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ABSTRACT 

 

Maltese agriculture faces great challenges due to the severe scarcity of water. Sufficient 

water resources, in quantity and quality, are necessary to cover the demand in the 

production of wine grape, one of the most important crops in Maltese agriculture. But 

also, economic efficiency is essential in the grape cultivation. A Cost-Benefit Analysis 

(CBA) is defined for Maltese vineyards in the Siġġiewi region, considering two irrigation 

scenarios, irrigation with groundwater or “do-nothing”, compared with the “use non- 

conventional waters” from mixing water from a small desalination plant and 

groundwater. For the alternative ‘mixing desalinated water with groundwater’ it is 

possible to improve water availability and quality for vine crops, while increasing 

economic benefits for farmer. The results indicate a profitable project from a minimum 

area of 1 ha, but final benefit is highly dependent on the irrigated surface extension 

according to water price. Desalination, compared with other type of non-conventional 

water is considered the best option in this assessment with a small reverse osmosis (RO) 

desalination plant (120 m3/day) for covering the irrigation needs. 

 

 

 

Keywords:  Cost  Benefit  Analysis,  Desalinated  water,  Groundwater,  Vine  crops, 

Agricultural management. 

 

 

1. Introduction 
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Water availability and demand allocation, including agriculture, depend mainly on 

optimal natural renewal resources exploitation, integrated use management and 

management policy. Water availability as a resource cannot be independently considered 

from water quality due to pollution or depletion induced by anthropogenic activities and 

possible impacts from climate change. In this sense, many countries around the world will 

be facing the increasing pressure of decreasing fresh water supplies and that fresh water 

resources will become insufficient to satisfy water needs for a number of goods and 

services. Demands for water, energy and food production are estimated to increase by 

40%, 50% and 35% respectively by 2030 (US NIC, 2012; Endo et al., 2015). Water 

issues have been commonly discussed in the literature in terms of availability, use and 

reuse (including agriculture), demand, consumption, quality, management, etc. (UNECE, 

2011; Gleeson et al. 2012; WWAP, 2012; Panagopoulos, 2014; Candela et al., 2016). In 

the last 20 years, papers on issues concerning global change and water have been 

published (Olesen and Bindi, 2002; Giorgi and Lionello, 2008; Green, 2016; Di Matteo 

et al., 2017; Aslam et al., 2018). A detailed review of the numerous contributions is 

beyond of the scope of this research. 

 

 

To achieve water management and planning objectives, countries usually apply two types 

of instruments, namely regulatory and economic. Economic instruments use market 

principles to achieve policy objectives involving the assessment of production and 

distribution costs and possibly economic and environmental value; shift in economic 

factors may have an effect on water use and the most affected sector is the water 

dependence of agricultural economy. Since agriculture represents the largest consumer, 

pricing is part of the water-agriculture nexus policy aiming at farm income protection 

based on subsidies. As regards groundwater irrigation in many Mediterranean areas, the 
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economic situation is different. In fact, most farmers who use groundwater for irrigation 

pay practically the full cost of maintenance and operation waterworks, leading to systems 

that are more efficient. Identifying tradeoffs and synergies are key components of the 

water-energy-food nexus-thinking research for sustainable development (WEF, 2011). 

For improving the water-food nexus efficiency, economic approaches along with 

technical/governance activities, are necessary for project design and implementation. 

Economic research activities addressing water management with agricultural 

management benefits projects need to be developed and conducted to analyze and 

understand inter-relationships and tradeoffs among resources. 

 

 

 
From an economic perspective, hydrologic-economic models have been used from 

different authors to assess extraction costs and discharge willingness to pay for 

groundwater use including wetlands and recreation (Loomis, 2002; Burnett et al., 2017; 

Aparicio et al., 2018), saltmarshes (Luisetti et al, 2014) or for agricultural production 

(Sales et al., 2017), among other applications. To our knowledge, studies on the economic 

importance of groundwater salinity and its effects on agricultural production considering 

small desalination plants have not been reported in the literature. 

