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Abstract

We investigate how distorted, yet structured, beliefs can persist in strategic situations. Specif-

ically, we study two-player games in which each player is endowed with a biased-belief function

that represents the discrepancy between a player’s beliefs about the opponent’s strategy and the

actual strategy. Our equilibrium condition requires that: (1) each player choose a best-response

strategy to his distorted belief about the opponent’s strategy, and (2) the distortion functions

form best responses to one another, in the sense that if one of the players is endowed with a

different distortion function, then that player is outperformed in the game induced by this new

distortion function. We impose a mild monotonicity restriction on the feasible biased beliefs,

and we obtain sharp predictions and novel insights into the set of stable outcomes and their

supporting stable biases in various classes of games.

JEL classification: C73, D83.

Keywords: commitment, indirect evolutionary approach, distortions, wishful thinking, strate-

gic complements, strategic substitutes.

1 Introduction

Standard models of equilibrium behavior attribute rationality to players at two different levels:

beliefs and actions (see, e.g., Aumann and Brandenburger, 1995). Players are assumed to behave as

if they form correct beliefs about the opponents’ behavior, and they choose actions that maximize

their utility given the beliefs that they hold. Much of the literature in behavioral and experimental

economics that documents violations of the assumption that players have correct beliefs ascribes

these violations to cognitive limitations. However, in interactive environments where one person’s

beliefs affect other persons’ actions, belief distortions are not arbitrary, and they may arise to serve

some strategic purpose.
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2 1 INTRODUCTION

In this paper we investigate how distorted, yet structured, beliefs can persist in strategic situa-

tions. Our basic assumption here is that distorted beliefs can persist because they offer a strategic

advantage to those who hold them even when these beliefs are wrong. More specifically, players

often hold distorted beliefs as a form of commitment device that affects the behavior of their coun-

terparts. The precise cognitive process that is responsible for the formation of beliefs is complex, and

it is beyond the scope of this paper to outline it. We believe, however, that in addition to analytic

assessment of evidence, preferences in the form of desires, fears, and other emotions contribute to

the process and, to an extent, facilitate belief biases. If the evidence is unambiguous and decisive,

or if the consequence of belief distortion is detrimental to the player’s welfare, preferences may play

less of a role and learning may work to calibrate beliefs to reality. But when beliefs are biased in

ways that favor their holders by affecting the behavior of their counterparts, learning can actually

reinforce biases rather than diminish them.

Biased Beliefs Standard equilibrium notions in game theory draw a clear line between preferences

and beliefs. The former are exogenous and fixed; the latter can be amended through Bayesian

updating but are not allowed to be affected by preferences. However, phenomena such as wishful

thinking (see, e.g., Babad and Katz, 1991) and overconfidence (see, e.g., Forbes, 2005; Barber and

Odean, 2001; Malmendier and Tate, 2005; Heller, 2014), where beliefs are tilted toward what their

holder desires reality to be, suggest that in real life, beliefs and preferences can intermingle, and that

biased beliefs may be persistent. Similarly, belief rigidity and belief polarization (see, e.g., Lord,

Ross, and Lepper, 1979; Ross and Anderson, 1982) refer to situations in which two people with

conflicting prior beliefs each strengthen their beliefs in response to observing the same data. The

parties’ aversion to depart from their original beliefs can also be regarded as a form of interaction

between preferences and beliefs.

It is easy to see how the belief biases described above can have strategic benefits in interactive

situations. Wishful thinking and optimism can facilitate cooperation in interactions that require

mutual trust. Overconfidence can deter competitors, and belief rigidity can allow an agent to support

a credible threat. An important objective of our analysis is to identify the strategic environments that

support biases such as wishful thinking as part of equilibrium behavior. It is worthwhile to note that

individuals are not the only ones susceptible to strategically motivated belief biases. Governments

are prone to be affected by such biases as well. The Bush administration’s unsubstantiated confidence

in Saddam Hussein’s possession of “weapons of mass destruction” prior to the Second Gulf War and

the vast discrepancy between Israeli and US intelligence assessments of Iran’s nuclear intentions

prior to the signing of the Iran nuclear deal can be interpreted as strategically motivated belief

distortion.1

1There are other possible interpretations of these controversial real-life examples. In a dynamic real-life setup it is
hard to have access to agents’ private information, and therefore it is very difficult to achieve direct empirical evidence
for persistent biased beliefs. There are a few lab experiments that elicit subjects’ beliefs (using monetary incentives and
proper scoring rules) about the expected behavior of the opponent. Nyarko and Schotter (2002) demonstrate that the
elicited forecasts of subjects about about the opponents’ future behavior substantially differ from the empirical play
of opponents in the past. Palfrey and Wang (2009) present evidence that forecasts by players (about the opponent’s
behavior in a simple two-player game) are significantly different from the forecasts of external observers. Moreover, the
players’ forecasts are systematically biased, and significantly less accurate than the forecasts of the external observers.



3

Belief biases in strategic environments are also connected to self-interest biases regarding moral

and ethical standards. Babcock and Loewenstein (1997) had participants in a lab experiment ne-

gotiate a deal between a plaintiff and a defendant in a court case. When they asked participants

to make predictions about the outcome of the real court case the authors found a significant belief

divergence depending on the role participants were assigned to in the negotiations. A similar moral

hypocrisy was revealed by Rustichini and Villeval (2014) who showed that subjects’ subjective judg-

ments regarding fairness in bargaining depended on the bargaining power they were assigned in the

experiment.

A different body of empirical evidence consistent with strategic beliefs is offered by the psychi-

atric literature on “depressive realism” (e.g., Dobson and Franche, 1989). This literature compares

probabilistic assessments conveyed by psychiatrically healthy people with those suffering from clini-

cal depression. Participants in both categories were requested to assess the likelihood of experiencing

negative or positive events in both public and private setups. Comparing subjects’ answers with the

objective probabilities of these events revealed that in a public setup clinically depressed individuals

were more realistic than their healthy counterparts for both types of events. The apparent belief bias

among healthy individuals can be reasonably attributed to the strategic component of beliefs. Mood

disorders negatively affect strategic reasoning (Inoue, Tonooka, Yamada, and Kanba, 2004), which,

to a certain extent, may diminish strategic belief distortion among clinically depressed individuals

relative to their healthy counterparts.

For biased beliefs to yield a strategic advantage to the agents holding them, it is essential that

(1) agents be committed to follow their biased beliefs, and (2) agents best-reply to the perceived

behavior induced by their counterparts’ biases (both on and off the equilibrium path). For the sake

of tractability, we shall avoid formalizing a concrete dynamic model that describes how biased beliefs

are formed, and how agents credibly commit to these biased beliefs. Instead, we shall adopt a static

approach by imposing equilibrium conditions on the agents’ beliefs and the opponents’ interpretation

of their beliefs. (We discuss our modeling approach and its evolutionary interpretation in Section 3.6,

and we present a formal evolutionary foundation in Appendix B.) This static approach is consistent

with a large part of the literature on endogenous preferences (see, e.g., the literature cited below).

Nevertheless, we mention a few mechanisms that can facilitate these processes and turn biased beliefs

into a credible commitment device.

1. Refraining from accessing or using biased sources of information, e.g., subscribing to a news-

paper with a specific political orientation, consulting biased experts, and reading Facebook’s

personalized news feeds, which are typically biased due to friends who hold similar beliefs.

2. Passionately following a religion, a moral principle, or an ideology that has belief implications

on human behavior.

3. Possessing personality traits that have implications on beliefs (e.g., narcissism or naivety).

The mechanisms described above are likely not only to induce belief biases, but also to generate

signals sent to the player’s counterparts about these biases with a certain degree of verifiability.

These mechanisms, the signals they induce, and their interpretation are the main forces that facilitate

biased-belief equilibrium.
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Solution Concept Our notion of biased-belief equilibrium (henceforth, BBE) uses a two-stage

paradigm. In the first stage each player is endowed with a biased-belief function. This function

represents the discrepancy between a player’s beliefs about the strategy profile of other players

and the actual profile. In the second stage the players play the biased game induced by their

distortion functions, in which each player chooses a best-reply strategy to his biased belief about the

opponent’s strategy (the chosen strategy profile is referred to as the equilibrium outcome). Finally,

our equilibrium condition requires that the distortion functions not be arbitrary, but form best

replies to one another.

If one of the players deviates to being endowed with a different biased-belief function, then there

might be multiple Nash equilibria in the new biased game induced by this deviation. Our weak

notion (weak BBE) requires the deviator to be outperformed in at least one equilibrium of the new

biased game. Our strong notion (strong BBE) requires (1) each agent to have a monotone biased

belief, according to which he assigns a higher probability to his opponent playing a certain strategy

than this probability actually is, and (2) a deviator to be outperformed in all Nash equilibria of the

new biased game. Our main notion, BBE, lies in between these two notions, and it requires (1) each

agent to have a monotone biased belief, and (2) the deviator to be outperformed in at least one

plausible Nash equilibrium of the new biased game, where we rule out implausible Nash equilibria

in which the non-deviator behaves differently even though he does not observe any change in the

deviator’s perceived strategy.

In Section 2.5 we present our main evolutionary interpretation of our solution concept, according

to which the endowed biased beliefs are the result of an evolutionary process of social learning

(the interpretation is formalized in Appendix B). In addition, we present an alternative, delegation

interpretation of the model (which is formalized in Appendix C).

Nash Equilibrium and BBE We begin our analysis by studying the relations between BBE

outcomes and Nash equilibria. We show that any Nash equilibrium can be implemented as the

outcome of a BBE, though in some cases this requires that the players have biased beliefs that are

accurate on the equilibrium path, but that they be blind to some deviations of the opponent off

the equilibrium path. This, in particular, implies that every game admits a BBE. Next, we show

that introducing biased beliefs does not change the set of equilibrium outcomes in games in which

at least one of the players has a dominant action. By contrast, BBE admits non-Nash behavior in

most other games.

Main Results Our main results show that the notion of BBE induces substantial predictive

power in various classes of interval games. In these classes of games the strategy of each player

is a number in a bounded interval, where a higher strategy (interpreted as a higher investment)

induces a higher payoff for the opponent. We begin by characterizing the set of BBE in games with

strategic complements (Bulow, Geanakoplos, and Klemperer, 1985), such as price competition with

differentiated goods (Example 2), input games (Example 9 in Appendix A.4), and stag hunt games

(Example 10 in Appendix A.4). We show three key properties of any BBE: (1) overinvestment:

the strategy of each agent is (weakly) higher than the best reply to the opponent’s (real) strategy,
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(2) ruling out bad outcomes: both players invest more than their investments in the worst Nash

equilibrium of the underlying game, and (3) wishful thinking: each agent perceives his opponent as

investing (weakly) more than the opponent’s real investment.

Next, we characterize the set of BBE in games with strategic substitutes, such as Cournot

competitions (Example 3) and hawk-dove games (Example 5 in Appendix A.5). We show three key

properties of any BBE: (1) underinvestment: the strategy of each agent is (weakly) higher than

the best reply to the opponent’s (real) strategy, (2) ruling out excellent outcomes: at least one of

the players invests less than his investments in one of the Nash equilibria of the underlying game,

and (3) wishful thinking: each agent perceives his opponent as investing (weakly) more than the

opponent’s real investment.

Finally, we characterize the set of BBE in a class of games (which are less common in economic

interactions), in which the strategy of player 1 is a complement of player 2’s strategy, while the

strategy of player 2 is a substitute of player 1’s strategy (e.g., duopolistic competition in which one

firm chooses its quantity while the opposing firm chooses its price (Singh and Vives, 1984), and

various classes of asymmetric contests (Dixit, 1987)). We show that in this class of games agents

present pessimism in any BBE: each agent perceives his opponent as investing (weakly) less than

the opponent’s real investment.

Additional Results Our next result shows an interesting class of BBE that exist in all games.

We say that a strategy is undominated Stackelberg if it maximizes a player’s payoff in a setup

in which the player can commit to an undominated strategy, and his opponent reacts by best-

replying to this strategy. We show that every game admits a BBE in which one of the players is

“strategically stubborn” in the sense of having a constant belief about the opponent’s strategy, and

always playing his undominated Stackelberg strategy, while the opponent is “rational” in the sense

of having undistorted beliefs and best-replying to the player’s true strategy.

Section 7.2 shows that unless one imposes both requirements on the definition of a BBE, namely,

monotonicity and ruling out implausible equilibria, then the set of BBE outcomes is very large in

various classes of games. Specifically, Proposition 8 shows that for a large class of finite games, a

strategy profile is a monotone weak BBE iff (1) no player uses a strictly dominated strategy, and (2)

the payoff of each player is above the minmax payoff of the player in a setup in which both players

are restricted to choose only undominated strategies (i.e., strategies that are not strictly dominated).

Proposition 9 shows a similar folk theorem result for non-monotone strong BBE in a large class of

interval games.

Empirical Predictions Our main results imply two empirical predictions. First, they suggest

that efficient (non-Nash equilibrium) outcomes are easier to support in games with strategic comple-

ments, relative to games with strategic substitutes. This prediction is consistent with the experimen-

tal findings of Potters and Suetens (2009), which show that there is significantly more cooperation

in games with strategic complements than in the case of strategic substitutes.

Our second empirical prediction is that wishful thinking is strategically stable in many com-

mon environments, though some (less common) strategic interactions may induce pessimism. This
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empirical prediction is consistent with the experimental evidence that people tend to present wish-

ful thinking, while the presented level of wishful thinking may substantially differ between various

environments; see, e.g., Babad and Katz (1991); Budescu and Bruderman (1995); Bar-Hillel and

Budescu (1995) and Mayraz (2013).

Structure The structure of this paper is as follows. We discuss the related literature in Section

2. Section 3 describes the model. In Section 4 we analyze the relations between BBE and Nash

equilibria. Section 5 defines games with strategic complements/substitutes and wishful thinking. We

analyze these games and present our main results in Section 6. In Section 7 we present additional

results: (1) the relation between BBE and strategies played by a Stackelberg leader, and (2) folk

theorem results when relaxing the definition of BBE. We conclude in Section 8. All the appendices

of the paper appear in the online supplementary material. Appendix A presents various interesting

examples. We formally present the evolutionary interpretation of our solution concept in Appendix

B, and the delegation interpretation in Appendix C. Appendix D relaxes the assumption that biased

beliefs have to be continuous. Appendix E shows how to extend our results to a setup with partial

observability. Appendix F presents our formal proofs.

2 Related Literature and Contributions

Our paper aims at making a contribution to the behavioral game theory literature. Much of this

literature concerns behavioral equilibrium concepts that depart from the framework of Nash equi-

librium by introducing weaker rationality conditions. This has been done primarily at the level

of preferences (e.g., Güth and Yaari, 1992; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000;

Acemoglu and Yildiz, 2001; Heifetz, Segev, et al., 2004; Dekel, Ely, and Yilankaya, 2007; Heifetz,

Shannon, and Spiegel, 2007a; Friedman and Singh, 2009; Herold and Kuzmics, 2009; Heller and

Winter, 2016; Winter, Garcia-Jurado, and Mendez-Naya, 2017). But it has also been done at the

level of beliefs (e.g., Geanakoplos, Pearce, and Stacchetti, 1989; Rabin, 1993; Battigalli and Dufwen-

berg, 2007; Attanasi and Nagel, 2008; Battigalli and Dufwenberg, 2009; Battigalli, Dufwenberg, and

Smith, 2015; Gannon and Zhang, 2017). This latter literature deals with belief-dependent prefer-

ences, and focuses primarily on the way players’ beliefs about the intentions of others affect their

preferences and behavior.

Our equilibrium concept also operates on beliefs rather than preferences but is based on an

inherently different approach. Preferences in our model are not affected by beliefs but beliefs are

biased in a way that serves players’ strategic purposes. Our analysis of biased belief goes beyond

characterizing equilibrium outcomes. An additional important objective is to identify the belief

biases that support these equilibrium outcomes in different strategic environments. Central to our

analysis are belief-distortion properties, such as wishful thinking and pessimism, that sustain BBE

in different strategic environments.

The existing literature has presented various prominent solution concepts that assume that play-

ers have distorted beliefs. Some examples include models of level-k and cognitive hierarchy (see, e.g.,

Stahl and Wilson, 1994; Nagel, 1995; Costa-Gomes, Crawford, and Broseta, 2001; Camerer, Ho, and
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Chong, 2004), analogy-based expectation equilibrium (Jehiel, 2005), cursed equilibrium (Eyster and

Rabin, 2005), and Berk-Nash equilibrium (Esponda and Pouzo, 2016). These equilibrium notions

have been helpful in understanding strategic behavior in various setups, and yet these notions pose

a conceptual challenge to our understanding of the persistence of distorted beliefs, even in view of

the empirical evidence for such persistence. If players can infer the truth ex post why don’t they

calibrate their beliefs toward reality? Much of the literature presenting such models points to cogni-

tive limitations as the source of this rigidity. Our model and analysis offer an additional perspective

to this issue by suggesting that belief biases that yield a strategic advantage in the long run are

likely to emerge in equilibrium. In this sense our approach can be viewed as providing a tool to

explain why some cognitive limitations persist while others do not (see Example 11 in Appendix A,

in which we show how level-1 behavior can be supported as part of a BBE outcome in the traveler’s

dilemma).

Our notion of BBE is related to the notion of conjectural equilibrium (Battigalli and Guaitoli,

1997, originally written in 1988) insofar as both solution concepts relax the Nash equilibrium’s re-

quirement that beliefs need to be consistent with actual play (while still requiring that an agent’s

action has to be optimal given the agent’s belief). A conjectural equilibrium is defined in an en-

vironment in which players do not observe each other’s actions but rather observe signals of each

other’s actions, according to an exogenous feedback correspondence. In a conjectural equilibrium

each player best replies to his belief about the opponent’s action, and this belief is required to be

consistent with the signal observed by the player. There are two key structural differences between

a BBE and a conjectural equilibrium. First, a BBE is defined in an environment in which there is

no exogenous feedback correspondence; rather, the feedback correspondence is implicitly defined as

part of the solution concept by the agents’ biased-belief functions. These biased-belief functions are

not restricted by a consistency requirement with respect to an exogenous feedback mechanism, but

rather they are are restricted by the requirement that each biased-belief function has to be a best

reply against the opponent’s biased belief. The second structural difference is that while a BBE

describes what would be the agent’s belief for any feasible action of the opponent, a conjectural

equilibrium describes only the agent’s belief about the equilibrium action of the opponent.

Despite these structural differences, it is interesting to discuss relations between the equilib-

rium behavior induced by each solution concept, i.e., the relations between a BBE outcome and a

conjectural equilibrium outcome. Without restricting the feedback correspondence, the notion of

conjectural equilibrium is rather broad (it rules out only strictly dominated strategies), and, ac-

cordingly, any BBE outcome is a conjectural equilibrium outcome. Fudenberg and Levine’s (1993)

notion of self-confirming equilibrium deals with extensive-form games, and refines conjectural equi-

librium by requiring that the feedback correspondence is the one in which each player observes

the opponent’s realized actions (but does not observe the opponent’s behavior off the equilibrium

path). In the setup of two-player one-shot games, which is the focus of the present paper, the set

of self-confirming equilibria coincides with the set of Nash equilibria (whereas the set of BBE out-

comes is broader and includes non-Nash outcomes). Another refinement of conjectural equilibrium

is the rationalizable conjectural equilibrium (Rubinstein and Wolinsky, 1994; the notion has been

generalized to games with structural uncertainty in Esponda, 2013). This concept requires that the
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agents’ beliefs be consistent with the common knowledge that all players maximize utility given their

signals. There is no inclusion relation between the set of BBE outcomes and the set of rationalizable

conjectural equilibrium outcomes. Specifically, in games with a unique rationalizable action profile,

such as price competitions with differentiated goods and Cournot competitions, the unique rational-

izable conjectural equilibrium outcome is the Nash equilibrium (for any feedback correspondence),

while the set of BBE outcomes is substantially larger (see Examples 2 and 3). By contrast, in games

such as stag hunt and hawk–dove, when the feedback correspondence is non-informative any action

profile is a conjectural equilibrium outcome, while the set of BBE outcomes is much more restricted

(see Examples 10 and 12 in Appendix A).

3 Model

3.1 Underlying Game

Let i ∈ {1, 2} be an index used to refer to one of the players in a two-player game, and let j be

an index referring to the opponent. Let G = (S, π) be a normal-form two-player game (henceforth,

game), where S = (S1, S2) and each Si is a convex compact set of strategies. Specifically, we focus

on two cases:

1. Finite games: Each Si is a simplex over a finite set of pure actions, where each strategy

corresponds to a mixed action (i.e., Ai is a finite set of pure actions, and Si = ∆ (Ai)), and the

von Neumann–Morgenstern payoff function is linear with respect to the mixing probability.

2. Interval games: Each Si is a bounded interval in R (e.g., each player chooses a real number

representing quantity, price, or effort).

We denote by π = (π1, π2) players’ payoff functions; i.e., πi : S → R is a function assigning each

player a payoff for each strategy profile. We use si to refer to a typical strategy of player i. We

assume each payoff function πi (si, sj) to be continuously twice differentiable in both parameters and

weakly concave in the first parameter (si).

Let BR (resp., BR−1) denote the (inverse) best-reply correspondence; i.e.,

BR (si) = argmaxsj∈Sj (πj (si, sj))

is the set of best replies against strategy si ∈ Si, and

BR−1 (si) = {sj ∈ Sj |si ∈ BR (sj)}

is the set of strategies for which si is a best reply against them.

In a finite game, we use ai ∈ Ai to denote also the degenerate mixed action that assigns mass one

to ai. When the set of actions of a player is given as an ordered set Ai =
(

a1
i , a

2
i , ..., a

n
i

)

, we identify

a mixed action with a vector si = (α1, α2, ..., αn), where 0 ≤ αk = si
(

aki

)

for each 1 ≤ k ≤ n, and
∑

k αk = 1. Given two strategies si, s
′
i ∈ Sj and α ∈ [0, 1], let α · si + (1 − α) · s′

i be the mixture of

the two strategies: (α · si + (1 − α) · s′
i) (ai) = α · si (ai) + (1 − α) · s′

i (ai).
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When there are two (ordered) actions for each player (say, Ai = {ci, di}), we identify a mixed

action si with the probability it assigns to the first pure action si (ci), and we identify the set of

strategies Si with the interval [0, 1]. Thus, a game with two actions for each player can be captured

both as a finite game and as an interval game.

3.2 Biased-Belief Function

We start here with the definition of biased-belief functions that describe how players’ beliefs are

distorted. A biased belief ψi : Sj → Sj is a continuous function that assigns to each strategy of

the opponent, a (possibly distorted) belief about the opponent’s play. That is, if the opponent

plays sj , then player i believes that the opponent plays ψi (sj). We call sj the opponent’s real

strategy, and we call ψi (sj) the opponent’s perceived (or biased) strategy. Formally, the continuity

requirement is that if (sj,n)n →
n→∞

sj , then (ψi (sj,n))n →
n→∞

ψi (sj) (where in a finite game, we say

that (sj,n)n →
n→∞

sj iff (sj,n (a))n →
n→∞

sj (a) for each action a).

Remark 1. Two reasons motivate us to require that a biased belief be continuous: (1) continuity

implies that each biased game (defined below) admits a Nash equilibrium, which allows us to simplify

the definition of BBE, and (2) continuity reflects a plausible restriction that a small change in

the opponent’s strategy should induce a small change in the perceived strategy. In Appendix D

we present an alternative (and somewhat more complicated) definition of a BBE that relaxes the

assumption that biased beliefs must be continuous, and we show that all the BBE characterized in

the results of the paper remain BBE when we allow deviators to use discontinuous biased beliefs.

We say that a biased belief ψi : Sj → Sj is monotone if:

1. In interval games: sj ≥ s′
j implies ψi (sj) ≥ ψi

(

s′
j

)

for each strategy sj ∈ Sj .

