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Abstract

This paper studies environmental efficiency convergence across the prefectures

of Japan over the 1992-2008 period. Using a novel nonparametric density esti-

mation clustering framework, two alternative indicators of environmental effi-

ciency are contrasted: a conventional indicator, based on the ratio of gross re-

gional product to CO2 emissions, and a more comprehensive indicator, based on

the data envelopment analysis (DEA) model. Results show, on the one hand, a

lack of intra-distributional mobility and potentially a unique convergence clus-

ter when using the more conventional indicator. On the other hand, large back-

ward mobility and at least two convergence clusters are identified when using

the DEA-based indicator of environmental efficiency. The paper concludes ar-

guing the importance of accounting for production inputs, as they appear to be

driving the formation of regional convergence clusters in Japan.
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1 Introduction

In accordance with the Paris agreement, by the year 2030, Japan is com-

mitted to reduce its CO2 emissions by 26 percent relative to its emissions

in 2013. To achieve this objective, Japan aims not only to increase the na-

tional—average—level of environmental efficiency, but also aims to reduce its

cross-regional dispersion (Ministry of Environment, 2013). Although consider-

able progress has been made on the former, reducing regional gaps in environ-

mental efficiency remains challenging. In this context, this paper studies the

evolution of environmental efficiency dispersion across 46 prefectures of Japan

over the 1992-2008 period.

In particular, by using both classical measures of regional convergence

and a novel framework of distributional convergence, two alternative measures

of environmental efficiency are contrasted. The first measure is a conventional

environmental efficiency indicator (CEEI for short) that focuses only on the

desirable and undesirable outputs of the production process. It is constructed

as the ratio of gross regional product to CO2 emissions. The second measure

(DEEI for short) is based on the data envelopment analysis (DEA) model. It

includes not only desirable and undesirable outputs, but also information about

production inputs such as the weight of buildings and roads, the monetary

value of private capital stock, and the number of employees.

In a recent work, Eguchi (2017) compares regional performance in these

two indicators. His work provides an informative and detailed ranking of

Japanese prefectures for each environmental efficiency indicator in the year

1992 and 2008.1 Although, from this ranking, it is possible to identify

the—average—regional progress in CEEI and the—average—regional regress

in DEEI, a formal analysis of regional dispersion and convergence is still

needed for a more complete understanding of the regional environmental ef-

ficiency dynamics of Japan.

The empirical literature on economic convergence that started in the late

1980s has suggested a variety of statistical frameworks for evaluating the dy-

namics of inequality. The survey article of Magrini (2004) attempts to sum-

1Based on this table, the author points out some ranking differences between the indicators

in each year.
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marize some of these frameworks in the context of the regional territories of a

country. On the one hand, there are the classical convergence frameworks that

are based on single summary measures. Among them, the most commonly

used are the beta and sigma convergence statistics.2 On the other hand, there

are the distributional convergence frameworks that are based on modeling the

shape and internal dynamics of the entire regional distribution.3

By applying these two convergence frameworks, and other related analy-

ses, this paper extends the findings of Eguchi (2017) in six fronts. First, it docu-

ments a U-shaped relationship between CEEI and DEEI. Second, it points out

that low-efficiency regions are not catching-up with the high-efficiency regions

(i.e., lack of beta convergence). Third, across multiple indicators of dispersion,

environmental differences across prefectures have actually increased (i.e., lack

of sigma convergence). Forth, the nonparametric distribution of CEEI shows

a constant spread with a unique mode, while the distribution of DEEI shows

an increasing spread from its lower tail and a drastic transformation of its

multiple modes. Fifth, the intra-distribution dynamics of CEEI mostly suggest

regional stagnation, while the dynamics of the DEEI mostly suggest backward

mobility within the distribution.

The last finding is based on the novel clustering approach via nonpara-

metric (unconditional) density estimation of Azzalini et. al (2007) and Menardi

and Azzalini (2014). In the case of DEEI, this framework suggests the exis-

tence of tree groups of regions: a “Tokio-led” convergence cluster, a “median-

led” convergence cluster, and a group of transitioning regions. Moreover, the

conditional density estimation approach of Hyndman et. al (1996) helps us

extend this finding and points out that not all transitioning regions may nec-

essarily end up in any of the two superior clusters. Conditional on their initial

position, it is possible that some transitioning regions could end up converg-

ing to two additional bottom clusters, one of which is considerably below the

median.

