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1 Introduction

The change-point problem has received considerable attention in the literature of economet-

rics and statistics over the past decades. Many time series data in economics are character-

ized by single or multiple structural changes (Hansen, 2001), and there is a vast literature

on this subject. For example, Bai and Perron (1998) provided the estimation and test-

ing procedures for linear models with multiple structural changes. Harvey et al. (2006),

Halunga and Osborn (2012) and Kejriwal et al. (2013) investigated structural changes in

persistence. Recent development in this area includes Fryzlewicz and Rao (2014), Cho and

Fryzlewicz (2015), Lee et al. (2016), Roy et al. (2017) and Wang and Samworth (2018),

who investigated the problem in high-dimensional models.

In this paper, we focus on the statistical inference for nonstationary multiple-break

models, since the stationary counterpart has been extensively studied in the literature. For

example, Chong (1995) and Bai (1997) proposed a sample splitting method to estimate

the breaks one at a time by minimizing the residual sum of squares. In contrast, Bai and

Perron (1998) proposed to estimate the breaks simultaneously by minimizing the residual

sum of squares. There are pros and cons for the aforementioned estimation procedures.

For example, for the simultaneous estimators of breaks, their asymptotic distributions in

stationary models are symmetric, but the computational burden is heavy. The least-squares

operations are of order O(T 2) even under the most efficient algorithm (Bai and Perron,

2003), where T is the sample size. In contrast, for the sequential estimators of breaks,

the computational burden is light (the least-squares operations are of order O(T )), but

the asymptotic distributions of the estimators are asymmetric. Hence, additional efforts,

such as repartitioning the sample, are needed in order to obtain symmetrically asymptotic

distributions of the estimators. More importantly, the studies by Chong (1995) and Bai

(1997) showed that which break would be identified first depends on the magnitude and

the duration of the break, which are unobservable in reality. Hence, a test procedure for

breaks is needed to assist in estimating the remaining breaks in the subsamples split by the

breaks found earlier. However, the results of Chong (1995) and Bai (1997) are not directly

applicable to nonstationary time series models.

The first contribution of this paper is to reveal the key factors determining which break

will be identified first in nonstationary autoregressive models with multiple breaks. Unlike

the stationary case, we show that the duration of a break does not affect if it will be

identified first. Rather, it depends on the stochastic order of magnitude of signal strength of
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the break under the case of constant break magnitude, and also depends on the square of the

magnitude of the break under the case of shrinking break magnitude. Since the subsamples

usually have different stochastic orders in nonstationary autoregressive models with breaks,

one can therefore determine which break will be identified first. Under this situation, a

test procedure for breaks is no longer needed, and the estimation procedure for breaks can

therefore be simplified.

The second contribution of this paper is to provide an estimation procedure and the

asymptotic theory for a financial bubble process with two breaks by applying our previous

finding. This financial bubble process is similar to but more flexible than those proposed

in Phillips and Yu (2011), Phillips et al. (2011) and Phillips et al. (2015a, 2015b). It is

well known that the global financial crisis of 2008 has a long-lasting negative impact on

global economies and asset markets. Central bankers and regulators have made great efforts

to understand the formation, evolution and burst of financial bubbles in order to develop

early warning systems of financial crises. Researchers have made great contributions to

the estimation and detection of bubbles, see Phillips et al. (2011), Phillips and Yu (2011),

Homm and Breitung (2012), Shi and Song (2016), Phillips et al. (2015a, 2015b), Harvey

et al. (2015, 2017), Harvey et al. (2016) and Phillips and Shi (2018). In the papers of

Phillips et al. (2011), Phillips and Yu (2011) and Phillips et al. (2015a, 2015b), the authors

proposed an AR(1) model with two changes in the AR parameter at two unknown break

dates as follows:

yt =



















β1yt−1 + εt, 1 ≤ t ≤ k01,

β2yt−1 + εt, k01 + 1 ≤ t ≤ k02,

y∗
k01

+
∑t

i=k02+1 εi, k02 + 1 ≤ t ≤ T,

(1.1)

where β1 = 1, β2 = 1 + c/kT with c > 0 and kT being an increasing sequence of T going to

infinity such that kT = o(T ), y∗
k01

= yk01 + y∗ with y∗ = Op(1) and {εt} being model errors.

This model consists of three regimes. The first regime is modeled by a unit root process,

which represents the normal market period. The second regime is modeled by a mildly

explosive process (Phillips and Magdalinos, 2007a), which represents the bubble expansion

period. The third regime is modeled by an abrupt bubble collapse followed by a period of

normal market conditions. This model is useful for modeling a financial bubble process from

its origination, to expansion, and to its eventual collapse. Phillips et al. (2011), Phillips and

Yu (2011) and Phillips et al. (2015a, 2015b) applied this model to NASDAQ data from the

1990s and confirmed Greenspan’s declaration of “irrational exuberance” in December 1996.

A similar model was proposed in Harvey et al. (2017). They assumed that yt = µ+ ut,
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where µ is a constant, and {ut} contains a bubble process and a collapse process. For this

model, the authors applied the least squares method to the differenced data and successfully

obtained the consistent estimators for the regime change points. However, in Harvey et al.

(2017), the explosive and the stationary AR (1) models, instead of the mildly explosive and

the mildly integrated AR(1) models (Phillips and Magdalinos, 2007a), are used to model

the bubble expansion process and the bubble collapse process respectively, which makes the

model less flexible.

To make Model (1.1) more flexible, Phillips and Shi (2018) suggested the inclusion of

an asymptotically negligible drift in the normal market period and the use of a transient

mildly integrated process to model the bubble collapse process. Following Phillips and Shi

(2018)’s suggestion, we study the following AR(1) model with two unknown break dates,

namely,

yt =



















cT−η + β1yt−1 + εt, 1 ≤ t ≤ k01,

β2yt−1 + εt, k01 + 1 ≤ t ≤ k02,

β3yt−1 + εt, k02 + 1 ≤ t ≤ T,

(1.2)

where c ∈ R, η > 1/2, β1 = 1, β2 = β2T = 1 + c1/kT , β3 = β3T = 1 − c2/hT , c1 > 0 and

c2 > 0; {kT } and {hT } are two sequences of positive constants increasing to infinity such

that kT = o(T ) and hT = o(T ). We denote k0i = [Tτ0i ], i = 1, 2, where [·] denotes the integer
part, and the break fractions τ0i s are fixed constants between zero and one.

Note that Phillips et al. (2011), Phillips and Yu (2011), Phillips et al. (2015a, 2015b)

and Phillips and Shi (2018) focused on real-time bubble detection via recursive right-sided

unit root testing procedures. Though consistent estimators of the break fractions can be

obtained by these procedures, their convergence rates and the statistical properties of the

estimators of the AR parameters are not explored. Hence, one of the aims of this paper is

to provide an estimation procedure and an asymptotic theory for Model (1.2).

There are two points worth mentioning. (1) Examining structural changes in autore-

gressive models is of interest as the time series properties of the model, such as stationarity,

may be different before and after the change. As a result, the rates of convergence and the

asymptotic distributions of the estimators are difficult to derive (Chong, 2001; Pang et al.,

2017). (2) The change-point analysis in this paper differs from that in Bai (1997) in several

aspects. First, the model studied in Bai (1997) was a stationary time series model with mul-

tiple breaks, while we study a nonstationary time series model with multiple breaks in this

paper. Second, a test procedure for breaks is needed to assist in the estimation of breaks in

subsamples in Bai (1997), while such a procedure is no longer needed in our paper. Hence,
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the estimation procedure becomes simpler. Third, Bai (1997) derived the asymptotics for

the estimators by analyzing the expectation of the residual sum of squares rather than the

residual sum of squares itself. However, it is difficult to calculate the expectation of the

residual sum of squares in nonstationary autoregressive models. Thus, we cannot derive the

asymptotics for the estimators by following Bai (1997). Instead, we derive the asymptotics

by analyzing the residual sum of squares directly, which makes the proofs more complicated

and challenging.

The rest of the paper is organized as follows. Section 2 states the assumptions and

develops an estimation procedure for the unknown parameters in Model (1.2). Section 3

demonstrates our theoretical findings. Section 4 presents simulation results to examine the

finite sample performance of the estimators. Section 5 concludes the paper. The proofs of

our theoretical results are relegated to the Appendix.

2 Model Assumptions and Estimation Procedure

2.1 Model Assumptions

For Model (1.2), we make the following assumptions:

• C1: y0 = op(
√
T ).

• C2: {εt} is a sequence of i.i.d. random variables with mean zero and variance 0 <

σ2 < ∞.

• C3: {kT } and {hT } are two sequences of positive constants increasing to ∞ such that

kT = o(T ) and hT = o(T ).

• C4: 0 < τ < τ01 < τ02 < τ < 1.

Remark 2.1 Assumption C1 implies that y0 will not affect the asymptotic properties of the

estimators of the AR parameters and the break points. The assumption of i.i.d. errors in C2

is only for the convenience of exposition in the proofs. One can extend our results to some

cases that allow for dependence of the errors. Interested readers are referred to Phillips and

Magdalinos (2007b) and Magdalinos (2012) for details. In addition, the assumption of finite

variance in C2 can be relaxed. Our theoretical results will still hold when the assumption of

finite variance is replaced by the assumption that the model errors belong to the domain of

attraction of the normal law with possible infinite variance. Interested readers are referred
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to Pang et al. (2017) for details. Assumption C3 is the same as that in Phillips and

Magdalinos (2007a). Assumption C4 is standard in the change-point literature (Chong,

1995; Bai, 1997; Bai and Perron, 1998; Chong, 2001), which suggests that each regime

occupies a non-vanishing proportion of the sample. This is to ensure the identifiability of

the AR parameters and the break points.

