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Università Politecnica

delle Marche and MoFiR (IT)

c.pigini@univpm.it

Abstract

We propose a multiple step procedure to estimate Average Partial Effects (APE)

in fixed-effects panel logit models. Because the incidental parameters problem

plagues the APEs via both the inconsistent estimates of the slope and individ-

ual parameters, we reduce the bias by evaluating the APEs at a fixed-T consistent

estimator for the slope coefficients and at a bias corrected estimator for the unob-

served heterogeneity. The proposed estimator has bias of order O(T−2) as n → ∞
and performs well in finite sample, even when n is much larger than T . We provide

a real data application based on the labor supply of married women.
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1 Introduction

Practitioners who estimate binary choice models are often interested in quantifying the

effect of some regressor x on the response probability, other things being equal. Moreover,

with the availability of panel data, the fixed-effects approach allows for the estimation of

partial effects of covariates that may be correlated with the individual specific unobserved

heterogeneity in a nonparametric manner.

The Maximum Likelihood (ML) estimator of fixed-effects binary choice models, how-

ever, is consistent only as T → ∞ and otherwise suffers form the well-known incidental

parameters problem (Neyman and Scott, 1948; Lancaster, 2000).1 With fixed T , the

plug-in estimator of the Average Partial Effect (APE) of some covariate on the response

probability is also plagued by the incidental parameters problem, which gives rise to two

sources of bias: one is introduced by the ML estimator of the individual effects, consistent

only as T → ∞; the other is carried over by the ML estimates of the slope parameters,

that are affected by the bias in the estimated subject-specific intercepts as they are not

informationally orthogonal.

We propose a multiple step procedure to estimate the APE in fixed-effects panel logit

models with a reduced order of bias. The bias introduced by the estimated slopes is

removed by using the fixed-T consistent Conditional Maximum Likelihood (CML) esti-

mator for parameters of the fixed-effects logit model, for which the incidental parameters

problem can be solved by conditioning on simple sufficient statistics for the individual

intercepts (Andersen, 1970; Chamberlain, 1980). The bias that comes with the ML es-

timates of the individual intercepts is reduced from O(T−1) to O(T−2) by defining the

ML estimator for the individual unobserved heterogeneity as the solution to the modified

score function put forward by Firth (1993).

The proposed procedure, however, cannot be extended directly to the dynamic logit

(Hsiao, 2005), for which CML inference for the slope parameters is not viable in a simple

form. This is overcome by Bartolucci and Nigro (2010), who propose a Quadratic Ex-

ponential (QE) formulation (Cox, 1972) to model dynamic binary panel data, that has

the advantage of admitting sufficient statistics for the individual intercepts. Furthermore,

Bartolucci and Nigro (2012) propose a QE model, that approximates more closely the

dynamic logit model, the parameters of which can easily be estimated by Pseudo CML

(PCML). We therefore extend the proposed procedure to include PCML estimates in the

APEs when a dynamic logit is specified.

Several contributions deal with bias reduction techniques for the ML estimators of

fixed-effects binary choice models. Some of them provide bias corrections for the APEs as

well, along the same lines of the corrections proposed for the slopes. Analytical corrections

1We focus on large n and large T perspective, as APEs are often not point identified with fixed T

(Chernozhukov et al., 2013).
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are provided by Fernández-Val (2009), whose derivations are based on general results for

static (Hahn and Newey, 2004) and dynamic (Hahn and Kuersteiner, 2011) nonlinear panel

data models. An alternative bias correction method for the APE estimator relies on the

panel jackknife. A general procedure for nonlinear static panel data models is proposed

by Hahn and Newey (2004), whereas a split-panel jackknife estimator is developed by

Dhaene and Jochmans (2015) for dynamic models.

As it happens with the proposed method, the analytical and jackknife corrections

reduce the order of the bias for the APE from O(T−1) to O(T−2). However, these APE

estimators depend on some bias corrected estimator for the slope coefficients which can be

shown to have correct confidence intervals if T grows faster than n1/3 (Hahn and Newey,

2004). This is not required in our case. In fact, we show by simulation that the proposed

APE estimator, although large-T consistent, performs well in finite samples even when n

is much larger than T .

The rest of the paper is organized as follows: in Section 2 we briefly discuss the inciden-

tal parameters problem and how it affects the APEs estimator; in Section 3 we illustrate

the proposed methodology, its extension to accommodate the dynamic logit model, and

briefly recall the alternative bias correction strategies; in Section 4 we investigate the fi-

nite sample performance of the proposed estimator and compare it with that of the panel

jackknife; in Section 5 we provide a real data application based on labor supply of married

women. Finally, Section 6 concludes.

2 Average partial effects and the incidental parame-

ters problem

We consider n units, indexed with i = 1, . . . , n, observed at time occasions t = 1, . . . , T .

Let yit be the binary response variable for unit i at occasion t and xit the corresponding

vector of K covariates. We assume that both yit and xit are independent across i and T .

Consider the logit formulation

p(yit|xit;αi,β) =
exp [yit(αi + x

′

itβ)]

1 + exp(αi + x′

itβ)
, (1)

where αi is the individual specific intercept, xit is vector of strictly exogenous covariates,

and β collects the regression parameters.

The fixed-effects estimator is obtained by Maximum Likelihood (ML), treating each

individual effect αi as a parameter to be estimated. The ML estimator of β0 is obtained
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by concentrating out the αi as the solution to

β̂ = argmax
β

n
∑

i=1

T
∑

t=1

ln p(yit|xit; α̂i(β),β),

α̂i(β) = argmax
αi

T
∑

t=1

ln p(yit|xit;αi,β).

Notice that here α̂i(β) depends on the data only through yi = (yi1, . . . , yiT )
′ and X i =

(xi1, . . . ,xiT ).