The rest of this paper is organized as follows. Section 2 describes the em-

pirical framework, both in terms of the classical convergence approach and the

distributional convergence approach. Section 3 describes the data and presents

2See Sala-i-Martin (1996) for an overview of this classical approach to convergence analysis.
3See Magrini (2009) for an overview of this distributional approach to convergence analysis.
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the results of the classical convergence approach. Section 4 presents the main

results of the distributional convergence approach. Finally, Section 5 offers

some concluding remarks.

2 Methods

2.1 Classical Convergence Approach

The seminal work of Baumol (1986) launched a large number of studies that

aim to test the convergence hypothesis across countries and regions within a

country. Among the early studies, the work of Barro and Sala-i-Martin (1992),

in the cross-country context, and Barro and Sala-i-Martin(1992), in the con-

text of the prefectures of Japan and the states of the US, use the so-called beta

convergence approach. In their framework, economic growth is a function of

the initial level of income. If, in a regression setting, a statistically significant

negative coefficient is found, then poor economies tend to grow faster than rich

economies, and consequently a process of convergence takes place. More specif-

ically, Barro and Sala-i-Martin (1991) suggest the following growth equation:

1

t
log

(

yt

y0

)

= γ −

(

1 − e−βt
)

t
log y0 + ut, (1)

where the left side is the average growth rate of the variable y, γ is a constant,

t is a time index, β is the speed of convergence, y0 is the initial level of the

variable under study, and ut is a random (white noise) disturbance.4 In the

cross-country context, the parameter γ should be replaced by a set of variables

that act as proxies for the unobservable technological and institutional differ-

ences that exist across countries. Within countries, however, these differences

are relatively minor, and thus γ is commonly assumed constant across regions.

In addition to the rate of convergence (β), a second parameter of interest,

known as the “half-life” measure of convergence, can also be computed as:

half -life =
log2

β
. (2)

4Note that for the purposes of the present paper, the variable y represents the level of

environmental efficiency.
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This second parameter is particularly informative because it measures the

time that a representative economy (or region) needs to halve the gap between

its initial level and its convergence equilibrium.

A more general notion of convergence has to do with the reduction of the

cross-sectional dispersion of a variable over time. In the convergence literature,

this is the so-called sigma convergence approach, and it is commonly measured

by the standard deviation of the natural logarithm of the variable y or by its

coefficient of variation (CV). Specifically, a decrease in the sigma convergence

statistic indicates that the cross-sectional units of the sample (e.g., the regions

of Japan) are becoming increasingly more similar in terms of the level of the

variable y.

Regarding the relationship between beta and sigma convergence, Quah

(1993) and Sala-i-Martin (1996), show that beta convergence is a neces-

sary—but not sufficient—condition to achieve sigma convergence. To derive

this relationship, let us first restate Equation 1 in a two-period setting:

log

(

yt

yt−1

)

= γ −

(

1 − e−β
)

log yt−1 + ut. (3)

Next, apply the variance operator (σ2
t ) to the variable log yt in Equation 3 and

assume the white noise properties of ut. After some algebraic operations, we

can find that σ2
t evolves over time according to the following equation:

σ2
t = e−2βσ2

t−1 + σ2
ut. (4)

Equation 4 is just a first-order differential equation problem. If we

assume that the variance of the random disturbance is constant over time

(σ2
ut = σ2

u), then the solution to this problem is

σ2
t =

σ2
u

1 − e−2β
+

(

σ2
0 −

σ2
u

1 − e−2β

)

e−2βt. (5)

Furthermore, in a the steady-state equilibrium
(

σ2
t = σ2

t−1 = σ2
)

, the cross-

sectional dispersion of y only depends on the beta convergence parameter (β)
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and the dispersion of the random disturbance (σ2
u). That is,

σ2 =
σ2

u

1 − e−2β
. (6)

From Equation 6, it is clear that beta convergence (an increase in β) is not

a sufficient condition for sigma convergence (a decline in σ2). The effect of

beta could be attenuated or even reversed by an increase in the dispersion of

random disturbances (σ2
u), which are commonly interpreted as random shocks

to the economies of this dynamical system.