2.2 Estimation Procedure

We will conduct a sequential procedure in the estimation of structural changes for Model

(1.2). First of all, we rewrite Model (1.2) as follows:

yt =



















β1yt−1 + ut, 1 ≤ t ≤ k01

β2yt−1 + ut, k01 + 1 ≤ t ≤ k02

β3yt−1 + ut, k02 + 1 ≤ t ≤ T

, (2.1)

where ut = cT−η + εt when t ≤ k01 and ut = εt when t > k01. To develop an estimation

procedure for Model (2.1), we first compute the difference of the residual sums of squares

at k01 and k02. This difference is a result of Lemma A.1 in the Appendix which allows us to

develop a sequential estimation procedure. Let RSS(τ) be the residual sum of squares at

the date [τT ], then it can be shown that

Theorem 2.1 For Model (2.1), we have

RSS(τ01 )−RSS(τ02 ) = η1(β2 − β1) + η2(β3 − β2) + η3(β2 − β1)
2 + η4(β3 − β2)

2 +ΩT ,

where















































































η1 = 2





∑k01
t=1 yt−1ut
∑k01

t=1 y
2
t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=1

y2t−1

η2 =
2
(

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 yt−1ut −

∑k02
t=k01+1

yt−1ut
∑T

t=k02+1 y
2
t−1

)

∑T
t=k01+1 y

2
t−1

η3 = −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1

η4 =

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

∑T
t=k01+1 y

2
t−1

and

ΩT =
(
∑k02

t=1 yt−1ut)
2

∑k02
t=1 y

2
t−1

+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

− (
∑k01

t=1 yt−1ut)
2

∑k01
t=1 y

2
t−1

−
(
∑T

t=k01+1 yt−1ut)
2

∑T
t=k01+1 y

2
t−1

.
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In general, ΩT has the smallest stochastic order of magnitude among the five terms

in the closed form of RSS(τ01 ) − RSS(τ02 ), η1(β2 − β1) has a smaller stochastic order of

magnitude than η3(β2 − β1)
2, and η2(β3 − β2) has a smaller stochastic order of magnitude

than η4(β3 − β2)
2. For example, suppose Model (1.2) is a stationary model, that is, all βi’s

are fixed constants satisfying |βi| < 1, then we have

η1(β2 − β1) = Op(
√
T ), η2(β3 − β2) = Op(

√
T ), ΩT = Op(1)

and

η3(β2 − β1)
2 = Op(T ), η4(β3 − β2)

2 = Op(T ).

Therefore,

RSS(τ01 )−RSS(τ02 ) = −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1

(β2 − β1)
2(1 + op(1))

+

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

∑T
t=k01+1 y

2
t−1

(β3 − β2)
2(1 + op(1))

= P2(1 + op(1))− P1(1 + op(1)), (2.2)

where

P1 := η3(β2 − β1)
2 and P2 := η4(β3 − β2)

2.

The η3 and η4 are the signal strength of breaks, and the (β2 − β1)
2 and (β3 − β2)

2 are the

squares of the magnitude of breaks.

Therefore, which break point will be identified first is determined by the stochastic orders

of P1 and P2. If P2 has a higher stochastic order of magnitude than P1, then RSS(τ01 ) −
RSS(τ02 ) will diverge to ∞ in probability, and k02 will be identified first asymptotically.

Instead, if P1 has a higher stochastic order of magnitude than P2, then RSS(τ01 )−RSS(τ02 )

will go to −∞ in probability, and k01 will be identified first asymptotically. However, when

P1 and P2 have the same stochastic order of magnitude, which break will be identified first

depends on the magnitude and the duration of the break, which are unobservable in reality.

Therefore, it is difficult to determine which break will be uncovered first, and we need to

test and estimate the second break from all subsamples split by the first estimated break

point. We provide three illustrative examples below.
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Example 1 (a stationary model with two breaks): Suppose all βi’s are fixed constants

satisfying |βi| < 1, i = 1, 2, 3. Then, we have

P1

T

p→ σ2

τ01
1−β2

1
· τ02−τ01

1−β2
2

τ01
1−β2

1
+

τ02−τ01
1−β2

2

(β2 − β1)
2 =

τ01 (τ
0
2 − τ01 )(β2 − β1)

2

τ01 (1− β2
2) + (τ02 − τ01 )(1− β2

1)
σ2

and

P2

T

p→ σ2

τ02−τ01
1−β2

2
· 1−τ02
1−β2

3

τ02−τ01
1−β2

2
+

1−τ02
1−β2

3

(β3 − β2)
2 =

(τ02 − τ01 )(1− τ02 )(β3 − β2)
2

(τ02 − τ01 )(1− β2
3) + (1− τ02 )(1− β2

2)
σ2

Therefore, P1 and P2 have the same stochastic order of magnitude (Op(T )). A simulation of

RSS(τ)/T with T = 800 for this example is plotted in the upper panel of Figure 1. Given

that (2.2) is true, if

(1− τ02 )(β3 − β2)
2

(τ02 − τ01 )(1− β2
3) + (1− τ02 )(1− β2

2)
<

τ01 (β2 − β1)
2

τ01 (1− β2
2) + (τ02 − τ01 )(1− β2

1)
, (2.3)

then RSS(τ01 )−RSS(τ02 )
p→ −∞, and k01 will be identified first with probability approaching

unity. If the inequality (2.3) is reversed, then RSS(τ01 ) − RSS(τ02 )
p→ ∞, and k02 will be

identified first with probability approaching unity. In the case of equality, k01 and k02 will

have the same chance of being identified first asymptotically. Note that condition (2.3) is

similar to condition (16) in Chong (1995) and Assumption A.4 in Bai (1997). However,

(2.3) is unobservable in reality. Hence, a test procedure is applied to all subsamples split

by the first estimated break point in order to find the remaining break point.

Example 2 (a nonstationary model with two breaks): Suppose β1 is a fixed constant

satisfying |β1| < 1, β2 = 1 and β3 = 1 − c2/hT , which means the multiple-break model

consists of a stationary process, a unit root process and a mildly integrated process. In this

case,














































η1(β2 − β1) = (Op(
√
T
T )−Op(

T
T 2 )) ·Op(T ) = Op(

√
T )

η2(β3 − β2) =
Op(T 2

√
ThT )−Op(T ·ThT )

Op(T 2)+Op(ThT )
· 1
hT

= Op(
√

T
hT

)

ΩT = Op(1)

P1 =
Op(T )·Op(T 2)
Op(T )+Op(T 2)

= Op(T )

P2 =
Op(T 2)·Op(ThT )
Op(T 2)+Op(ThT )

· 1
h2
T

= Op(
T
hT

)

by the well-known results of the unit root model and Lemma B.3 in Pang et al. (2017).

Hence, (2.2) is true, and P1 has a higher stochastic order than P2, which means RSS(τ01 )−
RSS(τ02 ) = −P1(1+op(1))

p→ −∞, and k01 will be uncovered first with probability approach-

ing unity. A simulation of RSS(τ)/T with T = 800 for this example is plotted in the middle

panel of Figure 1.
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Example 3 (a nonstationary model with two breaks): Suppose β1 = 1, β2 = 1 + c1/kT

and β3 = 1 − c2/hT , which suggests that the multiple-break model consists of a unit root

process, a mildly explosive process and a mildly integrated process. In this case,























































































































η1(β2 − β1) = (Op(
T
T 2 )−Op(

β
k02−k01
2

√
TkT

β
2(k02−k01)

2 TkT

)) ·Op(T
2) ·O( 1

kT
) = Op(

T
kT

)

η2(β3 − β2) =
Op(β

2(k02−k01)

2 TkT ·β
k02−k01
2

√
ThT )−Op(β

k02−k01
2

√
TkT ·β

2(k02−k01)

2 ThT )

Op(β
2(k02−k01)

2 TkT )+Op(β
2(k02−k01)

2 ThT )
·O( 1

kT
+ 1

hT
)

=







Op(β
k02−k01
2

√

T
hT

), when hT = O(kT )

Op(β
k02−k01
2

√

T
kT

), when kT = o(hT )

ΩT = Op(1)

P1 =
Op(T 2)·Op(β

2(k02−k01)

2 TkT )

Op(T 2)+Op(β
2(k02−k01)

2 TkT )
·O( 1

k2
T

) = Op(
T 2

k2
T

)

P2 =
Op(β

2(k02−k01)

2 TkT )·Op(β
2(k02−k01)

2 ThT )

Op(β
2(k02−k01)

2 TkT )+Op(β
2(k02−k01)

2 ThT )
·O( 1

kT
+ 1

hT
)2

=







Op(β
2(k02−k01)
2

T
hT

), when hT = O(kT )

Op(β
2(k02−k01)
2

T
kT

), when kT = o(hT )

by Lemmas A.2-A.4 in the Appendix. Thus, (2.2) is true, and P2 has a markedly higher

stochastic order than P1, which means RSS(τ01 ) − RSS(τ02 ) = P2(1 + op(1))
p→ ∞, and k02

will be uncovered first with probability approaching unity. A simulation of RSS(τ)/T with

T = 800 for this example is plotted in the bottom panel of Figure 1.

Based on the above analysis, for Model (1.2), we propose the following two-step estima-

tion procedure.

Step 1: For any given 0 < τ < 1, denote

β̂x(τ) =

∑[τT ]
t=1 ytyt−1
∑[τT ]

t=1 y2t−1

and β̂3(τ) =

∑T
t=[τT ]+1 ytyt−1
∑T

t=[τT ]+1 y
2
t−1

.

Then the change-point estimator of τ02 is defined as

τ̂2,T = argmin
τ∈(0,1)

RSS2,T (τ),

where

RSS2,T (τ) =

[τT ]
∑

t=1

(

yt − β̂x(τ)yt−1

)2
+

T
∑

t=[τT ]+1

(

yt − β̂3(τ)yt−1

)2
.

Once we obtain τ̂2,T , the least squares estimator (LSE) of β3 is represented by β̂3(τ̂2,T ), and

the LSE of k02 is denoted by k̂2 = [τ̂2,TT ].
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1 = 320 and

k0
2 = 600.

Figure 1: Graphs of RSS(τ)/T for Examples 1-3 (from top to bottom).
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Step 2: For any given 0 < τ < τ̂2,T , the LSEs of the AR parameters β1 and β2 are given by

β̂1(τ) =

∑[τT ]
t=1 ytyt−1
∑[τT ]

t=1 y2t−1

and β̂2(τ) =

∑k̂2
t=[τT ]+1 ytyt−1

∑k̂2
t=[τT ]+1 y

2
t−1

,

respectively. Then the change-point estimator of τ01 is defined as

τ̂1,T = argmin
τ∈(0,τ̂2,T )

RSS1,T (τ),

where

RSS1,T (τ) =

[τT ]
∑

t=1

(

yt − β̂1(τ)yt−1

)2
+

k̂2
∑

t=[τT ]+1

(

yt − β̂2(τ)yt−1

)2
.

Once we obtain τ̂1,T , the final LSEs of β1 and β2 are represented by β̂1(τ̂1,T ) and β̂2(τ̂1,T )

respectively, and the LSE of k01 is denoted by k̂1 = [τ̂1,TT ].

