√
n

+ sup
w∈Hn

2|e′P ∗(w)e− σ2trP ∗(w)|
R∗

n(w)
sup
w∈Hn

trP ∗(w)
n

+ 2σ2 sup
w∈Hn

1

R∗
n(w)

sup
w∈Hn

tr2P ∗(w)
n

.

By the central limit theorem, we have |‖e‖2 − nσ2|/√n = Op(1). In addition, it fol-

lows from (7) and (9) that

sup
w∈Hn

1

R∗
n(w)

= op(1), sup
w∈Hn

tr2P ∗(w)/n = O(1) and sup
w∈Hn

trP ∗(w)/n = o(1).

Together with (26)∼(28), (29) is obtained.
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To prove (30), we observe that

sup
w∈Hn

∣∣µ′(P ∗(w)− P̂ (w)
)
e
∣∣/R∗

n(w)

≤ 1

ξ∗n
sup
w∈Hn

[
‖µ‖2e′

(
P ∗(w)− P̂ (w)

)2
e
]1/2

≤ 1

ξ∗n

‖µ‖√
n

‖e‖√
n
n max
1≤m≤M

λmax(P
∗
(m) − P̂(m)).

By Conditions (8) and (10), (30) is verified.

Note that

Ln(w) = ‖e‖2 + ‖Â(w)µ‖2 + ‖Â(w)e‖2 − 2e′Â(w)µ− 2e′Â(w)e+ 2µ′Â2(w)e,

so

sup
w∈Hn

|Ln(w)− L∗
n(w)|/R∗

n(w)
p−→ 0 ⇔

sup
w∈Hn

∣∣2µ′(P ∗(w)− P̂ (w)
)
µ+ 2µ′(P ∗(w)− P̂ (w)

)
e

− µ′(P ∗(w) + P̂ (w)
)(
P ∗(w)− P̂ (w)

)
µ

− e′
(
P ∗(w) + P̂ (w)

)(
P ∗(w)− P̂ (w)

)
e

− 2µ′P ∗(w)
(
P ∗(w)− P̂ (w)

)
e− 2µ′(P ∗(w)− P̂ (w)

)
P̂ (w)e

∣∣/R∗
n(w)

p−→ 0.

Thus, if

sup
w∈Hn

∣∣µ′(P ∗(w) + P̂ (w)
)(
P ∗(w)− P̂ (w)

)
µ
∣∣/R∗

n(w)
p−→ 0, (34)

sup
w∈Hn

∣∣e′
(
P ∗(w) + P̂ (w)

)(
P ∗(w)− P̂ (w)

)
e
∣∣/R∗

n(w)
p−→ 0, (35)

sup
w∈Hn

∣∣µ′P ∗(w)
(
P ∗(w)− P̂ (w)

)
e
∣∣/R∗

n(w)
p−→ 0, (36)

sup
w∈Hn

∣∣µ′(P ∗(w)− P̂ (w)
)
P̂ (w)e

∣∣/R∗
n(w)

p−→ 0, (37)

and

sup
w∈Hn

∣∣µ′(P ∗(w)− P̂ (w)
)
µ
∣∣/R∗

n(w)
p−→ 0, (38)
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then (32) is valid. From Condition (8) and the following result

sup
w∈Hn

∣∣e′
(
P ∗(w) + P̂ (w)

)(
P ∗(w)− P̂ (w)

)
e
∣∣/R∗

n(w)

≤ 1

2ξ∗n
sup
w∈Hn

∣∣e′
[(
P ∗(w) + P̂ (w)

)(
P ∗(w)− P̂ (w)

)

+
(
P ∗(w)− P̂ (w)

)(
P ∗(w) + P̂ (w)

)]
e
∣∣

≤ ‖e‖2
2ξ∗n

sup
w∈Hn

λmax

[(
P ∗(w) + P̂ (w)

)(
P ∗(w)− P̂ (w)

)

+
(
P ∗(w)− P̂ (w)

)(
P ∗(w) + P̂ (w)

)]

≤ ‖e‖2
ξ∗n

sup
w∈Hn

[
λmax

(
P ∗(w) + P̂ (w)

)
λmax

(
P ∗(w)− P̂ (w)

)]

≤ ‖e‖2
ξ∗n

sup
w∈Hn

[
λmax

(
P ∗(w)

)
+ λmax

(
P̂ (w)

)] M∑

m=1

wmλmax(P
∗
(m) − P̂(m))

≤ 2

ξ∗n

‖e‖2
n

n max
1≤m≤M

λmax(P
∗
(m) − P̂(m)),

we obtain (35). Similarly, (31), (34) and (38) can be verified. On the other hand, analo-

gous to the proof of (30), one can obtain (36) and (37).