2. In finite games: If the opponent plays aj more often, while keeping the same proportion of

playing the remaining actions, then the perceived probability that the opponent plays any

other action weakly decreases (which implies, in particular, that the perceived probability

that the opponent plays aj weakly increases); that is,

(ψi ((1 − α) · sj + α · aj))
(

a′
j

)

≤ (ψi (sj))
(

a′
j

)

for each α ∈ [0, 1], each action aj ∈ Aj , each action a′
j 6= aj , and each strategy sj ∈ ∆ (Aj).

In particular, when the game has two actions for each player, a biased belief ψi is monotone

iff ψi is weakly increasing in αj ; i.e., αj ≥ α′
j implies that ψi (αj) ≥ ψi

(

α′
j

)

.

Monotone biased beliefs reflect a plausible restriction on the distortion of agents, namely, that if the

opponent changes his real strategy in some direction, the agent captures the direction of the change

correctly, but may have the wrong perception about the magnitude of the change.

Let Id be the undistorted (identity) function, i.e., Id (s) = s for each strategy s. A biased belief

ψ is blind if the perceived opponent’s strategy is independent of the opponent’s real strategy, i.e., if

ψ (sj) = ψ
(

s′
j

)

for each sj , s
′
j ∈ Sj. With a slight abuse of notation we use si to denote also the

blind biased belief ψj that is always equal to si.
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3.3 Biased Game

An underlying game and a profile of biased beliefs jointly induce a biased game in which the (biased)

payoff of each player is determined by the perceived strategy of the opponent. Formally:

Definition 1. Given an underlying game G = (S, π) and a profile of biased beliefs (ψi, ψj), let the

biased game Gψ = (S, ψ ◦ π) be defined as the game with the following payoff function (ψ ◦ π)i :

Si × Sj → R for each player i:

(ψ ◦ π)i (si, sj) = πi (si, ψi (sj)) .

A Nash equilibrium of a biased game is defined in the standard way. Formally, a pair of strategies

s∗ = (s∗
1, s

∗
2) is a Nash equilibrium of a biased game Gψ = (S, ψ ◦ π), if each s∗

i is a best reply against

the perceived strategy of the opponent, i.e.,

s∗
i = argmaxsi∈Si

(

πi
(

si, ψi
(

s∗
j

)))

.

Let NE (Gψ) ⊆ S1 × S2 denote the set of all Nash equilibria of the biased game Gψ.

Observe that the set of strategies of a biased game is convex and compact, and the payoff function

(ψ ◦ π)i : Si × Sj → R is weakly concave in the first parameter and continuous in both parameters.

This implies (due to a standard application of Kakutani’s fixed-point theorem) that each biased

game Gψ admits a Nash equilibrium (i.e., NE

(

G(ψ′
i
,ψ∗
j )

)

6= ∅.)

3.4 Weak and Strong BBE

We are now ready to define our equilibrium concept. A weak biased-belief equilibrium (abbr. weak

BBE) is a pair consisting of a profile of biased beliefs and a profile of strategies, such that: (1)

each strategy is a best reply to the perceived strategy of the opponent, and (2) each biased belief

is a best reply to the opponent’s biased belief, in the sense that any agent who chooses a different

biased-belief function is outperformed in at least one equilibrium in the new biased game (relative

to the agent’s payoff in the original equilibrium). Formally:

Definition 2. A weak BBE is a pair (ψ∗, s∗), where ψ∗ = (ψ∗
1, ψ

∗
2) is a profile of biased beliefs and

s∗ = (s∗
1, s

∗
2) is a profile of strategies satisfying: (1)

(

s∗
i , s

∗
j

)

∈ NE (Gψ∗), and (2) for each player

i and each biased belief ψ′
i, there exists a strategy profile

(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

, such that the

following inequality holds: πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.

The notion of weak BBE is arguably too permissive because it allows incumbents: (1) to have

implausible non-monotone beliefs, and (2) to outperform the deviators in a single Nash equilibrium

of the biased game (while, possibly, the incumbents are outperformed by the deviators in many

other equilibria). Proposition 8 (in Section 7.2.2) demonstrates that this single Nash equilibrium,

in which the deviators are outperformed, may be implausible due to allowing the incumbents to

“discriminate” against the deviators, even though the deviators exhibit exactly the same perceived

behavior as the rest of the population.
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The more restrictive refinement of strong BBE requires that (1) incumbents have monotone be-

liefs, and (2) deviators who choose a different biased-belief function be outperformed in all equilibria

of the induced biased game. Formally:

Definition 3. A weak BBE (ψ∗, s∗) is a strong BBE if (1) each biased function ψ∗
i is monotone,

and (2) the inequality πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

holds for every player i, every biased belief ψ′
i, and

every strategy profile
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

.

3.5 BBE

Finite games typically induce multiple Nash equilibria. This is often the case also with respect to

biased games. This suggests that the refinement of strong BBE may be too restrictive, as there are

are potentially many Nash equilibria of many biased games, and the requirement of the deviators

being outperformed in all these equilibria might be too demanding. Our main solution concept,

BBE, lies in between weak BBE and strong BBE.

In a BBE, the deviator is required to be outperformed in at least one plausible equilibrium of the

new biased game. Roughly speaking, in a plausible equilibrium of the new biased game induced by

a deviation of player i to a different biased belief, player j is allowed to choose a new strategy only

if he distinguishes between i’s original strategy and i’s new strategy. More precisely, implausible

equilibria are defined as follows. We say that a Nash equilibrium of a biased game induced by a

deviation of player i is implausible if (1) player i’s strategy is perceived by the non-deviating player

j as coinciding with player i’s original strategy, (2) player j plays differently relative to his original

strategy, and (3) player j playing his original strategy induces an equilibrium of the biased game.

That is, implausible equilibria are those in which the non-deviating player j plays differently against

a deviator even though player j has no reason to do so: player j does not observe any change in

player i’s behavior, and player j’s original behavior remains an equilibrium of the biased game.

Formally:

Definition 4. Given weak BBE (ψ∗, s∗), deviating player i, and biased belief ψ′
i, we say that a Nash

equilibrium of the biased game
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

is implausible if: (1) ψ∗
j (s′

i) = ψ∗
j (s∗

i),

(2) s∗
j 6= s′

j , and (3)
(

s′
i, s

∗
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

. An equilibrium is plausible if it is not implausible.

Let PNE

(

G(ψ′
i
,ψ∗
j )

)

be the set of all plausible equilibria of the biased game G(ψ′
i
,ψ∗
j )

.

Note that it is immediate from Definition 4 and the nonemptiness of NE

(

G(ψ′
i
,ψ∗
j )

)

that

PNE

(

G(ψ′
i
,ψ∗
j )

)

is nonempty.

Definition 5. Weak BBE (ψ∗, s∗) is a BBE if (1) each biased function ψ∗
i is monotone, and (2)

for each player i and each biased belief ψ′
i, there exists a plausible Nash equilibrium

(

s′
i, s

′
j

)

∈

PNE

(

G(ψ′
i
,ψ∗
j )

)

, such that πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.



12 3 MODEL

A strategy profile s∗ = (s∗
1, s

∗
2) is a (resp., strong, weak) BBE outcome if there exists a profile of

biased beliefs ψ∗ = (ψ∗
1, ψ

∗
2) such that (ψ∗, s∗) is a (resp., strong, weak) BBE. In this case we say

that the biased belief ψ∗ supports (or implements) the outcome s∗.

3.6 Discussion of the Model

Evolutionary/Learning Interpretation Biases can emerge in a learning process that reinforces

biases that yield a strategic advantage to their holders. Specifically, we interpret a BBE to be a

reduced-form solution concept capturing the essential features of an evolutionary process of cultural

or social learning. Our methodology follows the extensive literature that studies the stability of

endogenous preferences using the “indirect evolutionary approach” (see, e.g., Güth and Yaari, 1992;

Güth, 1995; Fershtman and Weiss, 1998; Dufwenberg and Güth, 1999; Koçkesen, Ok, and Sethi,

2000; Guttman, 2003; Güth and Napel, 2006; Heifetz, Shannon, and Spiegel, 2007b; Friedman and

Singh, 2009; Herold and Kuzmics, 2009; Alger and Weibull, 2013; Heller and Mohlin, 2017). We

apply this modeling approach to the study of endogenous biased beliefs in a setup in which biased

beliefs induce behavior, behavior determines “success,” and success regulates the evolution of biased

beliefs.

In Appendix B we formally adapt the definition of a stable population state from Dekel, Ely,

and Yilankaya (2007) to our setup, and show that the adapted definition is equivalent to a strong

BBE. In what follows we briefly and informally present our evolutionary interpretation. Consider

two large populations of agents: agents who play the role of player 1, and agents who play the role

of player 2. In each round agents from each population are randomly matched to play a two-person

game against opponents from the other population. Each agent in each population is endowed with

a biased-belief function. For simplicity, we focus on “homogeneous” populations, in which all agents

in the population have the same monotone biased-belief function. Agents distort their perception

about the behavior of the agents in the other population according to their endowed biased-belief

functions, and they play a Nash equilibrium of the biased game.

With small probability a few agents (“mutants”) in one of the populations (say, population 1)

may be endowed with a different biased-belief function due to a random error or experimentation.

We assume that agents of population 2 observe whether their opponents are mutants or not, and that

the agents of population 2 and the mutants of population 1 gradually adapt their play against each

other into an equilibrium of the new biased game. Note that a dynamic adaptation into playing a

Nash equilibrium of the biased game requires agents of population 2 to know the perceived strategy

currently being played by the mutants of population 1, but the agents do not need to know the

biased beliefs of the mutants of population 1.

Finally, we assume that the total “success” (fitness) of agents is monotonically influenced by their

(unbiased) payoff in the underlying game, and that there is a slow process in which the composition

of the population evolves. This slow process might be the result of a slow flow of new agents who

join the population. Each new agent randomly chooses one of the incumbents in his own population

as a “mentor” (and mimics the mentor’s biased belief), where the probabilities are such that agents

with higher fitness are more likely to be chosen as mentors. If the original population state is not

a BBE, it implies that there are mutants who outperform the remaining incumbents in their own



3.6 Discussion of the Model 13

population, which in turn implies that the original population state is not stable, as new agents are

likely to mimic more successful mutants. By contrast, if the original population state is a BBE, it

implies that for any mutant there is a new equilibrium in which the mutants are weakly outperformed

relative to the incumbents of their own population, and this can allow the BBE to remain a stable

state (as illustrated in the detailed example in Appendix B.3).

Variants of the Solution Concept The main solution concept we use in the paper is BBE.

In Section 7.2 we demonstrate that unless one applies both requirements of Definition 5, namely,

monotonicity and ruling out implausible equilibria, then the set of BBE is very large (folk theorem

results), and some of the biased beliefs that support some of these equilibria seem implausible. The

intuition for the monotonicity requirement is quite straightforward (ruling out peculiar biased beliefs

in which an opponent who deviates to play a higher strategy is perceived as deviating to play a lower

strategy). The second requirement rules out implausible equilibria in which a player responds to his

opponent’s deviation in spite of not being able to perceive it

In what follows we sketch a dynamic justification for the second requirement of ruling out im-

plausible equilibria (following the evolutionary interpretation described above). Consider a BBE

((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)). Assume that both (s′

1, s
′
2) and (s′

1, s
∗
2) are Nash equilibria of the biased game

G(ψ′
1
,ψ∗

2). In what follows, we briefly, and informally, explain why (s′
1, s

′
2) is not a plausible equi-

librium of the new biased game (and, thus, why it is ruled out in the definition of BBE). Consider

a deviation of some agents in the population playing in the role of player 1 to having the biased

belief ψ′
1. Following this deviation, strategy s∗

1 might not be a best reply to the perceived strategy of

player 2 (i.e., s∗
1 6∈ BR (ψ′

1 (s∗
2))) and, as a result, the deviating agents might change their strategy to

s′
1, which is a best reply to the perceived strategy of player 2 (i.e., s′

1 ∈ BR (ψ′
1 (s∗

2))). The current

strategy profile (s′
1, s

∗
2) is a Nash equilibrium of the biased game (i.e., (s′

1, s
∗
2) ∈ NE

(

G(ψ′
1
,ψ∗

2)

)

). In

order to move from this equilibrium to (s′
1, s

′
2), agents of population 2, who are matched against the

deviators, have to change their behavior from s∗
2 to s′

2, but there is no reason for them to do so, as

their current behavior (namely, s∗
2) is already a best reply to the perceived strategy of the deviators

(i.e., s∗
2 ∈ BR (ψ∗

1 (s′
1))), as well as being how they are used to playing against non-deviators.

Delegation Interpretation A different interpretation of our solution concept relies on strategic

delegation. The literature on strategic delegation (see, e.g., Fershtman, Judd, and Kalai, 1991;

Dufwenberg and Güth, 1999; Fershtman and Gneezy, 2001) deals with players who strategically use

other agents to play on their behalf, where the agents so used may have different preferences than

the players using them. We adapt this approach to our setup in which agents differ in their biased

beliefs (rather than in their preferences). Specifically, in Appendix C we show that the notion of

weak BBE is equivalent to a subgame-perfect equilibrium of a two-stage game in which in stage one

each unbiased player strategically chooses the biased belief of his agent, and in the second stage the

biased agents play on behalf of the players (and each agent can observe the opposing agent’s biased

beliefs).
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Partial Observability The requirement that an agent be able to observe that his opponent

belongs to a group of “mutant” agents who have different biased beliefs than the rest of the population

can be explained by pre-play social cues and messages that facilitate this observation. In Appendix E

we show that this observability need not be perfect. We generalize the model to partial observability

by studying a setup in which, when an agent is matched with a mutant opponent, the agent privately

observes the opponent to be a mutant with probability 0 < p ≤ 1. We show that all our results hold

in this extended setup for p sufficiently close to one (and some of the results hold also for low levels

of p).

4 Nash Equilibria and BBE Outcomes

In this section we study the relations between Nash equilibria and BBE outcomes.

4.1 Nash Equilibria and Biased Beliefs

We begin with a simple observation that shows that in any weak BBE in which the outcome is not

a Nash equilibrium, at least one of the players must distort the opponent’s perceived strategy. The

reason for this observation is that if both players have undistorted beliefs, then it must be that each

agent best-replies to the opponent’s strategy, which implies that the outcome is a Nash equilibrium

of the underlying game.

The following example demonstrates that even Nash equilibria may require distorted beliefs

to be supported as BBE outcomes. Specifically, Example 1 shows that this is the case for Nash

equilibrium in a Cournot competition. The intuition behind Example 1 is straightforward. The

Cournot equilibrium cannot be supported by undistorted beliefs because such pairs of beliefs will

induce one of the players to adopt a distorted belief by which he expects his opponent not to produce

at all, and to best-reply to this distorted belief by producing the monopoly quantity. This in turn

will force the opponent to reduce his production substantially below the Cournot level, making the

deviator better off.

Example 1 (Cournot equilibrium cannot be supported by undistorted beliefs, yet it can be supported

by blind beliefs). Consider the following symmetric Cournot game G = (S, π): Si = [0, 1] and

πi (si, sj) = si · (1 − si − sj) for each player i. The interpretation of the game is as follows. Each

si is interpreted as the quantity chosen by firm i, the price of both goods is determined by the

linear inverse demand function p = 1 − si − sj , and the marginal cost of each firm is normalized to

be zero. The unique Nash equilibrium of the game is s∗
i = s∗

j = 1
3 , which yields a payoff of 1

9 to

both players. Assume to the contrary that this outcome can be supported as a weak BBE by the

undistorted beliefs ψ∗
i = ψ∗

j = Id. Consider a deviation of player 1 to the blind belief ψ′
1 ≡ 0. The

unique equilibrium of the biased game G(0,Id) is s′
1 = 1

2 , s′
2 = 1

4 , which yields a payoff of 1
8 >

1
9 to

the deviator. The unique Nash equilibrium s∗
i = s∗

j = 1
3 can be supported as the outcome of the

strong BBE
((

1
3 ,

1
3

)

,
(

1
3 ,

1
3

))

with blind beliefs, in which each agent believes the opponent is playing
1
3 regardless of the opponent’s actual play, and the agent plays the unique best reply to this belief,

which is the strategy 1
3 .
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Remark 2 (Interpretation of Nash equilibria supported by blind beliefs.). We interpret an undistorted

belief as describing an agent who has an accurate belief about the opponent’s behavior on the

equilibrium path, and, in addition, the agent keeps looking for cues that his opponent might have

a different type, and if the agent observes such a cue, the agent evaluates the opponent’s likely

behavior, and best-replies to this assessment. Example 1 shows that the Cournot equilibrium cannot

be supported by a population in which each agent keeps looking for cues for his opponent’s type.

In such a population, deviators would strictly earn by having a blind biased belief that induces the

deviator to play the Stackelberg strategy. The incumbents will identify the mutants’ type, and they

will respond by playing the Stackelberg follower action, which will benefit the deviators.

By contrast, the second part of Example 1 (and its generalization in Proposition 1 below) shows

that any Nash equilibrium can be supported by a blind belief, which is accurate on the equilibrium

path. We interpret such a belief as describing an agent who understands correctly the equilibrium

behavior of the opposing player, and ignores signals that suggest that his opponent is about to do

something else. Our observation that it is rather equilibrium that supports belief rigidity, a prevalent

behavioral phenomenon, and not disequilibrium is, we believe, quite interesting.

4.2 Any Nash Equilibrium is a BBE Outcome

The following result generalizes the second part of Example 1, and shows that any (strict) Nash

equilibrium is an outcome of a (strong) BBE in which both players have blind beliefs that are

accurate on the equilibrium path.

Proposition 1. Let (s∗
1, s

∗
2) be a (strict) Nash equilibrium of the game G = (S, π). Let ψ∗

1 ≡ s∗
2 and

ψ∗
2 ≡ s∗

1. Then ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a (strong) BBE.

Proof. The fact that (s∗
1, s

∗
2) is a Nash equilibrium of the underlying game implies that (s∗

1, s
∗
2) is

an equilibrium of the biased game G(ψ∗
1
,ψ∗

2). The fact that the beliefs are blind implies that for

any biased belief ψ′
i, there is an equilibrium in the biased game G(ψ′

i
,ψ∗
j )

in which player j plays s∗
j

and player i gains at most πi
(

s∗
i , s

∗
j

)

, which implies that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a BBE. Moreover, if

(s∗
1, s

∗
2) is a strict equilibrium, then in any equilibrium of any biased game G(ψ′

i
,ψ∗
j )

, player j plays

s∗
j and player i gains at most πi

(

s∗
i , s

∗
j

)

, which implies that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a strong BBE.

An immediate corollary of Proposition 1 is that every game admits a BBE.

Corollary 1. Every game admits a BBE.

4.3 Zero-Sum Games

Recall that a game is zero sum if there exists c ∈ R+ such that πi(si, sj) + πj(si, sj) = c for each

strategy profile (si, sj) ∈ S.

The following simple result shows that the unique Nash equilibrium payoff of a zero-sum game

is also the unique payoff in any weak BBE.

Claim 1. The unique Nash equilibrium payoff of a zero-sum game is also the unique payoff in any

weak BBE.
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Proof. Let vi be the unique Nash equilibrium payoff of player i in the underlying zero-sum game.

Assume to the contrary that there exists a weak BBE (ψ∗, s∗) in which the payoff of player i is

strictly lower than vi. Consider a deviation of player i into the undistorted bias function ψ′
i = Id.

The assumption that (ψ∗, s∗) is a weak BBE implies that the deviator gets strictly less than vi in

a Nash equilibrium
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

, but this is impossible as the definition of vi implies

that there exists ŝi satisfying πi
(

ŝi, s
′
j

)

≥ vi > πi
(

s′
i, s

′
j

)

.

Example 6 in Appendix A.2 shows that even though the weak BBE payoff must be the Nash

equilibrium payoff in a zero-sum game, the strategy profile sustaining it need not be a Nash equi-

librium.

4.4 Games with a Dominant Strategy

Next we show that if at least one of the players has a dominant strategy, then any weak BBE

outcome must be a Nash equilibrium. Formally:

Proposition 2. If a game admits a strictly dominant strategy s∗
i for player i, then any weak BBE

outcome is a Nash equilibrium of the underlying game.

Proof. Observe that s∗
i is the unique best reply of player i to any perceived strategy of player j,

and, as a result, player i plays the dominant action s∗
i in any weak BBE. Assume to the contrary

that there is a weak BBE in which player j does not best-reply against s∗
i . Consider a deviation of

player j to choosing the undistorted belief Id. Observe that player i still plays his dominant action

s∗
i , and that player j best-replies to s∗

i in any Nash equilibrium of the induced biased game, and, as

a result, player j achieves a strictly higher payoff, and we get a contradiction.

Proposition 2 implies, in particular, that defection is the unique weak BBE outcome in the

prisoner’s dilemma game. Example 7 in Appendix A.1 demonstrates that a relatively small change

to the prisoner’s dilemma game, namely, adding a third weakly dominated “withdrawal” strategy

that transforms “cooperation” into a weakly dominated strategy, allows us to sustain cooperation

as a strong BBE outcome.

5 Monotone Games and Wishful Thinking

In this section we present a large class of games with monotone externalities and monotone differ-

ences, and define the notions of wishful thinking and pessimism, which will be analyzed in Section

6.

5.1 Monotone Games

We say that an interval game is monotone if it satisfies two conditions:

1. Monotone externalities: the payoff function of each player is strictly monotone in the oppo-

nent’s strategy. Without loss of generality, we assume that the externalities are positive, i.e.,
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the payoff of each player is increasing in the opponent’s strategy, i.e., that
∂πi(si,sj)

∂sj
> 0 for

each player i and each pair of strategies si, sj . The assumption of positive externalities (given

monotone externalities) is indeed without loss of generality because if originally the external-

ities with respect to player j are negative, then we can redefine player j’s strategy to be its

inverse, and obtain positive externalities; for example, defining the difference between maximal

capacity and quantity to be the strategy of each player in a Cournot competition yields a game

with positive externalities.

In a game with positive externalities we refer to a player’s strategy as his investment, and

when si increases we refer to this increase a larger investment by as player i.

2. Monotone differences: For each player i, the derivative of the player’s payoff with respect to

his own strategy (i.e.,
∂πi(si,sj)

∂si
) is strictly monotone in the opponent’s strategy. Specifically,

we divide the set of monotone games into three disjoint and exhaustive subsets:

(a) Strategic complements (increasing differences, supermodular games):
∂πi(si,sj)

∂si
is strictly

increasing in sj for each player i and each strategy si (or, equivalently,
∂2πi(si,sj)
∂si·∂sj

> 0 for

each si, sj). Games with strategic complements are common in the economics literature,

and include, in particular, price competitions with differentiated goods (Example 2 in

Section ), input games (Example 9 in Appendix A.4), and stag-hunt games (Example 10

in Appendix A.4). Finite games with a payoff structure that resembles a discrete variant

of strategic complements include the traveler’s dilemma (Example 11 in Appendix A.4).

(b) Strategic substitutes (decreasing differences, submodular games):
∂πi(si,sj)

∂si
is strictly de-

creasing in sj for each player i and each strategy si (or, equivalently,
∂2πi(si,sj)
∂si·∂sj

< 0 for

each si, sj). Games with strategic substitutes are common in the economics literature, and

include, in particular, Cournot (quantity) competitions (Example 3 below) and hawk-dove

games (see Example 12 in Appendix A.5).

(c) Opposing differences:
∂πi(si,sj)

∂si
is decreasing in sj (for each strategy si), while

∂πj(si,sj)
∂sj

is

increasing in si (for each strategy sj). Games with opposing differences are less common

in the economics literature. Examples of these games include (1) duopolies in which one

firm chooses its quantity, while the other firm chooses its price (see, e.g., Singh and Vives,

1984), and (2) asymmetric contests, in which it is often the case that a commitment of

the favorite (underdog) player to exert more (less) effort induces the opponent to exert

less effort (see, e.g., Dixit, 1987).

5.2 Wishful Thinking

We say that player i exhibits wishful thinking if the perceived opponent’s strategy yields a higher

payoff to the player relative to the real strategy the opponent plays. Formally:

Definition 6. Player i exhibits wishful thinking in weak BBE ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) if πi (si, ψ

∗
i (sj)) ≥

πi
(

si, s
∗
j

)

for each si ∈ Si.