2.2 Distributional Convergence Approach

One of the common criticisms to the classical measures of convergence (i.e.,

beta and sigma) is that they fail to provide information about nonlinear dy-

namics, heterogenous patterns of convergence, and the formation of local con-

vergence clusters. In essence, beta and sigma convergence are just summary

measures of a representative region (i.e., the average region) and, as such, they

abstract from important patterns of cross-sectional heterogeneity. Motivated

by this limitation, Quah (1993; 1996; 1997) introduced the distributional con-

vergence approach, which goes beyond the performance of the representative

region and evaluates the dynamics of the entire cross-sectional distribution.5

Figure 1 presents an intuitive graphical summary of the distributional

convergence approach. First, in this example, the dynamics of the external

shape of the distribution point out not only the lack of overall convergence,

but also the formation of two local convergence clusters. Second, the intra-

distributional dynamics emphasize the three sources of the clustering process.

Some regions, such as (a) and (d), could show large and persistent differences

over time. Others, such as (c), could move forward and catch-up with the upper

cluster. Lastly, the remaining regions, such as (b), could move backward and

join the bottom cluster.

More formally, let us first economize notation and define the relative

5See Epstein et al. (2003), Magrini (2004, 2009), Bianco (2016) or Mendez-Guerra (2017;

2018) for more recent and comprehensive presentations of this framework that include not

only an evaluation of the intra-distributional dynamics, but also the computation of the long-

run (ergodic) equilibrium of the distribution.
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Figure 1. External-shape dynamics and intra-distributional dynamics

Timet t+s

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

Note: y/ȳ indicates that the value of the variable y is expressed in relative terms. ȳ indicates the convergence bench-

mark, which is usually the cross-sectional mean, median, or any other referential observation.

Source: Adapted from Quah (1993).

level6 of the variable y at time t as x ≡
yt

ȳt
, and at time t + s as z ≡

yt+s

ȳt+s
. Next,

let us define ft(x) as the entire cross-sectional distribution at time t and ft+s(z)

is the distribution at time t + s. In the distributional convergence literature,

the evolution from time t to time t + s is commonly modeled as a first-order

autoregressive process of a time-homogeneous Markov chain. That is,

ft+s(z)
︸ ︷︷ ︸

F uture Distribution

=

ˆ

ft+s|Zt=x(z)
︸ ︷︷ ︸

T ransitional Operator

ft(x)
︸ ︷︷ ︸

Initial Distribution

dx, (7)

where the transformation of the initial distribution, ft(x), into the future distri-

bution, ft+s(z), is mapped out by the transitional dynamics summarized by the

probability operator, ft+s|Zt=x(z), which is commonly referred in the literature

6For this analysis, the environmental efficiency level of each region is expressed relative to

that of Tokio.
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as the stochastic kernel.

To estimate the transitional operator, most studies use nonparametric

methods (Wand and Jones, 1995; Henderson and Parmeter, 2015). In particu-

lar, it is common to define this operator as a conditional distribution:

ft+s|Zt=x(z) =
ft,t+s(z, x)

ft(x)
, (8)

where ft,t+s(z, x) is an unconditional joint distribution and ft(x) is the marginal

distribution of x. Next, let us define this unconditional joint distribution as:

ft,t+s(z, x) =
1

nhzhx

n∑

i=1

Kz

(
z − zi

hz

)

Kx

(
x − xi

hx

)

, (9)

where Kz and Kx denote Gaussian kernel functions, and hz and hx denote the

smoothing parameters (flexible bandwidths) for z and x respectively.7 Lastly,

similar to the joint distribution, the marginal distributions, ft(x), is estimated

using a single Gaussian kernel function with a flexible bandwidth.

At this point, it is important to emphasize that intra-distributional dy-

namics8 are driven by two components: the unconditional joint distribution,

ft,t+s(z, x), and the initial marginal distribution, ft(x). To study the effects of

the former, I implement the approach of Azzalini et. al (2007) and Menardi and

Azzalini (2014). To study the effects of the latter, I implement the approach of

Hyndman et. al (1996).

The work of Azzalini et. al (2007) and Menardi and Azzalini (2014) is

useful not only to estimate the unconditional joint distribution distribution,

ft,t+s(z, x), but also to identify and distinguish between convergence clusters

and transitioning regions. In a series of papers, these authors have develop

an innovative clustering algorithm that is based on the local modes of an es-

timated nonparametric distribution. More specifically, they exploit recent ad-

vances in computational geometry to identify spatially connected regions.

