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Abstract

The purpose of this study is to investigate how the long-run growth rate of per capita

output is determined when an economy is subject to non-renewable resource constraints

and the population growth is negative by using a theoretical model. From this, we can

examine the effect of population decline and the effect of depletion of natural resources

on economic growth. Our results show that irrespective of whether the population

growth rate is positive or negative, the long-run growth rate of per capita output can be

positive depending on conditions. This result suggests that even an economy with non-

renewable resources and declining population can obtain sustainable economic growth.

Keywords: non-renewable resources; declining population; endogenous growth

JEL Classification: O13; O44; Q32; Q43

1 Introduction

So far, there have been many studies that investigate how non-renewable resources such as

petroleum and natural gas affect economic growth. For example, Stiglitz (1974) models

a situation in which final goods production needs capital stock, labor, and non-renewable

resources, and shows that technological progress is necessary for sustainable economic
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growth.1) Non-renewable resources will be constraints on economic growth. To allevi-

ate these constraints, some researchers have developed growth models in which resource-

saving technical change is endogenously produced. For example, Suzuki (1976) presents a

growth model in which investment in research and development activity by firms accumu-

lates knowledge stock, which leads to technological progress.2)

At the same time, there have been many studies that investigate whether population

growth will be a constraint on economic growth. The seminal paper of Jones (1995) presents

a semi-endogenous growth model, which is a kind of the endogenous growth model, and

shows that the long-run growth rate of per capita output is increasing in population growth.3)

That is, the larger the population growth rate is, the higher the per capita output growth rate

is.

Groth and Schou (2002) integrate these two strands of research. They show that even in

non-renewable resources constrain economic growth, per capita output can grow sustainably

provided that the population growth rate is positive and the production function exhibits in-

creasing returns with respect to capital stock and labor. In their model, increasing returns

are merely assumed and are not occurred by some mechanism.4) Bretschger (2013) incor-

porates research and development activity of firms into an endogenous growth model with

non-renewable resources, and shows that the per capita output growth rate can be positive in

the long run as long as population grows.

It is true that world population continues to increase. However, population in developed

countries does not grow so much. On the contrary, some countries such as Japan experiences

population decline. Table 1 shows that population growth will decelerate over time. For this

reason, to investigate how non-renewable resources affect economic growth when population

growth is positive and negative, we build an economic growth model that considers both

positive population growth and negative population growth.

Few economic growth models consider population decline. Ritschl (1985) shows that if

negative population growth is considered in Solow’s (1956) model, a negative saving rate

is necessary for the steady state per capita capital stock to be positive. Christiaans (2011)

1) For initial contributions that consider the relationship between non-renewable resources and economic

growth, see Solow (1974) and Dasgupta and Heal (1974). Malaczewski (2018) points out that capital stock and

non-renewable resources are complements and not substitutes assumed in many former studies, and presents a

growth model in which capital stock and non-renewable resources are complements.

2) For endogenous growth models that incorporate non-renewable resources into final goods production, see

Barbier (1999) and Cabo et al. (2016).

3) The semi-endogenous growth model is developed to overcome the problem of scale effects inherent in

the endogenous growth model. Scale effects are effects such that the larger the population is, the higher the

economic growth is. For scale effects and attempts to remove scale effects, see Jones (1999).

4) Groth (2007) presents a growth model in which production exhibits increasing returns with respect to

capital stock, labor, and non-renewable resources because of a positive externality effect arising from capital

accumulation. Results obtained are similar to results of Groth and Schou (2002).
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World Developed countries Developing countries Japan

2000 1.3 0.4 1.7 0.2

2010 1.2 0.4 1.5 0

2020 1 0.3 1.3 −0.4

2030 0.9 0.2 1.1 −0.6

2040 0.7 0.1 0.9 −0.8

2050 0.6 0 0.7 −0.9

Table 1: Annual average growth rates of population (%). Source: Statistics Japan (2018)

presents a semi-endogenous growth model in which production exhibits increasing returns

to scale due to a positive externality effect of capital accumulation, and investigates whether

positive per capita output growth is possible when the population growth rate is negative.5)