Remark 3. Note that in a game with positive externalities player i exhibits wishful thinking in weak

BBE ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) iff ψ∗

2 (s∗
1) ≥ s∗

1 and ψ∗
1 (s∗

2) ≥ s∗
2.
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Similarly, we define the opposite notion, that of exhibiting pessimism. We say that a BBE

exhibits pessimism if the perceived opponent’s strategy yields a lower payoff to the player relative

to the real opponent’s strategy for all strategy profiles. It exhibits pessimism in equilibrium if it

satisfies this property with respect to the strategy the opponent plays on the equilibrium path.

Formally:

Definition 7. A weak BBE ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) exhibits pessimism if πi (si, ψ

∗
i (sj)) ≤ πi

(

si, s
∗
j

)

for

all si ∈ Si.

5.3 Additional Definitions

In what follows we present two definitions that will be used in the analysis in the following sections:

undominated Pareto optimality, and biased-belief minmax payoff.

We say that a strategy profile is undominated Pareto optimal if it is (1) undominated, and (2)

Pareto optimal among all undominated strategy profiles. Formally:

Definition 8. Strategy profile (s∗
1, s

∗
2) is undominated Pareto optimal if (1) s∗

i ∈ SUi for each player

i, and (2) there does not exist (s′
1, s

′
2) ∈ SU1 × SU2 with a payoff that Pareto dominates (s∗

1, s
∗
2), i.e.,

π1 (s∗
1, s

∗
2) ≤ π1 (s′

1, s
′
2) and π2 (s∗

1, s
∗
2) ≤ π2 (s′

1, s
′
2) where at least one of these inequalities is strict.

A biased-belief minmax payoff for player i (denoted by M̃U
i ) is the maximal payoff player i can

guarantee to himself in the following process: (1) player j chooses an arbitrary perceived strategy of

player i, and (2) player i chooses a strategy profile, under the constraint that player j’s strategy is a

best reply to the perceived strategy chosen above. That is, M̃U
i is the payoff player i can guarantee

himself no matter how his opponent (player j, she) perceives player i’s action, assuming that player

j best-replies to what he believes player i is doing (and if there are multiple best replies, then we

assume that player j chooses the best reply that is optimal for player i). Formally:

Definition 9. Given game G = (A, u), let M̃U
i , the biased-belief minmax payoff of player i, be

defined as follows:

M̃U
i = min

s′
i
∈SU

i

(

max
(si,sj)∈Si×BR(s′

i)
πi (si, sj)

)

.

Observe that the biased-belief minmax is weakly larger than the undominated maxmin (Defini-

tion 10), i.e., M̃U
i ≥ MU

i with an equality if the strategy of player j that guarantees that player i’s

payoff is at most MU
i is a unique best reply against some strategy of player i (which is the case, in

particular, if the payoff function is strictly concave).

6 Main Results

Our main results characterize the set of BBE and BBE outcomes in three classes of games: games

with strategic complements, games with strategic substitutes, and games with strategic opposites.
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6.1 Preliminary Result: Necessary Conditions for a Weak BBE Outcome

We begin by defining undominated strategies and the undominated minmax payoff, which will be

used to characterize necessary conditions for a strategy profile to be a weak BBE outcome.

Strategy si of player i is undominated if it is a best reply of some strategy of the opponent, i.e., if

there exists strategy sj ∈ Sj , such that si ∈ BR (sj). We say that a strategy profile is undominated

if both strategies in the profile are undominated. Recall that in a finite game, due to the minmax

theorem, a strategy is undominated iff it is not strictly dominated by another strategy.

Let SUi ∈ Si denote the set of undominated strategies of player i. Observe that SUi is not

necessarily a convex set.

An undominated minmax payoff for player i is the maximal payoff player i can guarantee to

himself in the following process: (1) player j chooses an arbitrary undominated strategy, and (2)

player i chooses a strategy (after observing player j’s strategy). Formally:

Definition 10. Given game G = (S, u), let MU
i , the undominated minmax payoff of player i, be

defined as follows:

MU
i = min

sj∈SUj

(

max
si∈Si

πi (si, sj)

)

.

Observe that the undominated minmax is weakly larger than the standard maxmin, i.e., MU
i ≥

minsj∈Sj (maxsi∈Si πi (si, sj)) with an equality if player j does not have any strictly dominated

strategy2 (i.e., if SUj = Sj).

The following simple result (which will be helpful in deriving the main results in the following

subsections) shows that any weak BBE outcome is an undominated strategy profile that yields a

payoff above the player’s undominated minmax payoff to each player.

Proposition 3. If a strategy profile s∗ = (s∗
1, s

∗
2) is a weak BBE outcome, then (1) the profile s∗ is

undominated and (2) πi (s
∗) ≥ MU

i .

Proof. Assume that s∗ = (s∗
1, s

∗
2) is a biased-belief equilibrium outcome. This implies that each s∗

i

is a best reply to the player’s distorted belief, which implies that each s∗
i is undominated. Assume

to the contrary, that , πi (s
∗) < MU

i . Then, by deviating to the undistorted function Id, player i can

guarantee a fitness of at least MU
i in any distorted equilibrium.

6.2 Games with Strategic Complements

Our first main result characterizes the set of BBE outcomes in games with strategic complements.

It shows that a strategy profile is a BBE outcome essentially iff (I) it is undominated, (II) it yields a

payoff above the undominated/biased-belief minmax payoff to both players, and (III) both players

overinvest (i.e., use a weakly higher strategy than the best reply to the opponent). Formally:

Proposition 4. Let G be a game with strategic complements and positive externalities.

2The undominated minmax payoff might be strictly higher than the undominated maxmin payoff due to the non-
convexity of SjU ; i.e., player i might be able to guarantee only a lower payoff in a setup in which player j is allowed to
choose his undominated strategy after observing player i’s chosen strategy.



20 6 MAIN RESULTS

1. Let (s∗
1, s

∗
2) be a BBE outcome. Then (s∗

1, s
∗
2) has the following properties: (I) it is undominated,

and it satisfies for each player i: (II) πi
(

s∗
i , s

∗
j

)

≥ MU
i , and (III) overinvestment: s∗

i ≥

min
(

BR
(

s∗
j

))

.

2. Let (s∗
1, s

∗
2) be an undominated profile that satisfies, for each player i: (II) πi

(

s∗
i , s

∗
j

)

> M̃U
i ,

and (III) s∗
i ≥ min

(

BR
(

s∗
j

))

. Then, (s∗
1, s

∗
2) is a BBE outcome.

Moreover, if πi (si, sj) is strictly concave in si (i.e.,
∂π2

i
(si,sj)

∂s2
i

> 0) then (s∗
1, s

∗
2) is a strong

BBE outcome.

Sketch of Proof (formal proof in Appendix F.2).

Part 1: Proposition 3 implies (I) and (II). To prove (III, overinvestment), assume to the contrary

that s∗
i < min

(

BR
(

s∗
j

))

. Consider a deviation of player i that induces him to invest slightly

more than s∗
i . The fact that s∗

i < min
(

BR
(

s∗
j

))

implies that player i strictly earns from his own

deviation. The assumption that the biased belief of the opponent is monotone implies that the

agent’s deviation induces the opponent to invest more and, thereby to further improve the agent’s

payoff. Thus, the agent gains from the deviation, and (s∗
1, s

∗
2) cannot be a BBE outcome.

Part 2: The strategy profile (s∗
1, s

∗
2) is supported as a BBE outcome by a profile of biased

beliefs (ψ∗
1, ψ

∗
2) in which each biased belief ψ∗

j satisfies: (1) blindness to good news: ψ∗
j distorts any

s′
i ≥ s∗

i into BR−1
(

s∗
j

)

, and (2) overreaction to bad news: ψ∗
j distorts any s′

i < s∗
i to a sufficiently

low strategy ψj (s′
i), such that player i loses in any strategy profile

(

s′
i, s

′
j

)

in which player j best-

replies to the perceived strategy of player i (i.e., s′
j ∈ BR (ψj (s′

i))). These properties imply that

((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a BBE (and a strong BBE if the payoff function is strictly concave).

Recall that a game with strategic complements admits a lowest Nash equilibrium (s1, s2) in which

both players invest less than in any other Nash equilibrium, i.e., s′
i ≥ si for each player i and each

strategy s′
i that is played in a Nash equilibrium (see, e.g., Milgrom and Roberts, 1990).

An immediate corollary of Prop. 4 is that in each BBE outcome, both players invest more than

in any Nash equilibrium. Formally:

Corollary 2. Let G be a game with strategic complements and positive externalities with a lowest

Nash equilibrium (s1, s2) that satisfies s1 < max (Si) for each player i. Let (s∗
1, s

∗
2) be a BBE outcome.

Then si ≤ s∗
i for each player i.

Proof. The result is immediate from part (1.III) of Proposition 4 (namely, that both agents weakly

overinvest in any BBE outcome), and the observation (which is formally proved in Lemma 1 in

Appendix F.3) that s∗
i < si implies that at least one of the players strictly underinvests.

Corollary 2 shows that the notion of BBE rules out socially bad outcomes in which one (or

both) of the players invests less effort than the lowest Nash equilibrium. In particular, in a price

competition with differentiated goods (see Example 2 below), the corollary implies that the price

chosen by any player in any BBE is at least the player’s price in the unique Nash equilibrium of the

game.
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The final corollary shows the close relation between BBE and wishful thinking. Specifically, it

shows that any biased belief in any BBE (with a non-extreme outcome) of a game with strategic

complements exhibits wishful thinking. The intuition is that wishful thinking causes an agent to

believe that the opponent is playing a higher action, which induces the agent to respond with a

higher action, which, in turn, causes the opponent to respond by playing a higher action, which

benefits the agent.3

Corollary 3. Let G be a game with positive externalities and strategic complements. Let

((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a BBE. If s∗

i /∈ {min (Si) ,max (Si)}, then player i exhibits wishful thinking

(i.e., ψ∗
i

(

s∗
j

)

≥ s∗
j ).

Proof. Assume to the contrary that ψ∗
i

(

s∗
j

)

< s∗
j . The strategic complementarity implies that

max
(

BR
(

ψ∗
i

(

s∗
j

)))

≤ min
(

BR
(

s∗
j

))

with an equality only if

max
(

BR
(

ψ∗
i

(

s∗
j

)))

∈ {min (Si) ,max (Si)}

(see Lemma 2 in Appendix F.4 for a formal proof of this claim). Part 1 of Proposition 4 and the

definition of a BBE imply that

max
(

BR
(

ψ∗
i

(

s∗
j

)))

≥ s∗
i ≥ min

(

BR
(

s∗
j

))

.

The previous inequalities jointly imply that

max
(

BR
(

ψ∗
i

(

s∗
j

)))

= s∗
i = min

(

BR
(

s∗
j

))

∈ {min (Si) ,max (Si)} ,

which contradicts the assumption that s∗
i /∈ {min (Si) ,max (Si)}.

Next, we apply our analysis of games with strategic complements to price competition with dif-

ferentiated goods (the linear city model à la Hotelling). Specifically, we show that (1) players choose

prices above the unique Nash equilibrium price in all BBE, and (2) any undominated symmetric

price profile above the Nash equilibrium price can be supported as a strong BBE. In Appendix A.4

we present three additional examples: input games, stag hunt games, and the traveler’s dilemma.

Example 2 (Price competition with differentiated goods; see a textbook analysis in Mas-Colell,

Whinston, and Green, 1995, Section 12.C ). Consider a mass one of consumers equally distributed

in the interval [0, 1]. Consider two firms that produce widgets, located at the two extreme locations:

0 and 1. Every consumer wants at most one widget. Producing a widget has a constant marginal

cost, which we normalize to be zero. Each firm i chooses price si ∈ [0,M ] for its widgets. The total

cost of buying a widget from firm i is equal to its price si plus t times the consumer’s distance from

3Corollary 3 allows for pessimism of player i in a BBE only if player i plays an extreme strategy (either, the minimal
feasible strategy or the maximal feasible strategy) and his pessimism does not affect his play; i.e., the best reply against
the real opponent’s strategy and the best reply against the perceived opponent’s strategy coincide in being the same
extreme strategy. For example, this is the case in the biased beliefs that support the action profile (si, sj) in the stag
hunt game analyzed below.
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the firm, where t ∈ [0,M ]). Each buyer buys a widget from the firm with the lower total buying

cost. This implies that the total demand for good i is given by function qi (si, sj):

qi (si, sj) =























0
sj−si+t

2·t < 0

sj−si+t
2·t 0 <

sj−si+t
2·t < 1

1
sj−si+t

2·t > 1,

The payoff (profit) of firm i is given by πi (si, sj) = si · qi (si, sj). Observe that the payoff function

is strictly concave in si for any non-extreme sj (and it is weakly concave for the extreme values of

sj). One can show that the game has strategic complements, and that the best-reply function of

each player is:

si (sj) =







sj+t
2 sj < 3 · t

sj − t sj ≥ 3 · t.

It is well known that the unique Nash equilibrium of this example is given by si = sj = t, which

yields a payoff of t
2 to each firm.

Observe that the set of undominated strategies of each player is the interval
[

t
2 ,

M+t
2

]

(where t
2

is the best reply against 0 and M+t
2 is the best reply against M). This implies that the undominated

minmax of each player is equal to πi
(

3
4 · t, t2

)

=3
4 · t · 3

8 = 9
32 · t. Proposition 4 implies that a strategy

profile (si, sj) is a BBE outcome if for each player i: (1) si ∈
[

t
2 ,

M+t
2

]

(undominated strategy),

(2) πi (si, sj) >
9
32 · t (payoff above the undominated minmax payoff),4 and (3) overinvestment:

si ≥
sj+t

2 .

Figure 1 shows the set of BBE outcomes (which coincides with the set of strong BBE outcomes,

due to the strict concavity of the payoff function), for t = 1 and M = 3.

Observe that the sum of the payoffs to the two firms, si · qi (si, sj) + sj · qj (si, sj), is a mixed

average of si and sj . The fact that the Nash equilibrium is in the bottom left corner of the set of

BBE outcomes implies that all BBE outcomes (except the Nash equilibrium itself) strictly improve

social welfare relative to the Nash equilibrium (as measured by the sum of payoffs of the two firms).

Next, we make two observations regarding the implications of the extent of wishful thinking on

the players’ payoffs (both observations hold also for the input games in Example 9 in Appendix

A.4):

1. Increasing the wishful thinking of both players improves the players’ payoffs. Specifically,

with respect to symmetric BBE outcomes, a higher level of wishful thinking induces a higher

equilibrium price and a higher payoff to the players: a wishful thinking level of x∗ ≡ ψ∗ (s∗) −

s∗ ∈ [0, 1] induces the symmetric BBE price x∗ + t = x∗ + 1 (which is implied by the perceived

bast-reply equation s∗ = ψ∗(s∗)+t
2 = s∗+x∗+t

2 ), which yields a payoff of x∗+1
2 to each player.

4One can show that the constraint on si implied by πi (si, sj) >
9

32
· t is nonbinding. The constraint is

si ∈

(

sj + t−

√

(sj + t)2
− 2.25 · t2

2
,
sj + t−

√

(sj + t)2
− 2.25 · t2

2

)

.
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Figure 1: The Set of (Strong) BBE Outcomes in Example 2 (t = 1, M = 3)

2. When the wishful thinking levels of the two players differ, the player with the higher wishful

thinking level has a lower payoff. This is because the difference between the payoffs of a firm

with price si and an opponent with price sj < si is equal to:

πi − πj = si ·

(

sj − si + 1

2

)

− sj ·

(

si − sj + 1

2

)

= 0.5 (sj (sj − 1) − si (si − 1)) < 0.

Intuitively, wishful thinking is like a public good in this setup: (1) a higher level of wishful thinking

is beneficial to social welfare, and (2) if the two players have different levels of wishful thinking, the

player with the higher level obtains a lower payoff.

We conclude the example by presenting a symmetric biased belief ψ∗
1 = ψ∗

2 that supports the

outcome (2, 2) as the BBE ((ψ∗
1, ψ

∗
2) , (2, 2)) in the game with M = 3 and t = 1:

ψ∗
i (sj) =























3 sj > 2

2 · sj − 1 sj ∈ [0.5, 2]

0 sj < 0.5.

Observe that: (1) this BBE yields a payoff of 1 to each player and (2) the biased belief presents

wishful thinking, i.e., ψ∗
i (2) = 3 > 2. Further observe that a player with biased belief ψ∗

i plays the

same strategy as the opponent (regardless of the opponent’s biased belief) in any equilibrium of the

biased game in which the opponent plays any intermediate value of sj (i.e., sj ∈ [0.5, 2]) :

si (ψ
∗
i (sj)) =























si (3) = 2 sj > 2

si (2 · sj − 1) = 0.5 · (2 · sj − 1 + 1) = sj sj ∈ [0.5, 2]

si (0) = 0.5 sj < 0.5.
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This implies that the equilibrium payoff of a deviating player j who plays strategy sj is equal to:

πj (sj , si (ψ
∗
i (sj))) =























sj · 0.5 · (2 − sj + 1) = sj · 0.5 · (3 − sj) < 1 sj > 2

sj · 0.5 · q (sj , sj) = 0.5 · sj sj ∈ [0.5, 2]

sj · 0.5 · (0.5 − sj + 1) = sj · 0.5 · (1.5 − sj) < 0.25 sj < 0.5,

and it is at most 1, which implies that a deviator cannot gain from his deviation.

Finally, note that Figure 1 shows that the two Stackelberg-leader equilibria (the unique subgame-

perfect equilibrium of the sequential games in which one of the players plays first, and the opponent

replies after observing the leader’s strategy) are included in the set of BBE, as is proven in general

in Proposition 7.

6.3 Games with Strategic Substitutes

Our next result characterizes the set of BBE outcomes in games with strategic substitutes (and

positive externalities). It shows that a strategy profile is a BBE outcome essentially iff (I) it is

undominated, (II) it yields a payoff above the undominated/biased-belief minmax payoff to both

players, and (III) both players underinvest (i.e., use a weakly lower strategy than the best reply to

the opponent). Formally:

Proposition 5. Let G be a game with strategic substitutes and positive externalities.

1. Let (s∗
1, s

∗
2) be a BBE outcome. Then (s∗

1, s
∗
2) has the following properties: (I) it is undomi-

nated, and if satisfies for each player i: (II) πi
(

s∗
i , s

∗
j

)

≥ MU
i and (III) s∗

i ≤ max
(

BR
(

s∗
j

))

(underinvestment).

2. Let (s∗
1, s

∗
2) be an undominated profile that satisfies, for each player i: (II) πi

(

s∗
i , s

∗
j

)

> M̃U
i ,

and (III) s∗
i ≤ max

(

BR
(

s∗
j

))

. Then, (s∗
1, s

∗
2) is a BBE outcome.

Moreover, if πi (si, sj) is strictly concave then (s∗
1, s

∗
2) is a strong BBE outcome.

The proof, which is analogous to the proof of Proposition 4, is presented in Appendix F.5.

An immediate corollary of Proposition 4 is that in each BBE outcome, at least one of the players

invests less relative to his maximal Nash equilibrium investment. Formally:

Corollary 4. Let G be a game with strategic substitutes and positive externalities. Let (s∗
1, s

∗
2) be a

BBE outcome. Then, there exists a Nash equilibrium of the underlying game (se1, s
e
2), and a player

i such that sei ≥ s∗
i .

Proof. The result is immediate from part (1-III) of Proposition 4 (namely, that both agents weakly

underinvest in any BBE outcome), and the observation (which is formally proved in Lemma 1 in

Appendix F.3) that if the effort of each player s∗
i is strictly below all of his Nash equilibrium efforts,

then at least one of the players strictly underinvests.

Corollary 4 shows that the notion of BBE rules out socially good outcomes in which both players

invest more effort relative to their maximal Nash equilibrium effort. In particular, in a Cournot
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competition (see Example 3 below), the corollary implies that a collusive outcome in which both

players retain more unused capacity relative to the unique Nash equilibrium.

Combining Corollary 2 and Corollary 4 implies the following empirical prediction of our model

and the notion of BBE: efficient (non-Nash equilibrium) outcomes are easier to support in games

with strategic complements, relative to games with strategic substitutes. This prediction is consistent

with the experimental findings of Potters and Suetens (2009), which show that there is significantly

more cooperation in games with strategic complements than in games with strategic substitutes.

The following corollary shows that in games with strategic substitutes, as in games with strategic

complements, there is the a close relation between BBE and wishful thinking. Specifically, it shows

that any biased belief in any BBE (with a non-extreme outcome) of a game with strategic substitutes

exhibits wishful thinking. The intuition is that wishful thinking causes an agent to believe that the

opponent is playing a higher action, which induces the agent to respond with a lower action, which,

in turn, causes the opponent to respond by playing a higher action, which benefits the agent.

Corollary 5. Let G be a game with positive externalities and strategic substitutes. Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2))

be a BBE. If s∗
i /∈ {min (Si) ,max (Si)}, then player i exhibits wishful thinking (i.e., ψ∗

i

(

s∗
j

)

≥ s∗
j ).

The proof, which is analogous to the proof of Corollary 3, is presented in Appendix F.7.

The following example characterizes the set of BBE outcomes in a Cournot competition. Ap-

pendix A.5 presents an analysis of another game of strategic substitutes: the hawk-dove game.

Example 3 (Cournot competition with linear demand). Consider a symmetric Cournot competition,

where we relabel the set of strategies to describe unused capacity, rather than quantity, in order

to follow the normalization of positive externalities. Formally, let G = (S, π): Si = [0, 1] and

πi (si, sj) = (1 − si) · (si + sj − 1) for each player i. Each si is interpreted as the unused capacity

(= one minus the quantity, i.e., si = 1 − qi) chosen by firm i, the price of both goods is determined

by the linear inverse demand function p = 1 − qi − qj = si + sj − 1, and the marginal cost of each

firm is normalized to be zero.

Observe that:

1. BR (si) = 1 − si
2 , and the unique Nash equilibrium of the game is s∗

1 = s∗
2 = 2

3 , which yields a

payoff of 1
9 to both players.

2. The set of undominated strategies of each player is the interval [0.5, 1] (where 1 is the best

reply against 0, and 0.5 is the best reply against 1).

3. The symmetric Pareto optimal profile (which is also undominated) is si = sj = 3
4 , yielding a

payoff of 1
8 to each player.

4. The undominated minmax payoff MU
i = 1

16 , which is achieved by the opponent playing his

lowest undominated strategy si = 0.5.

5. The sum of payoffs of both players when they play profile (s1, s2) is π1 (s1, s2) + π2 (s1, s2) =

(2 − (si + sj)) · ((si + sj) − 1), which is an increasing function of si + sj in the domain of

undominated strategies si, sj ≥ 0.5.



26 6 MAIN RESULTS

Applying the analysis of the previous subsection to a Cournot competition shows that strategy profile

(s1, s2) is a BBE outcome iff it satisfies for each player i: (1) the strategy is undominated: si ≥ 0.5,

(2) the payoff is greater than the undominated minmax payoff: (1 − si) · (si + sj − 1) ≥ 1
16 = MU

i ,

and (3) underinvestment relative to the best reply against the opponent: si ≤ BR (sj) = 1 −
sj
2 .

Due to having a strictly concave payoff function, the set of BBE outcomes coincides with the set of

strong BBE outcomes. Figure 1 shows this set of BBE outcomes (the strategy profiles that satisfy

the above three conditions).

Figure 2: The Set of (Strong) BBE Outcomes in a Cournot Competition

Observe that the unique Nash equilibrium
(

2
3 ,

2
3

)

is the profile that maximizes the sum si + sj

within the set of BBE. This implies that all other BBE outcomes yield lower social welfare (as

measured by the sum of payoffs) relative to the Nash equilibrium.

Next, we make two observations regarding the implications of the level of wishful thinking on

the players’ payoffs.