The work of Hyndman et al. (1996) is useful to evaluate the complete pro-

cess of transitional dynamics,
ft,t+s(z,x)

ft(x)
. Compared to the original conditional

7Optimal smoothing parameters are derived from the the minimization of the asymptotic

mean integrated square error (AMISE).
8Note that the terms intra-distributional dynamics, transitional operator, stochastic kernel

and conditional distribution ultimately refer to the same concept. That is, the movement of the

regional units within the cross-regional distribution.
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density estimator of Quah (1993,1997), the estimator of Hyndman et al. (1996)

has better asymptotic mean bias properties (Arbia et. al,2006). These authors

also propose two novel graphical methods for visualizing the estimated condi-

tional densities. The first one is somewhat similar to Figure 1. It is stacked

conditional density (SCD) plot that displays a sequence of densities side by side

in a perspective fashion. This new graphical device is conceptually similar to a

Markovian transition matrix. That is, for a given level of a variable at time t,

the SCD traces its evolution and illustrates its final configuration at the time

t + s. The second graphical method is called high density region (HDR) plot.

Along a series of vertical strips, the HRD plot illustrates the projection on the

xz plane of the conditional density of z on x. Darker-shaded stripes indicate

higher density areas, and the mode for each conditional density is shown as

bullet point.

3 Data and Some Stylized Facts

3.1 Data and Sample

This paper studies dispersion and convergence patterns of environmental effi-

ciency across 46 prefectures of Japan9 in the year 1992 and 2008. The dataset

for this analysis is from Eguchi (2017), who computes both a conventional en-

vironmental efficiency indicator (CEEI for short), based on the ratio of gross

regional product to CO2 emissions, and a more comprehensive indicator of en-

vironmental efficiency (DEEI for short), based on the data envelopment anal-

ysis (DEA) model. As noted by this author, the main advantage of the DEA

model is that it can include not only desirable and undesirable outputs (i.e.,

gross regional product and CO2 emissions), but also production inputs such as

buildings, roads, private capital stock, and the number of employees.10

Figure 2 shows a comparative ranking between the conventional environ-

9Due to lack of systematic data, the prefecture of Okinawa is excluded from the analysis.
10To estimate the relative efficiency index in the DEA framework, Eguchi (2017) uses both

physical and monetary capital inputs. To measure the former, estimates of the weight of build-

ings and roads are taken from Tanikawa et al. (2015). To measure the latter, estimates are

taken from the R-JIP database of the Research Institute of Economy, Trade and Industry of

Japan. Data on the number of employees and the gross regional product are also from this

original source.
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Figure 3. A U-shaped relationship between CEEI and DEEI?
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Source: Author’s calculations using data from Eguchi (2017).

mental efficiency indicator (CEEI) an the DEA-based environmental efficiency

indicator (DEEI). The first notable difference is that most CEE values tend to

be below 0.50, while most DEE values tend to be above 0.50. To some extend,

this difference is expected given the construction of both indicators. For in-

stance, the CEEI is an unbounded absolute indicator, which means that the

ratio of gross regional product to CO2 emissions can continuously grow over

time and it is not necessarily bounded within a certain range of values. The

DEEI, however, is a bounded relative indicator, which means that it necessar-

ily takes a value within a certain range. In the context of the DEA framework,

this efficiency value is between 0 and 1.11

When studying the empirical relationship between both indicators, Figure

11In the original results of Eguchi (2017), the direction of efficiency improvements is from 1

to 0. In other words, maximum efficiency is attained when the DEEI equals 0. In the present

study, however, the direction of efficiency improvements is reversed, meaning that maximum

efficiency is attained when DEEI equals 1. As a result of this adjustment, the comparison

between CEEI and DEEI becomes more immediate and intuitive.
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3 suggests that the relationship is not only highly non-linear, but also shows

signs of a U-shaped pattern. In particular, this U-shaped relationship holds

very well when CEEI is between 0 and 0.50, which is the range in which most

prefectures are located (See Figure 2). When trying to interpret this pattern,

the initial negative relationship between CEEI and DEEI could suggest that

initial improvements in environmental efficiency (higher CEEI) are associated

with relatively inefficient use of production inputs (lower DEEI). On the other

hand, as regions keep developing and improving their environmental perfor-

mance (higher CEEI), they may also learn how to use their production inputs

more efficiently, which improves even further their environmental performance

(higher DEEI).

3.2 Lack of Beta and Sigma Convergence

Are the regions with the lowest environmental efficiency scores catching up

with the most efficient regions? The results of Table 1a suggest that this is

not the case for both indicators of environmental efficiency. Although the beta

coefficient is negative, which is a sign of convergence, its p-value is indicates

that this coefficient is not statistically significant. Moreover, even if we were

to ignore the statistical significance of the coefficient, the speed of convergence

is extremely slow. For instance, in the case of the CEEI, its half-life time value

suggests that it would take on average 281 years for the current disparities to

be halved.

