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1 Introduction

The change-point problem has received considerable attention in the literature of economet-
rics and statistics over the past decades. Many time series data in economics are character-
ized by single or multiple structural changes (Hansen, 2001), and there is a vast literature
on this subject. For example, Bai and Perron (1998) provided the estimation and test-
ing procedures for linear models with multiple structural changes. Harvey et al. (2006),
Halunga and Osborn (2012) and Kejriwal et al. (2013) investigated structural changes in
persistence. Recent development in this area includes Fryzlewicz and Rao (2014), Cho and
Fryzlewicz (2015), Lee et al. (2016), Roy et al. (2017) and Wang and Samworth (2018),
who investigated the problem in high-dimensional models.

In this paper, we focus on the statistical inference for nonstationary multiple-break
models, since the stationary counterpart has been extensively studied in the literature. For
example, Chong (1995) and Bai (1997) proposed a sample splitting method to estimate
the breaks one at a time by minimizing the residual sum of squares. In contrast, Bai and
Perron (1998) proposed to estimate the breaks simultaneously by minimizing the residual
sum of squares. There are pros and cons for the aforementioned estimation procedures.
For example, for the simultaneous estimators of breaks, their asymptotic distributions in
stationary models are symmetric, but the computational burden is heavy. The least-squares
operations are of order O(T?) even under the most efficient algorithm (Bai and Perron,
2003), where T is the sample size. In contrast, for the sequential estimators of breaks,
the computational burden is light (the least-squares operations are of order O(T)), but
the asymptotic distributions of the estimators are asymmetric. Hence, additional efforts,
such as repartitioning the sample, are needed in order to obtain symmetrically asymptotic
distributions of the estimators. More importantly, the studies by Chong (1995) and Bai
(1997) showed that which break would be identified first depends on the magnitude and
the duration of the break, which are unobservable in reality. Hence, a test procedure for
breaks is needed to assist in estimating the remaining breaks in the subsamples split by the
breaks found earlier. However, the results of Chong (1995) and Bai (1997) are not directly
applicable to nonstationary time series models.

The first contribution of this paper is to reveal the key factors determining which break
will be identified first in nonstationary autoregressive models with multiple breaks. Unlike
the stationary case, we show that the duration of a break does not affect if it will be

identified first. Rather, it depends on the stochastic order of magnitude of signal strength of



the break under the case of constant break magnitude, and also depends on the square of the
magnitude of the break under the case of shrinking break magnitude. Since the subsamples
usually have different stochastic orders in nonstationary autoregressive models with breaks,
one can therefore determine which break will be identified first. Under this situation, a
test procedure for breaks is no longer needed, and the estimation procedure for breaks can
therefore be simplified.

The second contribution of this paper is to provide an estimation procedure and the
asymptotic theory for a financial bubble process with two breaks by applying our previous
finding. This financial bubble process is similar to but more flexible than those proposed
in Phillips and Yu (2011), Phillips et al. (2011) and Phillips et al. (2015a, 2015b). It is
well known that the global financial crisis of 2008 has a long-lasting negative impact on
global economies and asset markets. Central bankers and regulators have made great efforts
to understand the formation, evolution and burst of financial bubbles in order to develop
early warning systems of financial crises. Researchers have made great contributions to
the estimation and detection of bubbles, see Phillips et al. (2011), Phillips and Yu (2011),
Homm and Breitung (2012), Shi and Song (2016), Phillips et al. (2015a, 2015b), Harvey
et al. (2015, 2017), Harvey et al. (2016) and Phillips and Shi (2018). In the papers of
Phillips et al. (2011), Phillips and Yu (2011) and Phillips et al. (2015a, 2015b), the authors
proposed an AR(1) model with two changes in the AR parameter at two unknown break

dates as follows:
Bryi—1 + ¢, 1<t <k,

Y= Bayr—1 + e, )4+ 1<t <Kk, (1.1)
Yo+ Yisgyr € M H+1<t<T,

where 51 = 1,82 = 1 + ¢/kp with ¢ > 0 and kr being an increasing sequence of T' going to
infinity such that kp = o(T), y;:(f = ypo +y* with y* = Op(1) and {e¢} being model errors.
This model consists of three regimes. The first regime is modeled by a unit root process,
which represents the normal market period. The second regime is modeled by a mildly
explosive process (Phillips and Magdalinos, 2007a), which represents the bubble expansion
period. The third regime is modeled by an abrupt bubble collapse followed by a period of
normal market conditions. This model is useful for modeling a financial bubble process from
its origination, to expansion, and to its eventual collapse. Phillips et al. (2011), Phillips and
Yu (2011) and Phillips et al. (2015a, 2015b) applied this model to NASDAQ data from the
1990s and confirmed Greenspan’s declaration of “irrational exuberance” in December 1996.

A similar model was proposed in Harvey et al. (2017). They assumed that y; = p + wuy,



where p is a constant, and {u;} contains a bubble process and a collapse process. For this
model, the authors applied the least squares method to the differenced data and successfully
obtained the consistent estimators for the regime change points. However, in Harvey et al.
(2017), the explosive and the stationary AR (1) models, instead of the mildly explosive and
the mildly integrated AR(1) models (Phillips and Magdalinos, 2007a), are used to model
the bubble expansion process and the bubble collapse process respectively, which makes the
model less flexible.

To make Model (1.1) more flexible, Phillips and Shi (2018) suggested the inclusion of
an asymptotically negligible drift in the normal market period and the use of a transient
mildly integrated process to model the bubble collapse process. Following Phillips and Shi
(2018)’s suggestion, we study the following AR(1) model with two unknown break dates,

namely,
T+ Pryer +e,  1T<ESKY,
Yo =N Poye-1+er, k) +1<t <k, (1.2)
PBsyi—1 + e, K +1<t<T,
where c€ R, n > 1/2, 1 =1, B2 = Por = 1+ c1/kr, B3 = P37 = 1 — c2/hr, c1 > 0 and
¢z > 0; {kr} and {hr} are two sequences of positive constants increasing to infinity such
that kr = o(T) and hy = o(T). We denote kY = [T'1?], i = 1,2, where [-] denotes the integer

part, and the break fractions 70s are fixed constants between zero and one.

i

Note that Phillips et al. (2011), Phillips and Yu (2011), Phillips et al. (2015a, 2015b)
and Phillips and Shi (2018) focused on real-time bubble detection via recursive right-sided
unit root testing procedures. Though consistent estimators of the break fractions can be
obtained by these procedures, their convergence rates and the statistical properties of the
estimators of the AR parameters are not explored. Hence, one of the aims of this paper is
to provide an estimation procedure and an asymptotic theory for Model (1.2).

There are two points worth mentioning. (1) Examining structural changes in autore-
gressive models is of interest as the time series properties of the model, such as stationarity,
may be different before and after the change. As a result, the rates of convergence and the
asymptotic distributions of the estimators are difficult to derive (Chong, 2001; Pang et al.,
2017). (2) The change-point analysis in this paper differs from that in Bai (1997) in several
aspects. First, the model studied in Bai (1997) was a stationary time series model with mul-
tiple breaks, while we study a nonstationary time series model with multiple breaks in this

paper. Second, a test procedure for breaks is needed to assist in the estimation of breaks in

subsamples in Bai (1997), while such a procedure is no longer needed in our paper. Hence,



the estimation procedure becomes simpler. Third, Bai (1997) derived the asymptotics for
the estimators by analyzing the expectation of the residual sum of squares rather than the
residual sum of squares itself. However, it is difficult to calculate the expectation of the
residual sum of squares in nonstationary autoregressive models. Thus, we cannot derive the
asymptotics for the estimators by following Bai (1997). Instead, we derive the asymptotics
by analyzing the residual sum of squares directly, which makes the proofs more complicated
and challenging.

