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Abstract

This paper uses networks to study price dispersion in seller-buyer markets where

buyers with unit demand interact with multiple, but not all, sellers; and buyers and

sellers compete on prices after they meet. The central finding of this paper is that price

dispersion is determined by the structure of the network: how seller-buyer meetings are

distributed in the market. Networks with very few links can have no price dispersion,

while networks with many links can still support significant price dispersion. We present

three main theoretical results. First, for any given network we characterize the pairwise

stable matchings and the prices that support them. Second, we characterize the set of all

graphs where price dispersion is precluded. Third, we use a theorem from Frieze (1985)

to show that the graphs where price dispersion is precluded arise asymptotically with

probability one in random Poisson networks, even as the probability of each individual

link goes to zero. We also provide quantitative results on the finite sample properties of

price dispersion in random networks. Finally, we present an application to eBay to show

that: (i) a calibration of our model reproduces the price dispersion documented in eBay

quite well, and (ii) the amount of price dispersion in eBay would decrease substantially

(35-45 percent as measured by the coefficient of variation) in a counterfactual analysis,

where we change eBay’s network structure so that links are drawn with equal probability

for all sellers and buyers.
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1 Introduction

This paper studies price dispersion in seller-buyer markets where buyers with unit demand

interact with multiple, but not all, sellers (meetings are many-to-many); and buyers and

sellers compete on prices after they meet (competition is ex post). Examples include labor

markets, where firms interview multiple applicants for a given vacancy and then bargain

over wages; eBay auctions, where buyers participate in multiple auctions and prices are

determined when the auctions end; and automobile markets, where consumers visit multiple

dealerships and negotiate over prices. These markets exhibit significant price dispersion. In

labor markets, similar workers are paid different wages (Mortensen 2005); in eBay, identical

goods are sold by the same seller at different prices (Einav, Kuchler, Levin, and Sundaresan

2015); and in markets for automobiles, identical automobiles are sold at different prices by

the same dealer (Morton, Zettelmeyer, and Silva-Risso 2001). One important channel for

generating price dispersion is the presence of frictions. We define frictions as anything that

limits opportunities for trade between buyers and sellers in a market (e.g. search costs,

transaction costs, inertia, etc.). A number of questions arise: When do frictions lead to price

dispersion? In particular, is it necessary to have buyers interact with every seller to preclude

price dispersion?

The central finding of this paper is that price dispersion is determined by how seller-

buyer meetings are distributed in the market. An implication is that there are markets with

few meetings that preclude price dispersion, and markets with many meetings that can still

support significant price dispersion.1 The absence of price dispersion in markets with few

meetings is caused by “indirect competition.” To illustrate what indirect competition means,

consider the case of two sellers and many buyers, where there is only one common buyer

meeting with both sellers. Buyers meeting with one seller indirectly compete with buyers

meeting with the other seller because the two sellers are connected through the common

buyer. Indirect competition results in an interdependence in the prices between these two

sellers. Even if buyers do not meet with every seller, indirect competition can equalize the

prices in the market. How meetings are distributed determines the extent of the indirect

competition and, hence, whether price dispersion can occur.

In this paper, we use networks to model seller-buyer markets. Buyers have unit demand,

sellers offer one unit of an indivisible homogeneous good, and a buyer can obtain a good from

the seller only if the two are linked. On one hand, when all buyers are linked to all sellers,

the market is frictionless. On the other hand, whenever there is at least one seller that is

not linked to every buyer, the market has frictions. The level of frictions in the network is

determined by the total number of links in the network. Our theoretical results take networks

as exogenous. As we do not model the link formation process in the networks, these results

apply to the network resulting from any link formation process (i.e. to any realized network).

1E.g. see example 1 in section 2.
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We study pairwise stable matchings in these networks and characterize the prices that sustain

them. Pairwise stability is a specification of whom buys from whom and at what prices, such

that two properties hold: (1) trades are individually rational, and (2) there are no pairwise

Pareto improvements restricted to the network. When we say “restricted to the network,” we

mean that a buyer can propose an improvement to a seller (or vice versa) only if they are

linked in the network.2

For any given network, we characterize the pairwise stable matchings and the prices that

support them. To do this, we construct a decomposition of the network, which we call an

abstraction of the network. Abstractions decompose the original network into cliques, i.e.,

fully connected subnetworks of the original network, and the links between these cliques. For

any given matching (stable or not), we consider abstractions where matched pairs belong

to the same clique. We then make two observations. First, within each clique all buyers

pay the same price because cliques are frictionless submarkets of the original. Second, if

a buyer in one clique is linked to a seller in another clique, this must mean that the price

consistent with pairwise stability in the first clique is weakly lower than the price in the

second clique, otherwise the buyer would not have purchased from the seller in its own

clique. Our propositions prove that these two observations completely characterize pairwise

stable matchings and their supporting prices (see example 2).

We use the characterization result outlined above to characterize the set of all graphs

where price dispersion is precluded. To do this, we define two concepts: the Law of One

Price, and the Strong Law of One Price. Consider a set of buyers, a set of sellers, and a set of

links between buyers and sellers; we call this a graph. Suppose we also consider a valuation

profile, that is, a function that assigns a valuation to each buyer and seller. A graph endowed

with a valuation profile is called a network. Consider a network with the following property:

for any pairwise stable matching, the only prices that make the matching stable are those

where all buyers acquiring a good pay the same price. For example, if the valuation of

all sellers and buyers is the same, then the network satisfies the Law of One Price. While

networks that satisfy the Law of One Price are those where price dispersion is precluded, the

driving force behind this result is the valuation profile, rather than it being a property of the

underlying graph. Now, suppose that we have a graph with the following property: for all

valuation profiles, and for any pairwise stable matching (given the valuations), the only way

to make the matching stable is that all buyers acquiring a good pay the same price. We say

that this graph satisfies the Strong Law of One Price. We call it “Strong” because in such

graphs the Law of One Price holds across all valuation profiles (see example 3). For example,

a graph where every buyer is linked to every seller satisfies the Strong Law of One Price.

Theorem 1 characterizes all graphs that satisfy the Strong Law of One Price. A corollary

of Theorem 1 is that sparse graphs—that is, graphs with a low proportion of existing links

2This is different from Kircher (2009), where the only dimension along which a Pareto improvement can
be suggested is through the allocation, not the prices, because prices are fixed ex ante.
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to total possible links—may still satisfy the Strong Law of One Price. This result implies

that the level of frictions, represented by the sparsity of a graph, is not the only cause of

price dispersion. Price dispersion is also a function of the network structure represented by

the graph, and we can characterize all network structures that lead to (and preclude) price

dispersion.

Having studied price dispersion for any given network, we look at the price dispersion that

arises in the special case of random poisson networks.3 We study random poisson networks

because they are the natural counterpart of the random search model. We show that, as

networks become large, the Strong Law of One Price holds asymptotically almost surely even

as the probability of each individual link goes to zero. We do this in three steps. First, we

use a theorem from Frieze (1985) to show that in a balanced random network (i.e. a random

network with the same number of agents on both sides) the probability of a Hamiltonian

cycle (that is, a cycle that visits each node once, and only once, and ends on the same

node as it began) goes to one as the the market grows. Second, we show that for graphs with

Hamiltonian cycles, the set of pairwise stable matchings is the set of perfect matchings. That

is, matchings where all agents are matched. Lastly, we apply the results from the previous

paragraph to show that the Strong Law of One Price holds asymptotically almost surely,

even when the number of agents on both sides is different. To understand the relevance

of the previous result in finite networks, we perform a numerical analysis and simulate a

large number of random poisson networks.4 We develop a deferred acceptance algorithm for

finding pairwise stable matches and the full set of prices that supports them. On one hand,

we show that in a network of 10,000 sellers, over 99 percent of the sellers are paid the same

price when less than 0.1 percent of the possible links are active. On the other hand, only

5 percent of the sellers are paid the same price when 0.01 percent of the possible links are

active. These correspond to the cases where, on average, each buyer has ten links and one

link.

Are the network structures discussed above relevant from an empirical standpoint? The

online trading platform eBay provides a natural application of our model with ex post com-

petition. One of the selling mechanisms in eBay are competitive auctions. Einav, Kuchler,

Levin, and Sundaresan (2015) report substantial price dispersion in auction prices of identi-

cal goods sold by the same seller (mean coefficient of variation 10-15 percent). At the same

time, links are not distributed uniformly at eBay; the platform maximizes revenue by giving

certain listings more prominance in search results than others. In contrast, conditional on

a given search query, eBay does not tailor search results based on the characteristics of the

buyers. In the quantitative analysis applied to eBay we calibrate our model using the net-

3A random poisson network is one where each link is formed with a given probability, λ, and the formation
is independent across links. We also consider networks where each link is formed with a different probability.

4From a practical standpoint, numerical analysis is necessary for this problem because solving finite
random networks analytically is intractable for all but the simplest networks. We are not the first to rely on
numerical methods for analyzing finite random networks. See the discussion in Jackson (2008, Chapter 4,
section 2).
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work structure reported in Backus, Podwol, and Schneider (2013) and the search behavior

reported by Blake, Nosko, and Tadelis (2016).5 We then compare the summary statistics

(i.e. moments) generated by our model and the ones reported by Einav, Kuchler, Levin, and

Sundaresan (2015). We show that: (i) our model reproduces the price dispersion observed in

eBay quite well (Table 1) and (ii) the amount of price dispersion, as measured by the mean

coefficient of variation, would decrease substantially (35-45 percent) if links are drawn with

equal probability for all sellers and buyers (this is done in a counterfactual analysis).