1. Increasing the wishful thinking of both players decreases the players’ payoffs. Specifically,

when focusing on symmetric BBE outcomes, a higher level of wishful thinking induces a lower

level of unused capacity and a lower payoff to both players; the higher level of production

is induced by the false assessment of each firm that the other firm is producing less than it

actually does.5

2. When the wishful thinking levels of the two players differ, the player with the higher wishful

thinking has a higher payoff. This is because the difference between the payoffs of a firm with

5A wishful thinking level of x∗
≡ ψ∗ (s∗) − s∗

∈ [0, 0.28] induces a symmetric BBE unused capacity of s∗ = 2−x∗

3

(which is implied by the perceived best-reply equation s∗ = 1 −
ψ∗(s∗)

2
= 1 −

s∗
+x∗

2
).
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price si and an opponent with price sj < si is equal to

πi − πj = si ·

(

sj − si + 1

2

)

− sj ·

(

si − sj + 1

2

)

= 0.5 (sj (sj − 1) − si (si − 1)) < 0.

Thus, a higher level of wishful thinking is beneficial to social welfare, but harms the player with the

higher level (relative to the opponent’s payoff).

Finally, note that Figure 2 shows that the two Stackelberg-leader equilibria (the unique subgame-

perfect equilibria of the sequential games in which one of the players plays first, and the opponent

replies after observing the leader’s strategy) are included in the set of BBE, as is proven in general

in Proposition 7.

6.4 Pessimism in Games with Opposing Differences

The results of the previous two subsections present a strong tendency of BBE to exhibit wishful

thinking both in games with strategic complements and in games with strategic substitutes. This

raises the question of which class of games induces pessimism. In this section we show that the

answer to this question is games with strategic opposites. Recall that these are games in which

the strategy of player 1 is a complement of player 2’s strategy, while the strategy of player 2 is a

substitute of player 1’s strategy, e.g., duopolistic competitions in which one firms chooses its quantity

while the opposing firm chooses its price (Singh and Vives, 1984) and various classes of asymmetric

contests (Dixit, 1987).

Proposition 6 characterizes the set of BBE outcomes in games with strategic opposites (and

positive externalities).

It shows that a strategy profile is a BBE outcome essentially iff (I) it is undominated, (II) it

yields a payoff above the undominated/biased-belief minmax payoff to both players, and (III) player

1 (for whom player 2’s strategy is a complement) underinvests, while player 2 (for whom player 1’s

strategy is a substitute) overinvests. Formally:

Proposition 6. Let G be a game with positive externalities and strategic opposites: ∂2π1(s1,s2)
∂s1∂s2

> 0

and ∂1π2(s1,s2)
∂s1∂s2

< 0 for each pair of strategies s1, s2.

1. Let (s∗
1, s

∗
2) be a BBE outcome. Then (s∗

1, s
∗
2) is (I) undominated: (II) πi

(

s∗
i , s

∗
j

)

≥ MU
i for

each player i, and (III) s∗
1 ≤ max (BR (s∗

2)) and s∗
2 ≥ min (BR (s∗

1)) (i.e., player 1 underinvests

and player 2 overinvests relative to the best reply to the opponent).

2. Let (s∗
1, s

∗
2) be a profile satisfying the following conditions: (I) (s∗

1, s
∗
2) is undominated, (II)

πi
(

s∗
i , s

∗
j

)

> M̃U
i for each player i, and (III) s∗

1 ≤ max (BR (s∗
2)) and s∗

2 ≥ min (BR (s∗
1)).

Then, (s∗
1, s

∗
2) is a BBE outcome.

The proof, which is analogous to the proof of Proposition 4, is presented in Appendix F.8.

The following corollary shows that in games with strategic opposites, there is a close relation

between BBE and pessimism. Specifically, it shows that any biased belief in any BBE (with a

non-extreme outcome) of a game with strategic opposites exhibits pessimism. The intuition is that
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pessimism causes player 1 to believe that player 2 is playing a lower action, which induces player 1

to respond with a lower action, which, in turn, causes player 2 to respond by playing a higher action,

which benefits player 1. Similarly, pessimism causes player 2 to believe that player 1 is playing a

lower action, which induces player 2 to respond with a higher action, which, in turn, causes player

1 to respond by playing a higher action, which benefits player 2.

Corollary 6. Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a BBE of a game with positive externalities and strate-

gic opposites (i.e.,∂
2π1(s1,s2)
∂s1∂s2

> 0 and ∂2π2(s1,s2)
∂s1∂s2

< 0 for each pair of strategies s1, s2). If s∗
i /∈

{min (Si) ,max (Si)}, then player i exhibits pessimism (i.e., ψ∗
i

(

s∗
j

)

≤ s∗
j).

The proof, which is analogous to the proof of Corollary 3, is presented in Appendix F.9.

Next, we present an example of a game with strategic opposites, and we characterize the set of

BBE in this game.

Example 4 (Matching pennies with positive externalities). The game presented in Table 1, a variant

of the matching pennies game, is played as follows:

1. Player 1 (player 2) gains 1 utility point from matching (mismatching) his opponent.

2. Each player i induces a gain of 3 utility points to his opponent by choosing heads (action hi).

The game admits a unique Nash equilibrium (0.5, 0.5) with a payoff of 1.5 to each player. The

(undominated) minmax payoff of each player is 1 (obtained when the opponent plays tj). Observe

that the game has positive externalities, that the strategy of player 2 is a strategic complement for

player 1, while the strategy of player 1 is a strategic substitute for player 2.

Table 1: Matching Pennies with Positive Externalities

h2 t2

h1 4, 2 −1, 4

t1 2, 1 1,−1

Applying the analysis of the previous section shows that the game admits 2 classes of BBE:

1. A class in which the players mix while giving a larger weight to playing heads (the action with

positive externalities), pessimism, and one-directional blindness. Specifically, each BBE in this

class ((ψ∗
1, ψ

∗
2) , (β1, β2)) satisfies for each player i: (I) βi ∈ [0.5, 1] (i.e., both players play heads

more frequently than in the unique Nash equilibrium), (II) pessimism: ψ∗
i (βj) = 0.5 < βj ,

and (III) one-sided blindness: ψ∗
1 (α) = 0.5 for each α ≥ β2; ψ∗

1 (α) < 0.5 for each α < β1;

ψ∗
2 (α) = 0.5 for each α ≤ β2; and ψ∗

2 (α) < 0.5 for each α > β2.

2. A class in which player 1 mixes while giving more weight to tails, while player 2 plays heads.

Both players exhibit pessimism. Specifically, each BBE in this class ((ψ∗
1, ψ

∗
2) , (β1, β2)) satisfies

for each player i: (I) β1 ∈ [0, 0.5] and β2 = 1 (i.e., player 1 plays tails more frequently than in

the unique Nash equilibrium, while player 2 always plays heads), (II) pessimism for player 1:
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ψ∗
1 (β2 = 1) = 0.5 < 1, and ψ∗

2 (β1) = 0.5 (player 2 is not pessimistic, due to the fact that he

chooses the extreme action 1), and (III) ψ∗
2 (α) > 0.5 for each α > β1.

Observe that any profile (β1, β2), where β2 < 0.5 or (β1 < 0.5 and β2 < 1), cannot be a BBE

outcome:

1. If β2 < 0.5 and β1 = 0, then player 2’s payoff is negative, and less than his undominated

minmax payoff of 1.

2. If β2 < 0.5 and β1 > 0, then player 1 can gain by deviating to ψ′
1 ≡ 0, as the only possible

equilibria of the new biased game are (01, 02) and (01, β2), both of which induce a higher payoff

to player 1 relative to (β1, β2).

3. If β1 < 0.5 and β2 < 1, then player 2 can gain by deviating to ψ′
2 ≡ 0, as the only possible

equilibria of the new biased game are (01, 12) and (β1, 12), both of which induce a higher payoff

to player 2 relative to (β1, β2).

6.5 Empirical Prediction Regarding Wishful Thinking

Arguably, the class of games with strategic opposites (which induces pessimism) is less common

in strategic interactions than the classes of games with strategic complements/substitutes (both of

which induce wishful thinking). This observation suggests the following empirical predictions of our

model: (1) wishful thinking is more common than pessimism, and (2) there are some (less common)

strategic interactions that induce pessimism. This empirical prediction is consistent with the ex-

perimental evidence that people tend to present wishful thinking, although, the extent of wishful

thinking may substantially differ across different environments and may disappear in some environ-

ments (see, e.g., Babad and Katz, 1991; Budescu and Bruderman, 1995; Bar-Hillel and Budescu,

1995; Mayraz, 2013).

7 Additional Results

7.1 BBE with Strategic Stubbornness

In this subsection we present an interesting class of BBE that exist in all games. In this class, one

of the players is “strategically stubborn” in the sense that he plays his undominated Stackelberg

strategy (defined below) and has blind beliefs, while his opponent is “flexible” in the sense of having

unbiased beliefs.

A strategy is undominated Stackelberg if it maximizes a player’s payoff in a setup in which the

player can commit to an undominated strategy, and his opponent reacts by choosing the best reply

that maximizes player i’s payoff. Formally:

Definition 11. The strategy si is an undominated Stackelberg strategy if it satisfies

si = argmaxsi∈SUi

(

maxsj∈BR(si) (πi (si, sj))
)

.
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Let πStac
i = maxsi∈SUi

(

maxsj∈BR(si) (πi (si, sj))
)

be the undominated Stackelberg payoff. Observe

that πStac
i ≥ πi (s

∗
1, s

∗
2) for any Nash equilibrium (s∗

1, s
∗
2) ∈ NE (G).

Our next result shows that every game admits a BBE in which one of the players: (1) has a blind

belief, (2) plays his undominated Stackelberg strategy, and (3) obtains his undominated Stackelberg

payoff. The opponent has undistorted beliefs. Moreover, this BBE is strong if the undominated

Stackelberg strategy is a unique best reply to some undominated strategy of the opponent.

The intuition behind Proposition 7 is as follows. The “strategically stubborn” player i cannot gain

from a deviation, because player i already obtains the highest possible payoff under the constraint

that player j best-replies to player i’s strategy. The “flexible” player j cannot gain from a deviation,

because the “blindness” of player i implies that player i’s behavior remains the same regardless of

player i’s deviation, and, thus, player i cannot do better than best-replying to player i’s strategy.

Proposition 7. Game G = (S, π) admits a BBE
(

(ψ∗
i , Id) ,

(

s∗
i , s

∗
j

))

for each player i with the

following properties: (1) ψ∗
i is blind, (2) s∗

i is an undominated Stackelberg strategy, and (3) s∗
j =

maxsj∈BR(s∗
i )

(πi (s
∗
i , sj)).

Moreover,
(

(ψ∗
i , Id) ,

(

s∗
i , s

∗
j

))

is a strong BBE if {s∗
i } = BR−1

(

s∗
j

)

.

Proof. Let s∗
i be an undominated Stackelberg strategy of player i. Let

s∗
j = argmaxsj∈BR(s∗

i )
(πi (s

∗
i , sj)) .

Let ŝj ∈ BR−1 (s∗
i ) ({ŝj} = BR−1 (s∗

i ) with the additional assumption of the “moreover” part).

We now show that
(

(ψ∗
i ≡ ŝj , Id) ,

(

s∗
i , s

∗
j

))

is a (strong) BBE. It is immediate that
(

s∗
i , s

∗
j

)

∈

NE
(

G(ŝj ,Id)

)

, and that both biased beliefs are monotone.

Next, observe that for any biased belief ψ′
j there is a plausible equilibrium (in any equilibrium)

of the biased game G(ŝj ,ψ′
j)

in which player i plays s∗
i , and player j gains at most πj

(

s∗
i , s

∗
j

)

, which

implies that the deviation to ψ′
j is not profitable to player j in this plausible equilibrium (in any

equilibrium) of the new biased game.

If player i deviates to a biased belief ψ′
i, then in any equilibrium of the biased game G(ψ′

i
,Id)

player i plays some strategy s′
i and gains a payoff of at most maxs′

j
∈BR(s′

i)

(

πi
(

s′
i, s

′
j

))

, and this

implies that player i’s payoff is at most πStac
i , and that he cannot gain by deviating. This shows

that ((ŝj , Id) , (s∗
1, s

∗
2)) is a (strong) BBE.

We demonstrate this class of equilibria in a Cournot competition.

Example 5 (Well-behaved BBE that yields the Stackelberg outcome in a Cournot competition).

Consider the symmetric Cournot game with linear demand in Example 1: G = (S, π): Si = R
+ and

πi (si, sj) = si · (1 − si − sj) for each player i. Then
(

(0, Id) ,
(

1
2 ,

1
4

))

is a strong well-behaved BBE

that induces the Stackelberg outcome
(

1
2 ,

1
4

)

, and yields the Stackelberg-leader payoff of 1
8 to player

1 and yields the follower payoff of 1
16 to player 2. This is because: (1)

(

1
2 ,

1
4

)

∈ NE
(

G(0,Id)

)

, (2)

for any biased belief ψ′
2, player 1 keeps playing 1

2 and as a result player 2’s payoff is at most 1
16 , and

(3) for any biased belief ψ′
1, player 2 will best-reply to player’s 1 strategy, and thus player 1’s payoff

will be at most his Stackelberg payoff of 1
8 .
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7.2 Folk Theorem Results

In this subsection we present various folk theorem results (i.e., general feasibility results) that show

that relaxing either of the two requirements in the definition of a BBE (namely, monotonicity

and ruling out implausible equilibria) yields little predictive power in various classes of games.

Specifically, we show that in those games a strategy profile is a monotone weak BBE outcome (resp.,

non-monotone strong BBE outcome) essentially iff it is (1) undominated, and (2) induces a payoff

above the undominated minmax payoff.

7.2.1 Preliminary Definitions

We begin by defining the notions of monotone weak BBE, and of non-monotone strong BBE.

Definition 12. A weak BBE (ψ∗, s∗) is a monotone weak BBE if each biased belief ψ∗
i is monotone

for each player i.

A weak BBE (ψ∗, s∗) is a non-monotone strong BBE if the inequality πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

holds

for every player i, every biased belief ψ′
i, and every strategy profile

(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

.

Note that (1) a monotone weak BBE is a weakening of the notion of a BBE, which relaxes the

requirement of ruling out implausible equilibria, and (2) a non-monotone strong BBE is a weakening

of the notion of strong BBE, which relaxes the requirement of monotonicity.

7.2.2 Folk Theorem Result: Monotone Weak BBE in Finite Games

We say that a finite game G admits best replies with full undominated support, if, for each player i,

there exists an undominated strategy si ∈ SUi with a support that includes all undominated actions,

i.e., supp (si) = Ai ∩ SUi . Two classes of games that admit best replies with full undominated

support are:

1. All two-action games. The reason for this is as follows. If player i has a dominant action, then,

trivially, the dominant action ai is an undominated strategy with a support that includes all

undominated actions. If player i does not have a dominant action, then there must be a

strategy of the opponent for which the player is indifferent between his two actions, which

implies that there exists an undominated strategy with full support.

2. Any game with a totally mixed equilibrium (e.g., a rock-paper-scissors game).

Our next result focuses on finite games that admit best replies with full undominated support,

and shows that in such games a strategy profile s∗ is a monotone weak BBE outcome iff (I) s∗ is

undominated, and (II) the payoff of is s∗ above the undominated minmax payoff.

The sketch of the proof is as follows. Each player has a blind belief that his opponent plays her

part of the Nash equilibrium with full undominated support. This implies that each player is always

indifferent between all undominated actions and, as such, can (1) play s∗
i on the equilibrium path,

and (2) play a punishing strategy that guarantees the opponent a payoff of at most her undominated

minmax payoff following any deviation of the opponent.
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Proposition 8 (Folk Theorem result for monotone weak BBE outcomes). Let G be a finite game that

admits best replies with full undominated support. Then the following two statements are equivalent:

1. Strategy profile (s∗
1, s

∗
2) is a monotone weak BBE outcome.

2. Strategy profile (s∗
1, s

∗
2) is (I) undominated and (II) πi (s

∗
1, s

∗
2) ≥ MU

i .

Proof. Proposition 3 implies that “1.⇒2.” We now show that “2.⇒1.” Assume that (s∗
1, s

∗
2) is undom-

inated, and πi (s
∗
1, s

∗
2) ≥ MU

i . For each player j, let spj be an undominated strategy that guarantees

that player i obtains, at most, his minmax payoff MU
i , i.e., spj = argminsj∈SUj

(maxsi∈Si πi (si, sj)) .

For each player j, let sej ∈ SUj be a best-reply strategy with full undominated support, i.e.,

supp
(

sej

)

= Ai ∩ SUi . For each player i, let sdi ∈ BR−1
(

sej

)

. The fact that sej ∈ BR
(

sdi

)

im-

plies that s∗
j , s

p
j ∈ ∆

(

SUj

)

= ∆
(

supp
(

sej

))

⊆ BR
(

sdi

)

.

We conclude by showing that
((

sd1, s
d
2

)

, (s∗
1, s

∗
2)
)

is a monotone weak BBE (in which both players

have blind beliefs). It is immediate that (s∗
1, s

∗
2) ∈ NE

(

sd1, s
d
2

)

. Next, observe that for any deviation

of player i to a different biased belief ψ′
i, there is a Nash equilibrium of the biased game G(ψ′

i
,se
j)

in which player j plays spj , and, as a result, player i obtains a payoff of at most MU
i , which implies

that the deviation is not profitable. Thus, (s∗
1, s

∗
2) is a BBE outcome.

Proposition 8 suggests that the notion of monotone weak BBE is too weak. The folk theorem

result relies on the incumbents “discriminating” against deviators who have exactly the same per-

ceived behavior as the rest of the population: the incumbents of population j “punish” deviators by

playing spj against them, while continuing to play s∗
j against the incumbents, even though both the

deviators and the incumbents are perceived to behave the same (i.e., ψ∗
j (sei ) = ψ∗

j (s∗
i )).

Example 8 in Appendix A.3 demonstrates that the folk theorem result does not necessarily hold

for games that do not admit best replies with full undominated support.

7.2.3 Folk Theorem Result: Non-Monotone Strong BBE in Interval Games

In this section we show a folk theorem result for strong BBE in a broad family of interval games

in which each payoff function πi (si, sj) is (1) strictly concave in si and (2) weakly convex in sj .

Examples of such games include Cournot competitions, price competitions with differentiated goods,

public good games, and Tullock contests.

The following result shows that in this class of interval games, any undominated strategy profile

(s∗
1, s

∗
2) that induces each player a payoff strictly above the player’s undominated minmax payoff can

be implemented as an outcome of a strong BBE. Formally:

Proposition 9. Let G = (S, π) be an interval game. Assume that for each player i, πi (si, sj) is

strictly concave in si and weakly convex in sj. If (s∗
1, s

∗
2) is undominated and πi (s

∗
1, s

∗
2) > MU

i for

each player i, then (s∗
1, s

∗
2) is a non-monotone strong BBE outcome.

The sketch of the proof is as follows (the formal proof is presented in Appendix F.1).

Each player j has a biased belief ψ∗
j that (I) distorts s∗

i into BR−1
(

s∗
j

)

, and (II) distorts any

s′
i that is not in a small neighborhood of s∗

i , to BR−1
(

spj

)

, where spj is a “punishing” strategy that
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guarantees that player i obtains at most his undominated minmax payoff. Part (I) implies that

(s∗
1, s

∗
2) is an equilibrium of the biased game. Part (II) implies that following any deviation of player

i to a different biased belief, if player i plays a strategy that is not in a small neighborhood of s∗
i ,

then player i loses from the deviation. Finally, the assumption that the payoff function πi (si, sj) is

convex in sj implies that we can “complete” a continuous description of ψ∗
j for s′

i that are in a small

neighborhood around s∗
i , such that a player cannot gain from deviating to playing strategies in this

small neighborhood.

7.2.4 Discussion of the Folk Theorem Results

The results of this section show that the notion of weak BBE has little predictive power in the sense

that, essentially, any undominated strategy profile with a payoff above the undominated minmax

payoff is a weak BBE outcome. Moreover, we show that this multiplicity of BBE outcomes holds in

large classes of games also when applying a refinement of monotonicity (Prop. 8), or when applying

a refinement of strongness (Prop. 9). By contrast, in Section 6 we show that the combination of

two plausible requirements, namely, monotonicity and ruling out implausible equilibria, allows us to

achieve sharp predictions for the set of BBE outcomes in various interesting classes of games and

for the set of biased beliefs that support these outcomes.

Our folk theorem results have similar properties to the famous folk theorem results for repeated

games and sufficiently discounted players (see, e.g., Fudenberg and Maskin, 1986). This is so be-

cause it allows for implicit punishments similar to those used in repeated games in order to sustain

equilibria. This is because our model assumes that when a player deviates to a different biased belief

his opponent can react to the deviation and deter against it.

Observe that our result has somewhat stronger predictive power than the folk theorem result

for repeated games, in the sense that the set of monotone weak BBE in one-shot finite games and

the set of non-monotone strong BBE in one-shot interval games are each smaller than the set of

subgame-perfect equilibria of repeated games between patient players. In particular, the following

strategy profiles can be supported as the subgame-perfect equilibrium outcomes of a repeated game

between patient players, but they cannot be the outcome of a weak BBE outcome of a one-shot

game: (1) strategy profiles in which one of the players plays a strategy that is strictly undominated

in the underlying (one-shot) game, and (2) strategy profiles in which some of the players obtain a

payoff between the standard minmax payoff and the (higher) undominated minmax payoff.

In Appendix D we show that if one relaxes the assumption that the biased beliefs must be

continuous, then one can obtain a folk theorem result in broader classes of games, namely, (1) in all

finite games, and (2) in all interval games with strictly concave payoffs.

8 Conclusion

Decision makers’ preferences and beliefs may intermingle. In strategic environments distorted beliefs

can take the form of a self-serving commitment device. Our paper introduces a formal model for the

persistence of such beliefs and proposes an equilibrium concept that supports them. Our analysis

characterizes BBE in a variety of strategic environments, such as games with strategic complements
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and games with strategic substitutes. In particular, we show that agents present wishful thinking

in all BBE in both of these common environments.

Our analysis here deals with simultaneous games of complete information, but the idea of strate-

gically distorted beliefs may play an important role also in sequential games and in Bayesian games.

In these frameworks, belief distortion may violate Bayesian updating, and our concept here can

potentially offer a theoretical foundation for some of the cognitive biases relating to belief updating.

It can also potentially identify the strategic environments in which these biases are likely to occur.

We view this as an important research agenda that we intend to undertake in the future.

A different research track that might shed more light on strategic belief distortion is the experi-

mental one. Laboratory experiments often conduct belief elicitation with the support of incentives

for truthful revelation. Strong evidence for strategic belief bias in experimental games can be ob-

tained by showing that players assign different beliefs to the behavior of their own counterpart in

the game and to a person playing the same role with someone else. In general, our model predicts

that beliefs about a third party’s behavior are more aligned with reality than those involving one’s

counterpart in the game. Laboratory experiments can also test whether specific types of belief

distortions (such as wishful thinking) arise in the strategic environments that are predicted by our

model.

Finally, we point out that strategic beliefs may play an important role in the design of mechanisms

and contracts. Belief distortions may destroy the desirable equilibrium outcomes that a standard

mechanism aims to achieve. Mechanisms that either induce unbiased beliefs or adjust the rules of

the game to account for possible belief biases are expected to perform better.
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Online Appendices

A Additional Examples

A.1 A Non-Nash Strong BBE Outcome in a Zero-Sum Game

The following example shows that although the weak BBE payoff must be the Nash equilibrium

payoff in a zero-sum game, the strategy profile sustaining it need not be a Nash equilibrium.

Example 6. Consider the symmetric rock–paper–scissors zero-sum game described in Table 2.