The rest of the paper is organized as follows. Section 2 states the assumptions and
develops an estimation procedure for the unknown parameters in Model (1.2). Section 3
demonstrates our theoretical findings. Section 4 presents simulation results to examine the
finite sample performance of the estimators. Section 5 concludes the paper. The proofs of

our theoretical results are relegated to the Appendix.

2 Model Assumptions and Estimation Procedure

2.1 Model Assumptions

For Model (1.2), we make the following assumptions:

e Cl: yo = 0,(VT).

o C2: {e;} is a sequence of i.i.d. random variables with mean zero and variance 0 <

0? < o0.

e C3: {kr} and {hr} are two sequences of positive constants increasing to oo such that

kr = o(T) and hy = o(T).
e CL0<r<<m)<T<1L

Remark 2.1 Assumption C1 implies that yo will not affect the asymptotic properties of the
estimators of the AR parameters and the break points. The assumption of i.i.d. errors in C2
s only for the convenience of exposition in the proofs. One can extend our results to some
cases that allow for dependence of the errors. Interested readers are referred to Phillips and
Magdalinos (2007b) and Magdalinos (2012) for details. In addition, the assumption of finite
variance in C2 can be relaxed. Our theoretical results will still hold when the assumption of
finite variance is replaced by the assumption that the model errors belong to the domain of

attraction of the normal law with possible infinite variance. Interested readers are referred



to Pang et al. (2017) for details. Assumption C3 is the same as that in Phillips and
Magdalinos (2007a). Assumption CJ is standard in the change-point literature (Chong,
1995; Bai, 1997; Bai and Perron, 1998; Chong, 2001), which suggests that each regime
occupies a non-vanishing proportion of the sample. This is to ensure the identifiability of

the AR parameters and the break points.

2.2 Estimation Procedure

We will conduct a sequential procedure in the estimation of structural changes for Model

(1.2). First of all, we rewrite Model (1.2) as follows:

B1ye—1 + ue, 1<t <Kk}
Ye=19q Boye—1 +up, K H1<E<KY (2.1)
Baye—1 +u, k3 +1<t<T
where u; = ¢TI~ 4+ ¢; when t < k? and u; = &; when ¢t > k?. To develop an estimation
procedure for Model (2.1), we first compute the difference of the residual sums of squares
at k9 and kY. This difference is a result of Lemma A.1 in the Appendix which allows us to
develop a sequential estimation procedure. Let RSS(7) be the residual sum of squares at

the date [777], then it can be shown that
Theorem 2.1 For Model (2.1), we have

RSS(1)) — RSS(7) = m (B2 — B1) + m2(B3 — Ba) +n3(Ba — B1)? + na(Bs — B2)* + O,

where
.
-9 Et 1yt 1U¢ Zt 1yt 1Ut
m= Z Yt—1
Ztlytl Ztlytl t=1
2 (x > > ST o 02
t=k0+1 yt 1 2st=k9+1 Yt—1Ut — t=k0+1 Yr—1Ut t=k9+1 Yi—1
N2 = Z 2
t=k0+1 Yt -1
. Et L Vi 1Zt ko+12/t 1
3 pr—
. thl yt—l
k3 2 T 2
Zt:kgﬂ Yi—1 Zt:kg-i—l Yi—1
= ZT 5
t=k04+1 Yt—1
and

0 T 2 0 T 2
g O ) | Eegaverw)” (O o) (S v
T = - B ’

) T 2 K o T 2
Dotz Y1 Zt:kgﬂ Yi-1 Dottt Vi1 Zt:k?ﬂ Yi-1



In general, Q7 has the smallest stochastic order of magnitude among the five terms
in the closed form of RSS(7)) — RSS(7), m (B2 — B1) has a smaller stochastic order of
magnitude than n3(82 — 51)?, and 72(B3 — B2) has a smaller stochastic order of magnitude
than 74(B83 — (2)2. For example, suppose Model (1.2) is a stationary model, that is, all 8;’s

are fixed constants satisfying |3;| < 1, then we have

m(Bz — f1) = Op(ﬁ)v m2(Bs — Ba2) = Op(ﬁ)’ Qr = Op(l)

and
n3(Ba — B1)? = Op(T), na(Bs — B2)* = Op(T).
Therefore,
k) o k9 2
RSS(Y) - RSS(Y) = — = EeEa L o
(1) (r3) = I (B2 — B1)° (1 + 0p(1))
>t Y
kO T 2
> iko yt2—1 Zt:ko—i-l Y
+ t 1+1T - 2 (,83—/82)2(1+0p(1))
Zt=k9+1 Yi—1
= P(1+40p(1)) — Pi(1+0y(1)), (2.2)
where

P i=n3(B2— B1)? and Py = nu(Bs — fa)*.

The 73 and 74 are the signal strength of breaks, and the (32 — 51)? and (83 — 32)? are the
squares of the magnitude of breaks.

Therefore, which break point will be identified first is determined by the stochastic orders
of P, and P». If P, has a higher stochastic order of magnitude than P;, then RSS (T{]) —
RSS(7Y) will diverge to oo in probability, and kY will be identified first asymptotically.
Instead, if Py has a higher stochastic order of magnitude than Py, then RSS(7Y) — RSS(79)
will go to —oo in probability, and k? will be identified first asymptotically. However, when
P; and P» have the same stochastic order of magnitude, which break will be identified first
depends on the magnitude and the duration of the break, which are unobservable in reality.
Therefore, it is difficult to determine which break will be uncovered first, and we need to
test and estimate the second break from all subsamples split by the first estimated break

point. We provide three illustrative examples below.



Example 1 (a stationary model with two breaks): Suppose all 5;’s are fixed constants

satisfying |5;| < 1,7 = 1,2,3. Then, we have

Pip o 1115% ' TQ?TI _ _ (15 — ) (B2 — 1) 2
T 117?24‘7127571 o= (1= B3) + (13 _7'1)<1_51)U
and
TO—T? 1— 7'2
Py oy o 18 i B BB,
T e 713:6721 + 1752 y (% 52) ( _71)(1_/33)+(1_72)(1_B2)

Therefore, P; and P, have the same stochastic order of magnitude (O,(7")). A simulation of
RSS(7)/T with T' = 800 for this example is plotted in the upper panel of Figure 1. Given
that (2.2) is true, if

(1= )35 — 52)° 7~ b)
R (e e Ty I e e ey e M

then RSS(7))— RSS(79) 2 50, and kY will be identified first with probability approaching
unity. If the inequality (2.3) is reversed, then RSS(7?) — RSS(79) & oo, and k9 will be

identified first with probability approaching unity. In the case of equality, k9 and k3 will
have the same chance of being identified first asymptotically. Note that condition (2.3) is
similar to condition (16) in Chong (1995) and Assumption A.4 in Bai (1997). However,
(2.3) is unobservable in reality. Hence, a test procedure is applied to all subsamples split
by the first estimated break point in order to find the remaining break point.