In summary, we make three main contributions. (1) We develop a model whereby, for

any given network, we characterize the set of pairwise stable matchings and the prices that

support them. We characterize the set of graph structures, where the only prices that support

pairwise stable matchings are those where each matched buyer pays the same price. Such

graphs can never exhibit price dispersion. (2) We use tools from the random networks

literature to derive conditions under which random graphs have no price dispersion. We

use simulations to understand the relevance of our asymptotic results in large, but finite,

networks. (3) We calibrate the network model using empirical moments from the literature.

We use the calibrated model to investigate the effect of a change in the structure of the

network on price dispersion, and conclude that network structures are empirically important

for understanding price dispersion.

Related Literature

This paper is related to the price dispersion literature. Most of the literature does not study

frictional markets with many-to-many meetings and ex post competition. The literatures

closest to our paper are the simultaneous search and competing sellers literatures.6 These

models feature many-to-many meetings and a subset of these papers have some form of

ex post competition. Most models in simultaneous search allow workers to make multiple

applications and vacancies (firms) post prices ex ante.7 In these models, pricing and link

formation are simultaneous because they are decisions that are made ex ante to network

formation. Since vacancies cannot adjust their wages after the network has been formed,

these models often feature inefficiencies where linked workers and firms leave the market

unmatched. Albrecht, Gautier, and Vroman (2006) allow for ex post competition between

two vacancies that want to hire the same worker (many-to-one meetings) and find that this

ex post competition corrects for this linked-but-not-matched inefficiency. Although agents in

these models do indirectly compete when choosing ex ante prices and search intensities, the

ex post competition is constrained by the price-posting. In contrast, this paper investigates

5Backus, Podwol, and Schneider (2013) show that more “visible” listings (i.e. ranked higher in eBay search
results) are more likely to result in a sale, have more bidders, and have higher prices. Blake, Nosko, and
Tadelis (2016) use eBay’s clickstream data to report detailed statistics on consumer search behavior.

6A full review of the literature on price dispersion, search, and matching is outside the scope of this paper.
See Baye, Morgan, and Scholten (2004) and Chade, Eeckhout, and Smith (2017) for surveys.

7See e.g. Stigler (1961); Butters (1977); Burdett and Judd (1983); Acemoglu and Shimer (2000); Chade
and Smith (2006); Kircher (2009); Galenianos and Kircher (2009); Gautier, Moraga-González, and Wolthoff
(2016); and Wolthoff (2017).
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the role of ex post indirect competition where agents have many-to-many meetings and where

the price competition occurs after agents meet. In the competing sellers literature, either

buyers are allowed to interact with only one seller (e.g. Wolinsky 1988; McAfee 1993; Julien,

Kennes, and King 2000; Albrecht, Gautier, and Vroman 2014) or there are no frictions (e.g.

Peters and Severinov 1997, 2006).8 Restricting buyers to interact with only one seller restricts

ex post competition in settings with many-to-many meetings. By allowing buyers to be linked

to many sellers, our model generates ex post competition among sellers absent in competing

sellers models with frictions.

Our paper is related to the literature that uses networks to study seller-buyer markets

with ex post competition and many-to-many meetings. We consider a setup that is similar

to the seminal paper by Kranton and Minehart (2001): buyers demand one unit, sellers

supply one unit, and a buyer and seller can only exchange the good if they are connected

in the network. Papers with setups such as this can be divided into two main strands: a

literature that is concerned with the network formation process and the properties of the

networks that arise endogenously (e.g. Peters and Severinov 1997; Kranton and Minehart

2001; Elliott 2014; Elliott 2015; Gautier and Holzner 2017; Goyal and Vega-Redondo 2007),

and a literature that studies properties of exogenously given networks, regardless of how they

were formed (e.g. Corominas-Bosch 2004; Manea 2011; Polanski and Vega-Redondo 2013;

Gautier and Holzner 2016; Condorelli, Galeotti, and Renou 2016; Fainmesser and Galeotti

2015; Manea 2016; Talamas 2018).

Our paper is closest to the latter literature, because we are interested in characterizing

the set of graphs that satisfies the Strong Law of One Price. For this purpose, we do not

need a network formation process. However, we think that an interesting question for future

research is to characterize which network formation processes generate graphs that satisfy

the Strong Law of One Price.

Within the literature on exogenously given buyer-seller networks, authors generally pro-

pose a game to be played by the agents, and they study the properties of the equilibrium

strategy profiles. Such properties include efficiency of the final allocation, the welfare value

of adding extra links (i.e. the pricing of individual links), or whether or not there is price

dispersion in the supporting prices. For instance, Kranton and Minehart (2001) study the

efficiency of the final allocation; Fainmesser and Galeotti (2015) study the welfare effects of

how a monopolist’s pricing strategy reacts to detailed information on the network structure;

Condorelli, Galeotti, and Renou (2016) studies a dynamic model of bargaining where goods

flow from seller to buyer via intermediaries in the network; and Corominas-Bosch (2004)

provides necessary and sufficient conditions on the network such that the equilibrium of her

bargaining game produces constant prices (see section 3.4 for further discussion of her pa-

per). The final outcome produced by any of these models will be a consequence of both the

8Backus, Podwol, and Schneider (2014) consider the case of two sellers with frictions using the framework
of Peters and Severinov (2006).
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network structure and the strategic details of the game. In our paper, we want to isolate the

effect that frictions have on price dispersion. Allowing for potential inefficiencies in the final

allocation, or allowing for strategic details to matter, results in a confounding effect. We

would be unable to separate which aspects of price dispersion are generated by the presence

of frictions, which are generated by the presence of inefficiencies in the final allocation, and

which are generated by the strategic details of the game under study. To bypass this problem,

we do not posit an explicit game, focusing instead on pairwise stable matchings. Thus, the

main contribution of our paper to this literature is that we characterize the set of graphs that

satisfy the Strong Law of One Price in a game-free environment, assuming only that trades

and prices form a pairwise stable matching.

Our analysis is also related to the literatures on matching, models of financial markets,

and computer science. Please see section B in the online appendix for a discussion of these

other related literatures.

The rest of the paper is organized as follows. In section 2, we present two motivating

examples. In section 3, we describe the model and our theoretical results. In Section 4, we

describe the application of our model to eBay. In Section 5, we present our quantitative

results on price dispersion in finite random networks. Finally, in section 6, we conclude. All

proofs are in the appendix.

2 Two Motivating Examples

Example 1 illustrates two core concepts of this paper: 1) that indirect competition implies

that only a subset of a network’s links are relevant for price determination, 2) that price

dispersion depends on both the sparsity and the structure of the network. To show this

second point, we show a sparse network where price dispersion can never arise, and a dense

network where price dispersion arises.

Example 1. Assume that sellers sell identical goods. Assume that buyer B0 has the

lowest valuation (min{µ(B1), µ(B2), µ(B3)} � µ(B0) > 0), and sellers S1, S2, and S3

have the same valuation (normalized to 0). Let P1 be the price that seller S1 receives, P2

the price that S2 receives, and P3 the price seller S3 receives. Consider three networks,

where thick lines indicate a pairwise stable matching:9

9Pairwise stability is a specification of whom buys from whom and at what prices, such that two properties
hold: (1) trades are individually rational, and (2) there are no pairwise Pareto improvements restricted to
the network. When we say “restricted to the network”, we mean that a buyer can propose an improvement
to a seller (or vice versa) only if they are linked in the network.
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Network A Network B Network C

S3(P3)

S2(P2)

S1(P1)

B3

B2

B1

B0

BuyersSellers
S3(P3)

S2(P2)

S1(P1)

B3

B2

B1

B0

BuyersSellers
S3(P3)

S2(P2)

S1(P1)

B3

B2

B1

B0

BuyersSellers

First consider the subnetwork of Network A formed by S1, B0, and B1. Buyer B1 cannot

pay less than µ(B0) because buyer B0 will poach seller S1. So any price that supports

the given matching must satisfy P1 � µ(B0). Now consider the full network. Buyer B2

cannot pay less than P1 to seller S2 because buyer B1 will poach seller S2. Likewise for

the price paid by buyer B3. In summary, the set of prices that sustain this pairwise

stable matching must satisfy P3 � P2 � P1 � µ(B0). In this example, buyers B3 and B2

are indirectly competing with buyer B0. For buyer B3, indirect competition forces him

to pay at least µ(B0) even though buyer B0 is not linked to seller S3. For this reason,

adding a link between buyer B0 and seller S3 is redundant. The link (B0, S3) would

impose the constraint P3 � µ(B0), but this constraint is already required by pairwise

stability. Likewise, links (B0, S2) and (B1, S3) are redundant. To further highlight the

role of indirect competition, notice that if buyer B0 dropped out of the market, then

P1 = P2 = P3 = 0 would support the given matching.

Next consider Network B, obtained from Network A by adding the link (B3, S1).

Adding this link has two related effects. First, it makes price dispersion impossible.