Remark 2.2 There are two structural changes in Model (2.1), and we estimate them se-

quentially. In Step 1, we estimate a mis-specified model with one break, then in Step 2 we

estimate the other break in the left subsample split by the first break point estimate since we

know that k02 is identified first with probability approaching unity. The idea of estimating

breaks under a mis-specified model is taken from Chong (1995) and Bai (1997). Howev-

er, there are three major differences between our work and those of Chong (1995) and Bai

(1997). First, the models studied in Chong (1995) and Bai (1997) were both a stationary

model with multiple breaks, while the model studied in this paper is a nonstationary model

with multiple breaks. Second, a test procedure of breaks is needed in order to locate the re-

maining breaks in Chong (1995) and Bai (1997), while such a test procedure is no longer

needed in our paper. Third, Chong (1995) derived the asymptotics for the estimators by

analyzing the probability limit of the criterion function, and Bai (1997) derived the asymp-

totics for the estimators by analyzing the expectation of the criterion function. However,

it is difficult to calculate the probability limit or the expectation of the criterion function

in nonstationary autoregressive models. Thus, we cannot derive the asymptotics for the es-

timators by applying the same arguments in Chong (1995) or in Bai (1997). Instead, we

derive the asymptotics by analyzing the criterion function directly in the proofs.

3 Main Results

We define some notations before proceeding to our main results for Model (1.2). Let W (·)
be an independent standard Brownian motion defined on [0, 1], and W1(·) and W2(·) be
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two independent Brownian motions defined on R+. “⇒” denotes the weak convergence

of the associated probability measures. “
p→” denotes convergence in probability, and “

d
=”

means being identical in distribution. The notation aT ≍ bT means there exist two positive

constants c
′

1 and c
′

2 such that c
′

1 ≤ aT /bT ≤ c
′

2 for all large T , where aT and bT are two

positive functions of T . Finally, for Model (1.2), we denote















































t1 =

√

∑k01
t=1 y

2
t−1

σ2
(β̂1(τ̂1,T )− β1)

t2 =

√

√

√

√

∑k02
t=k01+1

y2t−1

σ2
(β̂2(τ̂1,T )− β2)

t3 =

√

∑T
t=k02+1 y

2
t−1

σ2
(β̂3(τ̂2,T )− β3)

as the t-ratios of β1, β2 and β3 respectively.

Theorem 3.1 For Model (1.2), under assumptions C1-C4, the following results hold:

(a) k̂2 is consistent, but k̂1 is not necessarily consistent, more specifically, when kT diverges

to ∞ such that kT = o(T ), we have



































P (k̂1 ̸= k01) → 0, when kT = o(
√
T )

|k̂1 − k01| = Op(1), when kT ≍
√
T

c21T
2

k2T
(τ̂1,T − τ01 ) ⇒ argmax

ν∈R

{

W ∗(ν)

W1(τ01 )
− |ν|

2

}

, when
√
T = o(kT )

P (k̂2 ̸= k02) → 0

, (3.1)

where W ∗(ν) is a two-sided Brownian motion on R defined to be W ∗(ν) = W1(−ν) for ν ≤ 0

and W ∗(ν) = W2(ν) for ν > 0.

(b) β̂1(τ̂1,T ), β̂2(τ̂1,T ) and β̂3(τ̂2,T ) are all consistent, and their limiting distributions are

respectively given by











































k01(β̂1(τ̂1,T )− β1) ⇒
W 2(τ01 )− τ01

2
∫ τ01
0 W 2(s)ds

d
=

W 2(1)− 1

2
∫ 1
0 W 2(s)ds

√

τ01 k
0
2kT

2c1
β
k02−k01
2 (β̂2(τ̂1,T )− β2) ⇒ ξ

√

k01hT
2c2

β
k02−k01
2 (β̂3(τ̂2,T )− β3) ⇒ ζ

, (3.2)

where ξ and ζ are two independent standard Cauchy variates.
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(c) The limiting distributions of the t-ratios of β1, β2 and β3 are respectively given by



























t1 ⇒
W 2(1)− 1

2
√

∫ 1
0 W 2(s)ds

t2 ⇒ N(0, 1)

t3 ⇒ N(0, 1)

. (3.3)

Without the structural changes, it has been proved by Phillips and Magdalinos (2007a)

that the convergence rate of the LSE of the mildly integrated AR parameter β3 is
√
ThT

when the initial value of the model is of order op(
√
hT ), and the convergence rate of the

LSE of the mildly explosive AR parameter β2 is kTβ
T
2 when the initial value of the model

is of order op(
√
kT ). It is surprising to find that, in the presence of structural changes, the

convergence rate of the LSE of β3 can be faster than that of β2 when kT = o(hT ). This is

due to the difference in the stochastic order of magnitude of initial values across subamples.

Note that the stochastic order of magnitude of yk02 is higher than that of yk01 (see Lemmas

A.2 and A.3 in the Appendix for details), which affects the asymptotic properties of LSEs

of β2 and β3.

As pointed out in Pang et al. (2017), the distribution of W 2(1)−1

2
√

∫ 1
0 W 2(s)ds

is markedly less

skewed than that of W 2(1)−1

2
∫ 1
0 W 2(s)ds

. Moreover, the second and third limiting distributions in

(3.2) are both Cauchy, which has an explosive mean and variance, while the second and

third limiting distributions in (3.3) are both normal, which has a finite mean and variance.

Hence, the t-ratios of β1, β2 and β3 obviously have better estimation accuracy for the AR

parameters than the LSEs of β1, β2 and β3. It is recommended to use the t-ratios instead

of the LSEs of β1, β2 and β3 to conduct further statistical inference in applications.

The precision of k̂1 and k̂2 mainly depends on the differences of breaks (i.e., |β2 − β1|
and |β3 − β2|) and their signal strength. Note that for constant break magnitude, since

the magnitude of the break is O(1), while the signal strength will have different stochastic

orders of magnitude, the magnitude of the break plays no role in the determination of the

first identified break. For shrinking breaks, when the signal strength of k02 is strong (see

Example 3 in the last section) and the difference between β2 and β3 (that is, c1/kT + c2/hT )

is large, then k02 can be consistently located for any kT = o(T ) and hT = o(T ). However,

since the signal strength of k01 is not strong enough (also see Example 3 in the last section)

and the difference between β1 and β2 (that is, c1/kT ) may not be sufficiently large, k01 can

only be consistently estimated when kT = o(
√
T ), which means β1 and β2 have enough
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difference.

Remark 3.1 Note that t1, t2 and t3 in Theorem 3.1 are not pivotal, hence they will be

useless in practice. However, by denoting














































t
′

1 =

√

∑k̂1
t=1 y

2
t−1

σ̂2
(β̂1(τ̂1,T )− β1)

t
′

2 =

√

√

√

√

∑k̂2
t=k̂1+1

y2t−1

σ̂2
(β̂2(τ̂1,T )− β2)

t
′

3 =

√

∑T
t=k̂2+1

y2t−1

σ̂2
(β̂3(τ̂2,T )− β3)

with

σ̂2 =
1

T







k̂1
∑

t=1

(yt − β̂1(τ̂1,T )yt−1)
2 +

k̂2
∑

t=k̂1+1

(yt − β̂2(τ̂1,T )yt−1)
2 +

T
∑

t=k̂2+1

(yt − β̂3(τ̂2,T )yt−1)
2







,

it can be proved that

∑k̂01
t=1 y

2
t−1

∑k01
t=1 y

2
t−1

p→ 1,

∑k̂02
t=k̂01+1

y2t−1

∑k02
t=k01+1

y2t−1

p→ 1,

∑T
t=k̂02+1

y2t−1
∑T

t=k02+1 y
2
t−1

p→ 1 and
σ̂2

σ2

p→ 1.

Therefore, part (c) of Theorem 3.1 will still hold when t1, t2 and t3 are replaced by t
′

1, t
′

2 and

t
′

3 respectively. Note that t
′

1, t
′

2 and t
′

3 can be used directly in applications.

Remark 3.2 The model studied in this section is closely related to that of Phillips and Shi

(2018). In fact, Phillips and Shi (2018) proposed an AR(1) model with three structural

changes in the AR parameter to model a bubble process from its origination, expansion,

collapse to its reversion to normal behavior. Hence, the bubble process consists of four

regimes. The first three regimes are the same as the model studied in this section, and the

last regime is a unit root process. It is interesting and important to study the break points

of the model proposed in Phillips and Shi (2018). Our results can be applied to the above

model. However, the sequential method used in this section heavily relies on the closed forms

of the discrepancy of residual sum of squares when the break fraction departs from the true

one, and it is extremely difficult and tedious to develop such closed forms for nonstationary

processes with three structural changes. We leave this as future work.

4 Simulations

For empirical applications, we perform the following experiments to see how well the finite

sample properties of the estimators in the previous section follow our asymptotic results.
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Note that the t-ratios of β1, β2 and β3 have better estimation accuracy for the AR parameters

than the LSEs of β1, β2 and β3, and therefore it is recommended to use the t-ratios to conduct

statistical inference in empirical applications. As such, we only perform the experiments for

parts (a) and (c) of Theorem 3.1. We adopt the parameters similar to those in Pang et al.

(2017) in the following experiments. The sample size is set at T = 800, the interval [τ , τ ]

is taken as [0.05, 0.95] (hence the break fraction τ02 is searched within this interval in our

experiments), and the two true break fractions are set at τ01 = 0.40 (hence k01 = 320) and

τ02 = 0.75 (hence k02 = 600) respectively. The number of replications is set at N = 50, 000,

{yt}Tt=1 are generated from Model (1.2), y0 is set at zero for simplicity and {εt}Tt=1 are

generated independently from N(0, 1). We also set c = 1 and η = 1 for the drift c/T η.

Moreover, for the parameter β2, we set c1 = 0.85∗ and kT = Tα with α ∈ {0.3, 0.5, 0.7}.
The case where α = 0.3 represents kT = o(

√
T ), the case where α = 0.5 represents kT ≍

√
T

and the case where α = 0.7 represents
√
T = o(kT ). For the parameter β3, we set c2 = 3 and

hT = T 0.5. The graph of the distribution of W 2(1)−1

2
√

∫ 1
0 W 2(s)ds

is plotted by dividing the interval

[0, 1] into 5, 000 equal-spaced subintervals and use the corresponding Riemann sums to

approximate the integral. The number of replications is also set at N = 50, 000.

Note that, in our setup, β1 and β2 have a large difference (|β1−β2| = 0.85/8000.3 = 0.114)

when α = 0.3, a moderate difference (|β1 − β2| = 0.85/8000.5 = 0.030) when α = 0.5 and

a very small difference (|β1 − β2| = 0.85/8000.7 = 0.008) when α = 0.7. Moreover, the

difference between β2 and β3 is not smaller than 0.85/8000.7 + 3/8000.5 = 0.114, meaning

that the magnitude of the break |β3 − β2| is sufficiently large.

Figure 2 shows the histograms of k̂1 and k̂2. Part (a) of Theorem 3.1 predicts that

k̂1 is a consistent estimator of k01 when kT = o(
√
T ) and has a finite estimation error in

probability when kT ≍ o(
√
T ). However, k̂1 has a larger estimation error in probability

when
√
T = o(kT ), whereas k̂2 is always a consistent estimator of k02. These findings are

supported by Figure 2.