Example 2 (a nonstationary model with two breaks): Suppose (31 is a fixed constant
satisfying |81] < 1, f2 = 1 and 83 = 1 — co/hp, which means the multiple-break model
consists of a stationary process, a unit root process and a mildly integrated process. In this

case,
m(B2 = B1) = (0p(4F) = 0p(&)) - O(T) = O,(VT)
(s — Bp) = 2OV TSI L L — 0,y /12)
Qr = 0p(1)
P = GHidhirh = OplT)
= Op(7-)

Py = Op(T2)0y(Thr)
0I5 70, (The) " RE

by the well-known results of the unit root model and Lemma B.3 in Pang et al. (2017).
Hence, (2.2) is true, and P; has a higher stochastic order than P,, which means RSS(7)) —
RSS(19) = —Pi(1+0,(1)) & —o0, and kY will be uncovered first with probability approach-
ing unity. A simulation of RSS(7)/T with 7" = 800 for this example is plotted in the middle

panel of Figure 1.



Example 3 (a nonstationary model with two breaks): Suppose 51 = 1,82 =1+ ¢1/kr
and B3 = 1 — co/hp, which suggests that the multiple-break model consists of a unit root
process, a mildly explosive process and a mildly integrated process. In this case,

0_0
k9 —k§

m (B2 — B1) = (Op(F) — Op( LV T5)) . 0,(T2) - O ) = Op(E)

T2 2(k9—k9)
Tkr

(85 — ) = OtV Z( T, Tt ) 1y oy
Op(y 4™ Thr) +0,(8 4 T
0B, when hy = O(kr)
N (55 K \/iT), when kp = o(hr)
Qr = 0,(1)
P = 00 (/32“2 ’“”m) LO(L) = 0,(T%)

) k2. k2.

o (T2)+Op(f32 TkT)O o
2(k K0 ) 2(k)—k9)
P2:Op( > UTkr)-Op(By 2 1ThT)_OL_‘_L)2

0 (p203 )TkT)+Op(B§(’“ ppgy ko
0BT, when hy = O(kr)
0,52+ L), when kr = o(hr)

by Lemmas A.2-A.4 in the Appendix. Thus, (2.2) is true, and P> has a markedly higher
stochastic order than P;, which means RSS(70) — RSS(79) = Py(1 4 0,(1)) & o0, and k9
will be uncovered first with probability approaching unity. A simulation of RSS(7)/T with
T = 800 for this example is plotted in the bottom panel of Figure 1.

Based on the above analysis, for Model (1.2), we propose the following two-step estima-
tion procedure.

Step 1: For any given 0 < 7 < 1, denote

3 ) - 5 ZT— YtYt—1
gx(T):% and fs(r) = th[ T]+1 -
i=1 Yi—1 Zt:[TT]-i-l Yi—1

Then the change-point estimator of 7 is defined as

Top = argmin RS Sy 7(7),

7€(0,1)
where
[7T] A 9 T . 9
RSSyr(r) =) (yt - ﬁx(T)yt—l) + ) (?/t - 53(7)%—1) '
t=1 t=[rT]+1

Once we obtain 79 7, the least squares estimator (LSE) of 3 is represented by Bg(’f'z,T), and

the LSE of k9 is denoted by kg = [7o.7T).
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(a) Graph of RSS(7)/T for 81 = 0.7, 52 = 0.8 and B3 = 0.7, T = 800, kY = 320 and k3 = 600.
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(b) Graph of RSS(7)/T for f1 = 0.5,32 = 1 and 3 = 0.97, T = 800, kY = 320 and kS = 600.
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(c) Graph of RSS(r)/T for 1 = 1,82 = 1.05 and B3 = 0.95, T = 800, kY = 320 and
k9 = 600.

Figure 1: Graphs of RSS(7)/T for Examples 1-3 (from top to bottom).



Step 2: For any given 0 < 7 < 7o 7, the LSEs of the AR parameters 3 and 32 are given by

[+ ) 1%3 Ve
= D=1 YY1 and fo(r) = Ztf['rT]—&-l tt 7

Bl (T) T i
ZL:E Vi1 Efi[TT}H Vi1

respectively. Then the change-point estimator of 70 is defined as

71,7 = argmin RSS; (1),

76(07%27’]‘)
where .
[T . 9 ko . 9
RSS r(7) = Z (yt — Bl(T)yt—1) + Z (yt - ﬂz(T)yt—1) .
t=1 t=[rT]+1

Once we obtain 71 7, the final LSEs of 1 and (2 are represented by Bl (71,7) and BQ('IA_LT)
respectively, and the LSE of &y is denoted by ky = [#17T).

Remark 2.2 There are two structural changes in Model (2.1), and we estimate them se-
quentially. In Step 1, we estimate a mis-specified model with one break, then in Step 2 we
estimate the other break in the left subsample split by the first break point estimate since we
know that kY is identified first with probability approaching unity. The idea of estimating
breaks under a mis-specified model is taken from Chong (1995) and Bai (1997). Howev-
er, there are three major differences between our work and those of Chong (1995) and Bai
(1997). First, the models studied in Chong (1995) and Bai (1997) were both a stationary
model with multiple breaks, while the model studied in this paper is a nonstationary model
with multiple breaks. Second, a test procedure of breaks is needed in order to locate the re-
maining breaks in Chong (1995) and Bai (1997), while such a test procedure is no longer
needed in our paper. Third, Chong (1995) derived the asymptotics for the estimators by
analyzing the probability limit of the criterion function, and Bai (1997) derived the asymp-
totics for the estimators by analyzing the expectation of the criterion function. Howewver,
it is difficult to calculate the probability limit or the expectation of the criterion function
in nonstationary autoregressive models. Thus, we cannot derive the asymptotics for the es-
timators by applying the same arguments in Chong (1995) or in Bai (1997). Instead, we

derive the asymptotics by analyzing the criterion function directly in the proofs.

3 Main Results

We define some notations before proceeding to our main results for Model (1.2). Let W(-)

be an independent standard Brownian motion defined on [0, 1], and Wi(-) and Wa(:) be

11



two independent Brownian motions defined on R;. “=" denotes the weak convergence
of the associated probability measures. “— % denotes convergence in probability, and «dy
means being identical in distribution. The notation a7 =< by means there exist two positive
constants cll and 0/2 such that cll < ar/br < 6,2 for all large T', where ar and br are two

positive functions of T'. Finally, for Model (1.2), we denote

Ko
tr=1\/ 215_012%_1(@1(?11) - 1)

Zkg 2
t=k9+1 Jt—1

ty = 2 (B2(71,) — B2)
T 2
t3 = Zt:kz—;lyt_l(ﬁ (To,r) — Bs)

g

as the t-ratios of B, B2 and (3 respectively.

Theorem 3.1 For Model (1.2), under assumptions C1-C4, the following results hold:
(a) ko is consistent, but k1 is not necessarily consistent, more specifically, when kr diverges
to oo such that kp = o(T'), we have

p

P(ky # k) =0, when kr = o(VT)
k1 — K| = O,(1), when kr < VT

22 * 31)
ar ., W) v S
k% (fhr—1)= al“%ergl%ax { Wh(r0) — 5 when VT = o(kr)

P(ks #K9) — 0
where W*(v) is a two-sided Brownian motion on R defined to be W*(v) = Wi (—v) forv <0
and W*(v) = Wa(v) for v > 0.

(b) Bl(ﬁj), ﬁg(f'LT) and Bg(%g;_p) are all consistent, and their limiting distributions are
respectively given by
W) - 4 W) —

K (Bi(Frr) — D B
1(B1(T,r) = A1) = 2 [7TW2(s)ds 2]01 W2(s)ds

TOkSkT k- KO

Doy D2 (Ba(Frr) — B2) = & ; (3.2)

s LG Bl — B0) = ¢
\

where & and ¢ are two independent standard Cauchy variates.