Second, it generates what we later call an alternating cycle. Because of the new link,

Buyer B1 cannot pay less than P3 to seller S1; otherwise, B3 will poach seller S1. So

in addition to P3 � P2 � P1 � µ(B0), prices that support this matching must satisfy

P1 � P3. Together, these conditions imply that any prices that support the given

matching must satisfy P1 = P2 = P3 � µ(B0). By adding this link, price dispersion

is precluded. Moreover, this graph has the alternating cycle property. Intuitively, an

alternating cycle is a cycle that alternates between links that represent trades, with

links that represent outside options. For example, seller S1 trades with buyer B1, who

can use seller S2 as an outside option. Seller S2 trades with buyer B2, who can use S3 as

an outside option. Finally, seller S3 trades with buyer B3, who can use S1 as an outside

option, thus closing the cycle. That the path travels through the pair of links (Si, Bi),

(Bi, Si+1) implies that Pi  Pi+1. That this path traces a cycle implies that all buyers

must pay the same price. This foreshadows our main theoretical result, Theorem 1:

the alternating cycles property is necessary and sufficient for price dispersion to be

precluded.
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Finally consider Network C, where we have added the redundant links to Network

A as well as link (B2, S1). Crucially, we did not add (B3, S1). The set of prices that

sustain this pairwise stable matching now satisfies P3 � P2 = P1 � µ(B0). Thus, price

dispersion is no longer precluded. For example, P3 = µ(B3) > P1 = P2 = µ(B0) support

this matching.

Comparing Network B to Network C shows that the density of the network is not

the sole driving force behind the presence (or absence) of price dispersion. Network B is

relatively sparse (7 out of 12 links are active) yet, for all valuation profiles that satisfy

the constraint in the example (min{µ(B1), µ(B2), µ(B3)} � µ(B0) � 0), the proposed

matching can only be supported through constant prices. Network C is considerably

more dense than Network B (10 links out of 12 are active), but the same matching

can be supported with non-constant prices. In this way, a single link can be the differ-

ence between supporting prices that exhibit price dispersion (Networks A and C), or

supporting prices where dispersion is precluded (Network B).

Example 2 demonstrates how we use a network decomposition (which we call abstractions)

to highlight the importance of indirect competition and to characterize the prices that sustain

pairwise stable matchings. An abstraction in fully connected networks is a decomposition of

a network into fully connected subnetworks that satisfies the following properties: (1) each

node in the abstraction is a fully-connected subnetwork of the original network, (2) each

link in the original network is either a link within a subnetwork in the abstraction or a link

that connects two distinct nodes in the abstraction, and (3) there is a directed link from one

subnetwork (say, G0) to another (say, G) if there is at least one buyer in G0 that has a link

to at least one seller in G.10 This construction uses that fully connected subnetworks are

frictionless markets where the Law of One Price holds. The following example shows one

10One way to construct an abstraction is to follow four steps (see example 2 for the original network): (1)
form a subnetwork around each stable match, (2) combine subnetworks that are fully-connected, (3) form a
separate subnetwork for each unmatched buyer (seller), and (4) form a directed link between subnetworks
if there is a buyer in one subnetwork that is connected to a seller in another subnetwork. The direction of
the link will point from the subnetwork that contains the buyer to the subnetwork that contains the seller.
Although there may not be a unique assignment in step 2, any assignment will characterize the same set of
pairwise stable matches and their supporting prices.

Step 1 Step 2 Step 3

S3

S2

S1

B3

B2

B1

G

G0

G000

S3

S2

S1

B3

B2

B1

G

G0

S3

S2

S1

B3

B2

B1

B0

G

G0

G00
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possible abstraction of a network. We then show how this abstraction helps us characterize

the prices that support a given pairwise stable matching.

Example 2. Consider Network C from example 1. Assume that sellers sell identical

goods. Assume that buyer B0 has the lowest valuation (min{µ(B1), µ(B2), µ(B3)} �

µ(B0) > 0) and sellers S1, S2, and S3 have the same valuation (normalized to 0). Let

P1 be the price that seller S1 receives, P2 the price that S2 receives, and P3 the price

seller S3 receives. Thick lines indicate a pairwise stable matching:

An Abstraction in

Network C Fully Connected Subnetworks

S3(P3)

S2(P2)

S1(P1)

B3

B2

B1

B0

BuyersSellers
S3

S2

S1

B3

B2

B1

B0

G

G0

G00

Even though many prices sustain it, there is essentially a unique pairwise stable

matching: Buyer B3 buys from seller S3, buyer B2 buys from seller S2, and buyer B1

buys from seller S1.
11

Abstractions are useful to highlight how indirect competition affects price forma-

tion. We proceed with 3 observations. First, consider subnetwork G0 as an independent

subnetwork. In this case, a pairwise stable matching corresponds to a frictionless al-

location. Buyers B1 and B2 buy a good from sellers S1 and S2, they both pay the

same price (say, p(G0)), and this price is between 0 and min{µ(B1), µ(B2)}. Similarly,

when viewed as an independent subnetwork, G is a frictionless economy, so buyer B3

must pay a price (say, p(G)) between 0 and µ(B3). Second, subnetworks G and G0 are

not independent. Since buyer B0 is linked to at least one seller in G and at least one

seller in G0, then those sellers must receive at least µ(B0). Thus, p(G0) � µ(B0) and

p(G) � µ(B0). Finally, since at least one buyer in G0 is linked to S3, then S3 must

receive at least p(G0). Together, these observations imply that any prices that support

the given matching must satisfy p(G) � p(G0) � µ(B0). Mapped back to the original

network, this yields the prices in example 1. More generally, trading partners that

belong to the same node in an abstraction pay the same price, and directed links in an

abstraction indicate the relationship between the prices that prevail in each subnetwork.

11Nothing changes if buyers B1 and B2 are switched, so that B1 buys from S2 and B2 buys from S1.
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This foreshadows the result in Proposition 1: there is a one to one relationship between

the prices that support a given matching and the prices induced by abstractions of a

network.

We call this an abstraction because the identity of the buyer in subnetwork G0 linked

to the seller in subnetwork G is irrelevant. Similarly, the identity of the seller to which

B0 is connected is irrelevant. Abstractions also help clarify which links are redundant.

For example, the link between buyer B2 and seller S3 establishes a directed link between

G0 and G, as does the link between buyer B1 and seller S3. Thus, one of these links

matters for price formation, while the second is redundant. Likewise the link between

buyer B0 and seller S3 is redundant. Link (B0, S3) generates a directed link between

G00 and G. However, because there is already a path from G00 to G (going through

G0), a direct link between G00 and G is redundant. Intuitively, the directed path from

G00 to G reflects that buyer B3 is indirectly competing with buyer B0, and this makes

direct competition between them redundant. In this way, abstractions facilitate our

understanding of the competition in the network. What is relevant is the existence

of the links and paths between subgraphs, not the specific identity nor the number of

buyers and sellers that generate those links.

Abstractions formalize the effect we previously called “indirect competition.” In

the example above, imagine the link between B0 and S3 is removed. We make two

observations. First, since B0 is no longer linked to S3, B0 and B3 are not directly

competing for seller S3. However, B0 and B3 are indirectly competing for S3. Indeed,

S3 and S2 are connected though buyer B2, and B0 is linked to S2. This means that

B0 is indirectly competing with all buyers linked to S3; in paticular, B0 is indirectly

competing with B3. The indirect competition between B0 and B3, and the subsequent

effect of µ(B0) on P3, is manifested in the directed path from G00 to G0, and from G0

to G. In general, consider a node A that points to a node A0. Any buyer in A that is

not connected to a seller in A0 indirectly competes with every buyer in A0. In this way

arrows that connect nodes in abstractions encode the indirect competition structure of

the network.

3 The Model

3.1 Seller-Buyer Model

We consider a market for a homogeneous good. Sellers differ in their valuation (or cost) and

offer a single unit for sale. Buyers differ in their valuation and have single unit demand. A

buyer with valuation µ that buys from a seller at price p has utility µ�p, and 0 otherwise. A

seller with cost c that sells a good at price p has utility p� c, and 0 otherwise. These utility

functions assume that buyers and sellers only care about trading at the best possible price,

irrespective of whom they trade with. We do this because the focus of our paper is to study,
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in the context of ex post competition and many-to-many meetings, the effect of frictions on

price dispersion, unconfounded by any other forces that might also generate price dispersion.

Trading takes place in exogenous seller-buyer graphs. A graph is a set of nodes connected

by links, or edges. An edge is represented by the pair of nodes it joins. We say the graph is

undirected if the direction of the link does not matter; otherwise, we say the graph is directed.

We say that the graph is bipartite if the set of nodes can be partitioned into two subsets such

that no two nodes in the same set are connected to each other. In our framework, buyers

and sellers constitute a bipartite undirected graph. First, the set of nodes is partitioned into

a set of buyers and a set of sellers; second, a buyer is linked to a seller if, and only if, that

seller is linked to that buyer; third, no buyer (respectively seller) is connected to another

buyer (respectively seller). We say a graph is fully connected (or complete) whenever each

buyer is linked to every seller, and vice versa. We denote the set of sellers with I, the set of

buyers with J , and the set of edges with E.