He reveals that the long-run per capita output growth rate can be positive if the absolute

value of the negative population growth rate is large. Sasaki (2015) builds a small open

economy growth model with negative population growth, and investigates the relationship

between trade patterns and economic growth. Sasaki and Hoshida (2017) introduce negative

population growth into Jones’ (1995) semi-endogenous growth model. These studies find

that per capita output can grow sustainably even if population growth is negative. However,

all existing studies do not consider non-renewable resources in production.

Population decline is widely believed to have a negative effect on economic growth. For

example, in the sustainability of pension system and in tax revenue, reduction of pie of the

economy due to population decline seems to have a negative effect on the economy. How-

ever, to think economically, it is the level of per capita income that matters for economic

welfare. As long as national income is constant, that is, even if the economy does not grow,

a decrease in population increases per capita output and improves the economic welfare. Ac-

cordingly, a decrease in population does not necessarily have a negative effect on economic

welfare.

The main purpose of this paper is to investigate whether or not positive per capita output

growth is possible when non-renewable resources are used for final goods production and

population growth is positive or negative. Is it possible that the economy grows at a positive

rate even when there are two potential negative factors for production, that is, population

decline and depletion of natural resources? To tackle this problem, we can investigate how

population decline and depletion of natural resources, which actually occur in reality, af-

fect economic growth. Results of our analysis can contribute to policy proposals for the

5) Christiaans (2017) builds a two-sector growth model with negative population growth in which labor

moves from a rural sector to an urban sector.
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realization of sustainable society.

Our study has two originalities.

First, as stated above, few studies consider negative population growth in the economic

growth theory. Almost all existing studies assume positive population growth and do not

at all consider the possibility of negative population growth. In reality, because popula-

tion growth can be negative, those existing studies are not sufficient. The seminal work of

Chrisitiaans (2011) shows that incorporating negative population growth into growth mod-

els is more complicated than replacing a positive population growth rate with a negative

population growth rate. In addition, considering negative population growth in growth mod-

els produces interesting results (Christiaans, 2011; Sasaki and Hoshida, 2017; Christiaans,

2017).

Second, to the author’s knowledge, no study considers both negative population growth

and non-renewable resources in production. Negative population growth and the possibility

of depletion of natural resources are observed in reality. To incorporate these two phenom-

ena into a growth model is important when we consider sustainable economic development.

The remainder of this paper is organized as follows. Section 2 presents our growth

model with population growth and non-renewable resources. Section 3 examines long-run

situations under the assumption that population growth is positive or negative. Section 4

investigates whether long-run growth rate of per capita output can be positive. In doing so,

we seek the combination of the population growth rate and the input rate of non-renewable

natural resources that generates a positive long-run growth rate of per capita output. Section

5 concludes the paper.

2 Model

Our model is based on the model of Stiglitz (1974) and that of Groth and Schou (2002). The

production function of final goods is constant returns to scale with respect to input factors

and given by

Y = AKαLβR1−α−β, 0 < α < 1, 0 < β < 1, 0 < α + β < 1, (1)

where Y denotes output; K, capital stock; L, labor input; R, non-renewable resources; A,

total factor productivity; α, capital elasticity of output; β, labor elasticity of output; and

1−α−β, non-renewable resources elasticity of output. We use the Cobb-Douglas production

function because we want to investigate an intermediate case with respect to the size of the

elasticity of substitution between input factors. When the elasticity of substitution is more

4



than unity, non-renewable resources are not essential in production and not indispensable.

When the elasticity of substitution is less than unity, on the other hand, output approaches

zero in the long run.6) To consider that non-renewable resources are essential in production

and to investigate the possibility of sustainable economic growth, it is appropriate to use the

Cobb-Douglas production function whose elasticity of substitution is unity.