12



(¢) The limiting distributions of the t-ratios of 1, B2 and B3 are respectively given by

W2(1) -1

2\/f01 W2(s)ds

to = N(O, 1)
t3 = N(O, 1)

t1 =

(3.3)

Without the structural changes, it has been proved by Phillips and Magdalinos (2007a)
that the convergence rate of the LSE of the mildly integrated AR parameter 33 is v/Thr
when the initial value of the model is of order o,(v/hr), and the convergence rate of the
LSE of the mildly explosive AR parameter (3 is k731 when the initial value of the model
is of order o,(y/kr). It is surprising to find that, in the presence of structural changes, the
convergence rate of the LSE of 83 can be faster than that of 82 when k7 = o(hp). This is
due to the difference in the stochastic order of magnitude of initial values across subamples.
Note that the stochastic order of magnitude of Yy is higher than that of Yo (see Lemmas
A.2 and A.3 in the Appendix for details), which affects the asymptotic properties of LSEs
of By and [3.

1

As pointed out in Pang et al. (2017), the distribution of _ WP

is markedly less
2\/f01 W?2(s)ds Y

f W2(1)—-1
2 fol W2(s)ds"
(3.2) are both Cauchy, which has an explosive mean and variance, while the second and

skewed than that o Moreover, the second and third limiting distributions in
third limiting distributions in (3.3) are both normal, which has a finite mean and variance.
Hence, the t-ratios of g1, 82 and B3 obviously have better estimation accuracy for the AR
parameters than the LSEs of 31, 82 and (3. It is recommended to use the t-ratios instead
of the LSEs of 81, 85 and 3 to conduct further statistical inference in applications.

The precision of k; and ks mainly depends on the differences of breaks (i.e., |82 — b1
and |f3 — B2]) and their signal strength. Note that for constant break magnitude, since
the magnitude of the break is O(1), while the signal strength will have different stochastic
orders of magnitude, the magnitude of the break plays no role in the determination of the
first identified break. For shrinking breaks, when the signal strength of k9 is strong (see
Example 3 in the last section) and the difference between f9 and 3 (that is, ¢1/kr+ca/hr)
is large, then k9 can be consistently located for any kr = o(T) and hy = o(T). However,
since the signal strength of k¥ is not strong enough (also see Example 3 in the last section)
and the difference between 81 and 3y (that is, c1/k7) may not be sufficiently large, k¥ can

only be consistently estimated when kr = o(ﬁ), which means 51 and (s have enough

13



difference.

Remark 3.1 Note that t1,ta and t3 in Theorem 3.1 are not pivotal, hence they will be

useless in practice. However, by denoting

( ki o2
=\ ZE 6 ) - )

t2 -
ty =
\
with
1 k1 ko T
6° = T > =BGy + D (we— By + D (e — Ba(Far)ye1)?
t=1 t=k1+1 t=ko+1
it can be proved that
9 2 DI SR s T ;2
L - - - t—1
21 Y 21, S , TR Py and LR
Koo k3 2 ST 2 o2
Dot Y1 Zt:k?+1 Yi—1 t=k+1 Y11

Therefore, part (c) of Theorem 3.1 will still hold when t1,ty and ts are replaced by tll, t/z and

t;) respectively. Note that tll,tIQ and t;, can be used directly in applications.

Remark 3.2 The model studied in this section is closely related to that of Phillips and Shi
(2018). In fact, Phillips and Shi (2018) proposed an AR(1) model with three structural
changes in the AR parameter to model a bubble process from its origination, erpansion,
collapse to its reversion to mormal behavior. Hence, the bubble process consists of four
regimes. The first three regimes are the same as the model studied in this section, and the
last regime is a unit root process. It is interesting and important to study the break points
of the model proposed in Phillips and Shi (2018). Our results can be applied to the above
model. However, the sequential method used in this section heavily relies on the closed forms
of the discrepancy of residual sum of squares when the break fraction departs from the true
one, and it is extremely difficult and tedious to develop such closed forms for nonstationary

processes with three structural changes. We leave this as future work.

4 Simulations

For empirical applications, we perform the following experiments to see how well the finite

sample properties of the estimators in the previous section follow our asymptotic results.
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Note that the t-ratios of 81, 2 and 3 have better estimation accuracy for the AR parameters
than the LSEs of 81, 82 and (3, and therefore it is recommended to use the t-ratios to conduct
statistical inference in empirical applications. As such, we only perform the experiments for
parts (a) and (c¢) of Theorem 3.1. We adopt the parameters similar to those in Pang et al.
(2017) in the following experiments. The sample size is set at 7" = 800, the interval [z, 7]
is taken as [0.05,0.95] (hence the break fraction 73 is searched within this interval in our
experiments), and the two true break fractions are set at 7 = 0.40 (hence kY = 320) and
79 = 0.75 (hence kY = 600) respectively. The number of replications is set at N = 50,000,
{y:}L, are generated from Model (1.2), yo is set at zero for simplicity and {e;}1 ; are
generated independently from N(0,1). We also set ¢ = 1 and n = 1 for the drift ¢/7".
Moreover, for the parameter f2, we set ¢; = 0.85" and kp = T with a € {0.3,0.5,0.7}.
The case where o = 0.3 represents kr = o(\/T ), the case where a = 0.5 represents kp =< VT

and the case where o = 0.7 represents VT = o(kr). For the parameter (3, we set co = 3 and
W2(1)-1

24/ fol W2(s)ds

[0,1] into 5,000 equal-spaced subintervals and use the corresponding Riemann sums to

hp = T%5. The graph of the distribution of is plotted by dividing the interval
approximate the integral. The number of replications is also set at N = 50, 000.

Note that, in our setup, 31 and 32 have a large difference (|31 —32| = 0.85/800%3 = 0.114)
when o = 0.3, a moderate difference (|31 — 32| = 0.85/800°° = 0.030) when o = 0.5 and
a very small difference (|31 — B2| = 0.85/800%7 = 0.008) when a = 0.7. Moreover, the
difference between 3 and 3 is not smaller than 0.85/800%7 + 3/800%° = 0.114, meaning
that the magnitude of the break |83 — 2| is sufficiently large.

Figure 2 shows the histograms of k; and ky. Part (a) of Theorem 3.1 predicts that
k1 is a consistent estimator of k9 when k7 = o(v/T) and has a finite estimation error in
probability when kr =< o(v/T). However, k1 has a larger estimation error in probability
when VT = o(kr), whereas ks is always a consistent estimator of k9. These findings are
supported by Figure 2.