Further, it can be shown that

sup
w∈Hn

∣∣trP ∗(w)
(
‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2

)∣∣/nR∗
n(w)

≤ sup
w∈Hn

trP ∗(w)
n

sup
w∈Hn

|‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2|
R∗

n(w)

≤ a1 sup
w∈Hn

|‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2|
R∗

n(w)
,

where the last step is from Condition (9). Observe that

|‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2|
=|2µ′(P̂ (w)− P ∗(w))µ+ µ′(P ∗(w) + P̂ (w))(P ∗(w)− P̂ (w))µ

+ 2e′(P̂ (w)− P ∗(w))e+ e′(P ∗(w) + P̂ (w))(P ∗(w)− P̂ (w))e

+ 4µ′(P̂ (w)− P ∗(w))e+ 2µ′P ∗(w)(P ∗(w)− P̂ (w))e

+ 2µ′(P ∗(w)− P̂ (w))P̂ (w)e|,

so from (30), (31) and (34)∼(38), we have

sup
w∈Hn

|‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2|
R∗

n(w)

p−→ 0.

Thus, we obtain (33). This completes the proof of Theorem 1.



20

The following lemma is used in the proof of Theorem 2.

Lemma 2. For any γ̂(m) and γ∗(m) ∈ Γ and any random variable Y , if Assumptions

(a.3) and (a.4) are satisfied, and

|E(Y |zi = γ, γ̂(m))| ≤ Ē, (39)

where Ē is a finite constant, then

E
(
Y |I(zi ≤ γ∗(m))− I(zi ≤ γ̂(m))|

)
= O(n−ρ). (40)

Proof. The proof is similar to that of Lemma A.1 in Hansen (2000).

∂E(Y I(zi ≤ γ)|γ̂(m))

∂γ
=

∫ +∞

−∞
y
∂
∫ γ
−∞ f(y, z|γ̂(m)) dz

∂γ
dy

=

∫ +∞

−∞
yf(y, γ|γ̂(m))dy

=

∫ +∞

−∞
yf1(y|γ, γ̂(m))f2(γ|γ̂(m))dy

= f2(γ|γ̂(m))E(Y
∣∣zi = γ, γ̂(m)),

where f , f1 and f2 are density functions. Let C = f̄2Ē. By Lagrange’s mean value

theorem, there exists a γ̃(m) between γ∗(m) and γ̂(m) such that

E(Y I(zi ≤ γ̂(m))|γ̂(m))− E(Y I(zi ≤ γ∗(m))|γ̂(m))

= f2(γ̃(m)|γ̂(m))E(Y
∣∣zi = γ̃(m), γ̂(m))(γ̂(m) − γ∗(m))

≤ C|γ̂(m) − γ∗(m)|. (41)

Define f3(γ) as the density of γ̂(m). By (41) and Assumptions (a.3) and (a.4), we have

E
(
Y |I(zi ≤ γ∗(m))− I(zi ≤ γ̂(m))|)

=

∫ γ̄

γ
E
(
Y |I(zi ≤ γ∗(m))− I(zi ≤ γ̂(m))|

∣∣γ̂(m)

)
f3(γ̂(m))dγ̂(m)

=

∫ γ∗
(m)

γ
E
(
Y
(
I(zi ≤ γ∗(m))− I(zi ≤ γ̂(m))

)∣∣γ̂(m)

)
f3(γ̂(m))dγ̂(m)

+

∫ γ̄

γ∗
(m)

E
(
Y
(
I(zi ≤ γ̂(m))− I(zi ≤ γ∗(m))

)∣∣γ̂(m)

)
f3(γ̂(m))dγ̂(m)

≤
∫ γ̄

γ
C|γ̂(m) − γ∗(m)|f3(γ̂(m))dγ̂(m) = O(n−ρ).

The proof of Lemma 2 is completed.
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Proof of Theorem 2. Note that µ′A∗(w)e = µ′e− µ′P ∗(w)e. From the proof of Theo-

rem 1 and the fact that µ′e is unrelated to w, Theorem 2 is valid if

sup
w∈Hn

|e′P ∗(w)e− σ2trP ∗(w)|/Q∗
n(w)

p−→ 0, (42)

sup
w∈Hn

|µ′P ∗(w)e|/Q∗
n(w)

p−→ 0, (43)

sup
w∈Hn

|L∗
n(w)/Q

∗
n(w)− 1| p−→ 0, (44)

sup
w∈Hn

|trP ∗(w)(‖A∗(w)Y ‖2/n− σ2)|/Q∗
n(w)

p−→ 0, (45)

sup
w∈Hn

∣∣µ′(P ∗(w)− P̂ (w)
)
e
∣∣/Q∗

n(w)
p−→ 0, (46)

sup
w∈Hn

∣∣e′
(
P ∗(w)− P̂ (w)

)
e
∣∣/Q∗

n(w)
p−→ 0, (47)

sup
w∈Hn

|Ln(w)− L∗
n(w)|/Q∗

n(w)
p−→ 0, (48)

and

sup
w∈Hn

∣∣trP ∗(w)
(
‖A∗(w)Y ‖2 − ‖Â(w)Y ‖2

)∣∣/nQ∗
n(w)

p−→ 0. (49)

Because xi contains the lag values of yi, the proofs of (42)∼(44) are different from those

of (26)∼(28).