Definition (graph). Given a finite set V of nodes and a set E ⇢ V 2 of edges we say (V,E)

is a graph. Moreover,

• We say a graph (V,E) is trivial if E = ; and V is a singleton.

• Given two nodes v, v0 2 V , a path from v to v0 is a sequence (e1, ..., eN) 2 EN where

et = (vt, vt+1) for each t 2 {1, ..., N}, v1 = v, and vN+1 = v0.

• We say that a graph is connected if, for any pair of nodes v, v0 2 V , there is a path

from v to v0, and a path from v0 to v.

• We say the graph is undirected when, for each v, v0 2 V , (v, v0) 2 E if and only if

(v0, v) 2 E. Otherwise, we say it is directed.

• We say (V,E) is a bipartite graph if there exists two disjoint sets, V1, V2 ⇢ V , such

that V = V1 [ V2 and (v, v0) 2 E only if v 2 Vi ) v0 2 Vj, for i 6= j. We write these

graphs explicitly as (V1, V2, E).

• We say a bipartite graph (V1, V2, E) is fully connected if for each v1 2 V1, (v1, v2) 2 E

for each v2 2 V2.

Given a graph, a matching is any subset of the set of links such that three properties hold:

each buyer is matched to at most one seller, each seller is matched to at most one buyer, and

a seller is matched to a buyer if, and only if, the buyer is matched to the seller. We typically

denote matchings with M , and we use the expression “i and j are matched” to mean that

the links (i, j) and (j, i) are in M . Given a matching M , we define i⇤ : J ! I [ {;} as the

function that maps each buyer to the seller with whom it is matched, or to the symbol ; if

the buyer is unmatched. Likewise, j⇤ : I ! J [ {;} is the function that maps each seller to

the buyer with whom it is matched, or to the symbol ; if the seller is unmatched. Finally, we
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say a matching is maximal if, whenever a seller an a buyer are linked, at least one of them

is matched.

Definition (Matching). Let G = (I,J , E) be a graph. We say M ⇢ E is a matching if

the following hold:

1 If (i, j), (i0, j) 2 M then i = i0,

2 if (i, j), (i, j0) 2 M then j = j0,

3 (i, j) 2 M , (j, i) 2 M

We say a matching M is maximal if for all (i, j) 2 E, either i⇤(j) 6= ;, j⇤(i) 6= ;, or both.

Since graphs tell us which buyers are connected to which sellers, but they do not tell us

the valuation of buyers nor the valuation of the sellers, we extend the definition of the graph

to the definition of a network. A network is a graph where each node is given a numerical

value. This value is interpreted as the valuation of the buyer or seller. For the rest of the

paper, even if not explicitly mentioned, µ(·) denotes the valuation profiles of both buyers and

sellers: for a seller i 2 I, µ(i) denotes i’s valuation, and for a buyer j 2 J , µ(j) denotes j’s

valuation. Throughout the paper, unless explicitly mentioned, we assume valuation profiles

are such that there are always positive gains from trade amongst linked agents. That is, if a

seller i is linked to a buyer j, then µ(j) > µ(i).12

Definition (networks). Let G = (I,J , E) be an undirected bipartite graph, and let µ :

I [ J ! R. A network is a tuple N = (I,J , E;µ).

The distinction between a graph and a network is important for the results in sections 3.3

and 3.4. Because networks contain information about valuation profiles, characterizing prop-

erties of networks that accommodate price dispersion confounds two effects: the effect that

frictions have on price dispersion (as encoded by the missing links in the underlying graph),

and the effect that valuation profiles have of price dispersion. To avoid this confounding

effect, the results in section 3.4 characterize all graphs—not networks—that accommodate

price dispersion. Doing this requires first understanding how prices are determined for each

given network; we do this in section 3.3.

Given a network, we define a price function for the network. For any set of edges, S, a

price function, pS, is a function that maps edges in S into real numbers, with the property

that pS(i, j) = pS(j, i) whenever (i, j), (j, i) 2 S. This real number is interpreted as the price

that would prevail if the buyer was to buy the good from the seller. The price function is

individually rational if, for each pair of agents, it specifies a price that lies between the seller’s

valuation and the buyer’s valuation. Finally, given a matching, M , and a price function, pM ,

the function v(M, pM)(·) summarizes the price each agent pays, or is paid, under matching,

12See appendix E for further discussion of the gains from trade assumption.
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M , at prices, pM . Likewise, u(M, pM) is the utility each agent receives under matching M at

prices pM . For notational convenience, if a buyer j is unmatched, we let v(M, pM)(j) = µ(j);

likewise, if a seller i is unmatched, we let v(M, pM) = µ(i). Also for notational convenience,

we simply write v(·) and u(·) whenever the matching and prices that determine v and u are

clear from context. Formally, for each buyer j and seller i,

v(M, pM)(j) =

(

µ(j) if i⇤(j) = ;

pM(i⇤(j), j) if i⇤(j) 6= ;,

u(M, pM)(j) = µ(j)� v(M, pM)(j),

v(M, pM)(i) =

(

µ(i) if j⇤(i) = ;

pM(i, j⇤(i)) if j⇤(i) 6= ;,

u(M, pM)(i) = v(M, pM)(i)� µ(i).

Next, we define pairwise stability of a matching M with respect to a price function pM .

Pairwise stability means that the edges in M are priced such that individual rationality holds,

and there are no mutually beneficial blocks by pairs of agents that are linked but are not

matched. In other words, any extension of pM to more edges cannot yield pairwise Pareto

improvements over the match M executed at prices pM .

Definition (Blocking). Let M be a matching and pM be a price function. Suppose i is

linked, but not matched, to j; i.e. (i, j) 2 E \ M . We say the pair (i, j) blocks (M, pM) if

v(M, pM)(i) < v(M, pM)(j).

Definition (Pairwise Stability). Given a network N and a matching M , we say M is

pairwise stable in N at prices pM if the following hold:

• No blocking: no pair (i, j) 2 E \M blocks (M, pM),

• Individual rationality: for all pairs (i, j) 2 M , pM(i, j) 2 [µ(i), µ(j)].

In this case, we say that pM supports M . Moreover, we say M is pairwise stable if there

exist prices pM at which M it is pairwise stable.

We use pairwise stability as our solution concept because we want to understand how fric-

tions, and frictions alone, affect price dispersion. In our framework, pairwise stable match-

ings are those where all possible pairwise gains from trade are exhausted. A solution concept

where pairwise gains from trade are not exhausted could lead to price dispersion, but this

price dispersion would be driven by the solution concept, not the frictions themselves.
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An important property that a network can have is the Law of One Price (LOP) property.

Consider a network N = (I,J , E;µ), and assume that the following property holds: for any

pairwise stable matching, M , if pM supports M , then pM is a constant function. We then

say that network, N , satisfies the Law of One Price; for such networks, pairwise stability is

incompatible with price dispersion.

Given our assumptions, pairwise stable matchings in fully connected networks are char-

acterized by the Law of One Price. To see this, assume i is matched to j, i0 is matched

to j0. Since (j, i0) does not block (j, i), then v(j)  v(i0) = v(j0), and since (j0, i) does not

block (j0, i0), then v(j0)  v(i) = v(j). Thus, v(i) = v(j) = v(i0) = v(j0). Thus, if M is

pairwise stable at prices pM , then pM must be a constant function: given any two distinct

trading pairs, those pairs must be trading at the same price. As a corollary, all pairwise

stable matchings can be characterized by whether there are more buyers than sellers or vice

versa. Pairwise stable matchings are those matchings where every agent in the short side of

the market is matched, they can be sustained by individually rational prices that price out

the long side of the market, and each matched buyer pays the same price. Finally, any time

a matching is pairwise stable at prices pM , where pM is a non-constant function, it must

be because the network is not fully connected. Because we are interested in the effect that

frictions have on price dispersion, we set the model up so that price dispersion can only arise

in networks that are not fully connected. We summarize this in the following remark.

Remark 1. Let (I,J , E;µ) be a fully connected network, where E is the set of edges, and

µ : J [ I ! R be the valuation profile. Let J = #J , I = #I. Assume that b = max{µ(i) :

i 2 I}  min{µ(j) : j 2 J } = µ. Let M ⇢ E be a matching.

• If I > J , M is pairwise stable if, and only if,

– All buyers are matched: For each j 2 J there is i 2 I such that (j, i) 2 M .

– Only lowest valuation sellers are matched: If i 2 I is such that #{i0 : µ(i) >

µ(i0)} � J then there is no j 2 J such that (j, i) 2 M .

– Seller valuations determine matching prices: For each (j, i) 2 E, p(j, i) = p where

p 2 [max{µ(i) : (9j 2 J ) such that (j, i) 2 M}, {min{µ(i) : (@j 2 J ) such that (j, i) 2

M}].

• If I = J , M is pairwise stable if, and only if,

– All buyers are matched: For each j 2 J there is i 2 I such that (j, i) 2 M .

– All sellers are matched: For each i 2 I there is j 2 J such that (j, i) 2 M .

– Sellers sell at an intermediate price: For each (j, i) 2 E, p(j, i) = p where p 2

[b, µ].

• If I < J , M is pairwise stable if, and only if,
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– Only highest valuation buyers are matched: For each j 2 J if {j0 : µ(j0) > µ(j)} �

I then there is no i 2 I such that (j, i) 2 M .