Figure 3 shows the distributions of t1, t2 and t3. Part (c) of Theorem 3.1 predicts that t1

should follow the Dickey-Fuller t-distribution, and both t2 and t3 should follow the normal

distribution. These results are supported by Figure 3, except that the distributions of t1

∗As pointed out in Pang et al. (2017), the finite sample distribution of t2 will suffer from shape distortion

for large c1. This phenomenon can be partially explained by the findings in Anderson (1959), which showed

that, in general, the limiting distributions of the LSE and the t-ratio of the AR parameter in an explosive

AR(1) model may not exist. Hence, we use c = 0.85 in experiments, which guarantees that the mildly

explosive AR parameter is not too far away from unity.
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and t2 when α = 0.7 are not very satisfactory due to the close distance between β1 and β2.
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(a) β1 = 1, β2 = 1 + c1/T
α with α = 0.3 and β3 = 1− c2/
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Figure 2: Histograms of k̂1 and k̂2 (from left to right) under the situation where c1 = 0.85, c2 = 3

and T = 800.
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Figure 3: The finite sample distributions and the corresponding limiting distributions of t1, t2 and

t3 (from left to right) under the situation where c1 = 0.85, c2 = 3 and T = 800. The solid lines

represent the graphs when T = 800, and the dashed lines represent the graph when T = ∞.
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5 Conclusions

In this paper, we focus on nonstationary multiple-break autoregressive models and uncover

the key factors determining which break point will be identified first. Unlike the stationary

cases of Chong (1995) and Bai (1997), our analysis shows that the duration of the break

does not affect which break will be uncovered first in the nonstationary case. Rather, it

depends on the stochastic order of the break’s signal strength under the case of constant

break magnitude and also the square of the magnitude of the break under the case of

shrinking break. In stationary time series regression models, the signal strength has the

same stochastic order of magnitude for each break, so the duration of the break will matter.

Since the magnitude and the duration of the break are unobservable in reality, it is difficult

to determine which break will be identified first. However, in nonstationary autoregressive

models, each subsample has a different stochastic order of magnitude. Hence, we know in

advance that the break associated with the subsample that has the highest stochastic order

of magnitude of the product of the square of the break magnitude and the signal strength

will be uncovered first. This finding allows us to develop an estimation procedure that

does not require testing for breaks in the subsamples. As an application of this finding, we

revisit the financial bubble model proposed by Phillips and Yu (2011), Phillips et al. (2011)

and Phillips et al. (2015a, 2015b). We propose an estimation procedure without the need

for estimating the structural changes sequentially by the sample splitting method of Chong

(1995) and Bai (1997). The consistency, convergence rates and limiting distributions of the

LSEs of the unknown parameters in this model are established. Monte Carlo simulations of

the finite sample performance of the estimators provide evidence for our theory. For future

work along this line, one may extend our work to nonstationary panel AR models with

multiple breaks.
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6 Appendix

In this section, we provide the proof of Theorem 3.1, noting that Theorem 2.1 is just a

consequence of Lemma A.1 below. The following observation which will be used frequently in

the rest of the paper is a simple generalization of Proposition A.1 in Phillips and Magdalinos

(2007a), hence the proof is omitted:

(

T

kT

)a

= o(βbT
2 ), for any a > 0 and b > 0. (A.1)

The asymptotic analysis for the LSEs of structural changes relies heavily on the closed

forms of the discrepancy of residual sum of squares when the break fraction departs from

the true one. Hence, we need to develop these closed forms in the presence of two structural

changes in AR(1) models.

Lemma A.1 For Model (2.1), denote

ΩT (τ) =
(
∑k02

t=1 yt−1ut)
2

∑k02
t=1 y

2
t−1

− (
∑[τT ]

t=1 yt−1ut)
2

∑[τT ]
t=1 y2t−1

+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

−
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

,

then the following results hold:

(a) for τ01 ≤ τ ≤ τ02 , we have

RSS2,T (τ)−RSS2,T (τ
0
2 )

= η1(τ)(β2 − β1) + η2(τ)(β3 − β2) + η3(τ)(β2 − β1)
2 + η4(τ)(β3 − β2)

2 +ΩT (τ),

where















































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
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



















η1(τ) = 2
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∑[τT ]

t=1 y2t−1

−
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2
t−1


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2
(
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2
t−1

∑T
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2
t−1

)

∑T
t=[τT ]+1 y

2
t−1

η3(τ) = −
(
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t=1 y
2
t−1)

2
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2
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t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

η4(τ) =
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2
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∑T
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2
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∑T
t=[τT ]+1 y

2
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,
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(b) for 0 < τ < τ01 , we have

RSS2,T (τ)−RSS2,T (τ
0
2 )

= θ1(τ)(β2 − β1) + θ2(τ)(β3 − β1) + θ3(τ)(β3 − β2) + θ4(τ)(β2 − β1)
2 + θ5(τ)(β3 − β1)

2

+θ6(τ)(β3 − β2)
2 + θ7(τ)(β2 − β1)(β3 − β1) + θ8(τ)(β2 − β1)(β3 − β2)

+θ9(τ)(β3 − β1)(β3 − β2) + ΩT (τ),

where















































































































































































































































θ1(τ) = 2

∑k01
t=1 yt−1ut

∑k02
t=k01+1

y2t−1 −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

yt−1ut
∑k02

t=1 y
2
t−1

+ 2

∑k01
t=[τT ]+1 y

2
t−1

∑k02
t=k01+1

yt−1ut −
∑k01

t=[τT ]+1 yt−1ut
∑k02

t=k01+1
y2t−1

∑T
t=[τT ]+1 y

2
t−1

θ2(τ) = 2

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=k02+1 yt−1ut −

∑k01
t=[τT ]+1 yt−1ut

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

θ3(τ) = 2

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 yt−1ut −

∑k02
t=k01+1

yt−1ut
∑T

t=k02+1 y
2
t−1

∑T
t=[τT ]+1 y

2
t−1

θ4(τ) =

∑k01
t=[τT ]+1 y

2
t−1

∑k02
t=k01+1

y2t−1

∑k02
t=[τT ]+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2 −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1

θ5(τ) =

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=k02+1 y

2
t−1

(

∑k01
t=[τT ]+1 y

2
t−1 +

∑T
t=k02+1 y

2
t−1

)

(

∑T
t=[τT ]+1 y

2
t−1

)2

θ6(τ) =

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

∑T
t=k01+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2

θ7(τ) =

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

∑k01
t=[τT ]+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2

θ8(τ) = −
∑k01

t=[τT ]+1 y
2
t−1

∑T
t=k02+1 y

2
t−1

∑k02
t=k01+1

y2t−1
(

∑T
t=[τT ]+1 y

2
t−1

)2

θ9(τ) =

∑k01
t=[τT ]+1 y

2
t−1

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2

,

(c) for τ02 < τ < 1, we have

RSS2,T (τ)−RSS2,T (τ
0
2 )

= γ1(τ)(β2 − β1) + γ2(τ)(β3 − β1) + γ3(τ)(β3 − β2) + γ4(τ)(β2 − β1)
2 + γ5(τ)(β3 − β1)

2

+γ6(τ)(β3 − β2)
2 + γ7(τ)(β2 − β1)(β3 − β1) + γ8(τ)(β2 − β1)(β3 − β2)
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+γ9(τ)(β3 − β1)(β3 − β2) + ΩT (τ),

where
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(
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2
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.

Proof. We first prove part (a). Note that when τ01 ≤ τ ≤ τ02 , we have

β̂x(τ) =

∑[τT ]
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The former result implies
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(A.2)
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and the latter result implies
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(A.4)
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In addition, note that
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As a result, it follows from (A.2)-(A.6) that
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t=1 yt−1ut

(
∑k02

t=1 y
2
t−1)

2





[τT ]
∑

t=k01+1

y2t−1

−2

∑k01
t=1 y

2
t−1

∑k02
t=1 y

2
t−1

k02
∑

t=[τT ]+1

yt−1ut + 2

∑k01
t=1 y

2
t−1

∑k02
t=1 yt−1ut

(
∑k02

t=1 y
2
t−1)

2

k02
∑

t=[τT ]+1

y2t−1

= 2





∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=1

y2t−1,

η2(τ) = −2

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

k02
∑

t=[τT ]+1

yt−1ut + 2

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 yt−1ut

(
∑T

t=[τT ]+1 y
2
t−1)

2

k02
∑

t=[τT ]+1

y2t−1

+2

∑k02
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

T
∑

t=k02+1

yt−1ut − 2

∑k02
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 yt−1ut

(
∑T

t=[τT ]+1 y
2
t−1)

2

T
∑

t=k02+1

y2t−1

=
2
(

∑k02
t=[τT ]+1 y

2
t−1

∑T
t=k02+1 yt−1ut −

∑k02
t=[τT ]+1 yt−1ut

∑T
t=k02+1 y

2
t−1

)

∑T
t=[τT ]+1 y

2
t−1

,
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η3(τ) =











∑[τT ]

t=k01+1
y2t−1

∑[τT ]
t=1 y2t−1





2

−





∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1





2






k01
∑

t=1

y2t−1

+









∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1





2

−





∑k01
t=1 y

2
t−1

∑k02
t=1 y

2
t−1





2



[τT ]
∑

t=k01+1

y2t−1 −





∑k01
t=1 y

2
t−1

∑k02
t=1 y

2
t−1





2
k02
∑

t=[τT ]+1

y2t−1

= −
(
∑k01

t=1 y
2
t−1)

2
∑k02

t=[τT ]+1 y
2
t−1

∑k02
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

,

η4(τ) =

( ∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

)2 k02
∑

t=[τT ]+1

y2t−1 +





∑k02
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1





2
T
∑

t=k02+1

y2t−1

=

∑k02
t=[τT ]+1 y

2
t−1

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

and

Ω1,T (τ)

= −2





∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=1

yt−1ut

+





(

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



k01
∑

t=1

y2t−1

−2





∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





[τT ]
∑

t=k01+1

yt−1ut

+





(

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



[τT ]
∑

t=k01+1

y2t−1

−2





∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k02
∑

t=[τT ]+1

yt−1ut

+





(
∑T

t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



k02
∑

t=[τT ]+1

y2t−1

−2

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

T
∑

t=k02+1

yt−1ut +

(
∑T

t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

)2 T
∑

t=k02+1

y2t−1 +
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

=
(
∑k02

t=1 yt−1ut)
2

∑k02
t=1 y

2
t−1

− (
∑[τT ]

t=1 yt−1ut)
2

∑[τT ]
t=1 y2t−1

+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

−
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

= ΩT (τ).