According to Theorem 3.35 of White (1984), Assumption (a.1) implies that x(m)ix
′
(m)i

I(zi ≤ γ∗(m)) is stationary and ergodic. Further, Assumption (a.2) ensures E|x(m)ijx(m)ik

I(zi ≤ γ∗(m))| < ∞. By Theorem 3.34 of White (1984), we have

X∗′
(m)X

∗
(m)

n

p−→
(

E(x(m)ix
′
(m)iI(zi ≤ γ∗(m))) 0

0 E(x(m)ix
′
(m)iI(zi > γ∗(m)))

)
≡ V(m),

(50)

where V(m) is an invertible matrix. From Assumptions (a.1) and (a.2), xiI(zi ≤ γ)ei

is a square integrable stationary martingale difference sequence. Therefore, by the

central limit theorem for martingale difference sequence, we obtain 1√
n
X∗′

(m)e
d−→

N(0, σ2V(m)). Thus, 1√
n
X∗′

(m)e = Op(1). Together with the fact that kM∗ and M

are bounded, it can be shown that
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e′P ∗
(m)e =

1√
n
e′X∗

(m)

(X∗′
(m)X

∗
(m)

n

)−1 1√
n
X∗′

(m)e = Op(1) (51)

and

trP ∗(w) =
M∑

m=1

wmtrP ∗
(m) ≤ 2

M∑

m=1

wmkm ≤ 2kM∗ < ∞. (52)

From Condition (12), we have

sup
w∈Hn

|e′P ∗(w)e−σ2trP ∗(w)|/Q∗
n(w) ≤ ζ∗−1

n max
1≤m≤M

|e′P ∗
(m)e|+2ζ∗−1

n σ2kM∗
p−→ 0.

(53)

Consequently, (42) is verified.

Under (51) and Condition (10), it can be shown that

|µ′P ∗(w)e| = |e′P ∗(w)µµ′P ∗(w)e| 12 ≤ ‖µ‖|e′P ∗2(w)e| 12

≤ ‖µ‖λ1/2
max

(
P ∗(w)

)
|e′P ∗(w)e|1/2 = Op(

√
n). (54)

Hence, (43) is valid by Condition (12).

For (44), similar to (54), it can be shown that

e′P ∗2(w)e = Op(1) (55)

and

|µ′P ∗2(w)e| = Op(
√
n). (56)

In addition,

trP ∗2(w) ≤ λmax

(
P ∗(w)

)
trP ∗(w) ≤ 2kM∗ . (57)

Thus,

|L∗
n(w)−Q∗

n(w)| =
∣∣‖P ∗(w)e‖2 − 2µ′A∗(w)P ∗(w)e− σ2trP ∗2(w)

∣∣

≤ ‖P ∗(w)e‖2 + 2|µ′P ∗(w)e|+ 2|µ′P ∗2(w)e|+ 2σ2kM∗

= Op(
√
n).

Hence (44) holds by Condition (12).

The proof of (45) is similar to that of (29). From the proofs of (30)∼(33), if

nζ∗−1
n max

1≤m≤M
λmax(P

∗
(m) − P̂(m))

p−→ 0, (58)

then (46)∼(49) will hold. In the following, we will verify (58).
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By Lemma 2, for the mth candidate model,

E|x(m)ijx(m)ik

(
I(zi ≤ γ∗(m))− I(zi ≤ γ̂(m))

)
| = O(n−ρ)

uniformly in i. Hence,

X∗′
(m)X

∗
(m)

n
−

X̂ ′
(m)X̂(m)

n
= Op(n

−ρ), (59)

and

(X∗
(m) − X̂(m))

′(X∗
(m) − X̂(m))

n
= Op(n

−ρ). (60)

From (50) and (59), it follows that

X̂ ′
(m)X̂(m)

n

p−→ V(m). (61)

Thus, by (50), (59) and (61), we obtain

(X∗′
(m)X

∗
(m)

n

)−1
−
(X̂ ′

(m)X̂(m)

n

)−1
= Op(n

−ρ). (62)

Note that

P ∗
(m) − P̂(m) = X∗

(m)[(X
∗′
(m)X

∗
(m))

−1 − (X̂ ′
(m)X̂(m))