– All sellers are matched: For each i 2 I there is j 2 J such that (j, i) 2 M .

– Buyer valuations determine matching prices: For each (j, i) 2 E, p(j, i) = p where

p 2 [max{µ(j) : (@i 2 I) such that (j, i) 2 M},min{µ(j) : (9i 2 I) such that (j, i) 2

M}].

The LOP implies that, for all pairwise stable matchings, supporting price functions must

be constant, in the sense that any two trading pairs must trade at the same price. However,

there may be many such functions. To avoid semantic ambiguity, we use the term “constant

price,” rather than “unique price,” to reference situations where all matched buyers pay the

same price.

3.2 An overview of theoretical results

In this framework, we present three main results. First, for any given network, N , and any

given matching, M , we characterize the set of price functions that support M . This set may be

empty, in which case M is not pairwise stable; therefore, this result also characterizes the set of

matchings that are pairwise stable. We view this characterization as a tool for understanding

what network structures can accommodate price dispersion. Concretely, suppose that a graph

G satisfies the following property: for all valuation profiles, for all matchings M in G, and

for all supporting prices, pM , if M is pairwise stable given the valuation profile then pM is

constant. Such a graph has the property that, for all valuation profiles, the corresponding

network satisfis the LOP. Thus, we say that such a graph satisfies the Strong Law of One

Price, or SLOP. Our second result uses the first result to characterize the set of all graphs

that satisfies the SLOP. This second result conveys the main contribution of our paper: price

dispersion is jointly determined by both the level of frictions, as measured by the number of

existing links out of total possible links, and also the structure of the market, as encoded by

how these links are distributed in the network. Both of these results hold for any exogenously

given network, so they are independent of the network formation process. For our third result

we consider a simple network formation process: for any seller-buyer pair, (i, j), the links

(i, j) and (j, i) are drawn according to a Poisson parameter λ > 0. This network formation

process is analogous to the assumption that search is random and follows a Poisson process.

Our third result provides conditions such that, as the number of both buyers and sellers

grows to infinity and as λ converges to 0, the asymptotic probability that the realized graph

satisfies the SLOP converges to 1. The result highlights that the LOP is compatible with

high frictions, provided the market is large enough. This is consistent with our second result,

and highlights that price dispersion depends on both the level of frictions, and the structure

of whom met with whom.
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3.3 Step 1: Characterizing Prices

In this section we present two propositions, which we use to understand how indirect compe-

tition affects the degree of price dispersion in the market. Given a seller-buyer network and

a pairwise stable matching in such network, Proposition 1 states that only a subset of links is

relevant for determining the prices that sustain that matching. To identify this set of links,

we define the abstraction of a network. This is a construction that abstracts away from links

that are irrelevant for determining the prices that sustain a given pairwise stable matching.

We use a special class of abstractions, which we denote maximal abstractions, to characterize

the full set of prices that support any given pairwise stable match. Proposition 1 shows the

characterization.

We start by defining the abstraction of a network. An abstraction of a network is a

directed graph with nodes and edges defined as follows: each node in the abstraction is

a subnetwork of the original network, these subnetworks are disjoint, and there is a link

pointing from a node a to a node a0 if there is a buyer a whom, in the original network, is

linked to a seller in a0.

Definition (Abstraction). Let G be a seller-buyer graph. From G construct a directed

graph, A = (A,E⇤), as follows:

• Each node in a 2 A is associated with a subgraph of G: (8a 2 A), a = (Ia,Ja, Ea)

where Ea = {(x, y) 2 E : x, y 2 Ia,[Ja},

• These subgraphs are disjoint: (8a, a0 2 A), Ia \ Ia0 = ;, Ja \ Ja0 = ;,

• A node a0 in A is linked to a node a00 in A if the subnetwork associated to a0 contains

a buyer, j, and the subnetwork associated with a00 contains a seller, i, such that, in

N , i and j are linked: (8a0, a00 2 A), (a0, a00) 2 E⇤ if (9j 2 Ja0)(9i 2 Ia00) such that

(j, i) 2 E.

We say the abstraction is in fully connected subgraphs if each a0 is fully connected.

To make terminology easier, we say an agent, x, belongs to a node a0 2 A if x 2 Ia0 [ Ja0.

We also say an edge e 2 E belongs to a0 if e 2 Ea0.

While the notion of an abstraction is independent from the notion of a matching, since we

use abstractions as a tool to characterize all price functions that support any given match-

ing, it is convenient to build abstractions in a manner consistent with the matching under

consideration. This yields the definition of a maximal abstraction. We say A is a maximal

abstraction for M if two conditions hold. First, for every unmatched buyer j (respectively,

seller i), the subnetwork of A that contains j (respectively, i), contains only j (respectively,

i). Second, matched pairs belong to the same node in the abstraction. We call these ab-

stractions “maximal” because they allow us to characterize the full set of price functions that

support any given matching. Abstractions that are not maximal generally characterize strict
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subsets of the set of prices that support any given matching (this point is further elaborated

in appendix C). A formal definition of maximal abstractions follows.

Definition (Maximal Abstractions). Let N be a network and M be a matching. We say

A = (A,E⇤) is a maximal abstraction for M if the following conditions hold:

• If i⇤(j) = ;, then there exists a 2 A such that a = (;, {j}, ;),

• If j⇤(i) = ;, then there exists a 2 A such that a = ({i}, ;, ;),

• If (i, j) 2 M , then there exists a 2 A such that (i, j) 2 Ea and (j, i) 2 Ea.

When the last condition holds, we say the abstraction does not break the matching.

Maximal abstractions always exist. Indeed, given a graph G = (I,J , E), and a matching

M , define A = (A,E⇤) as follows. First, for each pair (i, j) 2 M , let ai,j = ({i}, {j}, {(i, j), (j, i)}),

and for each seller i and buyer j that are unmatched, define ai and aj as in the definition

of a maximal abstraction. This defines the set of nodes, A. Second, define the set of links

as in the definition of an abstraction. The resulting construction is a maximal abstraction.

Maximal abstractions are generally non-unique, and the above construction is the one that

employs the maximum number of nodes. However, Proposition 1 only requires existence, not

uniqueness.

Given an abstraction of a graph, we define a price function for the abstraction. A price

function for the abstraction is a function, ρ, that assigns a number (i.e. a price) to each node

in the abstraction. The following remark defines a natural way in which price functions in

an abstraction induce price functions in the original network, and vice-versa.

Remark 2. Consider a network, N , and a matching, M . Let A = (A,E⇤) be an abstraction

in fully connected networks. Assume A does not break M ; that is, if (i, j) 2 M , i belongs to

a 2 A and j belongs to a0 2 A, then a = a0.

Given a price function ρ for the abstraction, ρ induces a price function, pM , for the

original network as follows:

• For each (i, j) 2 M , if (i, j) belongs to a 2 A, then pM(i, j) = ρ(a).

Conversely, let pM be a price function for N . If pM is such that M is pairwise stable in

N at prices pM , then pM induces a price function ρ for the abstraction as follows:

• If a is a trivial subnetwork that contains only seller i, ρ(a) = µ(i),

• If a is a trivial subnetwork that contains only buyer j, ρ(a) = µ(j),

• If a contains a matched pair (i, j) 2 M , then ρ(a) = pM(i, j). This is well defined

because subnetworks are fully connected; by pairwise stability, pM must be constant

when restricted to matched pairs within the same fully-connected subnetwork.
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We say a matching M ⇢ E is pairwise stable in an abstraction A at prices ρ when three

conditions hold. First, the abstraction does not break M : if a buyer j is matched to a seller i,

then i and j belong to the same node in the abstraction. Second, prices ρ(·) induce pairwise

stability in each node of the abstraction. Suppose pM is the price function for N induced by

ρ, and suppose a is a node in the abstraction. Viewing a as a network on its own, consider

the restrictions of M and pM to a. Then, M restricted to a should be stable at the prices

pM , also restricted to a. The last condition for stability with respect to an abstraction is the

cheapest sorting condition: if node a in the abstraction has a directed link to node a0, then

ρ(a)  ρ(a0). That a is linked to a0 implies that some buyer in the subnetwork associated

to a is linked to some seller in the subnetwork associated to a0; thus, cheapest sorting is a

natural arbitrage requirement. As before, if M is pairwise stable in A at prices ρ, we say ρ

supports M in A.

Definition (stability abstraction). Let (I,J , E;µ) be a seller-buyer network and the

directed graph A = (A,E⇤) be an abstraction of it in fully connected graphs. Let ρ : A ! R.

We say that M is stable with respect to ρ in A if three conditions hold:

• A does not break M : for each e 2 M , e 2 Ea for some a 2 A.

• Prices ρ(·) induce pairwise stability in each subnetwork:

– For each non-trivial a 2 A, M restricted to a is stable at prices pM(j, i) = ρ(a)

for all (j, i) 2 M \ Ea,

– If a = ({i}, ;, ;) for some j, then ρ(a) = µ(i),

– If a = (;, {j}, ;) for some j, then ρ(a) = µ(j).

• Cheapest sorting: for each directed link (a, a0) 2 E⇤, ρ(a)  ρ(a0).

As before, if M is stable with respect to ρ in A, we say ρ supports M in A.

With these definitions we can state our first proposition.