These prove part (a).
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To prove part (b), note that when 0 < τ < τ01 ,

β̂x(τ) =

∑[τT ]
t=1 ytyt−1
∑[τT ]

t=1 y2t−1

= β1 +

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

,

we have

β̂x(τ)− β1 =

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

, (A.7)

and

β̂3(τ) =

∑T
t=[τT ]+1 ytyt−1
∑T

t=[τT ]+1 y
2
t−1

= β1

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

+ β2

∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

+ β3

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

+

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

,

which gives



















































β̂3(τ)− β1 = (β2 − β1)

∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

+ (β3 − β1)

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

+

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

β̂3(τ)− β2 = (β1 − β2)

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

+ (β3 − β2)

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

+

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

β̂3(τ)− β3 = (β1 − β3)

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

+ (β2 − β3)

∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

+

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

.(A.8)

In addition, since

RSS2,T (τ) =

[τT ]
∑

t=1

(

yt − β̂x(τ)yt−1

)2
+

T
∑

t=[τT ]+1

(

yt − β̂3(τ)yt−1

)2

=

[τT ]
∑

t=1

(

ut − (β̂x(τ)− β1)yt−1

)2
+

k01
∑

t=[τT ]+1

(

ut − (β̂3(τ)− β1)yt−1

)2

+

k02
∑

t=k01+1

(

ut − (β̂3(τ)− β2)yt−1

)2
+

T
∑

t=k02+1

(

ut − (β̂3(τ)− β3)yt−1

)2

=

T
∑

t=1

u2t − 2(β̂x(τ)− β1)

[τT ]
∑

t=1

yt−1ut + (β̂x(τ)− β1)
2

[τT ]
∑

t=1

y2t−1

−2(β̂3(τ)− β1)

k01
∑

t=[τT ]+1

yt−1ut + (β̂3(τ)− β1)
2

k01
∑

t=[τT ]+1

y2t−1

−2(β̂3(τ)− β2)

k02
∑

t=k01+1

yt−1ut + (β̂3(τ)− β2)
2

k02
∑

t=k01+1

y2t−1

−2(β̂3(τ)− β3)
T
∑

t=k02+1

yt−1ut + (β̂3(τ)− β3)
2

T
∑

t=k02+1

y2t−1,
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using (A.3) and (A.5)-(A.8), we have

RSS2,T (τ)−RSS2,T (τ
0
2 )

= −2
(

(β̂x(τ)− β1)− (β̂x(τ
0
2 )− β1)

)

[τT ]
∑

t=1

yt−1ut +
(

(β̂x(τ)− β1)
2 − (β̂x(τ

0
2 )− β1)

2
)

[τT ]
∑

t=1

y2t−1

−2
(

(β̂3(τ)− β1)− (β̂x(τ
0
2 )− β1)

)

k01
∑

t=[τT ]+1

yt−1ut +
(

(β̂3(τ)− β1)
2 − (β̂x(τ

0
2 )− β1)

2
)

k01
∑

t=[τT ]+1

y2t−1

−2
(

(β̂3(τ)− β2)− (β̂x(τ
0
2 )− β2)

)

k02
∑

t=k01+1

yt−1ut +
(

(β̂3(τ)− β2)
2 − (β̂x(τ

0
2 )− β2)

2
)

k02
∑

t=k01+1

y2t−1

−2
(

(β̂3(τ)− β3)− (β̂3(τ
0
2 )− β3)

)

T
∑

t=k02+1

yt−1ut +
(

(β̂3(τ)− β3)
2 − (β̂3(τ

0
2 )− β3)

2
)

T
∑

t=k02+1

y2t−1

:= θ1(τ)(β2 − β1) + θ2(τ)(β3 − β1) + θ3(τ)(β3 − β2) + θ4(τ)(β2 − β1)
2 + θ5(τ)(β3 − β1)

2

+θ6(τ)(β3 − β2)
2 + θ7(τ)(β2 − β1)(β3 − β1) + θ8(τ)(β2 − β1)(β3 − β2)

+θ9(τ)(β3 − β1)(β3 − β2) + Ω2,T (τ),

where

θ1(τ) = 2

∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1

[τT ]
∑

t=1

yt−1ut − 2

∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1

[τT ]
∑

t=1

y2t−1

−2





∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

−
∑k02

t=k01+1
y2t−1

∑k02
t=1 y

2
t−1





k01
∑

t=[τT ]+1

yt−1ut

+2





∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

−
∑k02

t=k01+1
y2t−1

∑k02
t=1 y

2
t−1

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=[τT ]+1

y2t−1

+2





∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

−
∑k01

t=1 y
2
t−1

∑k02
t=1 y

2
t−1





k02
∑

t=k01+1

yt−1ut

−2





∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

−
∑k01

t=1 y
2
t−1

∑k02
t=1 y

2
t−1

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





k02
∑

t=k01+1

y2t−1

= 2

(
∑k01

t=1 yt−1ut
∑k02

t=k01+1
y2t−1 −

∑k01
t=1 y

2
t−1

∑k02
t=k01+1

yt−1ut
∑k02

t=1 y
2
t−1

+

∑k01
t=[τT ]+1 y

2
t−1

∑k02
t=k01+1

yt−1ut −
∑k01

t=[τT ]+1 yt−1ut
∑k02

t=k01+1
y2t−1

∑T
t=[τT ]+1 y

2
t−1

)

,

θ2(τ) = −2

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

k01
∑

t=[τT ]+1

yt−1ut + 2

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

k01
∑

t=[τT ]+1

y2t−1
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+2

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

T
∑

t=k02+1

yt−1ut − 2

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

T
∑

t=k02+1

y2t−1

= 2

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=k02+1 yt−1ut −

∑k01
t=[τT ]+1 yt−1ut

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

,

θ3(τ) = −2

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

k02
∑

t=k01+1

yt−1ut + 2

∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

k02
∑

t=k01+1

y2t−1

+2

∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

T
∑

t=k02+1

yt−1ut − 2

∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

T
∑

t=k02+1

y2t−1

= 2

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 yt−1ut −

∑k02
t=k01+1

yt−1ut
∑T

t=k02+1 y
2
t−1

∑T
t=[τT ]+1 y

2
t−1

,

θ4(τ) = −





∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1





2
[τT ]
∑

t=1

y2t−1 +











∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1





2

−





∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1





2






k01
∑

t=[τT ]+1

y2t−1

+











∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1





2

−





∑k01
t=1 y

2
t−1

∑k02
t=1 y

2
t−1





2






k02
∑

t=k01+1

y2t−1

=

∑k01
t=[τT ]+1 y

2
t−1

∑k02
t=k01+1

y2t−1

∑k02
t=[τT ]+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2 −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1

,

θ5(τ) =

( ∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

)2 k01
∑

t=[τT ]+1

y2t−1 +





∑k01
t=[τT ]+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1





2
T
∑

t=k02+1

y2t−1

=

∑k01
t=[τT ]+1 y

2
t−1

∑T
t=k02+1 y

2
t−1

(

∑k01
t=[τT ]+1 y

2
t−1 +

∑T
t=k02+1 y

2
t−1

)

(

∑T
t=[τT ]+1 y

2
t−1

)2 ,

θ6(τ) =

( ∑T
t=k02+1 y

2
t−1

∑T
t=[τT ]+1 y

2
t−1

)2 k02
∑

t=k01+1

y2t−1 +





∑k02
t=k01+1

y2t−1
∑T

t=[τT ]+1 y
2
t−1





2
T
∑

t=k02+1

y2t−1

=

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1
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2
t−1

(
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2
t−1

)2 ,

θ7(τ) =

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

∑k01
t=[τT ]+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2 ,
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θ8(τ) = −
∑k01

t=[τT ]+1 y
2
t−1

∑T
t=k02+1 y

2
t−1

∑k02
t=k01+1

y2t−1
(

∑T
t=[τT ]+1 y

2
t−1

)2 ,

θ9(τ) =

∑k01
t=[τT ]+1 y

2
t−1

∑k02
t=k01+1

y2t−1

∑T
t=k02+1 y

2
t−1

(

∑T
t=[τT ]+1 y

2
t−1

)2

and

Ω2,T (τ) = −2





∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





[τT ]
∑

t=1

yt−1ut

−2





∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=[τT ]+1

yt−1ut

−2





∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k02
∑

t=k01+1

yt−1ut

−2

(
∑T

t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

−
∑T

t=k02+1 yt−1ut
∑T

t=k02+1 y
2
t−1

)

T
∑

t=k02+1

yt−1ut

+





(

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



[τT ]
∑

t=1

y2t−1

+





(
∑T

t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



k01
∑

t=[τT ]+1

y2t−1

+





(
∑T

t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



k02
∑

t=k01+1

y2t−1

+





(
∑T

t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

)2

−
(∑T

t=k02+1 yt−1ut
∑T

t=k02+1 y
2
t−1

)2




T
∑

t=k02+1

y2t−1

=
(
∑k02

t=1 yt−1ut)
2

∑k02
t=1 y

2
t−1

− (
∑[τT ]

t=1 yt−1ut)
2

∑[τT ]
t=1 y2t−1

+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

−
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

= ΩT (τ).

These prove part (b).

To prove part (c), note that when τ02 < τ < 1, we have

β̂x(τ) =

∑[τT ]
t=1 ytyt−1
∑[τT ]

t=1 y2t−1

= β1

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

+ β2

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

+ β3

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

+

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

and

β̂3(τ) =

∑T
t=[τT ]+1 ytyt−1
∑T

t=[τT ]+1 y
2
t−1

= β3 +

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

.
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The former result implies



















































β̂x(τ)− β1 = (β2 − β1)

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

+ (β3 − β1)

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

+

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

β̂x(τ)− β2 = (β1 − β2)

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

+ (β3 − β2)

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

+

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

β̂x(τ)− β3 = (β1 − β3)

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

+ (β2 − β3)

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

+

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

, (A.9)

and the latter result implies

β̂3(τ)− β3 =

∑T
t=[τT ]+1 yt−1ut
∑T

t=[τT ]+1 y
2
t−1

. (A.10)

In addition, we have

RSS2,T (τ) =

[τT ]
∑

t=1

(

yt − β̂x(τ)yt−1

)2
+

T
∑

t=[τT ]+1

(

yt − β̂3(τ)yt−1

)2

=

k01
∑

t=1

(

ut − (β̂x(τ)− β1)yt−1

)2
+

k02
∑

t=k01+1

(

ut − (β̂x(τ)− β2)yt−1

)2

+

[τT ]
∑

t=k02+1

(

ut − (β̂x(τ)− β3)yt−1

)2
+

T
∑

t=[τT ]+1

(

ut − (β̂3(τ)− β3)yt−1

)2

=

T
∑

t=1

u2t − 2(β̂x(τ)− β1)

k01
∑

t=1

yt−1ut + (β̂x(τ)− β1)
2

k01
∑

t=1

y2t−1

−2(β̂x(τ)− β2)

k02
∑

t=k01+1

yt−1ut + (β̂x(τ)− β2)
2

k02
∑

t=k01+1

y2t−1

−2(β̂x(τ)− β3)

[τT ]
∑

t=k02+1

yt−1ut + (β̂x(τ)− β3)
2

[τT ]
∑

t=k02+1

y2t−1 −
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

.