 

 

 
To demonstrate projects economic feasibility certain indicators are applied, among them 

the cost-benefit ratio is commonly used (Birol et al., 2006). A cost-benefit analysis (CBA) 

is a relatively simple and widely used technique that assesses how a particular market or 

economy at a specific site may be changed by new policies and practices (Layard, 1994; 

Maliva, 2014). According to CBA, a project should be only accepted if the benefits 

exceed any incurred costs. While different management options will yield to different net 
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benefits, the option with the highest value is the preferred. The application of CBA for 

the evaluation of projects related to water use is acquiring particular importance, even if 

values for water resources are not straightforward to estimate. Examples of this growing 

interest, mainly for water use and reuse projects setting a different net benefit value model 

for cost–benefit evaluation, are found in Godfrey et al. (2009), Seguí et al. (2009), Chen 

and Wang (2009) and Molinos-Senante et al. (2010) among other authors. 

 

 

 
A good example of water increasing demand and low average precipitation with great 

annual and inter-annual variation is the Mediterranean region. Particularly in islands 

where groundwater constitutes the main water supply resource and is of crucial 

importance for agricultural food production, crops and livestock. Vulnerable aquifers are 

frequently located in zones of high demand such as coastal areas leading to water level 

drawdown producing seawater intrusion and man-made pollution making water resources 

management very challenging. Agricultural research about viticulture in the Maltese 

islands has been limited to irrigation needs or management principally (business as 

usual). Studies on economic costs and benefits of grape cultivation for vine production 

and its economic profitability are lacking. 

 

 

This study is aimed to give a better understanding of the current local CBA related to 

Maltese vineyards in the Siġġiewi region. CBA was used herein to assess the ex-ante 

economic suitability (water quality improvement for irrigation previous to project 

definition and implementation) of managing alternatives to address the water-agriculture 

nexus. The research establishes two irrigation scenarios for the CBA analysis, the “do- 

nothing’’ option based on current irrigation with saline groundwater and compared to the 

“use non-conventional waters” from mixing water from a small desalination plant and 
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groundwater. The main objective is to assess the farmer costs and benefits from irrigating 

1 ha of vineyard under the two management systems. A second objective is a sensitivity 

analysis of irrigation water cost (mixed water) considering five different irrigation 

surfaces extension. 

 

 

 
2. Study Area 

 

2.1. The Maltese Islands. Siġġiewi study site 

 

The Maltese Archipelago consists of three inhabited islands, Malta, Gozo, and Comino, 

and some other uninhabited much smaller islands, which in all have a total surface area 

of 316 km2 and a total population of about 450,000 (Fig. 1). Siġġiewi, located in South 

Western Malta (Fig. 1), is the third largest council in Malta and has about 9,000 

inhabitants. 

 

 
The climate of the Maltese islands is typically semi-arid Mediterranean, with hot, dry 

summers and mild, wet winters. The short, heavy rainstorms, which are common during 

the transition from the dry to the wet season result in increased runoff and erosion 

(Schembri, 1993; Falzon, 2013). 

 

 

The geology of the Islands consists of marine sedimentary rocks, mainly limestone of 

Oligo-Miocene age and some minor quaternary deposits of terrestrial origin (Pedley, et 

al., 1976; Schembri, 1993). The main stratigraphic units in order of decreasing age are: 

a) Lower Coralline Limestone; b) Globigerina Limestone; c) Blue Clay; d) Greensand 

and e) Upper Coralline Limestone. Aquifer units are those composed of limestone. 
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The aquifers in the study area belong to the Globigerina Limestone and Upper Coralline 

Limestone. Mainly unconfined, fractures are thought to play  an important role in 

groundwater hydrodynamics; particularly within the marly middle formation, given that 

this formation has quite a high fracture density where exposed (Sapiano et al., 2013). 

Groundwater electrical conductivity of 2,000 – 3,000 μS/cm and chloride concentration 

between 400 - 600 ppm is commonly found in wells under exploitation (Falzon, 2013) 

because of seawater intrusion. Groundwater level ranges between 35 and 143 m.a.s.l. 

(Stuart et al. 2010). 