We show that
((

Id,
(

1
3 ,

1
3 ,

1
3

))

,
(

R,
(

1
3 ,

1
3 ,

1
3

)))

is a strong BBE, in which the player 1 (he) has

Table 2: Symmetric Rock-Paper-Scissors Zero-Sum Game Payoffs
R P S

R 0, 0 0,1 1,0

P 1,0 0, 0 0,1

S 0,1 1,0 0, 0

undistorted beliefs and plays R, while player 2 (she) has a blind belief that the opponent always

mixes equally, and she mixes equally. It is immediate that
(

R,
(

1
3 ,

1
3 ,

1
3

))

∈ NE
(

G(Id,( 1

3
, 1

3
, 1

3 ))

)

,

and the equilibrium payoff to each player is zero. Next, observe that after any deviation of player

1 to a biased belief ψ′
1, there is an equilibrium of the game G(ψ′

1
,( 1

3
, 1

3
, 1

3 )) in which player 2 mixes

equally and player 1 obtains a payoff of zero. Finally, observe that after any deviation of player 2 to

a biased belief ψ′
1, player 1 obtains a payoff of at least zero (her minmax payoff in G(Id,ψ′

2)
) in any

Nash equilibrium in G(Id,ψ′
2)

, which implies that player 2 obtains a payoff of at most zero, and, as

a result, she does not gain from the deviation.

A.2 Prisoner’s Dilemma with a Weakly Dominated Withdrawal Strategy

Proposition 2 implies, in particular, that defection is the unique weak BBE outcome in the prisoner’s

dilemma game. The following example demonstrates that a relatively small change to the prisoner’s

dilemma game, namely, adding a third weakly dominated “withdrawal” strategy that transforms

“cooperation” into a weakly dominated strategy, can allow us to sustain cooperation as a strong

BBE outcome. This is done by means of biases under which a player believes that his opponent is

planning to withdraw from the game whenever he intends to cooperate, which makes cooperation a

rational move.

Example 7. Consider the variant of the prisoner’s dilemma game with a third “withdrawal” action

as described in Table 3. In this symmetric game both players get a high payoff of 10 if they both

play action c (interpreted as cooperation). If one player plays d (defection) and his opponent plays

c, then the defector gets 11 and the cooperator gets 0. If both players defect, then each of them

gets a payoff of 1. Finally, if either player plays action w (interpreted as withdrawal), then both

players get 0. Observe that defection is a weakly dominant action, and that the game admits two

Nash equilibria: (w,w) and (d, d), inducing respective symmetric payoffs of zero and one.
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Table 3: Prisoner’s Dilemma Game with a Withdrawal Action

c d w

c 10,10 0,11 0,0

d 11,0 1,1 0,0

w 0,0 0,0 0,0

We identify a mixed action with a vector (αc, αd, αw), where αc ≥ 0 (resp., αd ≥ 0, αw ≥ 0)

denotes the probability of choosing action c (resp., d, w). For each player i, let ψi be the following

biased-belief function:

ψ∗
i (αc, αd, αw) = (0, αd, αc + αw) .

We now show that ((ψ∗
1, ψ

∗
2) , (c, c)) is a non-monotone strong BBE in which both players obtain

a high payoff of 10 (which is strictly better than the best Nash equilibrium payoff, and strictly

better than the Stackelberg payoff of each player). Observe first that c ∈ BR (ψ∗
i (c)) = BR (w),

which implies that (c, c) ∈ NE
(

G(ψ∗
1
,ψ∗

2)

)

. Next, consider a deviation of player i to biased belief

ψ′
i. Observe that player i can gain a payoff higher than 10 only if he plays action d with positive

probability, but this implies that the unique best reply of player j to his biased belief about player

i’s strategy is defection, which implies that player i obtains a payoff of at most one.

A.3 The Folk Theorem Result Does not Hold for All Finite Games

The following example demonstrates that the folk theorem result (Proposition 4) does not necessarily

hold for games that do not admit best replies with full undominated support.

Example 8. Consider the three-action symmetric game described in Table 4. Observe that all

Table 4: A Game in which (a, a) is not a Monotone Weak BBE Outcome
a b c

a 2, 2 2, 3 1.1, 3

b 3, 2 3, 3 1, 0

c 3.1, 1 0, 1 0, 0

the actions in the game are undominated, and that the game does not admit best replies with full

undominated support: there is no strategy of the opponent for which one of the players has a best

reply with full support. This is so because action a (c) is a best reply only to his opponent’s strategies

that assign a probability of at least 90% to action c (a), which implies that actions a and c cannot

be best replies simultaneously. Observe that the undominated minmax payoff of each player is equal

to 1 (because the opponent can play the undominated action c, and by playing this the opponent

guarantees that the player gets a payoff of at most 1).

Consider the undominated action profile (a, a) (which induces a payoff strictly above the undom-

inated minmax payoff to each player). We will show that (a, a) is not a monotone weak BBE (which

demonstrates that the folk theorem result of Proposition 8 does not hold in this game). Assume to

the contrary that (a, a) is a monotone weak BBE. Let ((ψ∗
1, ψ

∗
2) , (a, a)) be a monotone weak BBE.
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The fact that (a, a) ∈ NE
(

G(ψ∗
1
,ψ∗

2)

)

implies that ψ∗
1 (a) (c) > 90%. Consider a deviation of player

2 to having the blind belief ψ′
2 = b. Observe that player 2 plays action b in any equilibrium of

G(ψ∗
1
,ψ′

2)
. The monotonicity of ψ∗

1 implies that ψ∗
1 (b) (a) ≤ ψ∗

1 (a) (a) ≤ 1 − ψ∗
1 (a) (c) ≤ 10%, which

implies that the best reply of player 1 to the perceived strategy of player 2 (ψ∗
1 (b)) does not have

action c in its support. This implies that player 1 gains a payoff of at least 3 in any Nash equilibrium

of the new biased game G(ψ∗
1
,ψ′

2)
, which contradicts ((ψ∗

1, ψ
∗
2) , (a, a)) being a monotone weak BBE.

A.4 Examples of Games with Strategic Complements

In this subsection we analyze three examples of games with strategic complements: input games,

stag hunt games, and the traveler’s dilemma.

Our first example demonstrates how to implement the undominated Pareto optimal profile as a

strong BBE in an input (or partnership game).

Example 9 (Input games). Consider the following input game (closely related games are analyzed

in, among others, Holmstrom, 1982 and Heller and Sturrock, 2017). Let Si = Sj = [0, 1], and let

the payoff function be πi(si, sj , ρ) = si · sj −
s2
i

2ρ , where the parameter 1
ρ

is interpreted as the cost of

effort. One can show that (1) the best-reply function of each agent is to exert an effort that is ρ<1

times smaller than the opponent’s (i.e., BR (sj) = ρ · sj), (2) in the unique Nash equilibrium each

player exerts no effort si = sj = 0, (3) the highest undominated strategy of each player i is si = ρ,

and (4) the undominated strategy profile (ρ, ρ) is Nash improving and yields the best payoff to both

players out of all the undominated symmetric strategy profiles. Let ψ∗
i be the following biased-belief

function:

ψ∗
i (sj) =







sj
ρ

sj < ρ

1 sj ≥ ρ.

Observe that ψ∗
i is monotone and exhibits wishful thinking. We now show that ((ψ∗

1, ψ
∗
2) , (ρ, ρ)) is

a strong BBE. Observe that BR (ψ∗
i (sj)) = BR

(

sj
ρ

)

= sj for any sj ≤ ρ, and that BR (ψ∗
i (sj)) =

BR (1) = ρ for any sj ≥ ρ. This implies that (ρ, ρ) ∈ NE
(

G(ψ∗
1
,ψ∗

2)

)

, and that for any player i, any

biased belief ψ′
i, and any Nash equilibrium (s′

1, s
′
2) of the biased game G(ψ′

i
,ψj), s′

j = min (s′
i, ρ). This

implies that πi (s
′
1, s

′
2) ≤ πi (ρ, ρ), which shows that ((ψ∗

1, ψ
∗
2) , (ρ, ρ)) is a strong BBE. Observe that

this BBE induces only a small distortion in the belief of each player, assuming that ρ is sufficiently

close to one:

|ψ∗
i (sj) − sj | <

∣

∣

∣

∣

sj
ρ

− sj

∣

∣

∣

∣

<
1 − ρ

ρ
.

Our second example characterizes the set of BBE outcomes (and their supporting beliefs) in stag

hunt games.

Example 10 (Stag hunt games). Stag hunt is a two-action game describing a conflict between safety

and social cooperation. Specifically, each player i has two actions: si (“stag”) and hi (“hare”), and

his ordinal preferences are (si, sj) ≻i(hi, sj)�i(hi, hj)≻i(si, hj). Table 5 presents the payoff of a

general stag hunt game, where we have normalized, without loss of generality, the payoff of each

player when playing action profile (si, sj) ((hi, hj)) to be one (zero), and where each gi is positive

and each li is in the interval (0, 1). A common interpretation of stag hunt games (à la Jean-Jacques
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Table 5: Stag Hunt Game (g1, g2 ∈ (0, 1] and l1, l2 > 0)

s2 h2

s1 1, 1 −l1, g2

h1 g1,−l1 0, 0

Rousseau) is a situation in which two individuals go hunting. Each can individually choose to hunt a

stag or to hunt a hare. Each player must choose an action without knowing the choice of the other.

If an individual hunts a stag, he must have the cooperation of his opponent in order to succeed. An

individual can get a hare by himself, but a hare is worth less than a stag. It is well known that the

game admits 3 equilibria: (si, sj), (hi, hj), and (α∗
1, α

∗
2), with

α∗
i =

lj
lj + (1 − gj)

∈ (0, 1) ,

where each αi represents the probability that player i plays si.

Applying the analysis of the previous section shows that the game admits 3 classes of BBE:

• Hunting the hare:((ψ∗
1, ψ

∗
2) , (0, 0)), where each ψ∗

i is an arbitrary monotone biased belief that

satisfies ψ∗
i (1) ≥ α∗

i .

• Hunting the stag. ((ψ∗
1, ψ

∗
2) , (1, 1)), where each ψ∗

i is an arbitrary monotone biased belief that

satisfies ψ∗
i (1) ≤ α∗

i .

• Mixing with less weight to hunting the stag, wishful thinking, and responsiveness to bad

news: ((ψ∗
1, ψ

∗
2) , (β1, β2)), where for each player i: (1) the payoff is above the minmax payoff:

πi (βi, βj) ≥ 0, (2) the players hunt the stag less often in the unique Nash equilibrium: βi ∈

(0, α∗
i ), (3) wishful thinking: ψ∗

i (βj) = α∗
j > βj , (4) responsiveness to bad news: ψ∗

i (α) = α∗
j

for each α ≥ βj , and ψ∗
i (α) < α∗

j for each α < βj .

Observe that any profile (β1, β2), where βi ∈ (α∗
i , 1), cannot be a BBE outcome. If βj = 1, then

player i can gain by deviating to ψ′
i ≡ 1, as the unique equilibrium of the new biased game is (1, 1),

which induces a higher payoff to player i relative to (βi, βj). If βj < 1, then player j can gain by

deviating to ψ′
j ≡ 1, as the only possible equilibria of the new biased game are (1, 1) and (βi, 1),

both of which induce a higher payoff to player j relative to (βi, βj).

Our third example deals with the traveler’s dilemma game, in which each agent has 100 pure

ordered actions that have a discrete payoff structure that resembles strategic complementarity in

interval games. We demonstrate how to implement the undominated Pareto optimal profile in this

game as a strong BBE outcome that presents wishful thinking.

Example 11 (Implementing the undominated Pareto optimal profile as a strong BBE in the trav-

eler’s dilemma).
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Consider the following version of the traveler’s dilemma game (Basu, 1994). Each player has 100

actions (Ai = {1, ..., 100}), and the payoff function of each player is

πi (ai, aj) =























ai + 2 ai < aj

ai ai = aj

aj − 2 ai > aj .

The interpretation of the game is as follows. Two identical suitcases have been lost, each owned

by one of the players. Each player has to evaluate the value of his own suitcase. Both players get

a payoff equal to the minimal evaluation (as the suitcases are known to have identical values), and,

in addition, if the evaluations differ, then the player who gave the lower (higher) evaluation gets a

bonus (malus) of 2 to his payoff.

It is well known that the unique Nash equilibrium is (1, 1), which yields a low payoff of one

to each player. Observe that the traveler’s dilemma has positive spillovers, in the sense that it is

always weakly better for a player if his opponent chooses a higher action. The traveler’s dilemma

has strategic complementarity in the sense that the best reply of an agent is to stop one stage before

his opponent, and, thus, an agent has an incentive to choose a higher action if his opponent chooses

a higher action.

Observe that action 99 is the “highest” undominated action of each player (as 99 is a best reply

against 100, and as action 100 is not a best reply against any of the opponent’s strategies). In what

follows, we construct a strong BBE exhibiting wishful thinking that yields a payoff of 99 to each

player in the undominated symmetric Pareto-optimal strategy profile.

We define the biased belief ψ∗
i as follows:

ψ∗
i (α1, α2..., α99, α100) =

(

α1, α2, ...,
α99

2
,
α99

2
+ α100

)

.

In what follows we show that ((ψ∗
1, ψ

∗
2) , (99, 99)) is a strong BBE. Observe first that ψ∗

i (99) =
(

0, ..., 0, 1
2 ,

1
2

)

, which implies that 99 ∈ BR (ψ∗
i (99)), and, thus, (99, 99) ∈ NE

(

G(ψ∗
1
,ψ∗

2)

)

. Let ψ′
1

be an arbitrary perception bias of player i. Observe that player i never plays action 100 in a any

Nash equilibrium of any biased game, because action 100 is not a best reply against any strategy of

player j. Next observe that player i can obtain a payoff higher than 99 only if (1) player j chooses

action 99 with a positive probability, and (2) player i chooses action 98 with a probability strictly

higher than his probability of playing action 100. However, the biased belief ψ∗
j of player j implies

that if player i chooses action 98 with a probability strictly higher than his probability of playing 100,

then player j never chooses action 99 in any Nash equilibrium of the induced biased game because

action 99 yields a strictly lower payoff to player j than action 98 against the perceived strategy of

player i (because according to this perceived strategy, player i plays action 100 with a probability

strictly less than player i’s probability of playing either action 98 or action 99).

Note that the BBE equilibrium outcome (99, 99) is consistent with level-1 behavior in the level-

k and cognitive hierarchy literature (see, e.g., Stahl and Wilson, 1994; Nagel, 1995; Costa-Gomes,

Crawford, and Broseta, 2001; Camerer, Ho, and Chong, 2004), according to which each agent believes
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that his opponent is following a focal non-strategic action (the action 100 in the traveler’s dilemma),

and best-replies to this belief. The notion of BBE can help explain why such level-k behavior induces

a strategic advantage in the long run, and why, therefore, it is likely to emerge in an equilibrium.

A.5 Hawk-Dove Game

The following example characterizes the set of BBE (and their supporting beliefs) in a hawk-dove

game (which is a game of strategic substitutes).

Example 12 (The Hawk-dove game). The hawk-dove (or “chicken”) game is a two-action game in

which each player i has two actions: di (interpreted as a “dove”-like action of willingness to share a

resource with the opponent) and hi (interpreted as a “hawk”-like action of insistence on getting the

whole resource, even if this requires fighting against the opponent), and where the ordinal preferences

of each player i are (hi, dj) (getting the resource) ≻(di, dj) (sharing the resource) ≻(di, hj) (not

getting the the resource) ≻(hi, hj) (being involved in a serious fight). Table 6 presents the payoff

of a general two-action hawk-dove game, where we have normalized, without loss of generality, the

payoff of each player when playing action profile (di, dj) ((hi, hj)) to be one (zero), and where each

gi positive and each li is in the interval (0, 1).

Table 6: Hawk-Dove Game (g1, g2 > 0 and l1, l2 ∈ (0, 1))

d2 h2

d1 1, 1 1 − l1, 1 + g2

h1 1 + g1, 1 − l1 0, 0

It is well known that the hawk-dove game admits three equilibria: two pure equilibria (d1, h2)

and (h1, d2), and one mixed equilibrium (α∗
1, α

∗
2), where the probability that player i plays action

α∗
i is

α∗
i =

1 − lj
gj + (1 − lj)

∈ (0, 1) , and π
(

α∗
i , α

∗
j

)

= α∗
j · (1 + gi) = 1 −

gi
gi + (1 − li)

· li.

The undominated minmax payoff of each player coincides with the minmax payoff of each player

(as there are no dominated actions), and it is equal to MU
i = 1 − li, which is obtained when the

opponent plays hj .

Applying the analysis of the previous section shows that the game admits 3 classes of BBE:

• Pure equilibrium hawk-dove:
((

ψ∗
i , ψ

∗
j

)

, (0, 1)
)

, where (1) ψ∗
i is an arbitrary monotone biased

belief that satisfies ψ∗
i (0) ≥ α∗

i , and (2) ψ∗
j is an arbitrary monotone biased belief that satisfies

ψ∗
i (0) ≤ α∗

i .

• Mixing (with less weight to playing dove), wishful thinking, and one-directional blindness:

((ψ∗
1, ψ

∗
2) , (β1, β2)), where for each player i: (1) the payoff is above the minmax payoff:

πi (βi, βj) ≥ 1 − li, (2) βi ∈ (0, α∗
i ) (i.e., agents play dove less often in the unique Nash
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equilibrium), (3) wishful thinking: ψ∗
i (βj) = α∗

j > βj , and (4) responsiveness only to good

news: ψ∗
i (α) = α∗

j for each α ≤ βj , and ψ∗
i (α) > α∗

j for each α > βj .

Observe that any profile (β1, β2) where βi ∈ (α∗
i , 1) cannot be a BBE outcome. If βj = 1, then player

i can gain by deviating to ψ′
i ≡ 1, as the unique equilibrium of the new biased game is (0i, 1j), which

induces a higher payoff to player i relative to (βi, βj). If βj < 1, then player j can gain by deviating

into ψ′
j ≡ 1, as the only possible equilibria of the new biased game are (1i, 0j) and (βi, 1j), both of

which induce a higher payoff to player j relative to (βi, βj).

B Evolutionary Interpretation of BBE

In this section we present a formal definition of strong BBE that is exactly analogous to the definition

of a stable configuration à la Dekel, Ely, and Yilankaya (2007). This shows that our static solution

concept of strong BBE captures evolutionary stability in the same way as the solution concepts used

in the literature on “indirect evolution of preferences.” Finally, we illustrate a detailed example of a

possible learning dynamic that may result in convergence to strong BBE.

B.1 Evolutionary Definition of Strong BBE à la Dekel, Ely, and Yilankaya (2007)

In this subsection we present a definition of a strong BBE that is completely analogous to the

definition of a stable configuration a la Dekel, Ely, and Yilankaya (2007) (henceforth DEY) for the

case of perfect observability of the opponent’s type (i.e., p = 1 in DEY).

In the adaptation of the notion of stable configuration à la Dekel, Ely, and Yilankaya (2007) to

our setup we change two aspects (and only these aspects):

1. We deal with general two-player games played between two different populations, rather than

DEY’s setup that deals with symmetric two-player games played within a single population.

2. Each agent in DEY’s model is endowed with a type that determines the agent’s subjective

preferences. By contrast, in our setup each agent is endowed with a type that determines the

agent’s monotone biased belief.

3. We focus on homogeneous configurations. DEY’s general definitions allow one to deal with

heterogeneous configurations (in which different incumbents may have different types). How-

ever, their results mainly deal with homogeneous configurations (in which all incumbents have

the same type). Therefore, to ease notation, we focus on homogeneous configurations in our

adaptation of DEY’s definitions.

After adapting DEY’s definition of a homogeneous configuration (page 689 in DEY) to the three

aspects mentioned above, their definition is as follows:

Definition 13. A (homogeneous) configuration is a pair ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)), where, for each player

i, function ψ∗
i is a monotone biased belief of player i and s∗

i is a strategy of player i satisfying

s∗
i ∈ BR

(

ψ∗
i

(

s∗
j

))

.

It is immediate that any monotone weak BBE is a configuration.
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Next, DEY present a notion of a balanced configuration (page 689 in DEY) that is trivially

satisfied by any homogeneous configuration.

Consider two continuum populations of mass one that follow a configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)).

Assume that one of these populations (say, population i) is invaded by a small group of 0 < ǫ << 1

mutants with a different biased belief ψ′
i 6= ψ∗

i . DEY assume that (1) such a mutation can destabilize

a configuration by resulting in the mutants achieving a higher fitness than the incumbents of the

same population6 i, and (2) the incumbents continue to play the same behavior among themselves

(what DEY calls “focal equilibria”).

Let Ψi be the set of all biased beliefs of player i. Following DEY (page 690 in DEY) we define

Ni,ǫ (ψ∗
i , ψ

′
i) ∈ ∆ (Ψi) to be the set of distributions over biased beliefs in population i resulting from

entry by no more than ǫ mutants. Formally,

Ni,ǫ

(

ψ∗
i , ψ

′
i

)

=
{

µ′
i ∈ ∆ (Ψi) |µ′

i =
(

1 − ǫ′
)

· ψ∗
i + ǫ′ · ψ′

i, ǫ
′ < ǫ

}

.

Given a configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) and a post-entry distribution of biased beliefs in pop-

ulation i µ̃i ∈ Ni,ǫ (ψ∗
i , ψ

′
i), a post-entry focal configuration is a pair

((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

, where (1)

s′
i ∈ BR

(

ψ
′

i

(

s′
j

))

is interpreted as the mutant’s strategy, and (2) s′
j ∈ BR

(

ψ∗
j (s′

i)
)

is interpreted

as population j’s strategy against the mutants. The incumbents are assumed to play the same pre-

entry strategies
(

s∗
i , s

∗
j

)

when being matched among themselves. Let B (µ̃i) denote the set of all

post-entry focal configurations.

Following DEY (Definition 3 on page 691 in DEY), we define DEY-stability of a configuration

as follows.

Definition 14. Configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is DEY-stable if there exists ǫ > 0 such that for

every player i, every biased belief ψ′
i, every post-entry distribution of biased beliefs µ̃i ∈ Ni,ǫ (ψ∗

i , ψ
′
i),

and every post-entry focal configuration
((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

, the mutants are weakly outperformed

relative to the incumbents’ payoff (in their own population), i.e., πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.

B.2 Equivalence between the Definitions

The following result shows that the definition of a stable configuration coincides with our definition

of strong BBE.

Proposition 10. A configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is DEY-stable iff it is a strong BBE.

Proof. “If” part: Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a strong BBE. Let ǫ > 0, i ∈ {1, 2}, and ψ′

i ∈ Ψi.

Let µ̃i ∈ Ni,ǫ

(

ψ∗
j , ψ

′
i

)

be a post-entry distribution of biased beliefs. Let
((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

be a

post-entry focal configuration. The fact that
((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

is a post-entry focal configuration

implies that s′
i ∈ BR

(

ψ
′

i

(

s′
j

))

and s′
j ∈ BR

(

ψ∗
j (s′

i)
)

. The fact that it is a strong BBE implies

that πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

, which shows that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is DEY-stable.

6Under imperfect observability, a mutant can destabilize a configuration by unraveling the original equilibrium
behavior, thereby causing the incumbents’ strategies to substantially diverge following the mutant’s entry into the
population. This cannot happen under perfect observability, as the incumbents can always exhibit the same equilibrium
behavior when being matched against other incumbents (see, page 690 in DEY for a discussion of focal equilibria).
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“Only if” part: Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be DEY-stable configuration. Let i ∈ {1, 2} and ψ′

i ∈ Ψi.

Let
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

be an equilibrium of the new biased game. Let ǫ > 0. Let µ̃i ∈

Ni,ǫ (ψ∗
i , ψ

′
i) be a post-entry distribution of biased beliefs. For each

(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

, let
((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

be a post-entry focal configuration. The assumption that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is

DEY-stable implies that πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

. This implies that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a strong

BBE.

Remark (Allowing multiple simultaneous invasions of mutants). The definition of DEY-stability

presented above is unaffected when various groups of mutants simultaneously invade one of the

populations. By contrast, if one were to require a stable configuration to resist simultaneous invasions

of two groups of mutants, one invasion of each population, it would require a refinement of the concept

of strong BBE, in the spirit of Maynard-Smith and Price’s (1973) notion of evolutionary stability,

such that if both ψ′
1 and ψ′

2 are best replies against configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)), then (1) ψ∗

1

should be a strictly better reply against ψ′
2 (relative to ψ′

1), and (2) ψ∗
2 should be a strictly better

reply against ψ′
1 (relative to ψ′

2).