Figure 3 shows the distributions of ¢1,¢s and t3. Part (c¢) of Theorem 3.1 predicts that ¢;
should follow the Dickey-Fuller ¢-distribution, and both ¢5 and t3 should follow the normal

distribution. These results are supported by Figure 3, except that the distributions of ¢;

*As pointed out in Pang et al. (2017), the finite sample distribution of ¢ will suffer from shape distortion
for large c1. This phenomenon can be partially explained by the findings in Anderson (1959), which showed
that, in general, the limiting distributions of the LSE and the ¢-ratio of the AR parameter in an explosive
AR(1) model may not exist. Hence, we use ¢ = 0.85 in experiments, which guarantees that the mildly

explosive AR parameter is not too far away from unity.
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and to when o = 0.7 are not very satisfactory due to the close distance between 51 and fJs.
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Figure 2: Histograms of 1%1 and IA<;2 (from left to right) under the situation where ¢; = 0.85,¢9 = 3
and T = 800.
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(¢) Br=1,82=14c1/T* with a = 0.7 and 53:1—02/\/T

Figure 3: The finite sample distributions and the corresponding limiting distributions of ¢, t5 and
ts (from left to right) under the situation where ¢; = 0.85,¢co = 3 and 7" = 800. The solid lines
represent the graphs when 7' = 800, and the dashed lines represent the graph when T = co.
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5 Conclusions

In this paper, we focus on nonstationary multiple-break autoregressive models and uncover
the key factors determining which break point will be identified first. Unlike the stationary
cases of Chong (1995) and Bai (1997), our analysis shows that the duration of the break
does not affect which break will be uncovered first in the nonstationary case. Rather, it
depends on the stochastic order of the break’s signal strength under the case of constant
break magnitude and also the square of the magnitude of the break under the case of
shrinking break. In stationary time series regression models, the signal strength has the
same stochastic order of magnitude for each break, so the duration of the break will matter.
Since the magnitude and the duration of the break are unobservable in reality, it is difficult
to determine which break will be identified first. However, in nonstationary autoregressive
models, each subsample has a different stochastic order of magnitude. Hence, we know in
advance that the break associated with the subsample that has the highest stochastic order
of magnitude of the product of the square of the break magnitude and the signal strength
will be uncovered first. This finding allows us to develop an estimation procedure that
does not require testing for breaks in the subsamples. As an application of this finding, we
revisit the financial bubble model proposed by Phillips and Yu (2011), Phillips et al. (2011)
and Phillips et al. (2015a, 2015b). We propose an estimation procedure without the need
for estimating the structural changes sequentially by the sample splitting method of Chong
(1995) and Bai (1997). The consistency, convergence rates and limiting distributions of the
LSEs of the unknown parameters in this model are established. Monte Carlo simulations of
the finite sample performance of the estimators provide evidence for our theory. For future
work along this line, one may extend our work to nonstationary panel AR models with

multiple breaks.
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6 Appendix

In this section, we provide the proof of Theorem 3.1, noting that Theorem 2.1 is just a
consequence of Lemma A.1 below. The following observation which will be used frequently in
the rest of the paper is a simple generalization of Proposition A.1 in Phillips and Magdalinos

(2007a), hence the proof is omitted:
T a
(kz) = o(B5T), for any a >0 and b > 0. (A.1)
T

The asymptotic analysis for the LSEs of structural changes relies heavily on the closed
forms of the discrepancy of residual sum of squares when the break fraction departs from
the true one. Hence, we need to develop these closed forms in the presence of two structural

changes in AR(1) models.

Lemma A.1 For Model (2.1), denote

k0 T T 2 T
Qp(r) = (2 paw)? (S yeaw)? | Cimagn vm1w)® (i Y1)’
- 0 T T T )
Zfil (T ZELJ Yy Zt:kg—l—l Yi Zt:[TT]Jrl i1

then the following results hold:

(a) for ¥ <7 < 19, we have
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(b) for 0 < 7 < 79, we have

RSSy () — RSSor(73)

= 01(7)(B2 = B1) + 02(7)(B3 — B1) + 03(7) (B3 — B2) + 0a(7) (B2 — B1)* + 05(7) (B3 — 1)’
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where

k9 k9
Zt 1 Yt— tht kO+1 Yia Ztllytzq Ztikgﬂ Yt—1Ut
Zt 1Y

kY k3 2
Zzt [rT]+1 Vi Zt k041 Yi-1Ut = 241 Y1 Zt:k(l’+1 Yi1

01(r) =2

ZT [TT]+1 Y

Ba(7) = Zt [rT]+1 yt 1Zt k941 Yt—1Ut — Zt [rT]+1 Yt— lutzt k0+1yt 1
2\ T
Zt [rT)+1 yt 1

K9 k9
s ) 2Zt KO+1 yt 1215 K941 Yt—1Ut — Et k0+1yt 1U¢ Et kK9+1 yt 1
3(T) =
Zt [TT J+1 Vi1
K9
. 1[7—T]+1 Yi- 12,5 KO+1 Vi 1Zt [rT]+1 Vi1 Z LY 1215 KO+1 Yia
4 T) = 3 i
(Zt:[TT}—H yt—l) Zt=1 Vi
kY 2 T 2 ey 2 T 2
05(7) Zti[TT]_H Y1 Zt:kg-i-l Yi—1 (Zti[ﬁ]“ Yia T Zt:kg-i-l yt—l) ;
5(7) = 5
T
(Zt:[TTH-I yg—l)
K9 T T
06(7) Ztik?+1 yt2—1 Zt:ngrl yt2—1 Zt:k‘l)ﬂ 93—1
T =
Zt:[TT]—H Y
k3 2 T 2 Ky 2
0(7) Ztik(l)_l'_l Y1 Zt:kgﬂ Yi—1 Zt;[TT]+1 Y
T 2
(Zt:[rT]H yt—l)
S 2 ZT 2 Zk’g 2
Os(r) = t=[rT)+1 Yt—1 2ot=k+1 Yt—-1 2up—p0 41 Yi—1
s\l — 2
T
<Zt [+T)+1 yi 1)
K9
0o () 1[TT]+1?J1t 1Zt K9+ 1yt 121: k0+1yt 1
o(7) =

2
(Zt:[TT}—H yt—l)
(c) for 79 < 1 < 1, we have
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+79(7) (B3 — B1)(Bs — B2) + Q7 (7),

where
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Proof. We first prove part (a). Note that when 70 < 7 < 72, we have
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and the latter result implies
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As a result, it follows from (A.2)-(A.6) that
RSSs (1) — RSSy 1 (75)

at
= —2((Bu(r) = 8) = (Bo(m) = ) 3w+ ((Bolr) = B1)* = (Bul8) — 51)?) Z v
t=1

[rT] [+T]
=2((Ba(r) = ) = (Be() = B2)) D e+ ((Bulr) = B2)* = (Bu(ef) — 320) S wi
t=k9+1 t=k0+1
18
=2((Ba(r) = B2) = (Bolr) = B2)) D e+ ((Bo(r) = B2)? = (Bul(rf) — B2)?) Z v
t=[rT]+1 t=[rT]+1
. (T o ye1ug)?
—2(B3(1) — B3) Z Yi—1us + (B3(T Z yP g+ t;fQH i 21 '
t=k9+1 t=k9+1 Zt:ngrl Yi—1

= (1) (B2 — B1) + m2(7)(Bs — B2) + 13(7) (B2 — B1)* + na(T) (B3 — B2)* + Q1(7),

where
m(7)
[7T] Y2 k3 2 k9 oy 0 [+T]
_ 9 2 k041 Y B thk?+1yt—1 Z w42 Dot Y _ >t Yi Z ”
- [rT] 2 ky o -t [rT] 2 k3 o ye-tie
t=1 Yt—1 dote1Yia t=1 =1 Y1 D21 Vi) = E9+1
T T k9 k9 0
) Zl[;k]gﬂ Vi1 Zk:ﬂ Yr—1ut Ztik‘f+1 Vo1 Doita Y1t | 9
t ( [T], 2 )2 B k3 9 N9 Zyt_l
t=1 Yi—1 (21 ¥i1) t=1
k T k kS [rT]
_9 221 Vi ZL] Ye—1ut Doty Yi1 Dt Ye1ue Z 2
( [T] 2 )2 k3 2 )2 =1
t=1 Yi-1 (21 ¥i1) t=k0+1