Although—on average—there has been progress in both indicators of en-

vironmental efficiency (Eguchi, 2017), the standard sigma convergence anal-

ysis suggests that, after more than 15 years, there has been no significant

progress in terms of the reduction of environmental efficiency disparities. Ta-

ble 1 shows that through the lens of two commonly used indicators of disper-

sion, the standard deviation and the coefficient of variation, the environmental

efficiency differences across prefectures have actually increased in most cases.

The only exception is the coefficient of variation of the CEEI, which indicates a

minor reduction from 0.39 in the year 1992 to 0.36 in the year 2008.

In the convergence econometrics literature, a ratio of initial dispersion

over final dispersion larger than one
(

σ1992

σ2008
> 1

)

is typically suggestive of re-



13

Table 1

Lack of beta and sigma convergence across Japanese prefectures

(a) Lack of beta convergence

Dependent Variable

Growth of CEEI Growth of DEEI

(1992-2008) (1992-2008)

Beta coefficient - 0.039 - 0.214

Speed of convergence 0.002 0.015

Half-life time (in years) 281 46

R-squared 0.02 0.04

P-value of beta 0.41 0.16

(b) Lack of sigma convergence

CEEI DEEI

Standard Coefficient Standard Coefficient

Deviation of Variation Deviation of Variation

Dispersion in1992 0.39 0.39 0.12 0.12

Dispersion in 2008 0.40 0.36 0.15 0.14

Dispersion Ratio
(

σ1992

σ2008

)

0.99 1.08 0.79 0.80

F-Statistic 0.98 0.92 0.62 0.69

P-value 0.95 0.77 0.11 0.21

Note: For the beta convergence analysis, all regressions include a constant term, which is not presented in the table.

For the sigma convergence analysis, following the convention of the literature, the standard deviation of the natural

logarithm of each indicator is computed. Also following this literature, the coefficient of variation is computed, but

this time without its natural logarithm. CEEI stands for “conventional” environmental efficiency indicator and DEEI

stands for DEA-based environmental efficiency indicator. The word “conventional” refers to the ratio the ratio of

gross regional production to CO2 emissions. DEA stands for Data Envelopment Analysis and it is a nonparametric

analysis of relative efficiency. In this article, the DEA indicator is based on measures of gross regional production,

CO2 emissions, and production inputs (buildings, roads, private capital stock, and the number employees).

Source: Author’s calculations using data from Eguchi (2017).
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gional convergence. In this context, the results of Table 1b suggest the opposite:

the hypothesis of sigma convergence is actually rejected in all cases. Even in

the previously mentioned exceptional case, the F-statistic and p-value suggest

that the reduction in the dispersion is not statistically significant.

4 Distributional Convergence Results

4.1 External-Shape Dynamics

Figure 4 shows the regional composition and dynamics of the nonparametric

kernel distribution of CEEI. In the year 1992, we can observe a highly asym-

metric environmental efficiency distribution that is characterized by one ma-

jor density peak at around 41 percent of the environmental efficiency level of

Tokio. Also, there is a minor density bump in the range between 50 to 70

percent, which is composed by tree prefectures: Nara, Osaka, and Kyoto. In

contrast, in the year 2008, we can observe a relatively more symmetric dis-

tribution with only one major peak at around 46 percent of Tokio. Moreover,

there is no any minor bump, which indicates that over time Osaka and Nara in

particular have been gravitating towards the unique basin of attraction of the

distribution.

Figure 5 shows the regional composition and dynamics of the nonpara-

metric kernel distribution of DEEI. In the year 1992, we can clearly observe

a trimodal distribution. The major peak is located at around 87 percent of

the environmental efficiency level of Tokio. In the year 2008, the distribution

drastically changed its shape. Starting from the central mode, a considerably

large number of regions appear to be moving backwards and, thus, the sepa-

ration between the lower and central mode has tended to disappear over time.

Likewise, the separation between the upper and central mode has tended to

disappear, albeit to a lesser extend.

Figure 6 summarizes the distributional changes over time and contrasts

both indicators of environmental efficiency. In the case of the CEEI, although

the spread of the distribution seems be relatively constant over time (as pointed

out in the sigma convergence analysis), the mode of the distribution slightly

shifts to the right and becomes more symmetric. The spread of the DEEI, how-
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Figure 4. The nonparametric distribution of CEEI: Composition and

shape dynamics
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Note: CEEI stands for “conventional” environmental efficiency indicator and DEEI stands for DEA-based environ-

mental efficiency indicator. The word “conventional” refers to the ratio the ratio of gross regional production to CO2

emissions. DEA stands for Data Envelopment Analysis and it is a nonparametric analysis of relative efficiency.