We introduce a positive externality effect related to capital accumulation.

A = Kγ, 0 < γ < 1. (2)

This can be interpreted as capturing the learning by doing effect of Arrow (1962), and the

positive parameter γ captures the extent of positive externality. According to Graham and

Temple (2006), such an positive externality is reasonable in reality.

Substituting equation (2) into equation (1), we obtain

Y = Kα+γLβR1−α−β. (3)

Summing up the exponents, we have α+γ+β+1−α−β = 1+γ > 1, and hence, production

exhibits increasing returns to scale. In contrast, Stiglitz (1974) assumes constant returns to

scale and introduces a positive exogenous technological progress rate and a positive popu-

lation growth rate.

We impose the following restriction on the parameter of the production function:

Assumption 1. The restriction α + γ < 1 holds.

This assumption implies that production is diminishing returns to capital stock, and the

extent of increasing returns to scale is not so large. If α + γ > 1, then Y will be infinity

within finite time, which is unrealistic. If α + γ = 1, then we have an AK growth model as

long as both L and R are fixed, which produces endogenous growth. However, since both L

and R are not fixed in reality, this case is also unrealistic.

To find a technologically feasible growth rate and to simplify analysis, we assume that

saving is a constant fraction s of output.7) From the goods market equilibrium condition,

gross investment and saving are equal. Hence, net investment is given by

K̇ = sY − δK, 0 < s < 1, 0 ≤ δ < 1, (4)

6) For the debate on the role of the size of the elasticity of substitution in the economic growth model with

non-renewable resources, see Groth (2007).

7) As stated above, we consider negative population growth as well as positive population growth. An

analysis of the optimal growth path with dynamic optimization in the negative population growth case will be

left for future research.
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where δ denotes the capital depreciation rate. The assumption of the constant saving rate is

also recently used by Malaczewski (2018) who investigates the relationship between non-

renewable resources and economic growth.

We assume that labor is fully employed. For ease of exposition, we assume that labor is

equal to population and that population grows at a constant rate.

L̇

L
= n ⋛ 0. (5)

The population growth rate can be positive, zero, or negative.

The initial stock of non-renewable resources is given by

S (0) = S 0 > 0. (6)

Since non-renewable resources will decrease due to input into production, we can obtain

the following relation:

Ṡ = −R. (7)

Therefore, the following constraint holds.

∫
+∞

0

R(t) dt ≤ S 0. (8)

Suppose that the input rate of non-renewable resources is sR. Then, we obtain

R = sRS . (9)

Here, according to Jones and Vollrath (2013), we assume that sR is constant through time.

This assumption is reasonable in investigating the long-run situation. From this, we have

Ṡ = −sRS , which leads to

Ṡ

S
= −sR < 0. (10)

Accordingly, we obtain

Ṙ

R
= −sR < 0. (11)

Therefore, R continues to decrease at a constant rate.

For the analysis of dynamics, we introduce the following variable, that is, the output-
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capital ratio

z ≡
Y

K
. (12)

On the balanced growth path, the output-capital ratio z is constant. Taking logarithms of

the production function and differentiating the resultant expression with respect to time, we

obtain

gY = (α + γ)gK + βgL + (1 − α − β)gR (13)

= (α + γ)(sz − δ) + βn − (1 − α − β)sR, (14)

where gx denotes the growth rate of a variable x and gx = ẋ/x. From equation (4), we obtain

gK = sz − δ.

Using gK = sz − δ and equation (14), we obtain the dynamical equation of z as follows:

ż = [−s(1 − α − γ)z + Θ]z, (15)

where Θ ≡ (1 − α − γ)δ + βn − (1 − α − β)sR. (16)

The set of the parameters Θ can be positive or negative. When the capital depreciation rate

δ is large, the population growth rate n is positive, Θ is likely to be positive. When the input

rate of non-renewable resources sR is large, the extent of capital externality γ is large, and

the population growth rate n is negative, Θ is likely to be negative.