Yy Dot Y1 Dot Y1
Ztltlzytlut+2t1tltl Zytl
Zt 1yt 1 t=[rT]+1 (Zt 11% 1)? t=[rT)+1

k9
— 9 EtT:l Y—1Uy Ztil Yt—1Ut Zl 2
— [*T] 9 k(z) 9 Yi—1»

t=1 Yi—1 D21 Y t=1

2

0
Zt k9+1 yt 1 Zt k9+1 yt IZt [rT)+1 Ye—1Ut
= 5 Z Ye—1ug + 2 Z Vi1

n(r) =
Zt [rT)+1 yt 1 t=[rT]+1 (Zt [rT]+1 yt 1) t=[rT]+1
Zt [rT)+1 yt 1 Zt [rT]+1 Z/t 1Zt [rT]+1 Yt—1Ut
o T Ny -2 S 2
Zt [TT]+1 yt lt k0+1 (Zt [TT]+1 yt 1) t— k0+1

kO T 2
2 (zti[rT]Jrl i Et:kgﬂ Ye—1Us — Eti[rT}H Yt—1Uz Zt:ngrl yt—l)

)

T 2
2 i=[rT)+1 Vi1

25



[TT 2 k‘o 2 kO
Zt k:0+1 Zt k0+1 yt 1 - 9
n3(T) = T -\ — Z?Jt—1
Zt 1 yt 1 thl yt_l t=1
2 2 2
[rT) k9 k9
Zt 1?/t 1 Zt 1?/t 1 Ztllyt{l - 2
+ [TT} 9 - Z yt 1 k,O Z yt—l
t=1 Yi—1 Zt:l ?/t71 t=k041 t= 1yt 1/ t=[rT+1
K0 K9
i (Ztlly? 1)2 Zt2[7—T]+1 yt271
- [7T] ’
Zt 13/t 12 4= 1yt 1
ZT o y2 2 kg Z y 2 T
t=ky+1 Jt—1 t=[rT]+1 Jt—1
m(r) = <“> DR e KBy R Y
2ot=frT)+1 Yin1 t=[rT]+1 Zt:[TT]—‘rl Vi1 t=k9+1
k3 2 T 2
_ Zti[TT]_H Yi—1 Zt:kgﬂ Yi—1
— = .
Zt:[’rT]—‘rl Y
and
Qi,r(7)
— 9 ZL 1yt 1Ut Zt 1yt 1Ut Z U
- TT] Ye—1Ut
Z -1 Zt 1yt 1 t=1
2
2 k0 k9
z[eT 1]yt 1Ug Do Ye—1Ut - 9
N S, ) ) e
-1 Zt:l Y1 t=1
k9 [T
1 Yt—1Ut Ztil Yt—1Ut Z
TT] K 5 Yr—1Ut
Vi o211 ) =kt
2 k9 2 [7T]
t 1 yt 1Ut Zti1 Yt—1Ut
! A\, )] 2 v
t 1 yt 1 DotV t=k9+1
k9 K9
Zt [rT)+1 Yt—1U¢ Ztil Yt—1Ut -
Z K Z Yt—1Ut
t= TT]+1yt 1 Dot Vi1 ) =741
2 0 2 %0
Zt [tT]+1 Yr—1Ut Ztil Yr—1Ut 2 9
- | == > oyt
Z k2 2
t=[rT]+1 yt 1 > 21 Vi t=[rT]+1

T 2 T
Zt [rT)+1 Yt—1Ut d Zt:[TT}H Ye—1Ut T 9 (Zt:k8+1 Yr—1ug)?
Z Yr—1ut + T Z Yi1 + T

2 2
Zt [rT]+1 Yi1 t=kQ+1 Zt:[TT]+1 Yi—1 t=k9+1 Zt:kg-i—l Yi—1

T 2 T 2
i pew)? (O pw)? | Cga 1w (S yau)
K [T T T
> Vi ZtT 1] Yi zt:k%—i—l Y1 Zt:[TTHl Y1
= Qp(7).

These prove part (a).

26



To prove part (b), note that when 0 < 7 < 70,

[rT]
ZtT 1 YtYt—1

31:(7') -
27[t :,1] yt 1
we have
BSL‘(T) - B =
and
T
Ba(r) = D ot=[rT] 1 YY1

T
D= [T 41 Vi1

kO 5
2t rry Y1

k2
2 s KO+1 Vi

[rT]
_y +ZtT1 Yt— 1Ut

T
Zz[t 1] yt 1

T
ZE 1} Yt— 1Ut

T
Zz[e 1] yt 1

>i- ;
t=k+1 Yt—1

(A7)

T
2= [rT]+1 Y1t

= b + b2 3 :
ZtT:[TT]H Vi Zt:[rT}H Vi ZtT:[TT]H Vi1 Z{:[TT}"Fl Vi
which gives
( kO T 2 T
A Zt K941 Vi1 Zt:kgﬂ Y1 Zt:[TT}H Yi—1Uz
B(r) = By = (B = B) g (B — ) =Ll
Zt TT—i—lyt 1 Zt:[rT]—f—l Y1 Zt:[TT]—‘rl Yi—1
A Z - y 1 ZT 0 ?JQ 1 ZT:T Ye—1Ut
Bs(r) — B2 = (B — Bo) S+ (B3 — o) o R T (A)
Zt [rT)+1 yt 1 Zt TT]+1 yt 1 Zt:[TT]—‘rl Yi—1
k9
A Z - Yi > KO+ Y1 ZT:T Yr—1Ut
Bs(7) — B3 = (B — Bs) S L+ (By — fs) g =LV L2 R
\ Zt [+T]+1 Yi Zt:[TT]—H Yi1 Zt:[TT]-‘rl Yi—1
In addition, since
[7T] T R 9
RSSor(T) = Z Y — B (7)Y 1) Z ( —53(7)%71)
t=[rT|+1
[7T] 9 kY R 9
= Z(ut (Bz(T) = B1)ye 1) + ) (ut—(ﬁ( ) 51),%—1)
t=1 t=[rT)+1
2 T . 2
+ Z (we = Bs(r) = Bowna) + D (e = (Bo(r) = Ba)ynn)
t=k9+1 t=kJ+1
T [7T] [7T]
= Z _2(/B$ Bl Zyt 11U + 5x 61 Zyt 1
t=1
]{20
—2(f3() ye—1u + (B3(r Z Vi1
t=[rT]+1 t= [TT]+1
kO
—2(B3(7) = B2) Y wyraue + (Bs(7 Z Vi1
t=k0+1 t=k9+1
—2(B3(7) — Bs) Z ye-1ue + (Bs(r Z Vi1,
t=kJ+1 t=kJ+1

27



using (A.3) and (A.5)-(A.8), we have
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The five lemmas below are needed in the proof of Theorem 3.1.

Lemma A.2 For Model (2.1), under assumptions C1-C4, the following results hold jointly:
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Part (b) can be proved in a similar manner, thus the details are omitted. Part (c) is implied
by (A.11) and the functional central limit theorem.
It is not difficult to see that parts (a), (b) and (c) hold jointly. O
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Lemma A.3 For Model (2.1), under assumptions C1-C4, the following results hold jointly:

(a) 5= —— Z Ye—1ug = oW ()X,
52 VTkr ~ k41
k:O
1
(b)— Z i 1:>fW2(T1)
Bg(k Tth k941
() — 5 o oW ()
¢) ——o— = oW(m),
gy T

where X is a random variable following N (0, %) and independent of W (7).

Proof. We first prove part (a). In view of part (c) of Lemma A.2, Lemma C.1 in Pang et
al. (2017) and the observation (A.1), one can show that
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It is clear that W (7)) and X are independent of each other.