Source: Author’s calculations using data from Eguchi (2017).
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Figure 5. The nonparametric distribution of DEEI: Composition and

shape dynamics
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Note: CEEI stands for “conventional” environmental efficiency indicator and DEEI stands for DEA-based environ-

mental efficiency indicator. The word “conventional” refers to the ratio the ratio of gross regional production to CO2

emissions. DEA stands for Data Envelopment Analysis and it is a nonparametric analysis of relative efficiency.

Source: Author’s calculations using data from Eguchi (2017).
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Figure 6. Comparison of the external-shape dynamics of CEEI and

DEEI: Nonparametric densities
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Note: CEEI stands for “conventional” environmental efficiency indicator and DEEI stands for DEA-based environ-

mental efficiency indicator. The word “conventional” refers to the ratio the ratio of gross regional production to CO2

emissions. DEA stands for Data Envelopment Analysis and it is a nonparametric analysis of relative efficiency.

Source: Author’s calculations using data from Eguchi (2017).

ever, increases overtime, particularly towards its left tail. Note that the stan-

dard sigma convergence analysis of Table 1b pointed out that the dispersion of

the DEEI was increasing over time, and in sharp contrast with the CEEI, the

results of the F-test for the DEEI were very close to be statistically significant

at the conventional level of 10 percent.

4.2 Intra-Distributional Dynamics

Figure 7 provides a comparison of the intra-distribution dynamics of each en-

vironmental efficiency indicator through the lens of estimated quantile trends.

In the case of CEEI, the analysis of the previous sections suggested a constant

dispersion with a minor modal shift towards the upper tail. Panel (a) of Figure

6 not only confirms these findings, but also indicates that this modal shift is re-

lated with the dynamics of the 0.75 quantile. Also, relative to other quantiles,

the slope of the 0.75 quantile is considerably steeper. Thus, only the regions

from this quantile are showing some signs of convergence. In sharp contrast

with this pattern, most of the quantiles of DEEI show negative slopes, which

indicates intra-distributional divergence, which is particularly more evident in

the two bottom quantiles.
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Figure 7. Comparison of the intra-distribution dynamics of CEEI and

DEEI: Quantile trends
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Note: Since the data is only available for two years (1992 and 2008), a simple linear interpolation is applied to

estimate the values of each intermediate year. CEEI stands for conventional environmental efficiency indicator and

DEEI stands for DEA-based environmental efficiency indicator.

Source: Author’s calculations using data from Eguchi (2017).

Figure 8 provides an alternative comparison of the intra-distribution dy-

namics of each indicator using mobility scatterplots. The advantage of this

approach is that we can study the mobility of each region instead quantile

groups. In the case of CEEI, the most noticeable feature is that all regions

are lining up very close to a 45-degree line (Figure 8, Panel (a)). This pattern

indicates relative stagnation in the worst case or very limited upward mobility

(i.e., catching up with Tokio) in best case scenario. The dashed lines indicate

the value of median observation in each year; they help us identify patterns

of mobility in relation to the progress of the median region. Since almost all

regions are located either in the lower-left or upper-right quadrant, one can

conclude that the regions that were below (above) the median in the year 1992,

remained below (above) it in the year 2008.

Panel (b) of Figure 8 shows a much more heterogeneous performance in

the case of the DEA-based environmental efficiency indicator (DEEI). Regions

are far away from the stagnation (45-degree) line. In fact, most of them are

below it—including the median region. This downward mobility pattern rein-

forces previous findings regarding a tendency towards regional divergence that

is more evident in the case of DEEI.
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Figure 8. Comparison of the intra-distribution dynamics of CEEI and

DEEI: Mobility Scatterplots
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emissions. DEA stands for Data Envelopment Analysis and it is a nonparametric analysis of relative efficiency.

Source: Author’s calculations using data from Eguchi (2017).
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Figure 9. Comparison of the intra-distribution dynamics of CEEI and

DEEI: Bivariate nonparametric distribution
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emissions. DEA stands for Data Envelopment Analysis and it is a nonparametric analysis of relative efficiency.

Source: Author’s calculations using data from Eguchi (2017).