Proposition 1. Let N be a network and M be a matching. Let A be an abstraction of N

in fully-connected networks that is maximal for M . Then, the following statements are true:

1 If pM supports M , there exists ρ : A ! R such that ρ induces pM , and ρ supports M

in A.

2 If ρ supports M in A, there exists pM : M ! R such that pM induces ρ, and pM

supports M in N .
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3.4 Step 2: Characterizing the Strong Law of One Price

In this section we define the SLOP, and characterize the graphs such that the SLOP holds.

Consider a network N = (I,J , E;µ), and suppose it satisfies the LOP: given the valuation

profile µ, any pairwise stable matching can only be supported by a constant price function.

However, if the same graph is endowed with a different valuation profile, the new network

may no longer satisfy the LOP (see example 3 below); in these cases, the presence of price

dispersion depends on how valuations are distributed in the network, rather than a property

of the underlying graph. Now, consider a graph (B,S, F ) with the property that, for all

valuation profiles µ, the network (B,S, F ;µ) satisfies the LOP. In this graph, regardless of

how valuations are assigned to the nodes, the LOP must hold. Hence, for all valuation

profiles, pairwise stable matchings can only be supported with constant price functions.

When a graph has this property we say it satisfies the SLOP. Notice that a complete graph

satisfies the SLOP.

The above discussion may be understood in the context of the seminal work done by

Corominas-Bosch (see Corominas-Bosch 2004). When all buyers have valuation 1 and all

sellers have valuation 0, she provides necessary and sufficient conditions on the network so

that price dispersion is precluded. The natural extension to this result is to characterize

which networks have the property that, for all valuation profiles, and for all pairwise stable

allocations, price dispersion is precluded. This is precisely what Theorem 1 does.13

Example 3. First, consider the graph on the left. There are valuations such that

the matching indicated in bold can only be supported with a constant price function.

For example, if all sellers have 0 cost and all buyers have 0 valuation. However, there

also exist valuations such that the matching indicated in bold can be supported with

non constant prices: if µ(1) = µ(2) = 0, µ(A) = µ(B) = µ(C) = 2, µ(3) = 1, prices

pM(A, 1) = pM(B, 2) = 0, pM(C, 3) = 1 support this matching. Thus, if price dispersion

is precluded, it is an artifact of the valuation profile, but not a structural property of

the graph itself. Now, consider the graph on the right, and the matching indicated in

bold. For all valuation profiles such that linked pairs have positive gains from trade, the

only prices that can support the given matching are constant prices: for all supporting

prices, A will pay no more than C, C will pay no more than B, and B will pay no more

than A.

13See section G.2 in the online appendix for a comparison of our abstractions to the decomposition in
Corominas-Bosch (2004).
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Matching That Supports Matching That Does Not

Price Dispersion Support Price Dispersion
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To characterize the graphs that satisfy the SLOP we proceed in two steps. First, for

any graph G = (I,J , E), we provide necessary and sufficient conditions on the maximal

abstractions of G so that G satisfies the SLOP. For each maximal matching, M , G must have

a maximal abstraction that is connected and does not break M . Because abstractions are

directed graphs, being connected means that for any pair of nodes in the abstraction, there

is a directed path from the first to the second, and a directed path from the second to the

first. In particular, this is equivalent to saying the abstraction has a cycle that visits every

node at least once. We now provide an intuition for why this result holds. Proposition 1 says

that we may interpret an economy with frictions (as represented by a graph) as a collection

of interrelated, frictionless sub-economies, as represented by different nodes in an abstraction

of the original graph. Because each of these sub-economies is frictionless, they satisfy the

SLOP, so all trades within each sub-economy occur at the same price. However, trades in

different sub-economies might occur at different prices. In order for the economy as a whole

to satisfy the SLOP, we need that trades in each of these sub-economies occur at the same

price. For this to be true, arbitrage opportunities across any two sub-economies (represented

through directed paths that connect nodes in the abstraction) must be eliminated. This can

only happen if, and only if, for any two sub-economies (say, a and a0), there is a directed

path from a to a0, and a directed path from a0 to a. The first of these paths implies the price

at which agents in a trade must be lower than, or equal to, the price at which agents in a0

trade, and the second path implies the opposite inequality. Thus, the SLOP holds if, and

only if, for each maximal matching, M , G has a maximal abstraction that is connected and

does not break M . The downside of this first result is that the primitive of the model is the

graph, G, not its abstractions. The second result provides necessary and sufficient conditions

on G for it to have such an abstraction, and therefore satisfy the SLOP.

To state the results for this section, we require some auxiliary notation. If G is a graph,

and M is a matching, then G|M is the subgraph of G that is restricted to the matching.

20



Formally, G|M = (J 0, I 0, E 0), where J 0 = {j 2 J : i⇤(j) 6= ;}, I 0 = {j 2 I : j⇤(i) 6= ;}, and

E 0 = {(x, y) 2 E : x, y 2 J 0 [ I 0}. Also, for this section, we assume that G is such that, for

each maximal M , G|M has at least two buyers and at least two sellers. This assumption rules

out the trivial case where only one buyer and one seller trade: if a graph G is such that for

all maximal matchings, M , G|M = ({i}, {j}, {(i, j), (j, i)}), then the law of one price holds

trivially.

Below we define two properties, which we use to prove a theorem and a corollary. The

first property is the M -Alternating cycles (M -AC) property. It states that, given a graph,

G, and a maximal matching, M , the graph G|M has a complete cycle with the property that

the odd edges are in M and the even edges are not. We then generalize this property to

the Strong Alternating Cycles (SAC) property: a graph G has the SAC property if, for each

maximal matching M , G|M has the M -AC property. Thus, the SAC property is a global

version of the M -AC property. The main theorem says that the SAC property holds if, and

only if, the SLOP holds. As a corollary, we obtain a local version of this theorem: given a

maximal matching, M , G has the M -AC property if, and only if, for all valuation profiles, µ,

and for all prices, pM , if pM supports M given µ, then pM is a constant function.

Definition (Alternating Cycles properties). G = (I,J , E) be a graph, M ⇢ E be a

maximal matching in G, and denote G|M = (I 0,J 0, E 0). We say G has the M-Alternating

Cycles property (M-AC) if there is a vector of edges, C = (e1, ..., eT ), that satisfies the

following:

• et 2 M if, and only if, t is even,

• C is a complete cycle in G|M : edges are adjacent, the path described by the vector starts

and ends at the same node, and each node is visited at least once. Formally,

– if et = (x, y) for some (x, y) 2 E 0 and some t < T , then et+1 = (y, z) for some

(y, z) 2 E 0,

– if e1 = (x, y) 2 E 0 for some (x, y) 2 E 0, then eT = (z, x) for some (z, x) 2 E 0,

– for each x 2 I 0 [ J 0, there is a y 2 I 0 [ J 0 and a t such that et = (y, x) 2 E 0.

We say that G satisfies the Strong Alternating Cycles property (SAC) if, for each max-

imal matching M , G satisfies the M-AC.

Definition (Laws of One Price). Let (I,J , E) be a graph.

• Let µ : I [ J ! R be some valuation profile. Let M be the set of pairwise stable

matchings in network (I,J , E;µ). If for all M 2 M, and all pM that supports M , pM

is constant, we say that the network (I,J , E) satisfies the Law of One Price (LOP).

• If for all µ : I [J ! R, the network (I,J , E) satisfies the Law of One Price, then we

say the graph (I,J , E) satisfies the Strong Law of One Price (SLOP).
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With the above definitions, we can state our main result for this section.

Theorem 1. Let G be a graph. Then G satisfies the SLOP , it satisfies the SAC.

To provide intuition for why Theorem 1 is true we proceed in two steps. First, only

maximal matchings can be pairwise stable. This is because all linked pairs have positive

gains from trade; if two linked pairs were unmatched, then they would block the match by

matching together. Second, each matched pair in a maximal matching, M , can be thought of

as a two-agent node in an abstraction of the graph. Traveling through a link (i, j) 2 M is like

traveling within the node that contains i and j, whereas traveling through a link (j, i0) /2 M

is like traveling from the node that contains buyer j to the one that contains seller i0. Thus,

the M -AC property is equivalent to finding a path that starts at a node in an abstraction,

travels through all nodes, and finishes where it begun. When this holds, M can only be

supported by constant price functions. Thus, the SAC is equivalent to the graph satisfying

the SLOP.

In papers such as Fainmesser and Galeotti (2015), price formation is driven by the in-

degree and out-degree at the different nodes. In contrast, Theorem 1 identifies M -AC as

the main force driving SLOP, which is orthogonal to the degree centrality of different nodes.

For a deeper discussion on why this difference arises, please see section G.2 in the online

appendix.

Corollary 1. Let G = (I,J , E) be a graph, and M ⇢ E be a maximal matching.

(8µ : I [ J ! R), (8pM), [pM supports M in (I,J , E;µ) ) pM is constant] , G satisfies

the M-AC.

This result is simply a local version of Theorem 1. The SLOP quantifies over all matchings;

however, one might be interested in whether a particular matching can be supported at non-

constant prices, irrespective of the prices that support other matchings. The corollary says

that the M -AC—the local version of the SAC property—is equivalent to this local version of

the SLOP.