Because the estimation noise in α̂i(β) disappears only as T → ∞, the ML estimator of

β̂ is not consistent for β0 with T fixed and only n→ ∞, that is plim
n→∞

β̂ ≡ βT 6= β0. This

is the well-known incidental parameters problem (Neyman and Scott, 1948; Lancaster,

2000). To clarify this, consider any function m(yi,X i, αi) and let En [m(yi,X i, αi)] ≡
lim
n→∞

1
n

∑n
i=1m(yi,X i, αi), where αi is treated as fixed. From standard extremum estima-

tor properties, it follows that, with T fixed and as n→ ∞, βT is be obtained as

βT = argmax
β

En

[

T
∑

t=1

ln p(yit|xit; α̂i(β),β)

]

,

whereas β0 follows from

β0 = argmax
β

En

[

T
∑

t=1

ln p(yit|xit;αi(β),β)

]

,

where αi(β) maximizes ET [ln p(yit|xit;αi,β)]. From the expressions above it is clear that

the problem arises from α̂i(β) 6= αi(β) with fixed T . Moreover, Hahn and Newey (2004)

show that βT = β0 + B/T + O(T−2). If, instead, T → ∞, then α̂i(β) → αi0, with

αi0 = αi(β), and βT → β0. If both n, T → ∞, β̂ will be consistent and asymptotically

normal. However, Hahn and Newey (2004) show that the asymptotic distribution of ML

estimator will not be centered at its probability limit if n grows faster than T .

The incidental parameters problem severely affects the estimation of APEs as well, that

are usually of interest to practitioners who want to quantify the effect of some regressor

x on the response probability, other things being equal. For the logit model in (1), the

partial effect of covariate xitk for i at time t on the probability of yit = 1 can be written,

depending on the typology of covariate, as

mitk(αi,β,xit) =











p(yit = 1|αi,xit) [1− p(yit = 1|αi,xit)] βk, xitk continuous

p(yit = 1|αi,xit,−k, xitk = 1)−
p(yit = 1|αi,xit,−k, xitk = 0), xitk discrete
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where xit,−k denotes the subvector of all covariates but xitk. The true APE of the k-th

covariate can then be obtained by simply taking the expected value of fitk(αi,β,xit) with

respect to xit:

µk0 ≡ EnT [mitk(αi0,β0,xit)] ,

where µk0 ≡ µk(αi0,β0). An estimator of µk0 can be obtained by plugging in the ML

estimators β̂ and α̂i(β̂), so that

µ̂k =
1

nT

n
∑

i=1

T
∑

t=1

mitk(α̂i(β̂), β̂,xit). (2)

It is now clear that, with T fixed, this estimator is plagued by two sources of asymptotic

bias: the first stems from the estimation error introduced by α̂i(β), used instead of

αi(β); the second is a result of using the asymptotically biased estimator β̂. Dhaene and

Jochmans (2015) show that the combined asymptotic bias is

plim
n→∞

µ̂k = µk0 +
D + E

T
+O(T−2), (3)

where, specifically, D is the bias the generates from using α̂i(β) instead of αi0, whereas E

is the bias from plugging in β̂, instead if using β0. Dhaene and Jochmans (2015) provide

explicit expressions for D and E, based on the derivations by Fernández-Val (2009).

Notice that, even if a fixed–T consistent estimator of β0 was available, the asymptotic

bias of the APE estimator would still be of order O(T−1) and equal to D/T .

3 Estimation of average partial effects

The previous section clarifies that a bias corrected estimators of µk0 must take into account

the two sources of asymptotic bias combined in (3). In the following, we first illustrate the

proposed methodology, which combines the consistent CML estimator of β0 and a bias

corrected estimator of αi0. We then turn to the dynamic logit, for which the proposed

procedure is based on a PCML estimator. Finally, we briefly review the existing strategies

with special attention to the jackknife procedure, that represent the benchmark against

which to compare the finite sample performance of the proposed estimator.

3.1 Proposed methodology

The proposed two-step strategy is based on removing the two sources of bias in (3) by i)

using the fixed-T consistent Conditional Maximum Likelihood (CML) estimator of β0, β̃

instead of the ML estimator β̂ and ii) reducing the order of bias of α̂i(β̃) from O(T−1) to

O(T−2).
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3.1.1 Two step estimation

The first step consists estimating by CML the structural parameters of the logit model in

(1). Taking the the individual intercept αi as given, The joint probability of the response

configuration yi = (yi1, . . . , yiT )
′ conditional on X i = (xi1, . . . ,xiT ) can be written as

p(yi|X i, αi) =
exp

(

yi+αi +
∑T

t=1 yitx
′

itβ
)

∏T
t=1 1 + exp (αi + x′

itβ)
.

It can be shown that the total score yi+ =
∑

t yit is a sufficient statistic for the individual

intercepts αi (Andersen, 1970). The joint probability of yi = (yi1, . . . , yiT ) conditional on

yi+ does not depend on αi and can therefore be written as

p(yi|X i, yi+) =

exp

[

(

∑T
t=1 yitxit

)

′

β

]

∑

z:z+=yi+

exp

[

(

∑T
t=1 ztxit

)

′

β

] , (4)

where the denominator is the sum over all the response configuration z such that z+ = yi+

and where the individual intercepts αi have been canceled out. The log-likelihood function

is

ℓ(β) =
∑

i

I(0 < yi+ < T ) log p(yi|X i, yi+),

where the indicator function I(·) takes into account that observations with total score yi+

equal to 0 or T do not contribute to the log-likelihood and p(yi|X i, yi+) is defined in (4).

The above function can be maximized with respect to β by a Newton-Raphson algorithm

using standard results on the regular exponential family (Barndorff-Nielsen, 1978), so as

to obtain the CML estimator β̃, which is
√
n consistent and asymptotically normal with

fixed–T (see Andersen, 1970; Chamberlain, 1980, for details). Therefore, if plugged into

the APE formulation (2) instead of the ML estimator β̂, the E component of the bias in

(3) is removed. Alternatively, Hahn and Newey (2004) suggest using a biased corrected

version of β̂ for which, however, T has to grow faster than n for its asymptotic distribution

to be centered at its probability limit.

The second step deals with obtaining estimates of the individual intercepts αi, which

are not directly available as they have been canceled out by conditioning on the total

score. One strategy would be to obtain the ML estimates of αi, for those subjects such

that 0 < yi+ < T , by maximizing the individual
∑

t log pβ̃(yit|αi,xit) where pβ̃(yit|αi,xit)

is the logit model probability in (1) evaluated at the CML estimate β = β̃. This strategy

has been considered by Stammann et al. (2016). However, even if β is fixed at some√
n-consistent estimate, the bias of the ML estimator of αi0 will still be of order O(T−1)
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because α̂i(β̃)
p→ αi0 only as T → ∞.