 

 

Malta is dependent on groundwater for both public supply and agricultural irrigation as 

there is very limited surface water. Public supply sources include both boreholes and 

horizontal galleries dug into bedrock at the water table level (Sapiano et al., 2013). As 

the available resources cannot meet the current demand, over 50% of water for public 

supply is from seawater desalination by reverse osmose (RO). Seawater desalination 

began in 1983 and reached a peak during the1994/1995 period (Sapiano et al., 2013). 

 

 

2.2. Agricultural management 

 

Maltese agriculture faces great challenges due to the severe scarcity of land and the 

equally severe scarcity of water (CCA, 2010), which is aggravated by the population 

density and high annual tourist influxes. One of the most important crops and with a high 

demand is the production of wine. Viticulture is a growing area of interest and the total 

area under vines in the Maltese Islands is about 683 ha (MCCAA, 2013). Nowadays, 

farmers mostly use groundwater for irrigation, but the groundwater level decrease, 

seawater intrusion and quality deterioration by agrichemicals leads to the cultivation of 

wine grapes at greater risk in a short-term and long-term than other crops (Jones and 
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Webb, 2010). Therefore, in order to continue with the production of wine, it is necessary 

to have sufficient water resources in quantity and quality to cover the demand, and for 

optimum yield and quality of the grape. 

 

 

The majority of the agricultural land in Malta is dryland for the cultivation of forage 

crops, covering around 5,552 ha (61.2% of the surface). Vineyards for wine production 

are the main permanent crop in 5.4% of the Islands’ agricultural area (MCCAA, 2013). 

The quality wines produced in Malta are mostly from international varieties (e.g. Merlot, 

Syrah, Cabernet Sauvignon, Cabernet Franc, Tempranillo, Sangiovese, and Grenache) 

but there is also an increasing production from the two main indigenous grape varieties 

(Ġellewża and Girgentina). Increasing presence of wine made from the indigenous 

varieties on the market of Quality Wines is a clear indication of the consumers change to 

wines produced from the indigenous varieties (MRRA, 2012). 

 

 

Viticulture in Siġġiewi has been present for a long time; however, it was only until 

recently that there has been interest in scientific research related to grapevine growing. 

This mainly came about with the Wine Act of 2001 (CAP436, 2001). A 34% of the 

agricultural land is under irrigation, and it has been increasing over the years (World 

Bank, 2013). The most widespread source of irrigation water is from the underlying 

aquifers (Vella, 2001). 

 

 

At the Siġġiewi study site, wine production is from both indigenous and international 

grape varieties. Grapevines are usually planted at distances from 1.8 m to 2 m apart in all 

directions, and the resulting plant density is of about 2,500 to 3,000 plants per ha for local 

varieties and 5,000 plants per ha for international grapes (Meekers, 2006; Falzon, 2013). 
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The common irrigation system is by dripping from groundwater wells mainly exploiting 

the Globigerina Limestone aquifer, following plant needs and accounting for 

120L/vine/yr. Fertilization is carried out through mineral and organic fertilizers (NPK). 

The main difference between local and international vineyards management are the 

number of vines per hectare, the organic management in the local varieties and the 

training system (Alberello for local varieties and trellises for international varieties) and 

local vineyards are usually dryland, irrigation is only applied when needed (dry periods). 

 

 

Irrigation water data shows that the aquifer presents high salinity (mainly due to chloride 

and nitrate presence). Salinity affects plants in many ways physiologically (growth, 

defoliation, toxic accumulations, etc.) and the only agronomical significant criterion for 

establishing salt tolerance is the commercial crop yield. This  is an important fact 

conditioning agricultural production, as vine production yield also depends on water 

salinity. According to Mass and Hoffman (1977) and James et al. (1982), grape salinity 

optimum (threshold) is 1,500 μS/cm based in a literature review; for an average irrigation 

water salinity value of 2,700 μS/cm the expected decrease of crop yield may be 25%. In 

addition, vines are especially sensitive to chloride, which contributes to leaf chlorosis 

(Jackson, 2000). 