Finally, the growth rate of per capital output y = Y/L is given by

gy = gY − n = s(α + γ)z − (α + β)δ + (β − 1)n − (1 − α − β)sR. (17)

This equation depends on z, and hence, gy changes with a change in z.

3 Long-run situations

We must note that long-run values such that ż = 0 are different according the sign of Θ.

Hence, we proceed analysis according to the sign of Θ.

When Θ > 0, the dynamics of z is represented in Figure 1, which shows that z stably

converges to the following value:

z∗ =
Θ

s(1 − α − γ)
> 0, (18)
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where “∗” denotes a value on the balanced growth path.

�z

zO z

�

Figure 1: Convergence to long-run equilibirum z∗ when Θ > 0

In this case, the economic growth rate and the per capita output growth rate are given by

g∗K = g∗Y =
βn − (1 − α − β)sR

1 − α − γ
, (19)

g∗y = g∗Y − n =
(α + β + γ − 1)n − (1 − α − β)sR

1 − α − γ
. (20)

When Θ < 0, the dynamics of z is represent by Figure 2, which shows that z asymp-

totically approaches zero. In this case, we cannot obtain balanced growth. However, we

can investigate a long-run situation such that t → +∞. Christiaans (2011) investigates the

negative population growth in the Solow-type growth model and explains that the situation

z = 0 is never achieved and z = 0 is infinitely far away. Therefore, in this sense, z = 0 is not

a usual steady state but an asymptotic steady state.

When z → 0, we obtain limt→+∞ gK = −δ < 0 from gK = sz − δ. Hence, the capital

accumulation rate and the output growth rate in the long run are given by

g∗∗K = −δ < 0, (21)

g∗∗Y = −(α + γ)δ + βn − (1 − α − β)sR < 0, (22)

where “∗∗” denotes a asymptotic long-run value. SinceΘ = δ−(α+γ)δ+βn−(1−α−β)sR < 0,

we have g∗∗Y < 0. The per capita output growth rate is given by

g∗∗y = g∗∗Y − n = −(α + γ)δ + (β − 1)n − (1 − α − β)sR. (23)
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Figure 2: Asymptotic approach to z = 0 when Θ < 0

As stated above, we cannot have z = 0 within finite time, g∗∗y means the asymptotic per

capita output growth rate. As long as z > 0, the per capita output growth rate is given by

equation (17). Hence, an increase in the saving rate s increases the per capita output growth

rate. In this sense, when Θ < 0, the semi-endogenous growth model can be the endogenous

growth model (Christiaans, 2011).

4 Possibility of positive per-capita output growth

In the following analysis, we examine the conditions under which g∗y and g∗∗y are positive.

For this purpose, we focus ourselves on the two parameters n and sR, and find combinations

of n and sR that produce a positive growth rate of per capita output.

To begin with, we find regions of (n, sR) such that Θ > 0 or Θ < 0.

Θ ≷ 0 =⇒ sR ≶
β

1 − α − β
n +

(1 − α − γ)δ

1 − α − β
(double-sign corresponds). (24)

The boundary is a straight line with positive slope and a positive intercept. With sR > 0, we

can draw Figure 3. The value of n1 in Figure 3 is given by

n1 = −
(1 − α − γ)δ

β
< 0. (25)

We have Θ > 0 below the boundary while we have Θ < 0 above the boundary.