Our strategy is based on the proposal by Firth (1993), who shows that, for any ML

estimator ψ̂ with bias of order O(h−1), where h is the number of observations, the score

function U(ψ) can be modified as

U∗(ψ) = U(ψ) +
1

2
tr

[

I(ψ)−1∂I(ψ)

∂ψ′

]

,

where I(ψ) is the Fisher Information matrix, so that the solution to the above estimating

equation is an ML estimator with bias O(h−2).2 We therefore obtain α̃i(β̃) as the solution

to

U∗(αi) = U(αi) +
1

2I(αi)

∂I(αi)

∂αi

=

T
∑

t=1

(yit − r̃it) +

∑T
t=1 r̃it(1− r̃it)(1− 2r̃it)

2
[

∑T
t=1 r̃it(1− r̃it)

]2 ,

where r̃it = exp(αi + x
′

itβ̃)[1 + exp(αi + x
′

itβ̃)]. The resulting estimator of the individual

intercept α̃i will depend on β̃, which we write as α̃i(β̃). The APEs can then be obtained

by simply replacing the ML estimators in (2), that is

µ̃k =
1

nT

n
∑

i=1

T
∑

t=1

mitk(α̃i(β̃), β̃,xit).

3.1.2 Standard errors

In order to derive an expression for the standard errors of the APEs µ̃ = (µ̃1, . . . , µ̃K)
′

we need to account for the use of the estimated parameters β̃ in the first step. We rely

on the Generalized Method of Moments (GMM) approach by Hansen (1982) and also

implemented by Bartolucci and Nigro (2012) for the Quadratic Exponential model. It

consists in presenting the proposed multi-step procedure as the solution of the system of

estimating equations

f(β,µ) = 0,

where

f(β,µ) =
n
∑

i=1

I(0 < yi+ < T )f i(β,µ),

2This procedure is also mentioned by Hahn and Newey (2004) and Fernández-Val (2009) relatively to
the estimation of β
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f i(β,µ) =









∇βℓi(β)
∇µ1

gi(β, µ1)
...

∇µK
gi(β, µK)









, (5)

and

gi(β, µk) =
1

T

∑

t

[mitk(αi(β),β,xit)− µk]
2 , k = 1, . . . , K.

The asymptotic variance of (β̃
′

, µ̃′)′ is then

W (β̃, µ̃) =H(β̃, µ̃)−1S(β̃, µ̃)[H(β̃, µ̃)−1]′, (6)

where

S(β̃, µ̃) =
∑

i

I(0 < yi+ < T )f i(β̃, µ̃)f i(β̃, µ̃)
′,

H(β̃, µ̃) =
∑

i

I(0 < yi+ < T )H i(β̃, µ̃),

and

H i(β,µ) =

(

∇ββ ℓi(β) O
∇µβ gi(β,µ) ∇µµ gi(β,µ)

)

, (7)

is the derivative of f i(β,µ) with respect to (β,µ), where O denotes a K ×K matrix of

zeros and gi(β,µ) collects gi(β, µk), for k = 1, . . . , K. Expressions for the derivatives in

(5) are

∇βℓi(β) =
T
∑

t=1

yitxit −
∑

z:z+=yi+

(

p(z|X i, yi+)
T
∑

t=1

ztxit

)

,

and

∇µk
gi(β, µk) = − 2

T

T
∑

t=1

[mitk(αi(β),β,xit)− µk] .

The second derivatives in (7) are

∇ββℓi(β) =
∑

z:z+=yi+

p(z|X i, yi+)e(z,X i)e(z,X i)
′,

where

e(z,X i) =
T
∑

t=1

ztxit −
∑

z:z+=yi+

(

p(z|X i, yi+)
T
∑

t=1

ztxit

)

,

and∇µµ gi(β,µ) is aK×K diagonal matrix with element 2. Finally, for the computation

of the block ∇µβgi(β,µ) we rely on numerical differentiation. Once the matrix in (6) is

computed, the standard errors for the APEs µ̃ may be obtained by taking the square root

of the elements in the main diagonal of the lower right submatrix of W (β̃, µ̃).
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3.1.3 The dynamic logit model

The method proposed to obtain the APE for the logit model cannot be applied directly to

the dynamic logit (Hsiao, 2005). For the dynamic logit model, the conditional probability

of yit being equal to 1 is

p(yit|xit, yi,t−1; ηi, δ, γ) =
exp [yit(ηi + x

′

itδ + yi,t−1γ)]

1 + exp(ηi + x′

itδ + yi,t−1γ)
, (8)

where γ is the regression coefficient for the lagged response variable that measures the

true state dependence. Plugging the CML estimator of δ and γ in the APE formulation

is not viable in this case because the total score is no longer a sufficient statistic for the

incidental parameters if the lag of the dependent variable is included among the model

covariates. Conditioning in sufficient statistics eliminates the incidental parameters only

in the in the special case of T = 3 and no other explanatory variables (Chamberlain, 1985).

Honoré and Kyriazidou (2000) extend this approach to include explanatory variables and

parameters can be estimated by CML on the basis of a weighted conditional log-likelihood.

However, time effects cannot be included in the model specification and the estimator’s

rate of convergence to the true parameter value is slower than
√
n. This is overcome

by Bartolucci and Nigro (2010), who propose a Quadratic Exponential (QE) formulation

(Cox, 1972) to model dynamic binary panel data, that has the advantage of admitting

sufficient statistics for the individual intercepts.

Bartolucci and Nigro (2012) propose a QE model, that approximates more closely

the dynamic logit model, the parameters of which can easily be estimated by PCML.

Under the approximating model, each yi+ is a sufficient statistic for the fixed effect ηi.