 

 

3. Data and methods 

 

The economic analysis developed includes two phases: the first one focuses on the cost- 

benefit analysis of present agricultural management (grapes) considering current 

groundwater salinity. The second step involved mixing non-conventional water from 

desalination with groundwater to decrease the salinity of water for wine irrigation and its 

cost-benefit analysis assessment. In this second phase, production increase by lowering 
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water salinity and cost of building a small RO desalination plant was considered. 

Desalinated water production is always from brackish groundwater pumped from the 

already existing wells in the area. The economic analysis is only calculated for the 

international grapes varieties under irrigation. 

 

 

3.1. Data collection 

 

For the economic analysis assessment, data from current research underway and other 

sources of information existing in the area, including data from the plot farmer, have been 

collected and provided by MCAST. No new data sets were generated for the study area 

characterization, which was based on existing information. The Siġġiewi site agricultural 

main land and agricultural management are presented in Table 1. 

 

 

Costs related to agricultural management, water supply and management and beneficial 

effects (benefits) were estimated based on the information provided. The parameters, data 

and information needed to determine the water production costs (fixed and variable) from 

a small desalination plant, are based on the previous work of Aparicio et al. (2017) and 

are defined in Table 2 and 3. 

 

 

3.2. Cost-benefit analysis (CBA) 

 

The CBA method is based on the net profit estimation for each possible project choice. 

The project selection is based on the difference between revenues (the amount of money 

from grapes sold in this case), and the costs needed for the agricultural production, to be 

supported by the owner. Between the two general types of CBA analyses (ex-ante, ex- 

post, Boardman et al., 1994), the ex-ante CBA of a simple purpose project for grape 

production, is considered here (therefore before irrigation project development with 
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mixing water). Positive externalities from wine production and commercialization are not 

considered in this economic analysis. 

 

 

The CBA concept is that a project should be done only if the benefits exceed the costs. 

For this purpose, all benefits are compared with their costs by using a common economic 

analyses methodology (Eq. 1). 

𝑁𝑃 = 𝑇𝐼 − 𝐼𝐶 (1) 

 
Where NP is the net profit (total internal benefit); The TI is the total income, and IC are 

the internal costs. For the Siġġiewi case study, the total internal benefit is grapes sales 

benefit or profit from agricultural production, while internal costs include: investment 

cost, annual volume of applied water and operational and maintenance costs (summarized 

in Table 3). 

 

 

 
When conducting cost-benefit analysis on a project, a more accurate result is obtained by 

converting all future costs and benefits to their present values. The Net Present Value 

(NPV) is a measure of whether a project is profitable or not during the project economic 

horizon (life span): a negative value implies non-feasibility. The NPV criterion, given in 

Eq. 2, is the principal investment project evaluation criterion and is one of the most 

important tools applied in water project analyses. 

 

 

𝑁𝑃𝑉 =  ∑𝑇
 𝑁𝑃𝑡 (2) 

𝑡−1  (1+𝑟)𝑡 



  ACCEPTED MANUSCRIPT   

11 

 

 

 

where NPt is the net profit at year t; t is the relevant year; r is the discount rate or interest 

rate paid for using borrowed funds and T is the project lifespan. The rate at which benefits 

or costs are discounted is known as the discount rate and refers to a common measure 

representing the comparison of costs and benefits to occur at different time period 

(benefits and costs vary from year to year). The applied discount rate was 1.8% per year 

(OECD, 2018) for this type of projects; the considered amortization period is 10 years 

(Ross, et al. 2017). 

 

 

For the CBA analysis, the alternative “use non-conventional water from desalination for 

irrigation’’ was compared with the “do-nothing’’ option, which implies vineyards 

irrigation only with local groundwater and current salinity. For the “use non-conventional 

water’’ option takes into account the recovery of the 25% lost production or damage 

caused (Kaenchan et al., 2018) from bad quality of groundwater irrigation (Mass and 

Hoffman, 1977; James et al., 1982; Jackson, 2000), along with the investment that would 

be needed to irrigate by mixing groundwater with water from a small desalination plant. 