To prove part (b), applying part (c¢) of Lemma A.2 again, one can show that

yko 2(t—1—kY)
Z Vien = (k=) Z Pa ( op(1)
52 TkT t=k{+1 5 VTkr - E9+1
2(k9—k?
_ yko 1 . 1)_1+0(1)
T kﬁwcfk) B2 -1 b
o2
= —W3()). (A.13)
201
We now prove part (c). Note that
Yk 1 kS —k9 k3=t
T s = g = | A et Z 8
VT By VT t=k0+1
Yk9
= 4+ 0,(1
\/T P( )
= oW(r).
It is easy to see that parts (a), (b) and (c) hold jointly. O
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Lemma A.4 For Model (2.1), under assumptions C1-C4, the following results hold jointly:

1

(a)k— Z Yyirug = W (1)) Z,
ﬁz VThTt k0+1
1
(b) (WI—RY) Z i1 = 7W2(7'1)
52 ThTt kQ+1

where Z is a random variable following N (0, %) and independent of W (7).

Proof.
(2017), we have

Z Yt—1Ut =

522 VThTt kQ+1

=

To prove part (a), using part (¢) of Lemma A.3 and Lemma A.1 in Pang et al.

k3

1 -
EQ—K9 Z By

1-k9
yko‘f‘ZBtlZz ug

52 'VThr t—k:0+1 i=k9+1
Z B, 1 0,(1)
52 VThTt k9+1
(TS*TQ)T
yko ’T T2
k: k:o\/> Iy Z 533 kfj+1+0p(1)
UQW(Tl)

It is clear that Z and W (V) are independent of each other.

To prove part (b), note that

1 k5 1 k5 i
2 t—1-kJ t—1—i,,
i Y = g O (A7 e Y 4
5 Thr t=k3+1 B Thr t=k3+1 i=kJ+1
2
Yig (t—1—kY)
LS e
g hr kQ-+1
= —WQ
by part (c) of Lemma A.3 again.
It is easy to see that parts (a) and (b) hold jointly. O
To find out the leading terms in RSSs (1) — RSSy 1 (79) when 7 departs from 72, we

have the following lemma:
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Lemma A.5 Denote kyp = |83 — B2| = |Bsr — Bor| and

Bir={m:m¢€ Zp, k) <m < kY

BQT:{m:mGZT,1§m<k(1)}

Bsr={m:m € Zp, kY + My <m < T}
with Mp > 0 such that Mp — oo at an arbitrary slow pace; Zr denotes the set {0,1,2, - -
For Model (2.1), under assumptions C1-C4, we have

a OTTOSTSTO,
1 2

— MT}

sup |ni(T)/m()| = 0p(k}), i=1,2,3
meByT
sup [Qr(Z)/m(Z)| = opl3)
meBir
(b) for0 <7 < 19,
m 2
sup [6;(=)/0¢(= ‘ =op(k7), 1=1,2,3,4,5,7,8,9
meEBor T T
m m
sup |Qp(=)/0 —‘:0 K2
s [0 (E/A ()| = on(eh)

(c) for 79 < 1 < 1,

m m )

sup %(?)/76(—)‘ = op(/-i%), 1=1,2,3,4,5,7,8,9
mEBgT

sup Q0 (1) /36(70)| = opl3)

mEBgT

Proof. To prove part (a), note that

when k‘T = O(hT)
when hy = o(kr)

T 2
Zt m—+1Yi—1

O(5),
0 # Kk = |Bsr — Por| = ;
(E)’
and
1
sup — = sup
meBT 774(T)

Zt:ngrl Vi1

0
B
mebir Zt m1 yt 1Zt K9+1 yt 1

1

= 1
K9 T 2
Do kO~ My Yy Zt:kgﬂ Yi—1
2(k9—k?)
I6; 1
) <1+O( ) ) O
52 T M 52 hr
1
= Op(ﬁ
g(kQ_kl)TMT

by Lemmas A.3 and A.4. For the term sup,,¢p,.. [71(F)/n4(7F )|, noting that

m

sup

k3
. Dot Y1t Z

m
=1 Yt—1Uz
771(*)‘ = sup 2t

m 2
meBir T meBiT Zt:l Y
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thl Y

kS

t=1

2

Yi—1

T},

(A.14)



K9 K9

< o[BS By,
T omeBir | Zie Y t=1 Zt Wiy | =
k 0
< swp Do Ui 1Ut Z Zt 1yt 11Ut Z
meByr \| Dot Vi 1= Zt 1%% 1| t=1
Zt LU ,}flyt 1U¢
< Z?Jt— Z vit
Ztlytltl Ztlytltl
k9—K9
T 2Tk
= Op(\/;TQ) + O Sy L)
52 Tkr

by Lemmas A.2 and A.3, we have

1
na(7F)

m

m(=— sup

) : :
T meByr

m(7)
L 0 ) = op(kT)-
T My

na(7)

For the term sup,,cp, . [12(7)/n4(7F)], it is clear that

sup
meByT

< 3/2\ .
meByT ‘_OP(T ) OP( S(kg

2 2 T k3 T 2
(m) (Et:m—i—l Y1 Zt:ngrl Ye1Ue = Dy g1 Yr1e Zt:ngrl Y1
sup [n2(+ ‘ = sup 7
meByT T meEBT Et:m—i—l th_l
k3 2 T k3 T 2
Zt:m—i—l Yi—1 Zt:kg-u Yi—1Ut Zt:m—i—l Yt—1Ut Zt:kg—H Y1
< sup T + sup T
B Z 2 meDB Z 2
meBr t=m+1 Yt—1 1T t=m+1 Yt—1
< Z Yt—1ut| + sup Z Yt—1Ut
t=k9+1 meBIT 1 — i1
k9 k3
K=Ky /. 2 2
< Op(By* 'VThr)+ sup Z Yi1 Z Uy
meBir t=m+1 t=m+1
k9 k9
k3—kY / o S
< Op(By Thr) + Z Yi—1 Z Uy

t=k9+1 t=k9+1

Oy §g*k9¢ThT>+0p< 8" i)
— 2 IT«/

Then, it follows from (A.14) that
m(7) —kl 1 9
sup < O T\/ kT W) = Op(”T)'

meEBiT 7]4( T ) B2T TMT

For the term sup,,cp,,. [73(7)/na(7F)|, we have
T
n3(7) . (Zt;1 thfl) Zt =m+1 yt 1 Zt:erl yt2—1
sup | = sup W S ; . .
meBir T meBir 32yl Y Y dotim1 Vi1 Zt:kg-',-l Yi1

38



k9 T
OPARERYE Zt:k?ﬂ Vi1
k9 k9 T
> yt2—1 Dot yt2—1 Et:ngrl yt2—1

Bg(kg_k?)TkTT2B;(kg_k?)ThT

= Op(’f%r)-

= Op(

To examine the stochastic order of the term sup,,cp, . |27 (7F)/n4(7F)|, we first apply Lem-

mas A.2-A.4 to have

9 T
(Zfi1 Ye—1us)? (Zt:k8+1 Yi—1ur)?
Y = Op(l) and A 5 = Op(l)'
D21 Yia Zt:kg—i-l Y

Second, applying Cauchy-Schwarz inequality, we have

m 2
wp |ty 1)

m T
< sup 3wt 3 = 0,(M)
t=1

meB1T Zgil yt{l meBir ;7
and T T T
2
_ _1u
sup (Zt}mH < 21 ! < sup Y oup <) g = Op(T).
meBir Zt:m—i—l Y1 mEBIT {11 t=1
Therefore,
m
p |r(2) < 0,1
meB
which together with (A.14) yield
Qr(7F)
sup | — 1= | = 0p(K7).
meBT 774(T)

These prove part (a).
Part (b) and part (c) can be proved in a similar manner, hence the details are omitted

for the sake of brevity. O

Lemma A.6 For Model (2.1), under assumptions C1-C4, we have, for any fized integer
m >0,

(a) !