By conditioning on the total score, the joint probability of yi becomes:

p∗(yi|X i, yi0, yi+) =
exp(

∑

t yitx
′

itδ −
∑

t q̄ityi,t−1γ + yi∗γ)
∑

z:z+=yi+

exp(
∑

t ztx
′

itδ −
∑

t q̄itzi,t−1γ + zi∗γ)
, (9)

where yi∗ =
∑

t yi,t−1yit, and zi∗ = yi0z1+
∑

t>1 zt−1zt. Moreover, q̄it is a function of given

values of δ and ηi, resulting from a first-order Taylor-series expansion of the log-likelihood

based on (8) around δ = δ̄ and ηi = η̄i, i = 1, . . . , n, and γ = 0 (see Bartolucci and Nigro,

2012, for details). The expression for q̄it is then

q̄it =
exp(η̄i + x

′

itδ̄)
[

1 + exp(η̄i + x′

itδ̄)
] .

Expressions for the partial effects and APEs are derived in the same way as for the

static logit model. Let wit = (x′

it, yit−1)
′ collect the K + 1 model covariates. Based on

(8), the partial effect of covariate witk for i at time t on the probability of yit = 1 can be
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written as

vitk(ηi,θ,wit) =











p(yit = 1|ηi,wit) [1− p(yit = 1|ηi,wit)] δk, witk continuous

p(yit = 1|ηi,wit,−k, witk = 1)−
p(yit = 1|ηi,wit,−k, witk = 0), witk discrete

where wit,−k again denotes the the vector wit excluding witk, and θ = (δ′, γ)′. Notice

that this function does not depend on δ̄, since the probability in (8) does not depend on

q̄it. The APE of the k-th covariate can then be obtained by taking the expected value of

vitk(ηi,θ,wit) with respect to wit and evaluated in ηi0, θ0, and wit can be written as

νk0 ≡ EnT [vitk(ηi0,θ0,wit)] ,

where νk0 ≡ νk(ηi0,θ0).

As for the static logit model, the estimation of νk0 requires an estimate of ηi, which

we obtain in the same manner as in the second step in Section 3.1.1. Here, however, the

CML estimation of θ based on (9) relies on a preliminary step in order to obtain q̄it and

the estimation of APEs is thus based on a three-step procedure.

In the first step, a preliminary estimate of δ̄ is obtained by maximizing the conditional

log-likelihood

ℓ(δ̄) =
∑

i

I(0 < yi+ < T )ℓi(δ̄),

where

ℓi = log
exp

[

(
∑

t yitxit)
′

δ̄
]

∑

z:z+=yi+

exp
[

(
∑

t ztxit)
′

δ̄
] ,

which is the same conditional log-likelihood of the static logit model and may be maxi-

mized by a standard Newton-Raphson algorithm. We denote the resulting CML estimator

by δ̌. The estimate η̌i is then computed by maximizing the individual log-likelihood

ℓi(η̄i) =
∑

t

log
exp

[

yit(η̄i + x
′

itδ̌)
]

1 + exp(η̄i + x′

itδ̌)
,

where δ̌ is fixed. The probability q̄it in (9) can the be estimated by q̌it = exp(η̌i +

x′

itδ̌)/
[

1 + exp(η̌i + x
′

itδ̌)
]

.

In the second step, we estimate θ by maximizing the following conditional log-likelihood

ℓ(θ) =
∑

i

I(0 < yi+ < T ) log p∗q̌i
(yi|X i, yi0, yi+),

where p∗q̌i
(yi|X i, yi0, yi+) is the joint probability in (9) evaluated at q̌i = (q̌i1, . . . , q̌iT )

′.

The above function can be easily maximized with respect to θ by the Newton-Raphson
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algorithm, so as to obtain the PCML estimator θ̃, which is a
√
n-consistent estimator

of θ0 only if γ0 = 0, representing the special case in which the QE model corresponds

to the dynamic logit model.3. Nonetheless, Bartolucci and Nigro (2012) show that the

PCML estimator has a limited bias in finite sample even in presence of non negligible

state dependence.

Finally, in step three, we obtain an estimate of ηi as a solution to the modified score

function by Firth (1993), that can be written as

U∗(ηi) = U(ηi) +
1

2I(ηi)

∂I(ηi)

∂ηi
=

T
∑

t=1

(yit − s̃it) +

∑T
t=1 s̃it(1− s̃it)(1− 2s̃it)

2
[

∑T
t=1 s̃it(1− s̃it)

]2 ,

where s̃it = exp(ηi+w
′

itθ̃)/[1+ exp(ηi+w
′

itθ̃)]. The resulting estimator of the individual

intercept η̃i depends on θ̃, which we write as η̃i(θ̃).

The APEs can then be estimated by plugging η̃i(θ̃) and θ̃ in the APE formulation, so

as to obtain

ν̃k =
1

nT

n
∑

i=1

T
∑

t=1

vitk(η̃i(θ̃), θ̃,wit).

Standard errors for ν̃k can be obtained exactly in the same way as illustrated in Section

3.1.2 with the appropriate change of notation.

3.2 Alternative strategies

Along the lines of the proposals put forward to remove the bias from the ML estimator,

the available bias reduction techniques for the estimation of APEs for fixed-effects binary

choice models are mainly based on either analytical or jackknife bias corrections.4

Analytical bias corrections amount to deriving the two sources of bias D and E in

(3) in order to evaluate their sample counterparts and find a bias corrected estimator

µ̂c
k = µ̂k− (D̂+ Ê)/T . The asymptotic bias arising from plugging in α̂i(β) can be written

as

D =
∞
∑

j=0

EnT

[

∂µk(αi0,β0)

∂αi0

τit−j

]

+ EnT

[

∂µk(αi0,β0)

∂αi0

ξi

]

+
1

2
EnT

[

∂2µk(αi0,β0)

∂α2
i0

σ2
i

]

,

where expressions for ψis, ξi, and σ
2
i for panel binary choice models are given in Fernández-

3The correspondence refers to the log-odds ratio. This is clarified by Theorem 1 in Bartolucci and
Nigro (2012).