For the ‘do-nothing’ option, groundwater salinity increase along time is also expected 

leading to agricultural production losses (Itsubo and Ina, 2014) as a result of seawater 

intrusion by wells exploitation.  Therefore, a decrease of the yield and brix levels of 

vineyard could be also taken into account jointly with a significant loss of income. 

 

 
The Internal Rate of Return (IRR), an investment efficiency indicator and a measure of 

the comparison of the two alternatives is also calculated. Generally, the higher a project's 

internal rate of return, the more desirable it is to undertake as it refers to the profit rate 

which the owner receives. The project (groundwater vs non-conventional water irrigation) 

with the highest IRR is considered the best option. 
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The IRR calculation relies on the same formula as NPV does by setting it to 0 (Eq 3). 
 

 

 
 

NPV = ∑T
 NBt + NB = 0 (3) 

t-1 (1+IRR)t 0 

where NB0 is the initial investment costs, NBt is the net cash inflow for period t, IRR is 

the internal rate of return, and t is the time period. 

 

 
The CBA methodology to estimate NPV and IRR was applied to the two proposed 

scenarios, in order to assess project profitability according to the different costs (Eq. 1). 

Final cost and benefit estimation is a critical issue for project feasibility and it mainly 

depends on plot surface and irrigation water costs. A sensitivity analysis of the CBA 

results to assess the feasibility of project for 5 irrigated land surface extensions (0.5, 0.75, 

1, 2 and 3 ha) was carried out. The final water price of irrigation water (€/m3) was 

obtained by fixing plot extension and estimating the amortization and maintenance of the 

small desalination plant and final sale of the grapes. 

 

 
3.2.1. Cost and Benefit estimation 

 

Direct costs applicable to both irrigation scenarios refer to those needed for the 

agricultural management (land preparation, planting and cultivation, irrigation from well, 

renting equipment) needed for each grape harvest (annually) and are shown in Table 3. 

Land and pump acquisition or value, and well installation have not been considered as a 

direct cost for this analysis; this is an already existing infrastructure not specifically made 

for this study. Water consumption cost is obtained from considering 160 m3/day pumping 
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rate, power consumption of 0.0072 kWh/m3/m and 90 hr/year to cover the 600 m3 demand 

and a well with a submersible pump at 70 meters deep. 

 

 

 
Costs only applying for the facility investment (desalination plant building construction), 

operation and maintenance (supplies and replacement, energy) regarding the second 

scenario are shown in Table 2 (Olivieri, et al. 2005; Ahmad, et al. 2002). 

 

 

Estimated final cost (€/m3) per 1 ha of extension of cultivated grapes includes the water 

cost of mixing desalted water from the RO plant with the groundwater from the wells to 

obtain the needed salinity (average 1,500 μS/cm). The negative impact of groundwater 

salinity in grape production (25% production loss) is considered a negative externality 

and the associated cost of farmer losses is evaluated under the ‘do nothing’ scenario. 

For the mixing desalted water scenario to decrease water salinity “use non-conventional 

waters”, benefits are estimated. Here the benefits are defined as ‘direct farmer benefits’ 

in terms of economic revenue or the yield per hectare obtained, estimated per sale price 

of 0.29 €/kg (2018 data). 

 

 
3. CBA results and discussion 

 

The costs of agricultural management, production from the international varieties for both 

scenarios at the Siġġiewi case study can be found in table 3. For the vineyard plot 

characteristics, the reader is referred to Table 1. 

 

 
3.1. Actual total cost and benefit for a vineyard cultivation “do-nothing option” 
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For 2018 and a baseline estimation of 1 ha of irrigated land, direct costs are presented in 

Table 3. The benefits (Eq 1) of Table 4 are obtained from gross production (kg/ha) and 

the average price of 0.9 €/kg (2018 data). It is assumed that the cultivated plot was under 

full production. 

 

 

With regard to the obtained NPV (Eq. 2) and IRR (Eq. 3) the project is profitable, 

considering that it has a positive NPV (€ 8,148.95) and an IRR of 6.4%. 