Similarly, one can formulate a definition of stability equivalent to that of monotone BBE by

requiring the mutants to be weakly outperformed in at least one post-entry focal configuration.

Definition 15. Configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is weakly stable if there exists ǫ > 0 such that

for every player i, every biased belief ψ′
i, and every post-entry distribution of biased beliefs µ̃i ∈

Ni,ǫ (ψ∗
i , ψ

′
i), there exists a post-entry focal configuration

((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

in which the mutants

are weakly outperformed relative to the incumbents’ payoff, i.e., πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.

The following result shows that the definition of a weakly stable configuration coincides with

our definition of weak BBE. The simple proof, which is analogous to the proof of 10, is omitted for

brevity.

Proposition 11. A configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is weakly stable iff it is a monotone weak BBE.

Finally, one can formulate a definition of stability equivalent to that of a BBE by requiring the

mutants to be weakly outperformed in at least one plausible post-entry focal configuration.

Definition 16. Given configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)), ǫ > 0 , i ∈ {1, 2}, biased belief ψ′

i, and a

post-entry distribution of biased beliefs µ̃i ∈ Ni,ǫ (ψ∗
i , ψ

′
i), we say that a post-entry focal configuration

((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

is implausible if: (1) ψ∗
j (s′

i) = ψ∗
j (s∗

i ), (2) s′
j 6= s∗

j , and (3)
((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

∗
j

))

is

a post-entry focal configuration. A post-entry focal configuration is plausible if it is not implausible.

Definition 17. Configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is plausibly stable if there exists ǫ > 0 such that

for every player i, every biased belief ψ′
i, and every post-entry distribution of biased beliefs µ̃i ∈

Ni,ǫ (ψ∗
i , ψ

′
i), there exists a plausible post-entry focal configuration

((

µ̃i, ψ
∗
j

)

,
(

s′
i, s

′
j

))

in which the

mutants are weakly outperformed relative to the incumbents’ payoff, i.e., πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.

The following result shows that the definition of a plausibly stable configuration coincides with

our definition of BBE. The simple proof, which is analogous to the proof of 10, is omitted for brevity.

Proposition 12. A configuration ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is plausibly stable iff it is a BBE.
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B.3 Illustration of the Evolutionary Interpretation

Similar to DEY, we have presented a reduced-form static notion of evolutionary stability, without

formally modeling a detailed dynamics according to which the biased beliefs and the strategies

co-evolve. In Section 3.6 we present the essential features of this evolutionary process, which are

analogous to DEY’s essential features (see first paragraph in Section 2.2 in DEY): agents are endowed

by biased beliefs, these biased-beliefs induce equilibrium behavior in the biased game (presumably

by a relatively quick adjustment of the biased players that leads to equilibrium behavior in the biased

game), behavior determines “success,” and success (the material payoffs) regulates the evolution of

biased beliefs (presumably by a slow process in which agents occasionally die and are replaced by

new agents who are more likely to mimic the biased beliefs of more successful incumbents).

In what follows, we illustrate this evolutionary process and its underlying dynamics in an exam-

ple. Specifically, we present a strong BBE in an “input” game and we illustrate how this strong BBE

can persist, given plausible evolutionary dynamics through which the composition of the population

evolves.

Example 13 (Example 9 revisited). Consider the following “input” game. Let Si = Sj = [0, 1], and

let the payoff function be πi(si, sj , ρ) = si · sj −
s2
i

2ρ , where the parameter 1
ρ

is interpreted as the cost

of effort, and we assume that ρ ∈ (0.5, 1). One can show that (1) the best-reply function of each

agent is to exert an effort that is ρ times smaller than the opponent’s (i.e., BR (sj) = ρ · sj), (2)

in the unique Nash equilibrium of the unbiased game each player exerts no effort si = sj = 0, and

(3) the strategy profile (ρ, ρ) yields a payoff of ρ2 − ρ
2 > 0, which is the highest symmetric payoff

among all strategy profiles in which agents do not use strictly dominated strategies. Let ψ∗
i be the

following biased-belief function:

ψ∗
i (sj) =







sj
ρ

sj < ρ

1 sj ≥ ρ.

In Example 9 we have shown that ((ψ∗
1, ψ

∗
2) , (ρ, ρ)) is a strong BBE. In what follows we illustrate how

this strong BBE can persist. Consider a small group of mutants of population i who have undistorted

beliefs. Assume that, initially, the incumbents of population j use the same strategy against the

mutants as they use against the incumbents of population i (i.e., strategy ρ), and the mutants

gradually learn to best reply to the incumbents’ behavior by playing ρ2. Recall that we assume that

the agents of population j identify the mutants as a separate group of agents who behave differently

than the rest of population j (without assuming that the incumbents of population j know anything

about the biased beliefs of the mutants). These incumbents perceive the mutants’ play as ρ (due

to the incumbents’ biased beliefs), and gradually learn to best reply to this perceived strategy by

playing ρ2. This, in turn, induces the mutants to adapt their play to playing ρ3, and, in response,

the incumbents of population j adapt their play against the mutants and play ρ3 (the best reply

to the mutants’ perceived strategy ρ2). This mutual gradual adaptation process continues until the

play in the matches between incumbents of population j and mutants of population i converges to

(0, 0).

Finally, following the convergence of the behavior in the matches against the mutants to (0, 0),

a slow flow of new agents begins to influence the composition of the population. Each new agent
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randomly chooses a mentor among the agents in his own population, where agents with higher

fitness are more likely to be chosen as mentors. As the mutants get a much lower payoff (0) than

the incumbents of population i ( ρ2 − ρ
2 > 0) in the underlying game, their fitness is expected to be

lower, and they are much less likely to be chosen as mentors. As a result the share of mutants in

the population slowly shrinks until they disappear from the population.

C Principal-Agent (Subgame-Perfect) Definition of BBE

In this appendix we present an equivalent definition of BBE as a subgame-perfect equilibrium of a

two-stage game in which in the first round each player chooses the biased belief of the agent who

will play on his behalf in the second round.

C.1 The Two-Stage Game ΓG

Given an underlying two-player normal-form game G = (S, π) define ΓG as the following four-player

two-stage extensive-form game. The four players in the game Γ are: principal 1 and principal 2

(who choose representative agents for the second stage), agent 1 (who plays on behalf of principal 1

in round 2), and agent 2 (who plays on behalf of principal 2 in round 2).

The game ΓG has 2 stages. In the first stage, the principals simultaneously choose biased beliefs

for their agents. That is, each principal i chooses a biased belief ψi : Sj → Sj for agent i. In the

second stage the agents simultaneously choose their strategies. That is, each agent i chooses strategy

si ∈ Si. The payoff of each principal i is πi (si, sj). The payoff of each agent i is πi (ψi (si) , sj) . Let

Ψi be the set of all feasible (monotone) biased beliefs of agent i.

A pure strategy profile of ΓG (henceforth ΓG-strategy profile) is a tuple (ψ1, ψ2, σ1, σ2), where

each ψi is a biased belief, and each σi : Ψ1 × Ψ2 → Si is a function assigning a strategy to each pair

of (monotone) biased beliefs. Let SPE (ΓG) denote the set of all subgame-perfect equilibria of Γ.

C.2 Subgame-Perfect Definition of Weak BBE

The following result shows that a weak BBE is equivalent to a subgame-perfect equilibrium of Γ.

Formally:

Proposition 13. Let G be a game. Strategy profile ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a weak BBE of G iff there

exists a subgame-perfect equilibrium ((ψ∗
1, ψ

∗
2) , (σ∗

1, σ
∗
2)) of ΓG satisfying σ∗

i (ψ∗
i ) = s∗

i for each player

i.

Proof. “If side”: Let ((ψ∗
1, ψ

∗
2) , (σ∗

1, σ
∗
2)) ∈ SPE (ΓG) be a subgame-perfect equilibrium of Γ sat-

isfying σ∗
i (ψ∗

i ) = s∗
i for each player i. Let ψ′

i be a biased belief of player i. Let s′
1 = σ∗

1

(

ψ
′

i, ψ
∗
j

)

and s′
2 = σ∗

2

(

ψ
′

i, ψ
∗
j

)

. The fact that ((ψ∗
1, ψ

∗
2) , (σ∗

1, σ
∗
2)) ∈ SPE (ΓG) implies that (1) (s′

1, s
′
2) ∈

NE

(

G(ψ′

i
,ψ∗
j )

)

and (2) πi (s
′
1, s

′
2) ≤ πi (s

∗
1, s

∗
2). This implies that ((ψ∗

1, ψ
∗
2) , (s∗

1, s
∗
2)) is a weak BBE

of G.
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“Only if side”: Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a weak BBE of G. We define (σ∗

1, σ
∗
2) as follows:7 (1)

σ∗
i (ψ∗

1, ψ
∗
2) = s∗

i , (2) for each biased belief ψ′
i 6= ψ∗

i , define σ∗
i

(

ψ′
i, ψ

∗
j

)

= s′
i and σ∗

j

(

ψ′
i, ψ

∗
j

)

= s′
j

such that
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

and πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

(such a pair
(

s′
i, s

′
j

)

exists due to

((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) being a weak BBE of G), and (3) for each pair of biased beliefs ψ′

i 6= ψ∗
i and

ψ′
j 6= ψ∗

j , define σ∗
i

(

ψ′
i, ψ

′
j

)

= s′
i and σ∗

j

(

ψ′
i, ψ

′
j

)

= s′
j such that

(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ′
j)

)

. The

definition of (σ∗
1, σ

∗
2) immediately implies that ((ψ∗

1, ψ
∗
2) , (σ∗

1, σ
∗
2)) ∈ SPE (ΓG).

C.3 Subgame-Perfect Definition of BBE

Next, we present an equivalent definition of a BBE as a refinement of a subgame-perfect equilibrium

of ΓG. Specifically, a subgame-perfect equilibrium (ψ∗
1, ψ

∗
2, σ

∗
1, σ

∗
2) is required to remain a subgame-

perfect equilibrium even after changing the off-the equilibrium path behavior to a different Nash

equilibrium of the induced subgame in which (I) a single player (say, player j) has deviated to a

different biased-belief, (II) the non-deviator perceives the deviator’s strategy in the same way as the

original on-the-equilibrium path opponent’s strategy, and (III) the non-deviator changes his behavior

such that after the change it coincides with his on-the-equilibrium path behavior. Formally,

Definition 18. A subgame-perfect equilibrium (ψ∗
1, ψ

∗
2, σ

∗
1, σ

∗
2) ∈ SPE (ΓG) is a plausible subgame-

perfect equilibrium if (I) the biased beliefs ψ∗
1 and ψ∗

2 are monotone, and (II) (ψ∗
1, ψ

∗
2, σ

′
1, σ

′
2) ∈

SPE (Γ) for each pair of second-stage strategies σ′
1, σ

′
2 satisfying: (1)

(

ψ
′

1, ψ
′

2, σ
′

1, σ
′
2

)

∈ SPE (ΓG) for

some pair of first-stage strategies
(

ψ
′

1, ψ
′

2

)

(i.e., second-stage behavior is consistent with equilibrium

behavior in all subgames) and (2) if σ
′

i

(

ψ
′

1, ψ
′

2

)

6= σ∗
i

(

ψ
′

1, ψ
′

2

)

, then: (I) ψ
′

i = ψ∗
i and ψ

′

j 6= ψ∗
j , (II)

ψ∗
i

(

σ
′

j

(

ψ
′

1, ψ
′

2

))

= ψ∗
i

(

σ∗
j

(

ψ
′

1, ψ
′

2

))

, and (III) σ
′

j

(

ψ
′

1, ψ
′

2

)

= σ∗
j

(

ψ
′

1, ψ
′

2

)

.

Proposition 14. Let G be a game. Strategy profile ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a BBE of G iff there exists

a plausible subgame-perfect equilibrium ((ψ∗
1, ψ

∗
2) , (σ∗

1, σ
∗
2)) of ΓG satisfying σ∗

i (ψ∗
i ) = s∗

i for each

player i.

The simple proof, which is analogous to the proof of Proposition 13, is omitted for brevity.

C.4 Subgame-Perfect Definition of Strong BBE

Finally, we present an equivalent definition of a strong BBE as a refinement of a subgame-perfect

equilibrium of Γ, which remains an equilibrium even after changing off the equilibrium path in

subgames to other Nash equilibria of the induced subgames. Formally,

Definition 19. A subgame-perfect equilibrium (ψ∗
1, ψ

∗
2, σ

∗
1, σ

∗
2) ∈ SPE (ΓG) is a strong subgame-

perfect equilibrium if (I) the biased beliefs ψ∗
1 and ψ∗

2 are monotone, and (II) (ψ∗
1, ψ

∗
2, σ

′
1, σ

′
2) ∈

SPE (ΓG) for each pair of second-stage strategies σ′
1, σ

′
2 satisfying: (1)

(

ψ
′

1, ψ
′

2, σ
′

1, σ
′
2

)

∈ SPE (ΓG)

for some pair of first-stage strategies ψ
′

1, ψ
′

2 (i.e., second-stage behavior is consistent with equilib-

rium behavior in all subgames) and (2) σ
′

i (ψ∗
1, ψ

∗
2) = σ∗

i (ψ∗
1, ψ

∗
2) (i.e., behavior after (ψ∗

1, ψ
∗
2) is

unchanged).

7The definition of (σ∗
1 , σ

∗
2) relies on the axiom of choice.
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Our final result shows that a strong BBE is equivalent to a strong subgame-perfect equilibrium

of Γ. Formally:

Proposition 15. Let G be a game. Strategy profile ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a strong BBE of G iff

there exists a strong subgame-perfect equilibrium ((ψ∗
1, ψ

∗
2) , (σ∗

1, σ
∗
2)) of Γ satisfying σ∗

i (ψ∗
i ) = s∗

i for

each player i.

The simple proof, which is analogous to the proof of Proposition 13, is omitted for brevity.

D Discontinuous Biased Beliefs

In this appendix we present an alternative definition of BBE that relaxes the assumption that biased

beliefs have to be continuous. We show that all BBE characterized in the main text remain BBE

when deviators are allowed to use discontinuous biased beliefs.

D.1 Adapted Definitions: Quasi-equilibria

We redefine a biased belief ψi : Sj → Sj to be an arbitrary (rather than continuous) function that

assigns to each strategy of the opponent a (possibly distorted) belief about the opponent’s play. The

definition of a configuration (ψ∗, s∗) is left unchanged (i.e., we require that
(

s∗
i , s

∗
j

)

∈ NE (Gψ∗)).

Recall that a configuration is a BBE if each biased belief is a best reply to the opponent’s biased

belief, in the sense that an agent who chooses a different biased belief is weakly outperformed in

the induced equilibrium of the new biased game. Allowing discontinuous beliefs implies that some

biased games G(ψ1,ψ2) in which one (or both) of the biases are discontinuous may not admit Nash

equilibria. This requires us to adapt the definition of a BBE to deal with behavior in biased games

that do not admit Nash equilibria. We do so by assuming that the resulting behavior in a biased

game that does not admit a Nash equilibrium is a “j-quasi-equilibrium,” in which the non-deviator

(player j) best replies to the perceived behavior of the deviator (player i), while the deviator is

allowed to play arbitrarily. Formally:

Definition 20. Let (ψi, ψj) be a profile of biased beliefs, and let j be one of the players (interpreted

as the non-deviator); then we define QEj
(

G(ψi,ψj)

)

as the set of j-quasi-equilibria of the biased

game G(ψi,ψj) as follows:

QEj
(

G(ψi,ψj)

)

=











NE
(

G(ψi,ψj)

)

NE
(

G(ψi,ψj)

)

6= ∅

{(si, sj) |sj ∈ BR (ψj (si))} NE
(

G(ψi,ψj)

)

= ∅.

Note that any biased game admits a j-quasi-equilibrium.

D.2 Adapted Definitions: BBE′

We redefine our notions of BBE as follows, and write them as BBE′. In a strong BBE′, the deviator

(player i) is required to be outperformed in all j-quasi-equilibria, and biased beliefs are required
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to be monotone. In a weak BBE′, the deviator is required to be outperformed in at least one j-

quasi-equilibrium. The notion of a BBE′ is in between these two notions. Specifically, in a BBE′,

the biased beliefs are required to be monotone, and, in addition, the deviator (player i) is required

to be outperformed in at least one plausible j-quasi-equilibrium of the new biased game, where

implausible j-quasi-equilibria are defined as follows. We say that a j-quasi-equilibrium of a biased

game induced by a deviation of player i is implausible if (1) player i’s strategy is perceived by the

non-deviating player j as coinciding with player i’s original strategy, (2) player j plays differently

relative to his original strategy, and (3) if player j were playing his original strategy, this would

induce a j-quasi-equilibrium of the biased game. That is, implausible j-quasi-equilibria are those in

which the non-deviating player j plays differently against a deviator even though player j has no

reason to do so: player j does not observe any change in player i’s behavior, and player j’s original

behavior remains an equilibrium of the biased game. Formally:

Definition 21. Given configuration (ψ∗, s∗), deviating player i, and biased belief ψ′
i, we say that

a j-quasi-equilibrium of the biased game
(

s′
i, s

′
j

)

∈ QEj

(

G(ψ′
i
,ψ∗
j )

)

is implausible if: (1) ψ∗
j (s′

i) =

ψ∗
j (s∗

i), (2) s∗
j 6= s′

j , and (3)
(

s′
i, s

∗
j

)

∈ QEj

(

G(ψ′
i
,ψ∗
j )

)

. A j-quasi-equilibrium is plausible if it is

not implausible. Let PQEj

(

G(ψ′
i
,ψ∗
j )

)

be the set of all plausible j-quasi-equilibria of the biased

game G(ψ′
i
,ψ∗
j )

.

Note that it is immediate from Definition 21 and the nonemptiness of QEj

(

G(ψ′
i
,ψ∗
j )

)

that

PQEj

(

G(ψ′
i
,ψ∗
j )

)

is nonempty.

Definition 22. Configuration (ψ∗, s∗) is:

1. a strong BBE ′ if (I) each biased belief ψ∗
i is monotone, and (II) πi

(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

for

every player i, every biased belief ψ′
i, and every j-quasi-equilibrium

(

s′
i, s

′
j

)

∈ QEj

(

G(ψ′
i
,ψ∗
j )

)

;

2. a weak BBE ′ if for every player i and every biased belief ψ′
i, there exists a j-quasi-equilibrium

(

s′
i, s

′
j

)

∈ QEj

(

G(ψ′
i
,ψ∗
j )

)

, such that πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

;

3. a BBE ′ if (I) each biased belief ψ∗
i is monotone, and (II) for every player i and every biased

belief ψ′
i, there exists a plausible j-quasi-equilibrium

(

s′
i, s

′
j

)

∈ PQEj

(

G(ψ′
i
,ψ∗
j )

)

, such that

πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.

It is immediate that any strong BBE′ is a BBE′, and that any BBE′ is a weak BBE′.

(resp., strong, weak) BBE′ (ψ∗, s∗) is continuous if each biased function ψ∗
i is continuous. Note,

that deviators are allowed to choose discontinuous biased beliefs.

D.3 Robustness of BBE to Discontinuous Biased Beliefs

In what follows we observe that all the BBE that we characterize in all the results of the paper are

also BBE′. That is, all of our BBE are robust to allowing deviators to use discontinuous biased
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beliefs. Specifically, any BBE (resp., weak BBE, strong BBE) that is characterized in any result

(or example) in the paper, is a continuous BBE′ (resp., weak continuous BBE′, strong continuous

BBE′).

The reason why this observation is true is that in all the arguments in the proofs of the paper’s

results for why a configuration
((

ψ∗
i , ψ

∗
j

)

,
(

s∗
i , s

∗
j

))

is a BBE, when we show that a deviator (player

i) is outperformed after deviating to biased belief ψ′
i and after the players play strategy profile

(

s′
i, s

′
j

)

, we rely only on the assumption that the non-deviator (player j) best replies to the deviator

(i.e., that sj ∈ BR
(

ψ∗
j (s′

i)
)

, which is implied by assuming
(

s′
i, s

′
j

)

∈ QEj

(

G(ψ′
i
,ψ∗
j )

)

), and we do

not use in any of the arguments the assumption that the deviator plays a best reply (i.e., we do not

rely on si ∈ BR
(

ψ
′

i

(

s′
j

))

in any of the proofs).

E Partial Observability

Throughout the paper we assume that if an agent deviates to a different biased belief, then the

opponent always observes this deviation. In this appendix, we relax this assumption, and show that

our results hold also in a setup with partial observability (some results hold for any level of partial

observability, while others hold for a sufficiently high level of observability).

E.1 Restricted Biased Games

Let p ∈ [0, 1] denote the probability that an agent who is matched with an opponent who deviates

to a different biased belief privately observes the opponent’s deviation (henceforth, observation

probability). If an agent does not observe the deviation, then he continues playing his original

configuration’s strategy.

Our definitions of configuration and biased game remain unchanged. We now define a restricted

biased game G(ψ′
i
,ψ∗
j
,s∗
j
,p) as a game with a payoff function according to which (1) each player’s payoff

is determined by the opponent’s perceived strategy, and (2) the non-deviator is restricted to playing

s∗
j with probability p (i.e., when not observing the opponent’s deviation). Formally:

Definition 23. Given an underlying game G = (S, π), a profile of biased beliefs
(

ψ′
i, ψ

∗
j

)

, and a

strategy s∗
j of player j (interpreted as the non-deviator), let the restricted biased game G(ψ′

i
,ψ∗
j
,s∗
j
,p) =

(

S, π̃
(

ψ′
i, ψ

∗
j , s

∗
j , p
))

be defined as follows:

π̃i
(

ψ′
i, ψ

∗
j , s

∗
j , p
)

(si, sj) = p · πi
(

si, ψ
′
i (sj)

)

+ (1 − p) · πi
(

si, ψ
′
i

(

s∗
j

))

, and

π̃j
(

ψ′
i, ψ

∗
j , s

∗
j , p
)

(si, sj) = p · πj
(

sj , ψ
∗
j (si)

)

+ (1 − p)πi
(

s∗
j , ψ

∗
j (si)

)

.

A Nash equilibrium of a p-restricted biased game is defined in the standard way. Formally, a

pair of strategies s∗ = (s′
1, s

′
2) is a Nash equilibrium of a restricted biased game G(ψ′

i
,ψ∗
j
,s∗
j
,p), if each

s′
i is a best reply against the perceived strategy of the opponent, i.e.,

s′
i = argmaxsi∈Si

(

π̃i
(

ψ′
i, ψ

∗
j , s

∗
j , p
) (

si, s
′
j

))

.
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Let NE

(

G(ψ′
i
,ψ∗
j
,s∗
j)

)

⊆ S1 × S2 denote the set of all Nash equilibria of the restricted biased

game G(ψ′
i
,ψ∗
j
,s∗
j
,p).

Observe that the set of strategies of a biased game is convex and compact, and the payoff function

π̃i
(

ψ′
i, ψ

∗
j , s

∗
j , p
)

: Si × Sj → R is weakly concave in the first parameter and continuous in both

parameters. This implies (due to a standard application of Kakutani’s fixed-point theorem) that

each restricted biased game G(ψ′
i
,ψ∗
j
,s∗
j
,p) admits a Nash equilibrium (i.e., NE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

6= ∅).

E.2 p-BBE

We are now ready to define our equilibrium concept. Configuration (ψ∗, s∗) is a p-BBE if each biased

belief is a best reply to the opponent’s biased belief, in the sense that an agent who chooses a different

biased belief is weakly outperformed in the induced equilibrium of the new restricted biased game.

We present three versions of p-BBE that differ with respect to the equilibrium selection when the

new biased game admits multiple equilibria. In a strong p-BBE (I) each biased-belief is monotone,

and (II) the deviator is required to be outperformed in all Nash equilibria of the new restricted biased

game. In a weak BBE, the deviator is required to be outperformed in at least one equilibrium of

the new restricted biased game.