4In the following discussion, we will use the notation for the static logit model, unless required other-
wise. Nonetheless, everything that follows can be generalized to the dynamic logit model.
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Val (2009), 5 whose derivations are based on general results for static (Hahn and Newey,

2004) and dynamic (Hahn and Kuersteiner, 2011) nonlinear panel data models.6 The

asymptotic bias of µ̂k deriving from β̂ can be written as

E = EnT

[

∂µk(αi0,β0)

∂β′

0

]

B,

where B is the leading term of the large-T expansion for the asymptotic bias of β̂ (see

Fernández-Val, 2009). Notice that if a bias corrected estimator of β0, β̂
c
, was used instead

of β̂ to evaluate µ̂k, then only the D term would have to be removed in order to obtain the

bias reduction, as suggested by Hahn and Newey (2004). For the expressions as well as

for further details we refer the reader to Hahn and Newey (2004), Fernández-Val (2009),

and Hahn and Kuersteiner (2011).

An alternative bias correction method for the APE estimator relies on the panel jack-

knife. A general procedure for nonlinear static panel data models in proposed by Hahn

and Newey (2004). Let β̂
(t)

and α̂
(t)
i (β̂

(t)
) be the ML estimators with the t-th observation

excluded for each subject. Then the jackknife corrected estimator for the APE is

µ̂c
k = T µ̂k −

T − 1

T

T
∑

t=1

µk

(

α̂
(t)
i (β̂

(t)
), β̂

(t)
)

.

If the set of model covariates includes the lag of explanatory variables, then leaving out

one of the t observations at the time becomes unsuitable. Instead, a block of consecutive

observations has to be considered so as to preserve the dynamic structure of the data. The

so-called split panel jackknife estimator was proposed by Dhaene and Jochmans (2015).

A simple version of the estimator is the half-panel jackknife, which is based on splitting

the panel into two half-panels, also non-overlapping if T is even and T ≥ 6, and with T/2

time periods. Denote the set of half-panels as

S = {S1, S2}, S1 = {1, . . . , T/2}, S2 = {T/2 + 1, . . . , T},

then the half-panel jackknife estimator of the APE is

ν̂
1/2
k = 2ν̂k −

1

2

(

ν̄S1

k + ν̄S2

k

)

,

5The term ξi is denoted by βi and the term τit by ψit in Fernández-Val (2009).
6The expression for D is a function of the asymptotic bias and variance components of α̂i(β), that is

α̂i(β) = αi0 +
ξi

T
+

1

T

T
∑

t=1

τit + op

(

1

T

)

,

where 1√
T

∑T

t=1
τit

d→ N(0, σ2

i ) (see Fernández-Val, 2009; Dhaene and Jochmans, 2015, for details).
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where ν̄S1

k and ν̄S2

k are the plug-in estimators evaluated at the ML estimators of ηi(θ)

and θ obtained using the observations in subpanels S1 and S2, respectively. Dhaene and

Jochmans (2015) also illustrate generalized versions of the half-panel jackknife to deal

with odd T and overlapping subpanels, as well as an alternative jackknife estimator based

on the split-panel log-likelihood correction.

As well as for bias corrected fixed-effects estimator, the analytical and jackknife cor-

rections reduce the order of the bias of the APE estimator µ̂k (or ν̂k) from O(T−1) to

O(T−2), which is also the case of the proposed method. It is worth stressing, however,

that the APE estimators discussed in this section still depend on some estimator of β0,

corrected by either analytical or jackknife procedures. In both cases, it can be shown that,

in order for β̂
c
to have correct confidence intervals, T has to grow faster than n1/3 (Hahn

and Newey, 2004). If this is not the case, then the asymptotic distribution β̂
c
will not be

centered in β0 and this source of distortion will affect the asymptotic distribution of µ̂c
k,

since E is not correctly removed. This is in contrast with the procedure here proposed,

which is based on a fixed-T consistent estimator of β0.

4 Simulation study

In the following we illustrate the design and discuss the results of the simulation studies

aimed at assessing the finite sample performance of the estimators of the APEs for the

static and dynamic logit models. We keep the analyses separate for the two models, as

we base the two studies on different simulation designs.

4.1 Static logit

The simulation design for the static logit model is based on the one adopted by Hahn and

Newey (2004), except that we consider logit rather than normal error terms. The data

are generated as

yit = I(αi + xitβ + εit > 0), i = 1, . . . , n, t = 1, . . . , T,

with αi ∼ N(0, 1), εit follow a standard logistic distribution, and

xit = t/10 + xi,t−1/2 + uit,

where uit ∼ U [−0.5, 0.5] and xi0 = ui0. We consider different scenarios according to the

values of n and T and we set n = 100, 500, 1000, T = 4, 8, 12. Hahn and Newey (2004)

considered only n = 100 and T = 4, 8. The coefficient β is equal to 1 across all the

scenarios and the number of replications is 1000.
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Table 1 reports the simulation results for each scenario. We compare the finite sample

performance of the proposed APE estimator (denoted by CML - ML Firth) with i) an

estimator for µ based on plugging in the CML estimator of β and the ML estimator

of αi(β̃) that is not bias corrected by using Firth (1993)’s modified score (CML - ML)

and with ii) Hahn and Newey (2004)’s jackknife bias corrected estimator, briefly recalled

in Section 3.2 (Jackknife).7 For each scenario, we report the mean and the median of

the ratio µ̃/µ, the standard deviation of µ̃, the interval coverage at the confidence level

90% and 95%, and the mean ratio between the estimator standard error and standard

deviation.8

From Table 1, it emerges that the proposed estimator (CML - ML Firth) has a good

finite sample performance with both small n and T , and even when n is much larger than

T . This result suggests that Firth (1993)’s correction is working nicely in removing the

bias component D in (3), as also testified by the rather poor performance of the CML -

ML estimator, based on α̂i(β̃), which still exhibits some bias even with T = 12.

The proposed procedure and the jackknife estimator exhibit a similar behavior in the

scenario with n = 100, which is also in line with the results reported by Hahn and Newey

(2004) for the probit model, with the exception of scenario with T = 4, where CML -

ML Firth actually performs better than the jackknife. It is worth stressing that while

the CML estimator of β is
√
n-consistent, the jackknife bias corrected slope estimator

requires T to grow faster than n1/3. This reflects indirectly on the estimator of the partial

effect, since a bias corrected or consistent estimator of β takes care of removing the term

E from (3). It is therefore clear why the the proposed estimator performs better than

the jackknife with, say, a sample size as large as n = 1000, unless T = 12. It is also

worth noticing that, throughout the scenarios, the proposed estimator has a good interval

coverage, with the percentage attaining the nominal confidence level as T grows.