Next, we find regions of (n, sR) such that g∗y > 0 in the case of Θ > 0. From equation
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n

1

O n

s

R

� > 0

� < 0

(1���)Æ

1����

Figure 3: Region of Θ > 0 and region of Θ < 0

(20), we obtain

g∗y > 0 =⇒ sR <
α + β + γ − 1

1 − α − β
n (26)

The boundary is straight line through the origin. The slope of boundary is positive when

α + β + γ − 1 > 0 and negative when α + β + γ − 1 < 0. When α + β + γ − 1 > 0,

production exhibits increasing returns with respect to labor and capital. On the other hand,

when α + β + γ − 1 < 0, production exhibits decreasing returns with respect to labor and

capital. Note that even when production exhibits decreasing returns with respect to labor

and capital, it exhibits increasing returns to scale, that is, with respect to all factor inputs

(K, L,R). When α+β+γ−1 > 0, the slope of the boundary of g∗y > 0 is always smaller than

the slope pf the boundary of Θ > 0. Regions such that both Θ > 0 and g∗y > 0 are shown in

Figures 4–7. Figures 5 and 7 corresponds to the case in which the capital depreciation rate

is zero. If the capital depreciation rate is zero, from Figure 7, we see that we cannot obtain

g∗∗y > 0 when both Θ > 0 and α + β + γ < 1 hold.

Then, we find regions of (n, sR) such that g∗∗y > 0 in the case of Θ < 0. From equation

(23), we obtain

g∗∗y > 0 =⇒ sR < −
1 − β

1 − α − β
n −

(α + γ)δ

1 − α − β
. (27)

The boundary is a straight line with negative slope and a negative intercept. The value of n2
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n

1

O n

s

R

Figure 4: Regions of (n, sR) such that

g∗y > 0 when Θ > 0, α + β + γ > 1, and

δ > 0

O n

s

R

Figure 5: Regions of (n, sR) such that

g∗y > 0 when Θ > 0, α + β + γ > 1, and

δ = 0

n

1

O n

s

R

P

Figure 6: Regions of (n, sR) such that

g∗y > 0 when Θ > 0, α + β + γ < 1, and

δ > 0

O n

s

R

Figure 7: Regions of (n, sR) such that

g∗y > 0 when Θ > 0, α + β + γ < 1, and

δ = 0 (empty set)
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in Figure 8 is given by

n2 = −
(α + γ)δ

1 − β
< 0. (28)

We investigate which is larger, n1 and n2. Since we have

n1 − n2 =
(α + β + γ − 1)δ

β(1 − β)
, (29)

we obtain the following relation:

α + β + γ − 1 ≷ 0 =⇒ n1 ≷ n2 (double-sign corresponds). (30)

Regions such that both Θ < 0 and g∗∗y > 0 are shown in Figures 8–10. Figure 9 corresponds

to the case in which the capital depreciation rate is zero. When the capital depreciation rate

is zero, Figures 8 and 10 will be Figure 9.

The corodinates of point P in Figures 6 and 10 are identical and given by

n = −δ < 0, (31)

sR =
(1 − α − β − γ)δ

1 − α − β
< 1. (32)

n

2

O n

s

R

n

1

Figure 8: Regions of (n, sR) such that

g∗y > 0 when Θ < 0, α + β + γ > 1, and

δ > 0

O n

s

R

Figure 9: Regions of (n, sR) such that

g∗y > 0 when Θ < 0, α + β + γ > 1, and

δ = 0

According to the combinations of the signs of Θ and α+β+γ−1, we classify four cases

as follows:

Case 1 : Θ > 0 and α + β + γ > 1
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n

2

O n

s

R

n

1

P

Figure 10: Regions of (n, sR) such that g∗y > 0 when Θ < 0, α + β + γ < 1, and δ > 0

Case 2 : Θ > 0 and α + β + γ < 1

Case 3 : Θ < 0 and α + β + γ > 1

Case 4 : Θ < 0 and α + β + γ < 1

Based on Figures 4, 6, 8, and 10, we investigate the combinations of n and sR that

produce gy > 0 in the long run.

Case 1 : This case corresponds to Figure 4. If the population growth rate is positive and

large, the positive per capita output growth rate is possible even if the non-renewable

resources input rate is large. It is this case that Groth and Schou (2002) and Groth

(2007) investigate. They show that as long as the population growth rate is positive

and production is increasing returns with respect to labor and capital, the positive per

capita output growth rate is possible even when non-renewable resources are essential

in production. We obtain the same result in Case 1 in our model. The long-run per

capita output growth rate can be positive because the positive effect of increasing re-

turns with respect to labor and capital on Y dominates the negative effect of a decrease

in R on Y .