4.3 Regional Convergence Clusters

Figure 9 builds on the findings of the previous mobility scatterplots. Through

the lens of a nonparametric bivariate distribution, it shows the areas of high

density of each environmental efficiency indicator. In the case of CEEI, there is

only one area of high density that is just above the median of each period. The

DEEI, however, shows two distinct areas of high density along the stagnation

(45-degree) line. The first one is located just under the median and the second

one is located around the value of Tokio.

Figure 10 further evaluates the existence of two separate density areas for

the DEA-based environmental efficiency indicator (DEEI). In the convergence

literature, the existence of multiple areas of high density along the stagnation

(45-degree) line is commonly interpreted as suggestive evidence of convergence

clubs or clusters. Using the density-based clustering algorithm of Azzalini et.

al (2007) and Menardi and Azzalini (2014), it is possible to identify two core

clusters of convergence. Panel (a) of Figure 10 shows both the regions that

belong to each cluster of convergence (market with the number 1 or 2) and the

regions that are still in a transitional stage (market with the number 0).

In terms of the size and composition of each group, the superior cluster,
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Figure 10. Density-based cluster analysis for the DEA-based

environmental efficiency indicator (DEEI)
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which one may call it the “Tokio-led” cluster, is composed by 8 regions. On the

other hand, the lower cluster, which one may call it the “median-led” cluster, is

composed by 15 regions. Finally, the group of transitioning regions is composed

by 23 prefectures.

The rest of the panels of Figure 10 provide additional clustering diagnos-

tics that help us evaluate the possible destination of the transitioning regions.

As suggested by the mode function (Panel c) and the Density Based Silhouette

plot (Panel d), most of the transitioning regions would end up in the “median-

lead” cluster. This cluster would increase its size from 15 regions to 34 regions.

On the other hand, the “Tokio-led” cluster would only receive 4 additional mem-
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bers, ending up with 12 regions.

Finally, Figure 11 shows the conditional distribution version of the pre-

viously estimated intra-distribution dynamics. Through the lens of the con-

ditional distribution estimator of Hyndman et. al(1996), we can observe the

evolution of the environmental efficiency distribution, given its initial level in

the year 1992. Also, in this modeling framework, both the “Tokio-led” and the

“median-led” clusters are clearly identifiable. However, two additional “bot-

tom” clusters are also identified (See Panel b).

It is important to clarify and reconcile the difference in the number of clus-

ters between the two methodologies. The framework of Azzalini et. al (2007)

and Menardi and Azzalini (2014) identifies modal clusters in two stages. In the

first stage, the estimation of an un-conditional bivariate distribution suggest

the existence of two modes (Figure 10b and 10c), which are then used to map

two core clusters (Figure 10a and 10d). Transitioning regions that were not

originally part of the core clusters are then allocated only to those two clusters

in a second stage.12 The framework of Hyndman et. al (1997), on the other

hand, estimates conditional-bivariate distribution that suggest the existence

of multiple modes depending on the initial level of the variable (Panel a).

Although these two frameworks differ in the allocation mechanism of the

transitioning regions, they share a common element: the unconditional bivari-

ate kernel distribution. This distribution is the main criteria for finding the

clusters of Menardi and Azzalini (2014). It is also a necessary input to esti-

mate the conditional distribution of Hyndman (1996). Thus, to reconcile the

results, the Azzalini approach could be suggesting a lower bound (where the

initial conditions of the regions are not binding), whereas the Hyndman ap-

proach could be suggesting an upper bound (where the initial conditions of the

regions are binding). More intuitively, not all transitioning regions may neces-

sarily end up in any of the two superior convergence clusters. Specially some

less developed regions may end up in a new equilibrium that is below the me-

dian. The approach of Hyndman emphasizes this possibility by pointing out

the existence of two separate areas of high density around the lower tail of the

conditional distribution.

12The statistical criteria for this allocation exploits recent advances in computational geom-

etry, in particular the identification of a Delaunay triangulation and Voronoi tessellation.
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Figure 11. Nonparametric conditional distribution for the DEA-based

environmental efficiency indicator (DEEI)
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shown as bullet point.