4.2 Dynamic logit

For the static logit model, the simulation design is similar to that by Dhaene and Jochmans

(2015), where again we consider a logit rather than a normal distribution for the error

terms. The data generating process is as follows

yit = I(ηi + yi,t−1γ + υit > 0), i = 1, . . . , n, t = 1, . . . , T,

7We do not report simulation results for analytically bias corrected estimators of the type µ̂c discussed
in Section 3.2. Based on the same simulation design and for the scenarios with n = 100, results are
reported for the probit model by Fernández-Val (2009), who shows that the finite sample performance of
these estimator is quite similar to that of the jackknife estimator.

8For the CML-ML, the standard error is computed using the procedure in Section 3.1.2, whereas
jackknife standard errors are computed for Hahn and Newey (2004)’s estimator.
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Table 1: Simulation results for µ̃, static logit model

Mean Median SD Confidence SE/SD
n T ratio ratio 90% 95%

100 4
CML - ML Firth 1.036 1.032 0.056 0.974 0.990 1.361
CML - ML 0.974 0.972 0.053 0.976 0.989 1.359
Jackknife 1.287 1.275 0.074 0.847 0.901 1.328

100 8
CML - ML Firth 1.004 1.001 0.026 0.924 0.968 1.085
CML - ML 0.953 0.950 0.025 0.915 0.964 1.087
Jackknife 1.079 1.074 0.028 0.868 0.912 1.147

100 12
CML - ML Firth 0.964 0.966 0.015 0.889 0.929 1.019
CML - ML 0.931 0.934 0.015 0.812 0.897 1.021
Jackknife 1.009 1.013 0.016 0.950 0.971 1.325

500 4
CML - ML Firth 1.040 1.040 0.024 0.980 0.992 1.419
CML - ML 0.977 0.976 0.023 0.972 0.996 1.418
Jackknife 1.301 1.306 0.032 0.666 0.742 1.316

500 8
CML - ML Firth 1.001 1.001 0.012 0.939 0.973 1.092
CML - ML 0.950 0.950 0.011 0.862 0.928 1.092
Jackknife 1.078 1.077 0.013 0.793 0.868 1.230

500 12
CML - ML Firth 1.013 1.013 0.007 0.909 0.958 1.022
CML - ML 0.968 0.969 0.007 0.838 0.912 1.025
Jackknife 1.048 1.049 0.007 0.979 0.995 1.769

1000 4
CML - ML Firth 1.042 1.040 0.018 0.972 0.987 1.373
CML - ML 0.978 0.978 0.017 0.973 0.995 1.373
Jackknife 1.306 1.304 0.023 0.513 0.602 1.313

1000 8
CML - ML Firth 1.006 1.007 0.008 0.929 0.974 1.074
CML - ML 0.954 0.956 0.008 0.799 0.879 1.077
Jackknife 1.083 1.083 0.009 0.684 0.797 1.311

1000 12
CML - ML Firth 1.013 1.013 0.005 0.887 0.935 0.960
CML - ML 0.969 0.968 0.005 0.750 0.851 0.960
Jackknife 1.049 1.048 0.005 0.996 1.000 2.158

Notes: 1000 replications. CML-ML Firth denotes the proposed estimator; CML-ML denotes the estimator

of the APE based on the CML estimate of β and the uncorrected estimated of αi(β̃); Jackknife denotes

Hahn and Newey (2004)’s jackknife bias corrected estimator.
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with ηi ∼ N(0, 1), υit follow a standard logistic distribution, and the initial condition is

yi0 = I(ηi + +υi0 > 0). We consider the same scenarios as for the static logit model,

that are n = 100, 500, 1000, T = 4, 8, 12. The coefficient γ is equal to 0.5 across all the

scenarios and the number of replications is 1000.

Table 2 reports the simulation results where we compare the finite sample performance

of the proposed APE estimator (PCML - ML Firth) with the estimator for ν based on the

PCML estimator of γ and the uncorrected ML estimator η̂i(γ̃) (PCML - ML) and with

Dhaene and Jochmans (2015)’s half-panel jackknife bias corrected estimator (Jackknife)

illustrated in Section 3.2. 9 Again we report the mean and the median of the ratio ν̃/ν,

the standard deviation of ν̃, the interval coverage at the confidence level 90% and 95%,

and the mean ratio between the estimator standard error and standard deviation.10

Table 2 reports the simulation results, from which it emerges that the proposed esti-

mator exhibits a better finite sample performance than the half-panel jackknife estimator.

Notice also that the jackknife estimator for the dynamic logit model cannot be computed

for T < 6, as clarified in Section 3.2. Clearly the finite sample performance of the pro-

posed estimator deteriorates with respect to that of CML - ML Firth, as per the effect of

the PCML estimator, which is not consistent when γ 6= 0. Still, it can be noticed that the

bias reduces rather quickly as T grows, as an effect of the use of the corrected η̃i(γ̃) in the

computation of ν̃, and that the proposed estimator represents a substantial improvement

upon the half-panel jackknife in scenarios where T = 8, 12.

5 Empirical application

We apply our proposed formulation to the problem of estimating the labor supply of

married women. The same empirical application is considered by Fernández-Val (2009)

and Dhaene and Jochmans (2015). The sample is drawn from the Panel Study of Income

Dynamics (PSID), that consists of n = 1, 908 married women between 19 and 59 years of

age in 1980, followed for T = 7 time occasions, from 1979 to 1985. We specify a static

logit model for the probability of being employed at time t, conditional on the number

of children of a certain age in the family, namely the number of kids between 0 and 2

years old, between 3 and 5, and between 6 and 17, on the husband’s income, and on the

woman’s age and age squared. We also specify a dynamic logit model, that is we include

lagged participation in the set of model covariates.

9In the Monte Carlo study by Dhaene and Jochmans (2015), the APE estimator is computed for the
covariate xit, which is associated with δ = 0 in the current design. We instead investigate the finite
sample performance of the APE estimator for the effect of yi,t−1.