Case 2 : This case corresponds to Figure 6. When production is decreasing returns with

respect to labor and capital, the positive per capita output growth rate is possible if the

population growth rate is negative. However, the combinations (n, sR) that produce

g∗y > 0 are limited. Christiaans (2011) shows that with the negative population growth

rate and the positive capital depreciation rate, one can obtain the positive per capita

output growth rate when the absolute value of n < 0 is relatively large. In contrast, in

our model that incorporates non-renewable resources, we can obtain the positive per
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capita output growth rate even when the absolute value of n < 0 is relatively small

because of the introduction of sR > 0. The reason why we obtain Case 2 is opposite to

the reason why we obtain Case 1. When production is diminishing return with respect

to labor and capital, an increase in labor (i.e., population) has a negative effect on the

level of per capita output. In contrast, a decrease in labor has a positive effect on the

level of per capita output. From this, in the case of diminishing returns with respect to

labor and capital, a decrease in population positively affects the long-run growth rate

of per capita output. Note that Case 2 is impossible when the capital depreciation rate

is zero (Figure 7).

Case 3 : This case corresponds to Figure 8. Even if sR is large, the positive per capita

output growth rate is possible when the population growth rate is negative and its

absolute value is large. In this case, all production factors—capital stock, labor, and

non-renewable resources—continues to decrease through time. Then, total output Y

continues to decrease. However, a decrease in population increases per capita output

y = Y/L if other conditions are constant. When a positive effect of a decrease in labor

on per capita output dominates a negative effect of a decrease in labor on per capita

output, per capita output increases. This positive effect gets larger as the absolute

value of n < 0 gets larger.

Case 4 : This case corresponds to Figure 10. This case is basically similar to Case 3. When

the capital depreciation rate is zero, Cases 3 and 4 are identical, which shows that the

positive per capita output growth rate is possible even if the absolute value of n < 0 is

small (Figure 9).

From the above analysis, we obtain the following two propositions:

Proposition 1. Suppose that Θ > 0. Then, there exists the steady-state value of the output

capital ratio z∗ > 0. If the production function exhibits increasing returns with respect to

both capital and labor, then per capita output can grow at a positive constant rate as long as

both the population growth rate and the input rate of non-renewable natural resources are

located within some positive region. On the other hand, if the production function exhibits

decreasing returns with respect to both capital and labor, then per capita output can grow at

a positive constant rate as long as the population growth rate is located within some negative

region and the input rate of non-renewable natural resources is located within some positive

region.

Proposition 2. Suppose that Θ < 0. Then, the output-capital ratio asymptotically ap-

proaches z = 0. In this case, if the population growth rate is negative and the absolute

14



value of it is large, then the per capita output can grow at a positive constant rate irre-

spective of whether the production function exhibits increasing returns with respect to both

capital and labor or decreasing returns with respect to both capital and labor.

5 Conclusions

We have built a simple economic growth model with non-renewable resources, and investi-

gated whether or not positive per capita output growth is possible. In the analysis, we have

assumed that production exhibits increasing returns to scale, that is, with respect to capital

stock, labor, and non-renewable resources because of a positive externality effect of capital

accumulation. Then, we have analyzed both the case of positive population growth and the

case of negative population growth.

Our analysis has shown that not only in the case where population growth is positive and

production exhibits increasing returns with respect to labor and capital stock but also in the

case where population growth is negative and production exhibits diminishing returns with

respect to labor and capital stock, positive per capita output growth is possible.

Results of this study suggest that sustainable per capita output growth will be possible

even in an economy that needs inputs of non-renewable resources and experiences popula-

tion decline.
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