−1]X∗′
(m)

−(X̂(m) −X∗
(m))(X̂

′
(m)X̂(m))

−1(X̂(m) −X∗
(m))

′

−(X̂(m) −X∗
(m))(X̂

′
(m)X̂(m))

−1X∗′
(m)

−X∗
(m)(X̂

′
(m)X̂(m))

−1(X̂(m) −X∗
(m))

′

≡ ∆P(m)1 +∆P(m)2 +∆P(m)3 +∆P(m)4. (63)

By using (60)∼(62), we have

λmax(∆P(m)1) ≤ λmax

[(X∗′
(m)X

∗
(m)

n

)−1
−
(X̂ ′

(m)X̂(m)

n

)−1]
λmax

(X∗′
(m)X

∗
(m)

n

)

= Op(n
−ρ),

λmax(∆P(m)2) ≤ λmax

[(X̂ ′
(m)X̂(m)

n

)−1]
λmax

((X̂(m) −X∗
(m))

′(X̂(m) −X∗
(m))

n

)

= Op(n
−ρ),
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and

λmax(∆P(m)3) = λmax(∆P(m)4)

= λ1/2
max

(
(X̂(m) −X∗

(m))(X̂
′
(m)X̂(m))

−1X∗′
(m)X

∗
(m)(X̂

′
(m)X̂(m))

−1(X̂(m) −X∗
(m))

′)

≤ λmax

[(X̂ ′
(m)X̂(m)

n

)−1]
λ1/2
max

(X∗′
(m)X

∗
(m)

n

)
λ1/2
max

((X̂(m) −X∗
(m))

′(X̂(m) −X∗
(m))

n

)

= Op(n
−ρ/2).

Therefore,

λmax(P
∗
(m) − P̂(m)) ≤ λmax(∆P(m)1) + λmax(∆P(m)2)

+λmax(∆P(m)3) + λmax(∆P(m)4)

= Op(n
−ρ/2).

Thus, (58) holds under Condition (12). The proof of Theorem 2 is completed.

Proof of Theorem 3. Let A(w) = In − P (w). From Lemma 1, we need only to verify

that

sup
w∈H̃n

|µ′A(w)e|/R̃n(w)
p−→ 0, (64)

sup
w∈H̃n

|e′P (w)e− σ2trP (w)|/R̃n(w)
p−→ 0, (65)

sup
w∈H̃n

|L̃n(w)/R̃n(w)− 1| p−→ 0, (66)

and

sup
w∈H̃n

|trP (w)(‖A(w)Y ‖2/n− σ2)|/R̃n(w)
p−→ 0. (67)

We obtain (64)∼(66) by following the proof of Theorem 1′ of Wan et al. (2010), while

(67) is valid from the proof of (29).
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Fig. 1: Results of Simulation I. Risks for averaging models with estimated γ (ζ = 0.25).
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Fig. 2: Results of Simulation I. Risks for averaging models with estimated γ (ζ = 0.5).
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Fig. 3: Results of Simulation I. Risks for averaging models with estimated γ (ζ = 0.75).
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Fig. 4: Results of Simulation II. Risks for averaging models without estimating γ (ζ = 0.25).
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Fig. 5: Results of Simulation II. Risks for averaging models without estimating γ (ζ = 0.5).
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Fig. 6: Results of Simulation II. Risks for averaging models without estimating γ (ζ = 0.75).
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Fig. 7: Results of Simulation III. MSFEs for averaging TAR models with σ2 = 0.5.



34

1
.4

1
.5

1
.6

1
.7

n=60

φ

M
S

F
E

●

●

●

●

●

●
●

●

S−AIC

S−BIC

MMA

AFTER

AMMA

0.60 0.65 0.70 0.75 0.80 0.85 0.90

1
.0

5
1
.1

0
1
.1

5
1

.2
0

1
.2

5
1

.3
0

1
.3

5

n=100

φ

M
S

F
E

●

●

●

●

● ●

●

0.60 0.65 0.70 0.75 0.80 0.85 0.90

1
.1

7
1
.1

8
1
.1

9
1
.2

0
1
.2

1
1
.2

2
1
.2

3

n=250

φ

M
S

F
E

●

●

●

●

●

●

●

0.60 0.65 0.70 0.75 0.80 0.85 0.90

1
.1

0
1
.1

1
1
.1

2
1
.1

3
1
.1

4
1
.1

5

n=400

φ

M
S

F
E

●

●

● ●

●

● ●

0.60 0.65 0.70 0.75 0.80 0.85 0.90

Fig. 8: Results of Simulation III. MSFEs for averaging TAR models with σ2 = 1.
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Fig. 9: Results of Simulation III. MSFEs for averaging TAR models with σ2 = 2.