Thus, it follows from (A.3), (A.5), (A.6), (A.9) and (A.10) that

RSS2,T (τ)−RSS2,T (τ
0
2 )

= −2
(

(β̂x(τ)− β1)− (β̂x(τ
0
2 )− β1)

)

k01
∑

t=1

yt−1ut +
(

(β̂x(τ)− β1)
2 − (β̂x(τ

0
2 )− β1)

2
)

k01
∑

t=1

y2t−1

−2
(

(β̂x(τ)− β2)− (β̂x(τ
0
2 )− β2)

)

k02
∑

t=k01+1

yt−1ut +
(

(β̂x(τ)− β2)
2 − (β̂x(τ

0
2 )− β2)

2
)

k02
∑

t=k01+1

y2t−1

−2(β̂x(τ)− β3)

[τT ]
∑

t=k02+1

yt−1ut + (β̂x(τ)− β3)
2

[τT ]
∑

t=k02+1

y2t−1
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+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

−
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

:= γ1(τ)(β2 − β1) + γ2(τ)(β3 − β1) + γ3(τ)(β3 − β2) + γ4(τ)(β2 − β1)
2 + γ5(τ)(β3 − β1)

2

+γ6(τ)(β3 − β2)
2 + γ7(τ)(β2 − β1)(β3 − β1) + γ8(τ)(β2 − β1)(β3 − β2)

+γ9(τ)(β3 − β1)(β3 − β2) + Ω3,T (τ),

where

γ1(τ) = −2





∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

−
∑k02

t=k01+1
y2t−1

∑k02
t=1 y

2
t−1





k01
∑

t=1

yt−1ut

+2





∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

−
∑k01

t=1 y
2
t−1

∑k02
t=1 y

2
t−1





k02
∑

t=k01+1

yt−1ut

+2





∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=k01+1
y2t−1

∑k02
t=1 y

2
t−1

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=1

y2t−1

−2





∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k01

t=1 y
2
t−1

∑k02
t=1 y

2
t−1

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





k02
∑

t=k01+1

y2t−1

=
2
∑[τT ]

t=k02+1
y2t−1

(

∑k01
t=1 yt−1ut

∑k02
t=k01+1

y2t−1 −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

yt−1ut

)

∑[τT ]
t=1 y2t−1

∑k02
t=1 y

2
t−1

,

γ2(τ) = −2

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

k01
∑

t=1

yt−1ut + 2

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

k01
∑

t=1

y2t−1

+2

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

[τT ]
∑

t=k02+1

yt−1ut − 2

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

[τT ]
∑

t=k02+1

y2t−1

=
2
(

∑k01
t=1 y

2
t−1

∑[τT ]

t=k02+1
yt−1ut −

∑k01
t=1 yt−1ut

∑[τT ]

t=k02+1
y2t−1

)

∑[τT ]
t=1 y2t−1

,

γ3(τ) = −2

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

k02
∑

t=k01+1

yt−1ut + 2

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

k02
∑

t=k01+1

y2t−1

+2

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

[τT ]
∑

t=k02+1

yt−1ut − 2

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

[τT ]
∑

t=k02+1

y2t−1

=
2
(

∑k02
t=k01+1

y2t−1

∑[τT ]

t=k02+1
yt−1ut −

∑k02
t=k01+1

yt−1ut
∑[τT ]

t=k02+1
y2t−1

)

∑[τT ]
t=1 y2t−1

,

γ4(τ) =











∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1





2

−





∑k02
t=k01+1

y2t−1

∑k02
t=1 y

2
t−1





2






k01
∑

t=1

y2t−1
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+









∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1





2

−





∑k01
t=1 y

2
t−1

∑k02
t=1 y

2
t−1





2



k02
∑

t=k01+1

y2t−1

= −
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

y2t−1

∑[τT ]

t=k02+1
y2t−1

(

∑k02
t=1 y

2
t−1 +

∑[τT ]
t=1 y2t−1

)

(
∑[τT ]

t=1 y2t−1)
2
∑k02

t=1 y
2
t−1

,

γ5(τ) =





∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1





2
k01
∑

t=1

y2t−1 +





∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1





2
[τT ]
∑

t=k02+1

y2t−1

=

∑k01
t=1 y

2
t−1

∑[τT ]

t=k02+1
y2t−1

(

∑k01
t=1 y

2
t−1 +

∑[τT ]

t=k02+1
y2t−1

)

(
∑[τT ]

t=1 y2t−1)
2

,

γ6(τ) =





∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1





2
k02
∑

t=k01+1

y2t−1 +





∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1





2
[τT ]
∑

t=k02+1

y2t−1

=

∑k02
t=k01+1

y2t−1

∑[τT ]

t=k02+1
y2t−1

∑[τT ]

t=k01+1
y2t−1

(
∑[τT ]

t=1 y2t−1)
2

,

γ7(τ) = 2

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

k01
∑

t=1

y2t−1 =
2
∑k01

t=1 y
2
t−1

∑k02
t=k01+1

y2t−1

∑[τT ]

t=k02+1
y2t−1

(
∑[τT ]

t=1 y2t−1)
2

,

γ8(τ) = −2

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

∑[τT ]

t=k02+1
y2t−1

∑[τT ]
t=1 y2t−1

k02
∑

t=k01+1

y2t−1 = −γ7(τ),

γ9(τ) = 2

∑k01
t=1 y

2
t−1

∑[τT ]
t=1 y2t−1

∑k02
t=k01+1

y2t−1

∑[τT ]
t=1 y2t−1

[τT ]
∑

t=k02+1

y2t−1 = γ7(τ)

and

Ω3,T (τ)

= −2





∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=1

yt−1ut

−2





∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k02
∑

t=k01+1

yt−1ut − 2

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

[τT ]
∑

t=k02+1

yt−1ut

+





(

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



k01
∑

t=1

y2t−1

+





(

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

)2

−





∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1





2



k02
∑

t=k01+1

y2t−1 +

(

∑[τT ]
t=1 yt−1ut
∑[τT ]

t=1 y2t−1

)2 [τT ]
∑

t=k02+1

y2t−1
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+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

−
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

=
(
∑k02

t=1 yt−1ut)
2

∑k02
t=1 y

2
t−1

− (
∑[τT ]

t=1 yt−1ut)
2

∑[τT ]
t=1 y2t−1

+
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

−
(
∑T

t=[τT ]+1 yt−1ut)
2

∑T
t=[τT ]+1 y

2
t−1

= ΩT (τ).

These prove part (c). �

The five lemmas below are needed in the proof of Theorem 3.1.

Lemma A.2 For Model (2.1), under assumptions C1-C4, the following results hold jointly:

(a)
1

T

k01
∑

t=1

yt−1ut ⇒
σ2

2
(W 2(τ01 )− τ01 ),

(b)
1

T 2

k01
∑

t=1

y2t−1 ⇒ σ2

∫ τ01

0
W 2(s)ds,

(c)
yk01√
T

⇒ σW (τ01 ).

Proof. To prove part (a), note that

yt = y0 +

t
∑

i=1

ui =
tc

T η
+ y0 +

t
∑

i=1

εi, 0 ≤ t ≤ k01; (A.11)

it is obvious that

1

T

k01
∑

t=1

yt−1ut =
1

T

k01
∑

t=1

(

(t− 1)c

T η
+ y0 +

t−1
∑

i=1

εi

)

(
c

T η
+ εt)

=
1

T

k01
∑

t=1

(

t−1
∑

i=1

εi

)

εt + op(1)

by assumption C1 and the fact that η > 1/2. Then, applying the standard results in the

unit root literature, we have

1

T

k01
∑

t=1

yt−1ut ⇒
σ2

2

∫ τ01

0
W (s)dW (s)

d
=

σ2

2
(W 2(τ01 )− τ01 ).

Part (b) can be proved in a similar manner, thus the details are omitted. Part (c) is implied

by (A.11) and the functional central limit theorem.

It is not difficult to see that parts (a), (b) and (c) hold jointly. �
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Lemma A.3 For Model (2.1), under assumptions C1-C4, the following results hold jointly:

(a)
1

β
k02−k01
2

√
TkT

k02
∑

t=k01+1

yt−1ut ⇒ σ2W (τ01 )X,

(b)
1

β
2(k02−k01)
2 TkT

k02
∑

t=k01+1

y2t−1 ⇒
σ2

2c1
W 2(τ01 ),

(c)
yk02

β
k02−k01
2

√
T

⇒ σW (τ01 ),

where X is a random variable following N(0, 1
2c1

) and independent of W (τ01 ).

Proof. We first prove part (a). In view of part (c) of Lemma A.2, Lemma C.1 in Pang et

al. (2017) and the observation (A.1), one can show that

1

β
k02−k01
2

√
TkT

k02
∑

t=k01+1

yt−1ut =
1

β
k02−k01
2

√
TkT

k02
∑

t=k01+1



β
t−1−k01
2 yk01 +

t−1
∑

i=k01+1

βt−1−i
2 ui



ut

=
yk01

β
k02−k01
2

√
TkT

k02
∑

t=k01+1

β
t−1−k01
2 ut + op(1)

=
yk01√
T

· 1√
kT

k02−k01
∑

i=1

β
i−1−(k02−k01)
2 uk01+i + op(1)

⇒ σ2W (τ01 )X. (A.12)

It is clear that W (τ01 ) and X are independent of each other.

To prove part (b), applying part (c) of Lemma A.2 again, one can show that

1

β
2(k02−k01)
2 TkT

k02
∑

t=k01+1

y2t−1 =
y2
k01

β
2(k02−k01)
2 TkT

k02
∑

t=k01+1

β
2(t−1−k01)
2 + op(1)

=
y2
k01

T
· 1

kTβ
2(k02−k01)
2

β
2(k02−k01)
2 − 1

β2
2 − 1

+ op(1)

⇒ σ2

2c1
W 2(τ01 ). (A.13)

We now prove part (c). Note that

yk02

β
k02−k01
2

√
T

=
1

β
k02−k01
2

√
T



β
k02−k01
2 yk01 +

k02
∑

t=k01+1

β
k02−t
2 ut





=
yk01√
T

+ op(1)

⇒ σW (τ01 ).