 

 

3.2. “Use non-conventional water from desalination” NPV and IRR 

 

To obtain the adequate salinity for grape irrigation and avoid further production loses, 

desalinated water is mixed with groundwater from the same well. According to Mass and 

Hoffman (1977), James et al. (1982) and Jackson (2000), the optimum irrigation water 

quality for the vineyard is around 1,500 (μS/cm). Hence, to reach this quality, 50% of the 

water from RO must be mixed with 50% of groundwater. 

 

 

In this scenario, desalinated water is produced from a RO small plant (120 m3/day) 

treating groundwater from the existing well. In this option, the final price of groundwater 

for irrigation is previously obtained to get the final mixing price. Calculations consider 

that the plant is under operation 360 days/year. The final cost of desalinated water, after 

considering all the parameters are in Table 5. 

 

 
For the investment costs the plant cost is 25,000 € (without VAT) and the applied 

depreciation rate was 4% for a 15-year life span, a common value for such type of projects 

(Aparicio et al,. 2017). 
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The next step is to estimate the minimum surface area under irrigation still being 

profitable, considering a desalination plant of these dimensions and needed water quality 

for maximum production (Table 6). The different NPV and IRR calculations are based on 

the idea that a small plant must be fully operational and not only to supply the water 

demand of 1 ha. This analysis takes into consideration 25% of production increase 

(benefits) that would be gained by irrigating with water of optimum quality. 

 

 

 
From the NPV and IRR sensitivity analysis (Table 6) after considering different water 

costs and land irrigated surfaces (ha), a wide range of surface areas are possible. Positive 

values of both parameters (project feasibility) start from 1 ha cultivated area, however, 

the final price of mixing water is € 9.08. Irrigating a higher areal extension (3 ha) by 

sharing the water with other farmers appears to be the best option. 

 

 

 
4. Conclusions 

 

Water salinity is an important factor for agricultural crop production and the associated 

economic output. As quality degradation maybe evident for a long-time, search for 

alternative sources of water supply through technical-projects solutions are generally 

undertaken in private business. The risk associated with the development of an 

inadequate water-agriculture project may involve a heavy economic burden in the case of 

failure to achieve the intended results. However, economic impact studies have not been 

carried out to assess the sustainability of such measures. Economic feasibility of a project 

involves the assessment of most suitable solution based ‘on balance’ by considering full 

cost estimation and benefits for each alternative and avoiding the scenario business-as 

usual. 
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This study presents the interest of coupling agricultural-groundwater management (ex- 

ante) cost-benefit analysis for the alternative of mixing desalinating water and 

groundwater to improve water availability for crops and vine harvest while increasing 

economic benefits. The output indicates that the project, based in an already existing 

agricultural land under vine production, is highly profitable from a minimum area of 1 

ha; but the final benefit is highly dependent on the irrigated surface extension. For the 

calculation of the benefits, only the direct sale of the grapes gross production was taken 

into account. It needs to be noticed that new irrigation developments have necessarily to 

consider the incurred costs of a well drilling, pump purchase, etc., which will finally 

increase the irrigation water price. A comprehensive economic analysis would also 

consider the economic benefits of the final product (wine production); therefore, the 

farmer benefits would be higher. 

 

 

 
Compared with other types of non-conventional water (e.g. treated wastewater) 

desalination was considered the best option in this assessment. As vineyard requires a 

low amount of irrigation water, the small RO desalination plants available in the market 

(120 m3/day) could cover the required quality needs at not such high cost. Considering 

that plants of 120 m3/day production are easy to handle and do not require very specialized 

knowledge, farmers can run the utility with minimum technical requirements. Other 

short-term investments linked to water storage, adjustments and transfers appear to be 

costly and time-consuming for implementation. Brine discharge, elimination of waste, 

environmental pollution etc., not considered in the analysis, could also directly affect final 

NPV estimation increasing final costs and consequently decreasing benefits. Effects on 

quality and quantity of groundwater by climate change (seawater intrusion or water 

shortage) and the excessive use of nitrogenous fertilizers in agricultural management may 
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also require forecasting future climate, from ICCP scenarios, which is not a 

straightforward process. 