10For the PCML-ML, the standard error is computed using the procedure in Section 3.1.2, whereas
the standard error estimates for the half-panel jackknife are based on the cross-sectional variance of the
within-group average effects, as suggested by Dhaene and Jochmans (2015).
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Table 2: Simulation results for ν̃, dynamic logit model

Mean Median SD Confidence SE/SD
n T ratio ratio 90% 95%

100 4
PCML - ML Firth 0.885 0.874 0.066 0.979 0.995 1.478
PCML - ML 0.837 0.820 0.062 0.980 0.997 1.465
Jackknife

100 8
PCML - ML Firth 0.945 0.947 0.041 0.924 0.963 1.119
PCML - ML 0.893 0.898 0.039 0.912 0.948 1.119
Jackknife 0.775 0.756 0.043 0.864 0.898 1.254

100 12
PCML - ML Firth 0.941 0.939 0.031 0.910 0.957 1.068
PCML - ML 0.900 0.900 0.030 0.897 0.954 1.068
Jackknife 0.877 0.876 0.033 0.853 0.884 1.194

500 4
PCML - ML Firth 0.896 0.902 0.030 0.976 0.994 1.481
PCML - ML 0.843 0.847 0.028 0.968 0.990 1.457
Jackknife

500 8
PCML - ML Firth 0.948 0.945 0.018 0.936 0.965 1.175
PCML - ML 0.895 0.891 0.017 0.908 0.952 1.175
Jackknife 0.769 0.766 0.018 0.991 1.000 2.780

500 12
PCML - ML Firth 0.959 0.957 0.014 0.906 0.954 1.067
PCML - ML 0.917 0.915 0.014 0.878 0.925 1.067
Jackknife 0.894 0.886 0.015 0.987 0.992 2.535

1000 4
PCML - ML Firth 0.885 0.884 0.020 0.978 0.993 1.532
PCML - ML 0.832 0.832 0.019 0.961 0.987 1.506
Jackknife

1000 8
PCML - ML Firth 0.953 0.951 0.013 0.928 0.973 1.155
PCML - ML 0.900 0.898 0.012 0.854 0.929 1.156
Jackknife 0.765 0.762 0.013 1.000 1.000 3.743

1000 12
PCML - ML Firth 0.959 0.958 0.010 0.891 0.948 1.059
PCML - ML 0.917 0.916 0.010 0.815 0.887 1.058
Jackknife 0.895 0.895 0.011 0.999 1.000 3.455

Notes: 1000 replications. PCML-ML Firth denotes the proposed estimator; PCML-ML denotes the

estimator of the APE based on the PCML estimate of β and the uncorrected estimated of ηi(γ̃); Jackknife

denotes Dhaene and Jochmans (2015)’s half-panel jackknife bias corrected estimator.
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Table 3: Female labor force participation: static logit model

Model parameters β Average partial effects µ

CML Jackknife CML - ML Firth CML - ML Jackknife

# Children 0-2 -1.183∗∗∗ -1.172∗∗∗ -0.096∗∗∗ -0.089∗∗∗ -0.106∗∗∗

(0.100) (0.121) (0.019) (0.017) (0.015)
# Children 3-5 -0.909∗∗∗ -0.931∗∗∗ -0.074∗∗∗ -0.069∗∗∗ -0.084∗∗∗

(0.111) (0.133) (0.021) (0.019) (0.016)
# Children 6-17 -0.272∗∗∗ -0.271∗∗ -0.022 -0.020 -0.024∗∗∗

(0.097) (0.115) (0.018) (0.017) (0.006)
Husband income -0.014∗∗∗ -0.011∗ -0.001 -0.001 -0.001

(0.005) (0.006) (0.001) (0.001) (0.001)
Age 1.646∗ 1.714 0.006 0.006 0.018

(0.918) (1.086) (0.040) (0.037) (0.044)
Age squared -0.224∗ -0.211

(0.127) (0.150)

Notes: standard errors in square brackets. ∗∗∗ p-value < 0.01, ∗∗ p-value < 0.05, ∗ p-value < 0.10. CML

denotes the Conditional Maximum Likelihood estimator; Jackknife denotes Hahn and Newey (2004)’s

jackknife bias corrected estimator; CML-ML Firth denotes the proposed estimator; CML-ML denotes

the estimator of the APE based on the CML estimate of β and the uncorrected estimated of αi(β̃).

Source: PSID 1979-1985.

The estimation results for the static logit model are reported in Table 3. We report

both the CML and Hahn and Newey (2004)’s panel jackknife estimates of the model

parameters. Despite the coefficients estimated by CML are all statistically significant at

least at the 10% level, when we look at the estimated APE the model covariates do not

seem to exert a significant effect on the probability of being employed, with the exception

of having children between 0 and 2 years old, which reduces the probability of being

employed by 9.6 percentage points, and having children between 3 and 5 years old, which

reduces the probability by 7.4. It is worth noticing that CML and jackknife parameter

estimates are quite similar, even though T is only 7 and the sample is around 2000. There

is instead a noticeable difference in the standard errors, that are larger for the jackknife.

The estimates of the APE seem to be along the same lines, whether obtained by the

proposed estimator, the uncorrected CML-ML or the panel jackknife.

Table 4 reports the results for the dynamic logit specification. Here we report both the

PCML and Dhaene and Jochmans (2015)’s half-panel jackknife estimators. The PCML

estimator detects a strong state dependence in labor force participation of married women,

as the estimated coefficient for lagged participation amounts to 1.713. In terms of APE,

this is translated into an increase of 13.4 percentage points in the probability of being

employed at time t for a woman who was working in t− 1, with respect to a woman who

was not working in t−1. The effect of the other model covariates remains null, again with

the exception of the presence of young children in the family, although the APEs are now

smaller. It is worth noticing that the estimated state dependence by half-panel jackknife
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Table 4: Female labor force participation: dynamic logit model