The notion of a p-BBE is in between these two notions. Specifically, in at p-BBE (I) each biased-

belief is monotone, and (II) the deviator is required to be outperformed in at least one plausible

equilibrium of the new restricted biased game, where implausible equilibria are defined as follows.

We say that a Nash equilibrium of a restricted biased game induced by a deviation of player i is

implausible if (1) player i’s strategy is perceived by the non-deviating player j as coinciding with

player i’s original strategy, (2) player j plays differently relative to his original strategy, and (3) if

player j were playing his original strategy, this would induce an equilibrium of the biased game.

That is, implausible equilibria are those in which the non-deviating player j plays differently against

a deviator even though player j has no reason to do so: player j does not observe any change in

player i’s behavior, and player j’s original behavior remains an equilibrium of the biased game.

Formally:

Definition 24. Given configuration (ψ∗, s∗), deviating player i, and biased belief ψ′
i, we say that a

Nash equilibrium of the restricted biased game
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

is implausible if: (1)

ψ∗
j (s′

i) = ψ∗
j (s∗

i), (2) s∗
j 6= s′

j , and (3)
(

s′
i, s

∗
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

. An equilibrium is plausible

if it is not implausible. Let PNE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

be the set of all plausible equilibria of the biased

game G(ψ′
i
,ψ∗
j
,s∗
j
,p).

Note that it is immediate from Definition 24 and the nonemptiness of NE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

that

PNE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

is nonempty.

Definition 25. Configuration (ψ∗, s∗) is:
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1. a strong p-BBE if (I) each biased belief ψ∗
i is monotone, and (II) πi

(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

for

every player i, every biased belief ψ′
i, and every Nash equilibrium

(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

;

2. a weak p-BBE if for every player i and every biased belief ψ′
i, there exists a Nash equilibrium

(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

, such that πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

;

3. a p-BBE if (I) each biased belief ψ∗
i is monotone, and (II) for every player i and every biased

belief ψ′
i, there exists a plausible Nash equilibrium

(

s′
i, s

′
j

)

∈ PNE

(

G(ψ′
i
,ψ∗
j
,s∗
j
,p)

)

, such that

πi
(

s′
i, s

′
j

)

≤ πi
(

s∗
i , s

∗
j

)

.

It is immediate that: (1) any strong p-BBE is a p-BBE, and that any p-BBE is a weak p-BBE, and

(2) the definition of 1-BBE (resp., weak 1-BBE, strong 1-BBE) coincides with the original definition

of BBE (resp., weak BBE, strong BBE).

E.3 Extension of Results

In what follows we sketch how to extend our results to the setup of partial observability. The

adaptations of the proofs are relatively simple, and, for brevity, we only sketch the differences with

respect to the original proofs.

E.3.1 Adaptation of Section 4 (Nash Equilibria and BBE Outcomes)

The example that some Nash equilibria cannot be supported as the outcomes of weak P -BBE with

undistorted beliefs can be extended for any p > 0.

Example 14 (Example 1 revisited. Cournot equilibrium cannot be supported by undistorted beliefs).

Consider the following symmetric Cournot game with linear demand G = (S, π): Si = [0, 1] and

πi (si, sj) = si · (1 − si − sj) for each player i. The unique Nash equilibrium of the game is s∗
i = s∗

j =
1
3 , which yields both players a payoff of 1

9 . Fix observation probability p > 0. Assume to the contrary

that this outcome can be supported as a weak p-BBE by the undistorted beliefs ψ∗
i = ψ∗

j = Id. Fix

a sufficiently small 0 < ǫ << 1. Consider a deviation of player 1 to the blind belief ψ′
i ≡ 1

3 − 2 · ǫ.

Note that this blind belief has a unique best reply: s′
i = 1

3 + ǫ. The unique equilibrium of the

restricted biased game G(ψ′
i
,ψ∗
j
,s∗
j
,p) is s′

j = 1
3 − ǫ

2 , s′
i = 1

3 + ǫ, which yields the deviator a payoff of

1
9 + ǫ

6 − ǫ2

2 with probability p (when his deviation is observed by player 2) and a payoff of 1
9 − ǫ2 with

probability 1 − p (when his deviation is not observed by player 2). For a sufficiently small ǫ > 0 the

expected payoff of the deviator is strictly larger than 1
9 .

All the results of Section 4 hold for any observation probability p ∈ [0, 1] with minor adaptations

to the proofs.

Proposition 16 (Proposition 1 extended). Let (s∗
1, s

∗
2) be a (strict) Nash equilibrium of the game

G = (S, π). Let ψ∗
1 ≡ s∗

2 and ψ∗
2 ≡ s∗

1. Then ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a (strong) p-BBE for any p ∈ [0, 1].

Claim 2 (Claim 1 extended). The unique Nash equilibrium payoff of a zero-sum game is also the

unique payoff in any weak p-BBE for any p ∈ [0, 1].



18 E PARTIAL OBSERVABILITY

Proposition 17 (Proposition 2 extended). If a game admits a strictly dominant strategy s∗
i for

player i, then any weak p-BBE outcome is a Nash equilibrium of the underlying game.

E.3.2 Adaptation of Section 6 (Main Results)

Adaptation of Subsection 6.1 (Preliminary Result) Minor adaptations of the proof of Propo-

sition 3 show that it holds for any p ∈ [0, 1]. Formally:

Proposition 18. Let p ∈ [0, 1]. If a strategy profile s∗ = (s∗
1, s

∗
2) is a weak p-BBE outcome, then

(1) the profile s∗ is undominated and (2) πi (s
∗) ≥ MU

i .

Adaptation of Subsection 6.2 (Games with Strategic Complements) Minor adaptations

to the proofs of the results of Subsection 6.2 show that most of these results (namely, part (1) of

Proposition 4 and Corollaries 2 and 3) hold for any p ∈ [0, 1], while part (2) of Proposition 4 holds

for p-s sufficiently close to one. Formally:

Proposition 19 (Proposition 4 extended). Let G be a game with strategic substitutes and positive

externalities.

1. Fix p ∈ [0, 1]. Let (s∗
1, s

∗
2) be a p-BBE outcome. Then (s∗

1, s
∗
2) is (I) undominated, and for each

player i: (II) πi
(

s∗
i , s

∗
j

)

≥ MU
i , and (III) s∗

i ≤ max
(

BR
(

s∗
j

))

(underinvestment).

2. Let (s∗
1, s

∗
2) be an undominated profile satisfying for each player i: (II’) πi

(

s∗
i , s

∗
j

)

> M̃U
i , and

(III) s∗
i ≤ max

(

BR
(

s∗
j

))

. Then there exists p̄ < 1 such that (s∗
1, s

∗
2) is a p-BBE outcome for

any p ∈ [p̄, 1].

Moreover, if πi (si, sj) is strictly concave then (s∗
1, s

∗
2) is a strong p-BBE outcome for any

p ∈ [p̄, 1].

Corollary 7. Fix p ∈ [0, 1]. Let G be a game with strategic complements and positive externalities

with a lowest Nash equilibrium (s1, s2) satisfying s1 < max (Si) for each player i. Let (s∗
1, s

∗
2) be a

p-BBE outcome. Then si ≤ s∗
i for each player i.

Corollary 8. Fix p ∈ [0, 1]. Let G be a game with positive externalities and strategic complements.

Let

((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a p-BBE. If s∗

i /∈ {min (Si) ,max (Si)}, then player i exhibits wishful thinking

(i.e., ψ∗
i

(

s∗
j

)

≥ s∗
j ).

One can also adapt the examples of Section 6.2 (and, similarly, the examples of Sections 6.3 and

6.4) to sufficiently high ps.

Adaptation of Section 6.3 (Games With Strategic Substitutes) Minor adaptations to

the proofs of the results of Subsection 6.3 show that most of these results (namely, part (1) of

Proposition 5 and Corollaries 4 and 5) hold for any p ∈ [0, 1], while part (2) of Proposition 5 holds

for p-s sufficiently close to one. Formally:
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Proposition 20 (Proposition 5 extended). Let G be a game with strategic substitutes and positive

externalities.

1. Fix p ∈ [0, 1]. Let (s∗
1, s

∗
2) be a p-BBE outcome. Then (s∗

1, s
∗
2) is (I) undominated, and for each

player i: (II) πi
(

s∗
i , s

∗
j

)

≥ MU
i , and (III) s∗

i ≥ min
(

BR
(

s∗
j

))

(overinvestment).

2. Let (s∗
1, s

∗
2) be an undominated profile satisfying for each player i: (II’) πi

(

s∗
i , s

∗
j

)

> M̃U
i , and

(III) s∗
i ≥ min

(

BR
(

s∗
j

))

. Then there exists p̄ < 1 such that (s∗
1, s

∗
2) is a p-BBE outcome for

any p ∈ [p̄, 1].

Moreover, if πi (si, sj) is strictly concave then (s∗
1, s

∗
2) is a strong p-BBE outcome for any

p ∈ [p̄, 1].

Corollary 9. Fix p ∈ [0, 1]. Let G be a game with strategic substitutes and positive externalities. Let

(s∗
1, s

∗
2) be a BBE outcome. Then, there exists a Nash equilibrium of the underlying game (se1, s

e
2),

and a player i such that sei ≥ s∗
i .

Corollary 10. Fix p ∈ [0, 1]. Let G be a game with strategic substitutes and positive externalities.

Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a p-BBE. If s∗

i /∈ {min (Si) ,max (Si)}, then player i exhibits wishful

thinking (i.e., ψ∗
i

(

s∗
j

)

≥ s∗
j ).

Adaptation of Section 6.3 (Games With Strategic Opposites) Minor adaptations to the

proofs of the results of Subsection 6.3 show that most of these results (namely, part (1) of Proposition

6, and Corollary 6) hold for any p ∈ [0, 1], while part (2) of Proposition 6 holds for p-s sufficiently

close to one. Formally:

Proposition 21. Let G be a game with positive externalities and strategic opposites: ∂π1(s1,s2)
∂s1

> 0

and ∂π2(s1,s2)
∂s1

< 0 for each pair of strategies s1, s2.

1. Fix p ∈ [0, 1]. Let (s∗
1, s

∗
2) be a p-BBE outcome. Then (s∗

1, s
∗
2) is (I) undominated: (II)

πi
(

s∗
i , s

∗
j

)

≥ MU
i for each player i, and (III) s∗

1 ≤ max (BR (s∗
2)) and s∗

2 ≥ min (BR (s∗
1))

(underinvestment of player 1 and overinvestment of player 2).

2. Let (s∗
1, s

∗
2) be a profile satisfying: (I) undominated, (II) πi

(

s∗
i , s

∗
j

)

> M̃U
i for each player i,

and (III) s∗
1 ≤ max (BR (s∗

2)) and s∗
2 ≥ min (BR (s∗

1)). Then there exists p̄ < 1 such that

(s∗
1, s

∗
2) is a p-BBE outcome for any p ∈ [p̄, 1].

Corollary 11. Fix p ∈ [0, 1]. Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) be a p-BBE of a game with positive externalities

and strategic opposites (i.e., ∂π1(s1,s2)
∂s1

> 0 and ∂π2(s1,s2)
∂s1

< 0 for each pair of strategies s1, s2). If

s∗
i /∈ {min (Si) ,max (Si)}, then player i exhibits pessimism (i.e., ψ∗

i

(

s∗
j

)

≤ s∗
j ).

E.3.3 Adaptation of Section 7 (Additional Results)

Adaptation of Subsection 7.1 (BBE with Strategic Stubbornness) In what follows we

show how to extend Example 5 to the setup of partial observability (while we leave the extension of

the general result, Proposition 7, to future research). The example focuses on Cournot competition.
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We show that for each level of partial observability p ∈ [0, 1], there exists a strong BBE in which one

of the players (1) has a blind belief and (2) plays a strategy that is between the Nash equilibrium

strategy and the Stackelberg strategy (and the closer it is to the Stackelberg strategy, the higher

the value of p), while the opponent has undistorted beliefs. The first player’s (resp., opponent’s)

payoff is strictly increasing (resp., decreasing) in p: it converges to the Nash equilibrium payoff when

p → 0, and it converges to the Stackelberg leader’s (resp., follower’s) payoff when p → 1.

Example 15 (Example 5 revisited). Consider the symmetric Cournot game with linear demand:

G = (S, π): Si = R
+ and πi (si, sj) = si · (1 − si − sj) for each player i. Let p ∈ [0, 1] be the

observation probability. Then

((

1 − p

3 − p
, Id

)

,

(

1

3 − p
,

2 − p

2 · (3 − p)

))

is a strong BBE that yields a payoff of 2−p
2·(3−p) to player 1, and yields a payoff of

(

2−p
2·(3−p)

)2
to player

2. Observe that player 1’s payoff is increasing in p, and it converges to the Nash equilibrium (resp.,

Stackelberg leader’s) payoff of 1
9 (1

8) when p → 0 (p → 1). Further observe that player 2’s payoff

is decreasing in p, and it converges to the Nash equilibrium (resp., Stackelberg follower’s) payoff

of 1
9 ( 1

16) when p → 0 (p → 1). The argument that
((

1−p
3−p , Id

)

,
(

1
3−p ,

2−p
2·(3−p)

))

is a strong BBE is

sketched as follows: (1)
{(

1
3−p ,

2−p
2·(3−p)

)}

= NE

(

G( 1−p

3−p
,Id
)

)

(because 1
3−p is the unique best reply

against 1−p
3−p and 2−p

2·(3−p) is the unique best reply against 1
3−p) ; (2) for any biased belief ψ′

2, player 1

keeps playing 1
3−p due to having a blind belief, and as a result player 2’s payoff is at most

(

2−p
2·(3−p)

)2
;

and (3) for any biased belief ψ′
1 inducing a deviating player 1 to play strategy x, player 2 plays 1−x

2

(the unique best reply against x) with probability p (when observing the deviation), and player 2

plays 2−p
2·(3−p) (the original configuration strategy) with the remaining probability of 1 − p. Thus, the

payoff of a deviating player 1 who deviates into playing strategy x is

π (x) := p ·x ·

(

1 − x

2

)

+(1 − p) ·x ·

(

1 − x−
2 − p

2 · (3 − p)

)

=

(

1 −
p

2

)

·x ·(1 − x)−
(2 − p) · (1 − p)

2 · (3 − p)
·x,

where this payoff function π (x) is strictly concave in x with a unique maximum at x = 1
3−p (the

unique solution to the FOC 0 = ∂π
∂x

=
(

1 − p
2

)

· (1 − 2 · x) − (2−p)·(1−p)
2·(3−p) ).

Extending the Folk Theorem Results for Sufficiently High p-s The main results of Subsec-

tion 7.2, show folk theorem results for: (1) monotone BBE in games that admit best replies with full

undominated support, and (2) strong BBE in interval games with a payoff function that is strictly

concave in the agent’s strategy, and weakly convex in the opponent’s strategy. Minor adaptations

of each proof can show that each result can be extended to p-s that are sufficiently close to one.

Formally:

Proposition 22 (Proposition 8 extended). Let G be a finite game that admits best replies with full

undominated support. Let (s∗
1, s

∗
2) be an undominated strategy profile that induces for each player a

payoff above his minmax payoff (i.e., πi (s
∗
1, s

∗
2) > MU

i ∀i ∈ {1, 2}). Then there exists p̄ < 1, such

that (s∗
1, s

∗
2) is a monotone weak p-BBE outcome for each p ∈ [p̄, 1].
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Proposition 23 (Proposition 9 extended). Let G = (S, π) be an interval game. Assume that for

each player i, πi (si, sj) is strictly concave in si and weakly convex in sj. If (s∗
1, s

∗
2) is undominated

and πi (s
∗
1, s

∗
2) > MU

i for each player i, then there exists p̄ < 1, such that (s∗
1, s

∗
2) is a strong p-BBE

outcome for each p ∈ [p̄, 1].

Sketch of adapting the proofs of Propositions 22 and 23 to the setup of partial observability. Observe

that the gain of an agent who deviates to a different biased belief, when his deviation is unobserved

by the opponent, is bounded (due to the payoff of the underlying game being bounded). When the

deviation is observed by the opponent, the agent is strictly outperformed, given the BBE constructed

in the proofs of Propositions 8 and 9. This implies that there exists p̄ < 1 sufficiently close to one,

such that the loss of a mutant when being observed by his opponent outweighs the mutant’s gain

when being unobserved for any p ∈ [p̄, 1].

F Proofs

F.1 Proof of Proposition 9

Recall that we assume the payoff function πi to be continuously twice differentiable. This implies

that πi is Lipschitz continuous. Let Ki > 0 be the Lipschitz constant of the payoff function πi with

respect to its first parameter, i.e., Ki satisfies

∥

∥πi (s1, s2) − πi
(

s′
1, s2

)∥

∥ ≤ Ki ·
∥

∥s1 − s′
1

∥

∥ .

Assume that (s∗
1, s

∗
2) is undominated and πi (s

∗
1, s

∗
2) > MU

i for each player i. Let 0 < Di = πi (s
∗
1, s

∗
2)−

MU
i . For each player j, let spj be an undominated strategy that guarantees that player i obtains, at

most, his minmax payoff MU
i , i.e., spj = argminsj∈SUj

(maxsi∈Si πi (si, sj)) . The strict concavity of

πi (si, sj) with respect to si implies that the best-reply correspondence is a continuous one-to-one

function. Thus, BR−1 (si) is a singleton for each si, and we identify BR−1 (si) with the unique

element in this singleton set.

Let ǫ > 0 be a sufficiently small number satisfying ǫ < min
(

Di
Ki
,
Dj
Kj

)

. For each δ ∈ [0, 1] define

for each player i:

sδi =
ǫ− δ

ǫ
· s∗
i +

δ

ǫ
· spi .

Let ψǫi be defined as follows:

ψǫi

(

s′
j

)

=











BR−1

(

s
|s′
j
−sj|

i

)

∣

∣

∣s′
j − sj

∣

∣

∣ < ǫ

BR−1 (spi )
∣

∣

∣s′
j − sj

∣

∣

∣ ≥ ǫ.

Note that ψǫi is continuous. We now show that ((ψǫ1, ψ
ǫ
2) , (s∗

1, s
∗
2)) is a strong BBE. Observe first

that the definition of (ψǫ1, ψ
ǫ
2) immediately implies that (s∗

1, s
∗
2) ∈ NE

(

G(ψǫ1,ψǫ2)

)

. Next, consider a

deviation of player i to an arbitrary biased belief ψ′
i. Consider any equilibrium of the new biased

game
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψǫ
j)

)

. If |s′
i − si| ≥ ǫ, then the definition of ψǫj (s′

i) implies that spj = s′
j ,

and that player i achieves a payoff of at most MU
i < πi (s

∗
1, s

∗
2). If s′

i = s∗
i , then it is immediate that
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s′
j = s∗

j and that player i does not gain from his deviation. If 0 < |s′
i − si| < ǫ, then the definition

of ψǫj (s′
i) implies that

πi
(

s′
i, s

′
j

)

= πi

(

s′
i, s

|s′
i
−si|

j

)

= πi

(

s′
i,
ǫ− |s′

i − si|

ǫ
· s∗
j +

|s′
i − si|

ǫ
· spj

)

≤

ǫ− |s′
i − si|

ǫ
· πi

(

s′
i, s

∗
j

)

+
|s′
i − si|

ǫ
· πi

(

s′
i, s

p
j

)

≤
ǫ− |s′

i − si|

ǫ
· πi

(

s′
i, s

∗
j

)

+
|s′
i − si|

ǫ
·MU

i ≤

ǫ− |s′
i − si|

ǫ
· πi

(

s∗
i, s

∗
j

)

+Ki ·
∣

∣s′
i − si

∣

∣+
|s′
i − si|

ǫ
·MU

i =

ǫ− |s′
i − si|

ǫ
· πi

(

s∗
i, s

∗
j

)

+Ki ·
∣

∣s′
i − si

∣

∣+
|s′
i − si|

ǫ
·
(

πi
(

s∗
i, s

∗
j

)

−Di

)

=

πi
(

s∗
i, s

∗
j

)

+
ǫ− |s′

i − si|

ǫ
·Ki ·

∣

∣s′
i − si

∣

∣−
|s′
i − si|

ǫ
·Di ≤ πi

(

s∗
i, s

∗
j

)

+Ki ·
∣

∣s′
i − si

∣

∣−
|s′
i − si|

ǫ
·Di =

πi
(

s∗
i, s

∗
j

)

+
∣

∣s′
i − si

∣

∣ ·

(

Ki −
Di

ǫ

)

< πi
(

s∗
i, s

∗
j

)

,

where the first inequality is due to the convexity of πi (si, sj) with respect to sj , the second inequality

is due to πi
(

s′
i, s

p
j

)

≤ MU
i , the third inequality is due to the Lipschitz continuity, the penultimate

inequality is implied by
ǫ−|s′

i
−si|
ǫ

< 1, and the last inequality is due to defining ǫ to satisfy ǫ <

min
(

Di
Ki
,
Dj
Kj

)

. This proves that player i cannot gain from his deviation, and that ((ψǫ1, ψ
ǫ
2) , (s1, s2))

is a strong BBE.

F.2 Proof of Proposition 4

Part 1: Proposition 3 implies (I) and (II). It remains to show (III, overinvestment). Let
((

ψ∗
i , ψ

∗
j

)

,
(

s∗
i , s

∗
j

))

be a BBE. Assume to the contrary that s∗
i < min

(

BR
(

s∗
j

))

. Consider a deviation of

player i to a blind belief that the opponent always plays strategy s∗
j (i.e., ψ′

i ≡ s∗
j ). Let

(

s′
i, s

′
j

)

∈

PNE

(

G(ψ′
i
,ψ∗
j )

)

be a plausible equilibrium of the new biased game. Observe first that s′
i ∈

BR
(

ψ′
i

(

s′
j

))

= BR
(

s∗
j

)

. This implies that s′
i > s∗

i , and, thus, due to the monotonicity of ψ∗
j

we have: ψ∗
j (s′

i) ≥ ψ∗
j (s∗

i ). We consider two cases:

1. If ψ∗
j (s′

i) > ψ∗
j (s∗

i ), then the strategic complementarity implies that s′
j ≥ min

(

BR
(

ψ∗
j (s′

i)
))

≥

max
(

BR
(

ψ∗
j (s∗

i )
))

≥ s∗
j , and this, in turn, implies that player i strictly gains from his devi-

ation: πi
(

s′
i, s

′
j

)

≥ πi
(

s′
i, s

∗
j

)

> πi
(

s∗
i , s

∗
j

)

, a contradiction.

2. If ψ∗
j (s′

i) = ψ∗
j (s∗

i ), then
(

s′
i, s

∗
j

)

∈ PNE

(

G(ψ′
i
,ψ∗
j )

)

and πi
(

s′
i, s

∗
j

)

> πi
(

s∗
i , s

∗
j

)

, which

contradicts that
((

ψ∗
i , ψ

∗
j

)

,
(

s∗
i , s

∗
j

))

is a BBE.

Part 2: Assume that strategy profile (s∗
1, s

∗
2) satisfies I, II, and III. For each player i let sei =

min
(

BR−1 (s∗
i )
)

. For every player i and every strategy si < s∗
i define X (si) as the set of strategies

s′
i for which player i is worse off (relative to πi (s

∗
1, s

∗
2)) if he plays strategy si, while player j plays
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a best-reply to s′
i. Formally:

Xs∗ (si) =
{

s′
i ∈ Si|πi (si, sj) ≤ πi

(

s∗
i , s

∗
j

)

∀sj ∈ BR
(

s′
i

)

}

.