 

 

The methodological framework presents a brief overview of an ex-ante economic 

valuation technique application for ensuring farmers profitability while closing the water- 

agriculture circular economy concept. Other advantage is it provides strategic information 

about the main choices at an early stage, when the possibility to influence the course of 

an undertaking is greatest. The approach constitutes an interesting method for water- 

agriculture projects economic feasibility assessment applicable in areas with similar or 

different crop cultivation and irrigation demand provided that economic information is 

available or can be estimated. 
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Table and figure captions 

 

Fig. 1. Location of Maltese islands and the Siġġiewi study area 

 

Table 1. Main characteristics of vineyard plot at Siġġiewi 

 

Table 2. Breakdown of fixed and variable costs for a RO small desalination plant 

 

Table 3. Cost estimation per harvest at Siġġiewi (1ha) 

 

Table 4. Gross production of a 1ha vineyard plot (2018 data). 

 

Table 5. Cost of desalinated groundwater from a RO small desalination plant 

Table 6. Estimation of NPV and IRR for different irrigation land surfaces with the 

appropriate water salinity 
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Table 1 
 
 

 

Siġġiewi study area 

 
 

Type of crop Vineyard (international varieties) 
 

Vines per hectare 5,000 

Irrigated surface (ha) 1 

 

Production (kg/ha) 8,500 (per harvest) 

 

Irrigation from groundwater Existing well (Lower Coralline Limestone aquifer) 

 

Groundwater salinity (μS/cm) 2,500-3,000 

Irrigation method Dripping 

Well depth (m) 128 

 

Irrigation dose 120 L/plant/year 
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Table 2 
 

 

 

 
 

Fixed costs 

 
 

 

I= Initial investment 
 

a) Initial investment: A= Cost of the desalination plant 
 

 

 

 

b) Amortization: I= Investment 

n= Lifetime 

i= Interest 

 

Variable costs 

 
 

M= Maintenance (1% of total installed cost) 
 

 

d) Operational and maintenance costs: CE 
MR= Replacing membranes 

FCR= Replacing filter cartridges 

CP= Chemical products 

E= Energy cost (well pumping, RO process, 

transport) 
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Table 3 

 

 

 Cost estimation 

Land preparation (€) 500 

Planting work and cultivation (€) 1,700 

Harvesting (€) 500 

Charge for electricity meter (€/yr) 360 

Water consumption cost (€/year) 124* 

Total (€) 3,184 

* Costs have been estimated only based on energy consumption 
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Table 4 

 

 

 
Crop 

Vines per Gross production Gross income Net 

 

 hectare (kg/ha) (€) Total Benefit/ha (€) 

International vineyard 5,000 8,500 7,650 4,867 
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Table 5 

 
 

Fixed costs 

 
 

Cost of the desalination plant (VAT included,18%) 

 

(€) 

29,500 

 

Number of lifetime years of the investment (years) 15 

Interest (%) 18 

Variable costs 

Maintenance (€/m3) 0.06 

Replacing membranes (€/m3) 0.008 

Replacing filter cartridges (€/m3) 0.0025 

Chemical products (€/m3) 0.029 

Energy cost (€/kWh) 0.20 

Total cost without depreciation (€/m3) 0.29 

Total cost with depreciation (€/m3) 0.35 
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Table 6  

Area of cultivation 

(ha) 

Price of water 
 

(€/m3) * 

NPV (€) IRR (%) 

0.5 18.14 -8,922.91 -11.3 

0.75 12.16 -1,173.78 0.9 

1 9.17 6,330.27 5.4 

2 4.68 37,562.82 11.7 

3 3.19 68,560.27 13.6 

* mix of desalinated (50%) and water from the aquifer (50%) 
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Highlights 

• Irrigation water quality degradation from salinity may pose vineyards production 

at risk at long term 

• Water  quality  improvement  from  mixing  groundwater  and  desalinated  may 

mitigate crop yield decrease 

• The economic feasibility of new irrigation management option based in the cost- 

benefit is assessed 

• Irrigation from mixing waters is profitable for farmers from a minimum irrigation 

area of 1 ha 



 

 

 

 
 

Figure 1 