It is easy to see that parts (a), (b) and (c) hold jointly. �
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Lemma A.4 For Model (2.1), under assumptions C1-C4, the following results hold jointly:

(a)
1

β
k02−k01
2

√
ThT

T
∑

t=k02+1

yt−1ut ⇒ σ2W (τ01 )Z,

(b)
1

β
2(k02−k01)
2 ThT

T
∑

t=k02+1

y2t−1 ⇒
σ2

2c2
W 2(τ01 ),

where Z is a random variable following N(0, 1
2c2

) and independent of W (τ01 ).

Proof. To prove part (a), using part (c) of Lemma A.3 and Lemma A.1 in Pang et al.

(2017), we have

1

β
k02−k01
2

√
ThT

k03
∑

t=k02+1

yt−1ut =
1

β
k02−k01
2

√
ThT

k03
∑

t=k02+1



β
t−1−k02
3 yk02 +

t−1
∑

i=k02+1

βt−1−i
3 ui



ut

=
yk02

β
k02−k01
2

√
ThT

k03
∑

t=k02+1

β
t−1−k02
3 ut + op(1)

=
yk02

β
k02−k01
2

√
T

· 1√
hT

(τ03−τ02 )T
∑

j=1

β
(τ03−τ02 )T−j
3 uk03−j+1 + op(1)

⇒ σ2W (τ01 )Z.

It is clear that Z and W (τ01 ) are independent of each other.

To prove part (b), note that

1

β
2(k02−k01)
2 ThT

k03
∑

t=k02+1

y2t−1 =
1

β
2(k02−k01)
2 ThT

k03
∑

t=k02+1



β
t−1−k02
3 yk02 +

t−1
∑

i=k02+1

βt−1−i
3 ui





2

=
y2
k02

β
2(k02−k01)
2 T

· 1

hT

k03
∑

t=k02+1

β
2(t−1−k02)
3 + op(1)

=
y2
k02

β
2(k02−k01)
2 T

· 1− β
2(k03−k02)
3

hT (1− β2
3)

+ op(1)

⇒ σ2

2c2
W 2(τ01 )

by part (c) of Lemma A.3 again.

It is easy to see that parts (a) and (b) hold jointly. �

To find out the leading terms in RSS2,T (τ) − RSS2,T (τ
0
2 ) when τ departs from τ02 , we

have the following lemma:
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Lemma A.5 Denote κT = |β3 − β2| = |β3T − β2T | and


















B1T = {m : m ∈ ZT , k
0
1 ≤ m < k02 −MT }

B2T = {m : m ∈ ZT , 1 ≤ m < k01}
B3T = {m : m ∈ ZT , k

0
2 +MT < m ≤ T}

with MT > 0 such that MT → ∞ at an arbitrary slow pace; ZT denotes the set {0, 1, 2, · · · , T}.
For Model (2.1), under assumptions C1-C4, we have

(a) for τ01 ≤ τ ≤ τ02 ,














sup
m∈B1T

∣

∣

∣
ηi(

m

T
)/η4(

m

T
)
∣

∣

∣
= op(κ

2
T ), i = 1, 2, 3

sup
m∈B1T

∣

∣

∣
ΩT (

m

T
)/η4(

m

T
)
∣

∣

∣
= op(κ

2
T )

,

(b) for 0 < τ < τ01 ,














sup
m∈B2T

∣

∣

∣
θi(

m

T
)/θ6(

m

T
)
∣

∣

∣
= op(κ

2
T ), i = 1, 2, 3, 4, 5, 7, 8, 9

sup
m∈B2T

∣

∣

∣
ΩT (

m

T
)/θ6(

m

T
)
∣

∣

∣
= op(κ

2
T )

,

(c) for τ02 < τ < 1,














sup
m∈B3T

∣

∣

∣
γi(

m

T
)/γ6(

m

T
)
∣

∣

∣
= op(κ

2
T ), i = 1, 2, 3, 4, 5, 7, 8, 9

sup
m∈B3T

∣

∣

∣
ΩT (

m

T
)/γ6(

m

T
)
∣

∣

∣
= op(κ

2
T )

.

Proof. To prove part (a), note that

0 ̸= κT = |β3T − β2T | =







O( 1
kT

), when kT = O(hT )

O( 1
hT

), when hT = o(kT )

and

sup
m∈B1T

∣

∣

∣

∣

1

η4(
m
T )

∣

∣

∣

∣

= sup
m∈B1T

∑T
t=m+1 y

2
t−1

∑k02
t=m+1 y

2
t−1

∑T
t=k02+1 y

2
t−1

=



1 +

∑T
t=k02+1 y

2
t−1

∑k02
t=k02−MT

y2t−1





1
∑T

t=k02+1 y
2
t−1

=

(

1 +Op(
β
2(k02−k01)
2 ThT

β
2(k02−k01)
2 TMT

)

)

·Op(
1

β
2(k02−k01)
2 ThT

)

= Op(
1

β
2(k02−k01)
2 TMT

) (A.14)

by Lemmas A.3 and A.4. For the term supm∈B1T
|η1(mT )/η4(

m
T )|, noting that

sup
m∈B1T

∣

∣

∣
η1(

m

T
)
∣

∣

∣
= sup

m∈B1T

∣

∣

∣

∣

∣

∣





∑m
t=1 yt−1ut
∑m

t=1 y
2
t−1

−
∑k02

t=1 yt−1ut
∑k02

t=1 y
2
t−1





k01
∑

t=1

y2t−1

∣

∣

∣

∣

∣

∣
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≤ sup
m∈B1T

∣

∣

∣

∣

∑m
t=1 yt−1ut
∑m

t=1 y
2
t−1

∣

∣

∣

∣

k01
∑

t=1

y2t−1 +

∣

∣

∣

∣

∣

∣

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1

∣

∣

∣

∣

∣

∣

k01
∑

t=1

y2t−1

≤ sup
m∈B1T

√

∑m
t=1 u

2
t

∑m
t=1 y

2
t−1

k01
∑

t=1

y2t−1 +

∣

∣

∣

∣

∣

∣

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1

∣

∣

∣

∣

∣

∣

k01
∑

t=1

y2t−1

≤

√

√

√

√

∑k02
t=1 u

2
t

∑k01
t=1 y

2
t−1

k01
∑

t=1

y2t−1 +

∣

∣

∣

∣

∣

∣

∑k02
t=1 yt−1ut
∑k02

t=1 y
2
t−1

∣

∣

∣

∣

∣

∣

k01
∑

t=1

y2t−1

= Op(

√

T

T 2
T 2) +Op(

β
k02−k01
2

√
TkT

β
2(k02−k01)
2 TkT

T 2)

= Op(T
3/2)

by Lemmas A.2 and A.3, we have

sup
m∈B1T

∣

∣

∣

∣

η1(
m
T )

η4(
m
T )

∣

∣

∣

∣

≤ sup
m∈B1T

∣

∣

∣
η1(

m

T
)
∣

∣

∣
· sup
m∈B1T

∣

∣

∣

∣

1

η4(
m
T )

∣

∣

∣

∣

≤ Op(T
3/2) ·Op(

1

β
2(k02−k01)
2 TMT

) = op(κ
2
T ).

For the term supm∈B1T
|η2(mT )/η4(

m
T )|, it is clear that

sup
m∈B1T

∣

∣

∣
η2(

m

T
)
∣

∣

∣
= sup

m∈B1T

∣

∣

∣

∣

∣

∣

(

∑k02
t=m+1 y

2
t−1

∑T
t=k02+1 yt−1ut −

∑k02
t=m+1 yt−1ut

∑T
t=k02+1 y

2
t−1

)

∑T
t=m+1 y

2
t−1

∣

∣

∣

∣

∣

∣

≤ sup
m∈B1T

∣

∣

∣

∣

∣

∣

∑k02
t=m+1 y

2
t−1

∑T
t=k02+1 yt−1ut

∑T
t=m+1 y

2
t−1

∣

∣

∣

∣

∣

∣

+ sup
m∈B1T

∣

∣

∣

∣

∣

∣

∑k02
t=m+1 yt−1ut

∑T
t=k02+1 y

2
t−1

∑T
t=m+1 y

2
t−1

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

T
∑

t=k02+1

yt−1ut

∣

∣

∣

∣

∣

∣

+ sup
m∈B1T

∣

∣

∣

∣

∣

∣

k02
∑

t=m+1

yt−1ut

∣

∣

∣

∣

∣

∣

≤ Op(β
k02−k01
2

√

ThT ) + sup
m∈B1T

√

√

√

√

√

k02
∑

t=m+1

y2t−1

k02
∑

t=m+1

u2t

≤ Op(β
k02−k01
2

√

ThT ) +

√

√

√

√

√

k02
∑

t=k01+1

y2t−1

k02
∑

t=k01+1

u2t

= Op(β
k02−k01
2

√

ThT ) +Op(

√

β
2(k02−k01)
2 TkTT )

= Op(β
k02−k01
2 T

√

kT ).

Then, it follows from (A.14) that

sup
m∈B1T

∣

∣

∣

∣

η1(
m
T )

η4(
m
T )

∣

∣

∣

∣

≤ Op(β
k02−k01
2 T

√

kT ) ·Op(
1

β
2(k02−k01)
2T TMT

) = op(κ
2
T ).

For the term supm∈B1T
|η3(mT )/η4(

m
T )|, we have

sup
m∈B1T

∣

∣

∣

∣

η3(
m
T )

η4(
m
T )

∣

∣

∣

∣

= sup
m∈B1T

(
∑k01

t=1 y
2
t−1)

2
∑k02

t=m+1 y
2
t−1

∑k02
t=1 y

2
t−1

∑m
t=1 y

2
t−1

·
∑T

t=m+1 y
2
t−1

∑k02
t=m+1 y

2
t−1

∑T
t=k02+1 y

2
t−1
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=
(
∑k01

t=1 y
2
t−1)

2
∑T

t=k01+1 y
2
t−1

∑k02
t=1 y

2
t−1

∑k01
t=1 y

2
t−1

∑T
t=k02+1 y

2
t−1

= Op(
T 4(β

2(k02−k01)
2 TkT + β

2(k02−k01)
2 ThT )

β
2(k02−k01)
2 TkTT 2β

2(k02−k01)
2 ThT

)

= op(κ
2
T ).

To examine the stochastic order of the term supm∈B1T
|ΩT (

m
T )/η4(

m
T )|, we first apply Lem-

mas A.2-A.4 to have

(
∑k02

t=1 yt−1ut)
2

∑k02
t=1 y

2
t−1

= Op(1) and
(
∑T

t=k02+1 yt−1ut)
2

∑T
t=k02+1 y

2
t−1

= Op(1).