The assumption that πi
(

s∗
i , s

∗
j

)

> M̃U
i implies that Xs∗ (si) is nonempty for each si. The as-

sumption of strategic complements implies that Xs∗ (si) is an interval starting at min (Si). Let

φs∗ (si) = sup (Xs∗ (si)). The assumption that the payoff function is continuously twice differen-

tiable implies that φs∗ (si) is continuous. The assumption that sej = min
(

BR−1 (s∗
i )
)

implies that

limsiրs∗
i

(φs∗ (si)) = sei . These observations imply that for each player j there exists a monotone

biased belief ψ∗
j satisfying (1) ψ∗

j (si) = sei for each si ≥ s∗
i and (2) ψ∗

j (si) ≤ φs∗ (si) for each si < s∗
i

with an equality only if φs∗ (si) = min (Si).

We now show that these properties of (ψ∗
1, ψ

∗
2) imply that ((ψ∗

1, ψ
∗
2) , (s∗

1, s
∗
2)) is a BBE (a strong

BBE if πi (si, sj) is strictly concave in si). Consider a deviation of player i into an arbitrary biased

belief ψ′
i. For each s′

i ≥ s∗
i , and each

(

s′
i, s

′
j

)

∈ PNE

(

G(ψ′
i
,ψ∗
j )

)

(
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

), the

fact that ψ∗
j (s′

i) = ψ∗
j (s∗

i ) implies that s′
j = s∗

j , and due to assumption (III) of overinvestment and

the concavity of the payoff function: πi
(

s′
i, s

′
j

)

= πi
(

s′
i, s

∗
j

)

≤ πi
(

s∗
i , s

∗
j

)

. For each s′
i < s∗

i , and each
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

, the fact that ψ∗
j (s′

i) ≤ φs∗ (s′
i) with an equality only if φs∗ (s′

i) = min (Si)

(and, thus, ψ∗
j (s′

i) ∈ Xs∗ (s′
i)) implies that πi

(

s′
i, s

′
j

)

≤ πi (s
∗
1, s

∗
2). This shows that player i cannot

gain from his deviation, which implies that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a (strong) BBE.

F.3 Proof of a Lemma Required for Corollary 2

Lemma 1. Let G be a game with strategic complements and positive externalities with a lowest

Nash equilibrium (s1, s2) satisfying si < max (Si)i for each player i. Let s∗
1 < s1. Then for each

s∗
2 ∈ S2 either (1) s∗

1 < min (BR (s∗
2)) or (2) s∗

2 < min (BR (s∗
1)).

Proof. Assume first that s∗
2 > s2. The fact that s1 ∈ BR (s2) and s∗

2 > s2, together with the strategic

complements, imply that s∗
1 < s1 < min (BR (s∗

2)). We are left with the case where s∗
2 ≤ s2. Consider

a restricted game in which the set of strategies of each player i is restricted to being strategies that

are at most s∗
i . The game is a game of strategic complements, and, thus, it admits a pure Nash

equilibrium
(

s′
i, s

′
j

)

. The minimality of (s1, s2) implies that
(

s′
i, s

′
j

)

cannot be a Nash equilibrium

of the unrestricted game. The strategic complements and the concavity of the payoff jointly imply

that if
(

s′
i, s

′
j

)

is not a Nash equilibrium of the unrestricted game, then there is player i for which

s∗
i = s′

i < min
(

BR
(

s′
j

))

≤ min
(

BR
(

s∗
j

))

.

F.4 Proof of a Lemma Required for Corollary 3

Lemma 2. Let G be a game with positive externalities and strategic complementarity of the payoff

of player i (i.e.,
∂2πi(si,sj)
∂si·∂sj

> 0 for each si, sj). Then s′
j < sj implies that max

(

BR
(

s′
j

))

≤

min (BR (sj)) with an equality only if max
(

BR
(

s′
j

))

= min (BR (sj)) ∈ {min (Si) ,max (Si)}.

Proof. The inequality s′
j < sj and the strategic complementarity of the payoff of player i im-

plies that
∂πi(si,s′

j)
∂si

<
∂πi(si,sj)

∂si
for each si ∈ Si, which implies that whenever max

(

BR
(

s′
j

))

/∈
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{min (Si) ,max (Si)}, then

max
(

BR
(

s′
j

))

= max











s∗
i ∈ Si|

∂πi
(

si, s
′
j

)

∂si
= 0

∣

∣

∣

∣

∣

∣

si=s∗
i











< min

{

s∗
i ∈ Si|

∂πi (si, sj)

∂si
= 0

∣

∣

∣

∣

si=s∗
i

}

≤ min (BR (sj)) .

This shows that the strict inequality holds whenever max
(

BR
(

s′
j

))

/∈ {min (Si) ,max (Si)}. It

remains to show that the weak inequality (namely, max
(

BR
(

s′
j

))

≤ min (BR (sj))) holds when

max
(

BR
(

s′
j

))

∈ {min (Si) ,max (Si)}. If max
(

BR
(

s′
j

))

= min (Si) then this is immediate. As-

sume that max
(

BR
(

s′
j

))

= max (Si). Then:

max (Si) = max











s∗
i ∈ Si|

∂πi
(

si, s
′
j

)

∂si
≥ 0

∣

∣

∣

∣

∣

∣

si=s∗
i











.

≤ min

{

s∗
i ∈ Si|

∂πi (si, sj)

∂si
≥ 0

∣

∣

∣

∣

si=s∗
i

}

≤ min (BR (sj)) .

F.5 Proof of Proposition 5

The proof is analogous to the proof of Proposition 4, and is presented for completeness.

Part 1: Proposition 3 implies (I) and (II). It remains to show (III) (underinvestment). Let
((

ψ∗
i , ψ

∗
j

)

,
(

s∗
i , s

∗
j

))

be a BBE. Assume to the contrary that s∗
i > max

(

BR
(

s∗
j

))

. Consider a

deviation of player i to a blind belief that the opponent always plays strategy s∗
j (i.e., ψ′

i ≡ s∗
j ). Let

(

s′
i, s

′
j

)

∈ PNE

(

G(ψ′
i
,ψ∗
j )

)

be a plausible equilibrium of the new biased game. Observe first that

s′
i ∈ BR

(

ψ′
i

(

s′
j

))

= BR
(

s∗
j

)

. This implies that s′
i < s∗

i , and, thus, due to the monotonicity of ψ∗
j

we have: ψ∗
j (s′

i) ≤ ψ∗
j (s∗

i ). We consider two cases:

1. If ψ∗
j (s′

i) < ψ∗
j (s∗

i ), then the strategic substitutability implies that s′
j ≥ min

(

BR
(

ψ∗
j (s′

i)
))

≥

max
(

BR
(

ψ∗
j (s∗

i )
))

≥ s∗
j , and this, in turn, implies that player i strictly gains from his

deviation: πi
(

s′
i, s

′
j

)

≥ πi
(

s′
i, s

∗
j

)

> πi
(

s∗
i , s

∗
j

)

, a contradiction.

2. If ψ∗
j (s′

i) = ψ∗
j (s∗

i ), then
(

s′
i, s

∗
j

)

∈ PNE

(

G(ψ′
i
,ψ∗
j )

)

and πi
(

s′
i, s

∗
j

)

> πi
(

s∗
i , s

∗
j

)

, which

contradicts that
((

ψ∗
i , ψ

∗
j

)

,
(

s∗
i , s

∗
j

))

is a BBE.

Part 2: Assume that strategy profile (s∗
1, s

∗
2) satisfies I, II, and III. For each player i let sei =

max
(

BR−1 (s∗
i )
)

. For each player i and each strategy si > s∗
i define X (si) as the set of strategies

s′
i for which player i is worse off (relative to πi (s

∗
1, s

∗
2)) if he plays strategy si, while player j plays
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a best-reply to s′
i. Formally:

Xs∗ (si) =
{

s′
i ∈ Si|πi (si, sj) ≤ πi

(

s∗
i , s

∗
j

)

∀sj ∈ BR
(

s′
i

)

}

.

The assumption that πi
(

s∗
i , s

∗
j

)

> M̃U
i implies that Xs∗ (si) is nonempty for each si. The as-

sumption of strategic substitutes implies that Xs∗ (si) is an interval ending at max (Si). Let

φs∗ (si) = inf (Xs∗ (si)). The assumption that the payoff function is continuously twice differen-

tiable implies that φs∗ (si) is continuous. The assumption that sej = max
(

BR−1 (s∗
i )
)

implies that

limsiցs∗
i

(φs∗ (si)) = sei . These observations imply that for each player j there exists a monotone

biased belief ψ∗
j satisfying (1) ψ∗

j (si) = sei for each si ≤ s∗
i and (2) ψ∗

j (si) ≥ φs∗ (si) for each si > s∗
i

with an equality only if φs∗ (si) = max (Si).

We now show that these properties of (ψ∗
1, ψ

∗
2) imply that ((ψ∗

1, ψ
∗
2) , (s∗

1, s
∗
2)) is a BBE (a strong

BBE if πi (si, sj) is strictly concave in si). Consider a deviation of player i to an arbitrary biased

belief ψ′
i. For each s′

i ≤ s∗
i , and each

(

s′
i, s

′
j

)

∈ PNE

(

G(ψ′
i
,ψ∗
j )

)

(
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

), the

fact that ψ∗
j (s′

i) = ψ∗
j (s∗

i ) implies that s′
j = s∗

j and, due to assumption (III) of underinvestment and

the concavity of the payoff function, it follows that πi
(

s′
i, s

′
j

)

= πi
(

s′
i, s

∗
j

)

≤ πi
(

s∗
i , s

∗
j

)

. For each

s′
i > s∗

i , and each
(

s′
i, s

′
j

)

∈ NE

(

G(ψ′
i
,ψ∗
j )

)

, the fact that ψ∗
j (s′

i) ≥ φs∗ (s′
i) with an equality only if

φs∗ (si) = max (Si) (and, thus, ψ∗
j (s′

i) ∈ Xs∗ (s′
i)) implies that πi

(

s′
i, s

′
j

)

≤ πi (s
∗
1, s

∗
2). This shows

that player i cannot gain from his deviation, which implies that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a (strong)

BBE.

F.6 Proof of a Lemma Required for Corollary 4

Lemma 3. Let G be a game with strategic substitutes and positive externalities. Let (s∗
1, s

∗
2)

be a strategy profile satisfying s∗
i > sei for each player i and each Nash equilibrium (se1, s

e
2) ∈

NE (G).Then, either (1) s∗
1 > max (BR (s∗

2)) or (2) s∗
2 > max (BR (s∗

1)).

Proof. Consider a restricted game in which the set of strategies of each player i is restricted to being

strategies that are at least s∗
i . The restricted game is a game with strategic substitutes, and, thus,

it admits a pure Nash equilibrium (s′
1, s

′
2) (recall, that after relabeling the set of strategies of one

of the players, the game becomes supermodular, and because of this the game admits a pure Nash

equilibrium due to Milgrom and Roberts, 1990). The assumption that s∗
i > sei for each player i

and each Nash equilibrium (se1, s
e
2) ∈ NE (G) implies that (s′

1, s
′
2) cannot be a Nash equilibrium of

the unrestricted game. The concavity of the payoff and the strategic substitutes jointly imply that

if
(

s′
i, s

′
j

)

is not a Nash equilibrium of the unrestricted game, then there is a player i for which

s∗
i = s′

i > max
(

BR
(

s′
j

))

≥ max
(

BR
(

s∗
j

))

.

F.7 Proof of Corollary 4

The proof is analogous to Corollary 3, and is presented for completeness. Assume to the contrary

that ψ∗
i

(

s∗
j

)

< s∗
j . Lemma 4 (below) implies that min

(

BR
(

ψ∗
i

(

s∗
j

)))

≥ max
(

BR
(

s∗
j

))

with an
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equality only if

min
(

BR
(

ψ∗
i

(

s∗
j

)))

∈ {min (Si) ,max (Si)} .

Part 1 of Proposition 5 and the definition of a monotone BBE imply that

min
(

BR
(

ψ∗
i

(

s∗
j

)))

≤ s∗
i ≤ max

(

BR
(

s∗
j

))

.

The previous inequalities jointly imply that

min
(

BR
(

ψ∗
i

(

s∗
j

)))

= s∗
i = max

(

BR
(

s∗
j

))

∈ {min (Si) ,max (Si)} ,

which contradicts the assumption that s∗
i /∈ {min (Si) ,max (Si)}.

Lemma 4. Let G be a game with positive externalities and strategic substitutability of the payoff

of player i (i.e.,
∂2πi(si,sj)
∂si·∂sj

> 0 for each si, sj). Then s′
j < sj implies that min

(

BR
(

s′
j

))

≥

max (BR (sj)) with an equality only if min
(

BR
(

s′
j

))

= min (BR (sj)) ∈ {min (Si) ,max (Si)}.

Proof. The proof is analogous to the proof of Lemma 1, and is presented for completeness. The

inequality s′
j < sj and the strategic substitutability of the payoff of player i implies that

∂πi(si,s′
j)

∂si
>

∂πi(si,sj)
∂si

for each si ∈ Si, which implies that whenever min
(

BR
(

s′
j

))

/∈ {min (Si) ,max (Si)}, then

min
(

BR
(

s′
j

))

= min











s∗
i ∈ Si|

∂πi
(

si, s
′
j

)

∂si
= 0

∣

∣

∣

∣

∣

∣

si=s∗
i











> max

{

s∗
i ∈ Si|

∂πi (si, sj)

∂si
= 0

∣

∣

∣

∣

si=s∗
i

}

= max (BR (sj)) .

This shows that the strict inequality holds whenever min
(

BR
(

s′
j

))

/∈ {min (Si) ,max (Si)}. It

remains to show that the weak inequality (namely, min
(

BR
(

s′
j

))

≥ max (BR (sj))) holds when

min
(

BR
(

s′
j

))

∈ {min (Si) ,max (Si)}. If min
(

BR
(

s′
j

))

= max (Si) then this is immediate. As-

sume that min
(

BR
(

s′
j

))

= min (Si). Then:

min (Si) = min











s∗
i ∈ Si|

∂πi
(

si, s
′
j

)

∂si
≥ 0

∣

∣

∣

∣

∣

∣

si=s∗
i











≥ max

{

s∗
i ∈ Si|

∂πi (si, sj)

∂si
≥ 0

∣

∣

∣

∣

si=s∗
i

}

≥ max (BR (sj)) .

F.8 Proof of Proposition 6

The proof is analogous to the proof of Proposition 4, and is presented for completeness.

Part 1: Proposition 3 implies (I) and (II). It remains to show (III). Let ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2))

be a BBE. We begin by showing overinvestment of player 2. Assume to the contrary that s∗
2 <
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min
(

BR
(

s∗
j

))

. Consider a deviation of player 2 to a blind belief that the opponent always plays

strategy s∗
1 (i.e., ψ′

2 ≡ s∗
1). Let (s′

1, s
′
2) ∈ PNE

(

G(ψ∗
1
,ψ′

2)

)

be a plausible equilibrium of the new

biased game. Observe first that s′
2 ∈ BR (ψ′

2 (s′
1)) = BR (s∗

1) . This implies that s′
2 > s∗

2, and, thus,

due to the monotonicity of ψ∗
1, we have : ψ∗

1 (s′
2) ≥ ψ∗

1 (s∗
2). We consider two cases:

1. If ψ∗
1 (s′

2) > ψ∗
1 (s∗

2), then the strategic complementarity of player 1’s payoff implies that s′
1 ≥

min (BR (ψ∗
1 (s′

2))) ≥ max (BR (ψ∗
1 (s∗

2))) ≥ s∗
1, and, this, in turn, implies that player 2 strictly

gains from his deviation: π2 (s′
1, s

′
2) ≥ π2 (s′

1, s
∗
2) > π2 (s∗

1, s
∗
2), a contradiction.

2. If ψ∗
1 (s′

2) = ψ∗
1 (s∗

2), then (s∗
1, s

′
2) ∈ PNE

(

G(ψ∗
1
,ψ′

2)

)

and π2 (s∗
1, s

′
2) > π2 (s∗

1, s
∗
2), which con-

tradicts that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a BBE.

Next we show underinvestment of player 1. Assume to the contrary that s∗
1 > max (BR (s∗

2)).

Consider a deviation of player 1 to a blind belief that the opponent always plays strategy s∗
2 (i.e.,

ψ′
1 ≡ s∗

2). Let (s′
1, s

′
2) ∈ PNE

(

G(ψ′
1
,ψ∗

2)

)

be a plausible equilibrium of the new biased game. Observe

first that s′
1 ∈ BR (ψ′

1 (s′
2)) = BR (s∗

2) . This implies that s′
1 < s∗

2 and, thus, due to the monotonicity

of ψ∗
2, we have: ψ∗

2 (s′
1) ≤ ψ∗

2 (s∗
1). We consider two cases:

1. If ψ∗
2 (s′

1) < ψ∗
2 (s∗

1), then the strategic substitutability of player 2’s payoff implies that s′
2 ≥

min (BR (ψ∗
2 (s′

1))) ≥ max (BR (ψ∗
2 (s∗

1))) ≥ s∗
2, and this, in turn, implies that player 1 strictly

gains from his deviation: π1 (s′
1, s

′
2) ≥ π1 (s′

1, s
∗
2) > π1 (s∗

1, s
∗
2), a contradiction.

2. If ψ∗
2 (s′

1) = ψ∗
2 (s∗

1), then (s′
1, s

∗
2) ∈ PNE

(

G(ψ′
1
,ψ∗

2)

)

and π1 (s′
1, s

∗
2) > π1 (s∗

1, s
∗
2), which con-

tradicts that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a BBE.

Part 2: Assume that strategy profile (s∗
1, s

∗
2) satisfies I, II, and III. Let se1 = min

(

BR−1 (s∗
2)
)

. For

each strategy s2 < s∗
2 define X (s2) as the set of strategies s′

2 for which player 2 is worse off (relative

to π2 (s∗
1, s

∗
2)) if he plays strategy s2, while player 1 plays a best-reply to s′

2. Formally:

Xs∗ (s2) =
{

s′
2 ∈ S2|π2 (s1, s2) ≤ π2

(

s∗
i , s

∗
j

)

∀s1 ∈ BR
(

s′
2

)

}

.

The assumption that π2 (s∗
1, s

∗
2) > M̃U

2 implies that Xs∗ (s2) is nonempty for each s2 ∈ S2. The

assumption of strategic complements of player 1’s payoff implies that Xs∗ (s2) is an interval starting

at min (S2). Let φs∗ (s2) = sup (Xs∗ (s2)). The assumption that the payoff function is continuously

twice differentiable implies that φs∗ (s2) is continuous. The assumption that se1 = min
(

BR−1 (s∗
2)
)

implies that lims2րs∗
2

(φs∗ (s2)) = se2. These observations imply that there exists a monotone biased

belief ψ∗
1 satisfying (1) ψ∗

1 (s2) = se1 and (2) ψ∗
1 (s2) ≤ φs∗ (s2) for each s2 < s∗

2 with an equality only

if φs∗ (s2) = min (S2).

Let se2 = max
(

BR−1 (s∗
1)
)

. For each strategy s1 > s∗
1 define X (s1) as the set of strategies

s′
1 ∈ S1 for which player 1 is worse off (relative to π2 (s∗

1, s
∗
2)) if he plays strategy s1, while player 2

plays a best-reply to s′
1. Formally:

Xs∗ (s2) =
{

s′
1 ∈ S1|π2 (s1, s2) ≤ π2 (s∗

1, s
∗
2) ∀s1 ∈ BR

(

s′
2

)}

.

The assumption that π1 (s∗
1, s

∗
2) > M̃U

1 implies that Xs∗ (s1) is nonempty for each s1 ∈ S1. The

assumption of strategic substitutes of player 2’s payoff implies that Xs∗ (s1) is an interval ending
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at max (S1). Let φs∗ (s1) = inf (Xs∗ (s1)). The assumption that the payoff function is continuously

twice differentiable implies that φs∗ (s1) is continuous. The assumption that se2 = max
(

BR−1 (s∗
1)
)

implies that lims1ցs∗
1

(φs∗ (s1)) = se1. These observations imply that there exists a monotone biased

belief ψ∗
2 satisfying (1) ψ∗

2 (s1) = se1 and (2) ψ∗
2 (s1) ≥ φs∗ (s1) for each s1 > s∗

1 with an equality only

if φs∗ (s1) = max (S1).

We now show that these properties of (ψ∗
1, ψ

∗
2) imply that ((ψ∗

1, ψ
∗
2) , (s∗

1, s
∗
2)) is a BBE. Consider

a deviation of player 2 into an arbitrary biased belief ψ′
2. For each s′

2 ≥ s∗
2, and each (s′

1, s
′
2) ∈

PNE
(

G(ψ∗
1
,ψ′

2)

)

, the fact that ψ∗
1 (s′

2) = ψ∗
1 (s∗

2) implies that s′
1 = s∗

1, and due to assumption (III)

of the overinvestment of player 2 and the concavity of the payoff function, we have π2 (s′
1, s

′
2) =

π2 (s′
1, s

∗
2) ≤ π2 (s∗

1, s
∗
2). For each s′

2 < s∗
2, and each (s′

1, s
′
2) ∈ NE

(

G(ψ∗
1
,ψ′

2)

)

, the fact that ψ∗
1 (s′

2) ≤

φs∗ (s′
2) with an equality only if φs∗ (s′

2) = min (S2) implies that π2 (s′
1, s

′
2) ≤ π2 (s∗

1, s
∗
2). This shows

that player 2 cannot gain from his deviation.

Finally, consider a deviation of player 1 to an arbitrary biased belief ψ′
1. For each s′

1 ≤

s∗
1, and each (s′

1, s
′
2) ∈ PNE

(

G(ψ′
1
,ψ∗

2)

)

, the fact that ψ∗
2 (s′

1) = ψ∗
2 (s∗

1) implies that s′
2 = s∗

2,

and due to assumption (III) of the underinvestment of player 1 and the concavity of the payoff

function, we have π1 (s′
1, s

′
1) = π1 (s′

1, s
∗
3) ≤ π1 (s∗

1, s
∗
3). For each s′

1 > s∗
1, and each (s′

1, s
′
3) ∈

NE
(

G(ψ′
1
,ψ∗

2)

)

, the fact that ψ∗
2 (s′

1) ≥ φs∗ (s′
1) with an equality only if φs∗ (s1) = max (S1) implies

that π1 (s′
1, s

′
2) ≤ π1 (s∗

1, s
∗
2). This shows that player 1 cannot gain from his deviation, which implies

that ((ψ∗
1, ψ

∗
2) , (s∗

1, s
∗
2)) is a BBE.

F.9 Proof of Corollary 4 (Pessimism in Games with Strategic Opposites)

The proof is analogous to the proof of Corollary 3, and is presented for completeness.

Assume to the contrary that ψ∗
i

(

s∗
j

)

> s∗
j for some player i. Assume first that ψ∗

2 (s∗
1) > s∗

1; then

Lemma 4 implies that max (BR (ψ∗
2 (s∗

1))) ≤ min (BR (s∗
1)) with an equality only if

max (BR (ψ∗
2 (s∗

1))) ∈ {min (S2) ,max (S2)} .

Part 1 of Proposition 6 and the definition of a monotone BBE imply that

max (BR (ψ∗
2 (s∗

1))) ≥ s∗
2 ≥ min (BR (s∗

1)) .

The previous inequalities jointly imply that

max (BR (ψ∗
2 (s∗

1))) = s∗
2 = min (BR (s∗

1)) ∈ {min (S2) ,max (S2)} ,

which contradicts the assumption that s∗
2 /∈ {min (S2) ,max (S2)}.

We are left with the case of ψ∗
1 (s∗

2) > s∗
2; then Lemma 2 implies that min (BR (ψ∗

1 (s∗
2))) ≥

max (BR (s∗
2)) with an equality only if

min (BR (ψ∗
1 (s∗

2))) ∈ {min (S1) ,max (S1)} .
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Part 1 of Proposition 6 and the definition of a monotone BBE imply that

min (BR (ψ∗
1 (s∗

2))) ≤ s∗
1 ≤ max (BR (s∗

2)) .

The previous inequalities jointly imply that

min (BR (ψ∗
1 (s∗

2))) = s∗
1 = max (BR (s∗

2)) . ∈ {min (S1) ,max (S1)} ,

which contradicts the assumption that s∗
1 /∈ {min (S1) ,max (S1)}.
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