3.5 Step 3: Asymptotic Results

Proposition 1 and Theorem 1 apply for any given network, and no assumptions are made

about the network formation process. However, price dispersion is often studied using random

search models, where buyers and sellers meet following a Poisson process.14 As a point of

comparison, we now make an analogous assumption, and study the asymptotic properties of

that network formation process. In particular, we look for conditions on meeting rates and

market size so that asymptotically almost surely the realized graph satisfies the SLOP.

The network formation process considered here follows the standard Erdos-Renyi model

(Erdös and Rényi, 1959). Given a set of buyers, J , and a set of sellers, I, we assume that

14See the surveys by Baye, Morgan, and Scholten (2004) and Chade, Eeckhout, and Smith (2017) and
references therein.
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the probability with which any link (i, j) 2 I⇥J is formed is λ > 0. If a link (i, j) is formed,

we assume that (j, i) is also formed. This induces a natural probability distribution on the

space of bipartite, undirected graphs with nodes in (I,J ). Since each seller-buyer meeting

occurs with a constant Poisson parameter, λ > 0, this is a natural point of comparison to

random search models with Poisson arrival rates. Finally, let θ ⌘ I
J
, and t = min{J, θJ}.

That is, fix a constant market tightness and let the size of the market, t, be characterized by

the short side of the market.

For this section, we assume that the only admissible valuation profiles are those that

satisfy the following: for all i 2 I and all j 2 J , µ(i) < µ(j). This assumption allows

us to refinee our result on pairwise stable matchings in the following way: for graphs with

Hamiltonian Cycles, the set of pairwise stable matchings is the set of perfect matchings.

That is, matchings where all agents are matched. This additional structure is useful to prove

Proposition 2.

Proposition 2. Let θ > 0, let G(θJ, J) be the set of all bipartite, undirected graphs with node

sets of cardinality θJ and J , and let t = min{θJ, J}. For each λ 2 (0, 1) let Pλ be a probability

distribution over G(θJ, J) such that each graph with K undirected edges is drawn with equal

probability λK(1� λ)θJ
2�K. Consider a sequence (λt)t2N such that λt >

ln(t)+ln(ln(t))+ct
t

where

ct ! 1 with t. Then limt!1 Pλt
({G: G satisfies the SLOP}) = 1.

The above proposition is a simple corollary from Frieze (1985). Suppose, for a moment,

that θ = 1. Three things are true. First, under our assumptions on the valuation profiles,

if a graph has a Hamiltonian cycle then the only matchings that are pairwise stable are

the perfect matchings. Second, under the assumptions about λ and t, Frieze (1985) states

that asymptotically almost surely the realized graph will have a Hamiltonian cycle. Third,

for any graph G, and any maximal matching M , it is simple to prove that if G|M has a

Hamiltonian cycle then it satisfies the M -AC. Thus, when θ = 1, asymptotically almost

surely the realized graph, G, will be such that for all pairwise stable matchings, M , G|M ⌘ G

will have a Hamiltonian cycle. Thus, for all pairwise stable matchings matchings, M , G will

satisfy the M -AC, so it will satisfy the SLOP. The above logic also holds when θ 6= 1, and

this generates the results stated above (see appendix A for a formal proof). Finally, that

G|M has a Hamiltonian cycle is sufficient, but not necessary, for G to satisfy the M -AC.

Proposition 2 is relevant for two reasons. First, it provides a foundation with which to

understand the results of our simulations in section 5. For any given λ 2 (0, 1), as market size

grows without bound, eventually the realized graph will satisfy the SLOP with probability

arbitrarily close to 1. This is reflected in our simulation results, where for each value of λ,

price dispersion disappears as market size grows. Second, this result provides some asymp-

totic comparative statics on how the expected number of links affects the presence of price

dispersion. If the expected number of links per agent increases at rate ln(t), asymptotically

the SLOP will hold.
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Finally, proposition 2 can be adjusted to accommodate the case where λ is not constant

across agents. Suppose that, for a given set I, we had a sequence (λi)i2I , where each λi > 0.

Furthermore, assume the probability with which a seller i meets a buyer j is λi. For instance,

different sellers might have different exposure, so that, on average, some sellers receive more

links than others. If we define λ = min{λi : i 2 I}, proposition 2 remains valid. That is,

proposition 2 remains true as long as all sellers increase their expected number of links at a

rate ln(t).

4 Application: Quantitative Analysis Applied to eBay

The online trading platform eBay provides a natural application of our model with ex post

competition. It is the largest consumer auction platform in the world. It had approximately

157 million active registered users and $20 billion in gross merchandise volume in the second

quarter of 2015. One of the selling mechanisms in eBay are competitive auctions. In a recent

paper, Einav, Kuchler, Levin, and Sundaresan (2015) report substantial price dispersion in

auction prices of identical goods sold by the same seller (mean coefficient of variation 10-15

percent). A number of questions arise: Is the model capable of delivering the amount of

price dispersion observed in real-world markets? What would happen to the amount of price

dispersion in such markets if all sellers are contacted by buyers with the same probability

(i.e. a change in the structure of the network without changing its sparsity)?

To answer the questions above, we calibrate our model using the network structure from

eBay as documented by Backus, Podwol, and Schneider (2013) and the search behavior

documented by Blake, Nosko, and Tadelis (2016). We find that the model reproduces the

amount of price dispersion in eBay documented by Einav, Kuchler, Levin, and Sundaresan

(2015) quite well (Table 1 discussed below). We also find that the amount of price dispersion

in eBay as measured by the mean coefficient of variation would decrease substantially (35-45

percent as reported on p. 30 in Step 3) under a “Uniform Network Structure,” whereby links

are drawn with equal probability for all sellers and buyers (as defined in Step 3 discussed

below).

4.1 A Simple Link Formation Process

In this application we approximate the link formation at eBay using random networks, where

sellers have different probabilities of receiving a link.15 We believe that our network formation

process using random networks captures the salient network structure at eBay due to four

observations. First, eBay displays search results using a ranking algorithm called “Best

Match.” The Best Match algorithm was created to display items to maximize eBay’s expected

revenue (i.e. the probability that a product is purchased times its sale price; see Blake,

Nosko, and Tadelis 2016). One important feature of the Best Match algorithm is that it

15One way to define a link in eBay is to look at the listings “clicked” by the potential buyer. Using this
definition, a buyer and a seller are linked if the buyer clicked on the seller’s listing at least once. A buyer
and a seller are not linked if the buyer never clicked on the seller’s listing. We use this definition of a link in
the remainder of this section.
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is not tailored to individual users (potential buyers), nor does it consider prices explicitly

(Dinerstein, Einav, Levin, and Sundaresan 2017). In other words, the Best Match algorithm

does not “target” search listings based on the characteristics of the users. Thus, if two different

users perform the same search query, the Best Match algorithm will display identical search

results, independent of the users’ characteristics. Second, most users never go beyond the

first page of search results (Richardson, Dominowska, and Ragno 2007), and are reluctant

to use other than the default settings in a search (Chau, Fang, and Liu Sheng 2005; Cone,

Franklin, Ryan, and Stalker 2005). While the choice of the listing among the first page of

results is endogenous, the selection of the listings in the first page of results is done by the

Best Match algorithm and, conditional on the search query, is exogenous to the buyer. Third,

the Best Match algorithm creates incentives for the sellers to design their listings to maximize

their prominence in search results. However, as discussed above, they cannot target certain

types of buyers through the ranking algorithm. Based on, e.g., the number of words in the

title or their rating, sellers are more or less likely to have their listings shown in the first page

of results after a search query. Finally, auction listings are displayed so that the auction that

closes first is on top (Dinerstein, Einav, Levin, and Sundaresan 2017). Thus, the relative

timing of the users’ search, and the end of the auction are important to determine which

listings are displayed in the first page of results by the Best Match algorithm. This adds an

element of randomness to the search listings displayed in the first page, in that the auction’s

ending time is unknown to most of the users when performing the search query.

4.2 Quantitative Analysis

The quantitative analysis proceeds in three steps: (1) simulation of the model using eBay’s

network structure; (2) calibration of the model’s parameters using the simulated model and

eBay’s market level data;16 and (3) counterfactual policy using the calibrated model, whereby

we simulate a change in eBay’s network structure to a “Uniform Network Structure.”

Step 1: Simulation of the Model using eBay’s Network Structure

First, we approximate the network structure at eBay. Second, we simulate the seller-buyer

model from section 3, conditional on the network structure. Finally, we use a deferred

acceptance algorithm to find a matching in each of the simulated markets. Now we describe

these sub-steps.

Step 1.1: A Simple Description of the Network Structure from eBay

To reconstruct the seller-buyer network structure we use the results reported by Backus,

Podwol, and Schneider (2013, henceforth BPS). BPS define six types of sellers based on

their feedback score. BPS report their distribution in the population of DVD listings and

the median number of words per title (see summary statistics in BPS, Table 2). More

16Our “data” consist of the market level summary statistics reported by Einav, Kuchler, Levin, and Sun-
daresan (2015). See Step 2 below for details.
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experienced sellers attract more buyers (and improve their search ranking) by using more

words in the listing’s title. BPS estimates how the number of bidders depends on the feedback

score and the number of words in the title (see BPS, Table 5).17 We use the results from

regression (2) in Table 5 from BPS to calculate the relative number of bidders that each type

of seller receives.18 When simulating markets from eBay’s network structure, we use the same

distribution of sellers’ types as in BPS (i.e. six types) and define the relative probability of

receiving a link for each type as the relative number of bidders that each type receives, as

reported by the BPS estimates in Table 5. For example, the type with the highest feedback

score receives 3.59 times more links than the type with the lowest feedback score.19 This

procedure creates a network structure where sellers’ types with the highest feedback score

receive a greater percentage of the links.