0_ 1.0
gk ’“1)11(/33 — By)?

m
(RSS2r(r8 = 7) = RSSaa(r) ) = ma® W (),

(b)

m
e (RSSQ,T(TS + ) - RSSQ,T(TS)) = ma?W?2(r0).
By ? VT (B3 — B2)?

Proof. To prove part (a), by the similar arguments in the proof of Lemma A.5, one can

show that
o m 0
RSSQ,T(TQ — ?) — RSSZT(TQ)
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= (s — *)(Bg — B2)*(1+ 0p(1))
kJO
_ Et k9 — m+1yt 1Et k0+1yt 1(53_52)2(1+0p(1))
Zt:kg—m-H Yi1

kS

= Z Y7 1(Bs — B2)*(1+ 0p(1))

t:kgferl

by Lemmas A.3 and A.4. Then, we immediately have

1 m

— RSSgyT(TO — 7) — RSSZT(TO)

BT (5 — )2 ( ST )
K9

1 2
PG Z yi-1(1+ 0p(1))
g kQ—m41

myko
= W(l‘*‘%(l))
2

= m02W2( {))

by Lemma A.3 again. This proves part (a).

To prove part (b), similarly, it can be shown that

m
RS Sy T(Tg + ?> — RSSZT(TQO)

= 6(73 + )(ﬁz — B2)*(1 + 0,(1))

k9 k§+m k§+m 2
Zt k0+1 lzt k9+1Y 121& k0+1
= Ten s (8 = (1 + 0y(1)
(21 i)
kg-i—m
= Y (B B2)P (1 +0p(1))
t=kJ+1

by Lemmas A.2 and A.3. Then, we immediately have

1 m
30—k ) (RSSQ,T(TS + ?) — RSSQyT(Tg))
By ? (B3 — B2)?
k0+m
= k‘ k() Z yt 1 1+0p ))
52 Tt kQ+1
myko

ﬁ(l"‘o (1))
621{ k) p

= mo*W? ()

by Lemma A.3 again. This proves part (b).
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Proof of Theorem 3.1. We prove the last results in (3.1)-(3.3) first. To prove the last

result in (3.1), we first prove the following result:
a0 — 73| = Op(1/T). (A.15)

To this end, we shall use the contradiction argument. Suppose (A.15) is not true, then there

exists an integer sequence Mr > 0 such that My — oo, My = o(kr), M = o(hr), and
lim inf P(|ky — k9| > Myp) > a, (A.16)
—00

where « is a positive constant in (0, 1]. Recall the definitions of kp, Zy, Bir, Bor and Bsp

in Lemma A.5 and define

Bor = {m:m € Zy,k3 — My <m <k + Mr}.

Note that
c 0 _ : m
P(|k‘2 k‘2| > MT) = P(m€B1Tan£TUBgT RSSQ’T( T) < mlEanOT RSSQ T( T ))
< .
< P(meBlTbIJIBfQTUB3T RSSQ T(T) < RSSQ T(TQ))
< ZP 1115”(355”(7,) RSSy7(19)) < 0). (A.17)

To examine the term P(infpep,, (RSS2 r(F) — RSSor(79)) < 0), using part (a) of Lemma
A1, part (a) of Lemma A.5 and the fact that both |82 — (1| and |53 — S2| approach zero,
we have for large T that

P( inf (RSSar( T) RSSs 7 (D)) < 0)

meBT

= P(mierng(nl(?)(ﬁ2_Bl)+n2( )(Bs = B2) +13(7 (B2 — 1) +774( )(B3 — B2)°
+Qr(5)) <0)
= Pt PR = 50+ 22— )+ S 3 5+ (55—
Qr(7)
o)) <Y
e s () Q)
< PO @G =m =2, s Ll = e B b <0
= P( il m(G) (B — 5’ (L+ 0p(1) <0)
= o(1) (A.18)
o : m ?/13371 ZtT:kg-l—l Vi B DThy
i M) 2 ST o ¥ = Ol 2kT+hT )
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which suggests inf,,ep,, n4(%) (B3 — B2)? will diverge to infinity in probability by (A.1).

Similarly, one can use part (b) of Lemma A.1 and part (b) of Lemma A.5 to obtain

P( inf (RSSQ,T(T) RSSo7(19)) < 0) = o(1) (A.19)

meEBor

and use part (c) of Lemma A.1 and part (c¢) of Lemma A.5 to obtain

P( inf (RSSyr(—

meBar T) - RS5Sy1(73)) < 0) = o(1). (A.20)

The details are omitted. Now, combining (A.17)-(A.20) together leads to
P(lky — k3| > Mr) = o(1),

which contradicts (A.16). Thus, (A.15) is proved.
Next, we will improve the result (A.15). Given (A.15), for any n > 0, there exists an
M > 0 such that P(|ky — k9| > M) < n. Therefore,

P(ko # k)
= P(lky — k3| > M) + P(lky — k3| < M, ko # k3)
M M
m
< n+ leP(RSSQ,T( - ?) RSSy7(19) < 0) + mzlp(Rssg,T(Tg + ) - RS Sy 7(19) < 0)
M 1
= n+ Z P R (RSSQ,T(TS T) RSSy7(19)) < 0)
M 1
+) 0 P( . (RSSo(r9 + 1) — RSSyp(9)) < 0)
=1 2 kl)T(ﬂ:& — [32)? T
= o(1)

by Lemma A.6, the finiteness of M and the arbitrariness of 7. Hence, the last result in (3.1)
is proved.

Based on the above result, one can easily prove that the limiting distributions of ,5’3(%21)
and S5 (7)) are the same by using the arguments in the proof of Theorem 4 in Chong (2001).
Then, applying Lemma A.4, we have

1

O i1 Y1t
kR k00 kY Bkg_k?\/Th -
\ Tﬁg Y(B5(19) — Bs) = 2Tlc2 -2 =,

BQ(kO k) Zt k0+1yt 1

AR 82 By ) — ) = .

The last result in (3.2) is proved.

implying
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Similarly, using Lemma A.4 again, we have

ET y? W ZtT:lcgﬂ Ye—1Ut

t=kJ+1 Jt—1 , 4 a2p VTh

S (By() — o) = T = N(0,1),
\/025§(kg

T 2
—0 Zt:ko 1Yi-1
kl)ThT 5+

T 2
mzvzmﬁf“W&@ﬁ—&a:Nmn.

The last result in (3.3) is proved.

which implies

To prove the remaining results in Theorem 3.1, note that 7'? , 51 and (o are estimated
using the subsample {y,--- ,yfm} and we have proven that P(l%g # k) — 0. Hence, the
asymptotic properties of the estimators of 7, 31 and 32 obtained through the subsample
{y1,--- ,y,;Q} are the same as those of the estimators of 70, 3; and 3 obtained through
the subsample {y,- - - ,ykg} by the similar arguments in the proof of Theorem 4 in Chong
(2001). The asymptotic properties of the LSEs of the break point &y and the two AR pa-
rameters 31 and (2 under the subsample {y,--- ,ykg}, which contains a unit root model
and a mildly explosive AR(1) model, follow immediately from Theorem 1.3 and Lemmas

B.1 and C.2 in Pang et al. (2017). O

43