Source: Author’s calculations using data from Eguchi (2017).
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5 Concluding Remarks

Both increasing the national (average) level of environmental efficiency and re-

ducing its cross-regional dispersion are important means to reduce CO2 emis-

sions. Although Japan has made considerable progress on the former, it has

made much less progress on the latter. In this context, this paper studies

environmental efficiency dispersion across 46 prefectures in Japan over the

1992-2008 period. In particular, through the lens of both classical and distri-

butional convergence frameworks, this paper quantifies progress in regional

convergence by using the two alternative measures of environmental efficiency

suggested by Eguchi (2017). The first measure is a conventional environmen-

tal efficiency indicator (CEEI for short) that focuses only on the (desirable and

undesirable) outputs of the production process. It is constructed as the ratio of

gross regional product to CO2 emissions. The second measure (DEEI for short)

is based on the data envelopment analysis model, and it includes not only desir-

able and undesirable outputs, but also inputs such as buildings, roads, private

capital stock, and the number of employees.

The first empirical regularity documented in the paper is that the rela-

tion between CEEI and DEEI is highly non-linear. Interestingly, there appears

to be a U-shaped relationship between these two indicators of environmental

efficiency. This pattern could suggest that although initial improvements in en-

vironmental efficiency (higher CEEI) are associated with relatively inefficient

use of production inputs (lower DEEI), regions could also learn how to use their

production inputs more efficiently (higher DEEI) as they produce more output

(higher CEEI).

The classical analysis of beta and sigma convergence suggests that—on

average—environmental efficiency differences across regions have not de-

creased during the 1992-2008 period. Low-efficiency regions are not catching-

up with the high-efficiency regions in an statistically significant way (i.e., lack

of beta convergence). Moreover, across multiple indicators of dispersion, envi-

ronmental differences across prefectures have actually increased (i.e., lack of

sigma convergence).

The next section of the results goes beyond these two classical measures

of convergence. Through the lens of a series of nonparametric distributional
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methods, it evaluates the evolution of the entire environmental efficiency dis-

tribution. This analysis points out three central aspects of distributional con-

vergence: (1) the dynamics and composition of the external shape of the dis-

tribution; (2) the intra-distributional dynamics; and (3) the formation of local

clusters of convergence within the distribution.

As expected, there are considerable distributional differences between the

two indicators of environmental efficiency. On the one hand, the cross-regional

distribution of CEEI shows a constant spread with a unique mode slightly shift-

ing to the right. On the other hand, the distribution of DEE shows an increas-

ing spread from its lower tail and a drastic transformation of its shape from a

trimodal distribution into a left-skewed more unimodal distribution.

There are also sharp differences in terms of intra-distributional dynamics.

In the case of the CEEI, all regions are lining up very close to the stagnation

line of a mobility scatterplot. In contrast, in the case of the DEEI, most regions

are far away from the stagnation line. Also, consistent with the the lack of

sigma convergence finding, backward mobility appears to be the dominant force

within this distribution.

Given the lack of overall convergence and the particularly large degree of

backward mobility within the DEEI distribution, the last subsection of the pa-

per evaluates the existence of local convergence clusters for the DEA-based in-

dicator of environmental efficiency. The unconditional distribution framework

of Azzalini et. al (2007) and Menardi and Azzalini (2014) suggests the existence

of tree groups of regions: a “Tokio-led” convergence cluster (composed by 8 pre-

fectures), a “median-led” convergence cluster (composed by 15 prefectures), and

a group of transitioning regions (composed by 23 prefectures). Moreover, fur-

ther results from the conditional distribution framework of Hyndman et. al

(1996) suggest that it is possible that some of those transitioning regions may

end up converging to two additional bottom clusters. Thus, the cross-regional

dynamics of the DEA-based environmental efficiency indicator (DEEI) may be

characterized by at least two convergence clusters.

To sum up, all the previous results highlight the lack of overall regional

convergence in both indicators of environmental efficiency. However, important

differences exist between these indicators. Perhaps the most important is that

the DEA-based environmental efficiency indicator (DEEI) help us identify local
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convergence clusters. This identification is potentially driven by two sources.

The DEA framework itself, which is used to aggregate the inputs and related

them to outputs. And the inclusion of production inputs in the calculation

of the environmental efficiency index. If local convergence clusters are mostly

driven by the latter, then there is clear policy implication: environmental policy

efforts—focalized at the cluster level—should aim at improving the efficiency

with which production inputs are used.

Finally, further research on environmental efficiency convergence in

Japan seems promising in at least two immediate fronts. First, one could ex-

ploit some of the recent advances in the spatial analysis of convergence and

evaluate to what extend the spatial neighbors of a particular region help accel-

erate or retard its rate of convergence.13 Second, one could also exploit some

recent advances in dynamic panel data analysis. In particular, the convergence

test and clustering framework of Phillips and Sul (2007; 2009) could be useful

to evaluate how the cluster composition behaves over longer time horizons.
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