Second, applying Cauchy-Schwarz inequality, we have

sup
m∈B1T

∣

∣

∣

∣

(
∑m

t=1 yt−1ut)
2

∑m
t=1 y

2
t−1

∣

∣

∣

∣

≤ sup
m∈B1T

m
∑

t=1

u2t ≤
T
∑

t=1

u2t = Op(T )

and

sup
m∈B1T

∣

∣

∣

∣

∣

(
∑T

t=m+1 yt−1ut)
2

∑T
t=m+1 y

2
t−1

∣

∣

∣

∣

∣

≤ sup
m∈B1T

T
∑

t=m+1

u2t ≤
T
∑

t=1

u2t = Op(T ).

Therefore,

sup
m∈B1T

∣

∣

∣
ΩT (

m

T
)
∣

∣

∣
≤ Op(T ),

which together with (A.14) yield

sup
m∈B1T

∣

∣

∣

∣

ΩT (
m
T )

η4(
m
T )

∣

∣

∣

∣

= op(κ
2
T ).

These prove part (a).

Part (b) and part (c) can be proved in a similar manner, hence the details are omitted

for the sake of brevity. �

Lemma A.6 For Model (2.1), under assumptions C1-C4, we have, for any fixed integer

m ≥ 0,

(a)
1

β
2(k02−k01)
2 T (β3 − β2)2

(

RSS2,T (τ
0
2 − m

T
)−RSS2,T (τ

0
2 )
)

⇒ mσ2W 2(τ01 ),

(b)
1

β
2(k02−k01)
2 T (β3 − β2)2

(

RSS2,T (τ
0
2 +

m

T
)−RSS2,T (τ

0
2 )
)

⇒ mσ2W 2(τ01 ).

Proof. To prove part (a), by the similar arguments in the proof of Lemma A.5, one can

show that

RSS2,T (τ
0
2 − m

T
)−RSS2,T (τ

0
2 )
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= η4(τ
0
2 − m

T
)(β3 − β2)

2(1 + op(1))

=

∑k02
t=k02−m+1

y2t−1

∑T
t=k02+1 y

2
t−1

∑T
t=k02−m+1 y

2
t−1

(β3 − β2)
2(1 + op(1))

=

k02
∑

t=k02−m+1

y2t−1(β3 − β2)
2(1 + op(1))

by Lemmas A.3 and A.4. Then, we immediately have

1

β
2(k02−k01)
2 T (β3 − β2)2

(

RSS2,T (τ
0
2 − m

T
)−RSS2,T (τ

0
2 )
)

=
1

β
2(k02−k01)
2 T

k02
∑

t=k02−m+1

y2t−1(1 + op(1))

=
my2

k02

β
2(k02−k01)
2 T

(1 + op(1))

⇒ mσ2W 2(τ01 )

by Lemma A.3 again. This proves part (a).

To prove part (b), similarly, it can be shown that

RSS2,T (τ
0
2 +

m

T
)−RSS2,T (τ

0
2 )

= γ6(τ
0
2 +

m

T
)(β3 − β2)

2(1 + op(1))

=

∑k02
t=k01+1

y2t−1

∑k02+m

t=k02+1
y2t−1

∑k02+m

t=k01+1
y2t−1

(
∑k02+m

t=1 y2t−1)
2

(β3 − β2)
2(1 + op(1))

=

k02+m
∑

t=k02+1

y2t−1(β3 − β2)
2(1 + op(1))

by Lemmas A.2 and A.3. Then, we immediately have

1

β
2(k02−k01)
2 T (β3 − β2)2

(

RSS2,T (τ
0
2 +

m

T
)−RSS2,T (τ

0
2 )
)

=
1

β
2(k02−k01)
2 T

k02+m
∑

t=k02+1

y2t−1(1 + op(1))

=
my2

k02

β
2(k02−k01)
2 T

(1 + op(1))

⇒ mσ2W 2(τ01 )

by Lemma A.3 again. This proves part (b). �
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Proof of Theorem 3.1. We prove the last results in (3.1)-(3.3) first. To prove the last

result in (3.1), we first prove the following result:

|τ̂2,T − τ02 | = Op(1/T ). (A.15)

To this end, we shall use the contradiction argument. Suppose (A.15) is not true, then there

exists an integer sequence MT > 0 such that MT → ∞,MT = o(kT ), MT = o(hT ), and

lim inf
T→∞

P (|k̂2 − k02| > MT ) ≥ α, (A.16)

where α is a positive constant in (0, 1]. Recall the definitions of κT , ZT , B1T , B2T and B3T

in Lemma A.5 and define

B0T = {m : m ∈ ZT , k
0
2 −MT ≤ m ≤ k02 +MT }.

Note that

P (|k̂2 − k02| > MT ) = P ( inf
m∈B1T∪B2T∪B3T

RSS2,T (
m

T
) < inf

m∈B0T

RSS2,T (
m

T
))

≤ P ( inf
m∈B1T∪B2T∪B3T

RSS2,T (
m

T
) < RSS2,T (τ

0
2 ))

≤
3
∑

i=1

P ( inf
m∈BiT

(RSS2,T (
m

T
)−RSS2,T (τ

0
2 )) < 0). (A.17)

To examine the term P (infm∈B1T
(RSS2,T (

m
T )−RSS2,T (τ

0
2 )) < 0), using part (a) of Lemma

A.1, part (a) of Lemma A.5 and the fact that both |β2 − β1| and |β3 − β2| approach zero,

we have for large T that

P ( inf
m∈B1T

(RSS2,T (
m

T
)−RSS2,T (τ

0
2 )) < 0)

= P ( inf
m∈B1T

(η1(
m

T
)(β2 − β1) + η2(

m

T
)(β3 − β2) + η3(

m

T
)(β2 − β1)

2 + η4(
m

T
)(β3 − β2)

2

+ΩT (
m

T
)) < 0)

= P ( inf
m∈B1T

(η4(
m

T
)(
η1(

m
T )

η4(
m
T )

(β2 − β1) +
η2(

m
T )

η4(
m
T )

(β3 − β2) +
η3(

m
T )

η4(
m
T )

(β2 − β1)
2 + (β3 − β2)

2

+
ΩT (

m
T )

η4(
m
T )

)) < 0)

≤ P ( inf
m∈B1T

η4(
m

T
)((β3 − β2)

2 −
3
∑

i=1

sup
m∈B1T

∣

∣

ηi(
m
T )

η4(
m
T )

∣

∣− sup
m∈B1T

∣

∣

ΩT (
m
T )

η4(
m
T )

∣

∣) < 0)

= P ( inf
m∈B1T

η4(
m

T
)(β3 − β2)

2(1 + op(1)) < 0)

= o(1) (A.18)

since

inf
m∈B1T

η4(
m

T
) ≥

y2
k02−1

∑T
t=k02+1 y

2
t−1

∑T
t=k01+1 y

2
t−1

= Op(
β
2(k02−k01)
2 ThT
kT + hT

),
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which suggests infm∈B1T
η4(

m
T )(β3 − β2)

2 will diverge to infinity in probability by (A.1).

Similarly, one can use part (b) of Lemma A.1 and part (b) of Lemma A.5 to obtain

P ( inf
m∈B2T

(RSS2,T (
m

T
)−RSS2,T (τ

0
2 )) < 0) = o(1) (A.19)

and use part (c) of Lemma A.1 and part (c) of Lemma A.5 to obtain

P ( inf
m∈B3T

(RSS2,T (
m

T
)−RSS2,T (τ

0
2 )) < 0) = o(1). (A.20)

The details are omitted. Now, combining (A.17)-(A.20) together leads to

P (|k̂2 − k02| > MT ) = o(1),

which contradicts (A.16). Thus, (A.15) is proved.

Next, we will improve the result (A.15). Given (A.15), for any η > 0, there exists an

M > 0 such that P (|k̂2 − k02| > M) < η. Therefore,

P (k̂2 ̸= k02)

= P (|k̂2 − k02| > M) + P (|k̂2 − k02| ≤ M, k̂2 ̸= k02)

≤ η +

M
∑

m=1

P (RSS2,T (τ
0
2 − m

T
)−RSS2,T (τ

0
2 ) < 0) +

M
∑

m=1

P (RSS2,T (τ
0
2 +

m

T
)−RSS2,T (τ

0
2 ) < 0)

= η +

M
∑

m=1

P (
1

β
2(k02−k01)
2 T (β3 − β2)2

(RSS2,T (τ
0
2 − m

T
)−RSS2,T (τ

0
2 )) < 0)

+

M
∑

m=1

P (
1

β
2(k02−k01)
2 T (β3 − β2)2

(RSS2,T (τ
0
2 +

m

T
)−RSS2,T (τ

0
2 )) < 0)

= o(1)

by Lemma A.6, the finiteness of M and the arbitrariness of η. Hence, the last result in (3.1)

is proved.

Based on the above result, one can easily prove that the limiting distributions of β̂3(τ̂2,T )

and β̂3(τ
0
2 ) are the same by using the arguments in the proof of Theorem 4 in Chong (2001).

Then, applying Lemma A.4, we have

√

k01hT
2c2

β
k02−k01
2 (β̂3(τ

0
2 )− β3) =

√

k01
2Tc2

·

1

β
k02−k01
2

√
ThT

∑T
t=k02+1 yt−1ut

1

β
2(k02−k01)

2 ThT

∑T
t=k02+1 y

2
t−1

⇒ ζ,

implying
√

k01hT
2c2

β
k02−k01
2 (β̂3(τ̂2,T )− β3) ⇒ ζ.

The last result in (3.2) is proved.
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Similarly, using Lemma A.4 again, we have

√

∑T
t=k02+1 y

2
t−1

σ2
(β̂3(τ

0
2 )− β3) =

1

σ2β
k02−k01
2

√
ThT

∑T
t=k02+1 yt−1ut

√

1

σ2β
2(k02−k01)

2 ThT

∑T
t=k02+1 y

2
t−1

⇒ N(0, 1),

which implies

t3 =

√

∑T
t=k02+1 y

2
t−1

σ2
(β̂3(τ̂2,T )− β3) ⇒ N(0, 1).

The last result in (3.3) is proved.

To prove the remaining results in Theorem 3.1, note that τ01 , β1 and β2 are estimated

using the subsample {y1, · · · , yk̂2} and we have proven that P (k̂2 ̸= k02) → 0. Hence, the

asymptotic properties of the estimators of τ01 , β1 and β2 obtained through the subsample

{y1, · · · , yk̂2} are the same as those of the estimators of τ01 , β1 and β2 obtained through

the subsample {y1, · · · , yk02} by the similar arguments in the proof of Theorem 4 in Chong

(2001). The asymptotic properties of the LSEs of the break point k01 and the two AR pa-

rameters β1 and β2 under the subsample {y1, · · · , yk02}, which contains a unit root model

and a mildly explosive AR(1) model, follow immediately from Theorem 1.3 and Lemmas

B.1 and C.2 in Pang et al. (2017). �
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