Model parameters θ Average partial effects ν

PCML Jackknife PCML - ML Firth PCML - ML Jackknife

# Children 0-2 -0.909∗∗∗ -1.083∗∗∗ -0.060∗∗∗ -0.056∗∗∗ -0.107
(0.099) (0.141) (0.017) (0.016) (0.252)

# Children 3-5 -0.555∗∗∗ -0.713∗∗∗ -0.037∗∗ -0.034∗∗ -0.073
(0.102) (0.149) (0.017) (0.016) (0.187)

# Children 6-17 -0.173∗ -0.136 -0.011 -0.011 -0.020
(0.093) (0.136) (0.016) (0.015) (0.103)

Husband income -0.009∗∗ -0.006 -0.001 -0.001 -0.001
(0.004) (0.006) (0.001) (0.001) (0.088)

Age 1.509∗ -0.152 0.013 0.012 -0.022
(0.827) (1.269) (0.031) (0.029) (0.139)

Age squared -0.185∗ -0.154
(0.111) (0.172)

Lagged participation 1.713∗∗∗ 2.200∗∗∗ 0.134∗∗∗ 0.127∗∗∗ 0.127
(0.103) (0.082) (0.022) (0.021) (0.137)

Notes: standard errors in square brackets. ∗∗∗ p-value < 0.01, ∗∗ p-value < 0.05, ∗ p-value < 0.10.

PCML denotes the Pseudo Conditional Maximum Likelihood estimator; Jackknife denotes Dhaene and

Jochmans (2015)’s half-panel jackknife bias corrected estimator; PCML-ML Firth denotes the proposed

estimator; PCML-ML denotes the estimator of the APE based on the PCML estimate of θ and the

uncorrected estimated of ηi(θ̃). Source: PSID 1979-1985.

is large, and that the estimated APE amounts to 12.7 percentage points, similar to that

obtained with PCML - ML Firth.11

Our last exercise consists of a calibrated simulation study, in order to investigate the

finite sample performance of the proposed estimator with a design close to a real data

application.12 For the static and dynamic models, we draw n = 500, 1000 women from

PSID, each observed for 7 time occasions, and estimate the model parameters obtaining β̃

by CML for the static logit model and θ̃ by PCML for the dynamic logit model. We then

use β̃ and θ̃ to generate data from a static or dynamic logit model, keeping the model

covariates fixed and generating the error terms as a standard logistic random variables.

We then re-estimate the model parameters and compute the APEs. The simulation is

repplicated 1000 times.

The results for the static and dynamic logit models are reported in Tables 5 and 6,

respectively. From Table 5 it emerges that the performance of the proposed estimator

improves when n goes from 500 to 1000, and the results are comparable with those

obtained with the simpler simulation design by Hahn and Newey (2004) in Section 4.1.

Overall, the same happens for the dynamic logit as well, although in a less evident manner.

Compared to the standard deviations, for both models standard errors are rather large,

11The APE, however, is not statistically significant; Dhaene and Jochmans (2015) argue that this can
be expected with half-panel jackknife, which may not be very precise with short T . They recommend
using their half-panel jackknife correction of the objective function instead.

12The structure of the calibrated simulation study is taken after Chen et al. (2018).
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that however should be shrinking with larger T as suggested by the results in Section 4.

Table 5: Calibrated simulation results for the static logit model based on PSID 1979 -
1985, CML-ML Firth

Mean Median SD Confidence SE/SD
ratio ratio 90% 95%

n = 500
# Children 0-2 0.917 0.917 0.019 0.804 0.892 1.212
# Children 3-5 0.941 0.941 0.018 0.916 0.956 1.233
# Children 6-17 1.220 1.208 0.017 0.749 0.863 1.225
Husband income 0.999 0.974 0.001 0.957 0.986 1.236
Age 0.853 0.877 0.003 0.973 0.989 1.322

n = 1000
# Children 0-2 0.977 0.975 0.015 0.926 0.971 1.167
# Children 3-5 0.999 1.001 0.015 0.935 0.976 1.128
# Children 6-17 1.143 1.144 0.012 0.825 0.913 1.179
Husband income 1.016 1.017 0.001 0.946 0.985 1.184
Age 1.014 1.010 0.003 0.951 0.983 1.187

Notes: 1000 replications. Source: PSID 1979 - 1985.

6 Concluding remarks

So far, the literature has proposed analytical or jackknife bias corrected APE estimators.

They often depend on some bias corrected estimators of the slope coefficients, which are

ensured to have confidence intervals centered at their probability limit only when T grows

faster than n1/3, meaning that they attain a good finite sample performance with rather

large T compared to n. This is rarely the case in microeconomic applications, where the

number of subjects is often much larger than the number ot time occasions, especially in

surveys with rotating sampling designs.

The method presented in this paper partly overcomes this issue by exploiting a fixed-T

consistent estimator of the slope coefficients of the logit model. The proposed estimator

has asymptotic bias O(T−2), but it is shown to perform well in finite samples, even when

n is much larger than T . Moreover, the bias corrected estimate of the unobserved het-

erogeneity based on the modified score by Firth (1993) entails a substantial improvement

over the standard ML estimate with short T .

The models here presented can be estimated using the R package cquad and the R

functions to estimate the APEs and APEs standard errors are available upon request from

the Authors.
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Table 6: Calibrated simulation results for the dynamic logit model based on PSID 1979
- 1985, PCML-ML Firth

Mean Median SD Confidence SE/SD
ratio ratio 90% 95%

n = 500
# Children 0-2 0.935 0.935 0.022 0.925 0.965 1.306
# Children 3-5 0.962 0.971 0.022 0.956 0.983 1.300
# Children 6-17 1.106 1.107 0.020 0.950 0.977 1.294
Husband income 1.058 1.129 0.001 0.949 0.983 1.201
Age 0.938 0.943 0.004 0.966 0.988 1.297
Lagged participation 0.991 0.989 0.024 0.961 0.983 1.243

n = 1000
# Children 0-2 0.967 0.965 0.014 0.970 0.993 1.405
# Children 3-5 1.022 1.028 0.014 0.984 0.998 1.454
# Children 6-17 1.142 1.146 0.013 0.968 0.985 1.403
Husband income 1.127 1.087 0.001 0.977 0.994 1.387
Age 0.965 0.986 0.003 0.984 0.995 1.472
Lagged participation 1.029 1.032 0.017 0.954 0.983 1.312

Notes: 1000 replications. Source: PSID 1979 - 1985.
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