Step 1.2: Simulation of the Model Conditional on the Network

There are three parameters in the seller-buyer model from section 3: the number of buyers

(J), the number of sellers (I), and the number of expected links per buyer (ELB). Every

seller begins with one unit of a good (so the number of goods is I). The market tightness, θ,

is the ratio of the number of buyers to the number of sellers, θ = J
I
.

We start the baseline simulation with I = 2, 000 identical sellers20 and J heterogeneous

buyers (we describe buyers’ valuations in the next paragraph). We vary the number of buyers

(J) from 2,200 to 20,000 so that θ 2 (1.1, 10). We also consider markets with ELB 2 [0.5, 10].

We assign the I = 2, 000 sellers to six seller types (sellers’ types with higher feedback score

have higher probability of receiving a link) using the results reported by BPS as described

in Step 1.1.

Buyers’ valuations are normalized to range between 0 and 100, which bounds the minimum

and maximum prices between those values. In the baseline analysis (Table 1, Panel A) we

use a uniform [0, 100] distribution for the buyers’ valuations. We have performed a number of

robustness checks using other distributions for buyers’ valuations (see, e.g., Panel B in Table

1). As discussed in subsection 4.3 the distribution of private valuations is not identified with

our data.

Given the parameters J , I, and ELB, a network is formed by drawing links between

buyers and sellers as follows. First, we draw ELB ⇥ J links. Then, we assign these links

17Note that the number of observed bidders is only a proxy for the latent number of actual bidders (many
of which may never actually hold the standing high bid).

18Rather than documenting links, BPS provide quantitative evidence that the network is not fully con-
nected. To do that BPS exploit a discontinuity in the visibility of auctions due to eBay’s search tool, what
allows them to identify search costs. Using our terminology, BPS show that observables that affect the
network structure, also explain price dispersion.

19We use Table 2 from BPS to define each seller type, the median words per title, and a mid-point in the
seller rating (2.5⇥ 6itype where itype 2 {1, 2, ..., 6}). We then use the coefficients on seller rating and median
words in title from regression (2) in Table 5 of BPS to predict relative number of bidders. We predict 1.08
bidders (0.215⇥5+0.989⇥ 2.5/10000) for the lowest type and 3.86 bidders for the highest type. We take ratios
of the predicted number of bidders for the different types to get the relative probability of receiving a link in
our model.

20We obtain almost identical results using 200 or 20,000 sellers. Results are available upon request.
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to buyers and sellers: all buyers have equal probability of receiving links; sellers receive

links according to their relative probability of their seller type from Step 1.3 (recall that

we consider six seller types following BPS). Once the network is constructed, we apply the

deferred acceptance algorithm described in Step 1.3 to find a matching in each simulated

market.

Step 1.3: Algorithm for Finding the Matching in each Simulated Market

To find the matching (an allocation and the pairwise stable prices that sustain it) we use

a deferred acceptance algorithm as described below.21 The deferred acceptance algorithm

and the related technical issues that arise are presented in smaller font and can be skipped

without loss of continuity.

A Deferred Acceptance Algorithm

We describe the algorithm as a “first-price auction” to give intuition of how the algorithm works. A formal description of the

algorithm can be found in Section D in the appendix. We denote the agents on the side of the market that are holding the

“auctions” as sellers and the agents on the other side that are “bidding” as bidders. This is only for expositional reasons; recall

that we are approaching this problem from the matching perspective, so we are not making any statement about the actual

economic mechanisms or incentives of the agents that determine prices and matches. Bidders bid in increments of ∆

2
. The value

of ∆ is set so that the productivity of buyers lie in a ∆ grid. Formally, for all j, µ(j) = b + kj∆ for some integer kj that is

randomly drawn at the start of the algorithm. We describe the algorithm for the case where the sellers hold the auctions. When

buyers hold the auctions, the bidding starts at their valuation and prices decrease.

The algorithm has two stages. The first stage outputs an allocation and is motivated by the wage adjusting process in

Crawford and Knoer (1981) and Kelso and Crawford (1982). (See Section D in the appendix for a detailed comparison of the first

stage of our algorithm and the algorithms in Crawford and Knoer and Kelso and Crawford.) This allocation has the property

that there exist prices for which it is pairwise stable. The second stage outputs two prices: the pointwise minimum price at

which the stage 1 allocation is stable, and the pointwise maximum price at which the stage 1 allocation is stable.

Stage 1: The Matching Determination Program

The algorithm starts in round t = 1 when none of the sellers has received any bid. All bidders are placed into a queue and arrive

sequentially. The entering order of the bidders is determined randomly. The standing bid of a seller is the last bid accepted by

the seller or b if the seller has not received any bids. The winning bidder is the bidder who placed the last standing bid. The

“bids” in the first stage of the algorithm take place on a grid of possible prices with 2J grid points.

This is round t of the matching determination program.

1. Take the first bidder in the queue (for concreteness, call it bidder j). Bidder j selects the seller with the lowest standing

bid among the linked sellers. If there is more than one such seller, the bidder selects one of these sellers at random. Call

it seller i. If the lowest standing bid is greater than µ(j)� ∆

2
, bidder j does nothing and leaves the queue. Otherwise,

bidder j bids the standing bid of seller i plus ∆

2
.

2. If bidder j makes a bid, seller i accepts the bid from bidder j. The new standing bid of seller i is now the previous

standing bid plus ∆

2
. Bidder j leaves the queue. If there was a bidder j0 who was the winning bidder (before bidder j

bid), bidder j0 is placed at the end of the queue.

3. The algorithm continues from step 1 with the next bidder in the queue. The algorithm stops when there are no bidders

left in the queue. In this case, each seller is matched to the winning bidder.

21One way to interpret our algorithm is in terms of a competing auctions environment similar to Peters
and Severinov (2006), but where buyers are linked with a subset of the sellers (i.e. when there are market
frictions). The environment of Peters and Severinov (2006) is frictionless in the sense that any buyer may
participate in any auction. The bidding rule proposed by Peters and Severinov (2006) for their frictionless
competing auctions environment is not a Perfect Bayesian Equilibrium when frictions are present (see Donna,
Schenone, and Veramendi 2016).
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We now present the second stage, the price determination program. The key insight of this stage is that, if a seller i is

matched to a buyer j, and is also linked to an unmatched buyer j0, then the price j pays i must price j0 out of the market. That

is, pM (i, j) � µ(j0). Moreover, if seller i is matched to buyer j, and seller i is also linked to a buyer j0 who is also matched (say,

to a seller i0) then i must be getting payed at least what i0 is getting payed. Otherwise, j0 would like to block with i.

Stage 2: The Price Determination Program (I)

The program starts in round t = 1 with M ⇢ E produced from stage 1 as its input.

1. Set the “price” of all unmatched sellers to b.

2. For matched sellers, set the price of seller i for buyer j to the maximum µ(j0) amongst all j0 that are linked to i but are

not matched.

3. We call these prices (ρ1i )i2I .

This is round t > 1 of the price determination algorithm. We take (ρt�1
i )i2I as inputs for this round.

1. Set the “price” of all unmatched sellers in round t to b.

2. For matched sellers, set the price of each seller i for buyer j to the maximum price in round t� 1 of the matched buyers

that are linked to i. That is, amongst all matched j0 that are linked to i, set ρti to the maximum ρt�1
i⇤(j0)

. Note that one

such j0 is j itself, so these prices form a non-decreasing sequence.

3. If ρti = ρt�1
i for all i, stop the algorithm and output these prices. Otherwise, start step t+ 1.

As formally stated in Proposition 3, the Price Determination Program (I) captures the pointwise minimum price function

at which M is stable. A modified version of this program, which we call Price Determination Program (II), generates the pointwise

maximum price function at which M is stable. Rather than starting with ρ1 at a low value, with successive iterations iterations

rising it, the modified program starts with ρ1 at high values and successive iterations lower it. Section D contains the formal

algorithm, including both versions of the Price Determination Program.

Proposition 3. The deferred acceptance algorithm has the following properties:

1. It stops after a finite number of rounds.

2. It outputs a pairwise stable allocation.

3. Price Determination program (I) outputs the pointwise minimum price function at which M is stable.

4. Price Determination program (II) outputs the pointwise maximum price function at which M is stable.

The proof of Proposition 3 is in section D in the appendix.

Step 2: Calibration

Einav, Kuchler, Levin, and Sundaresan (2015, henceforth EKLS) report the distribution of

several measures of price dispersion across different markets in eBay (e.g. different coefficient

of variations for different “markets,” where a market is defined as a set of identical products

sold by the same seller). In our model, these markets are characterized by a combination of

expected links per seller (ELB) and market tightness (θ). The econometric problem consists

of finding which markets (i.e. combinations of ELB and θ) best rationalize price dispersion

in eBay, conditional on the network structure from Step 1.1.

The joint distribution of ELB and θ is not identified in this setting. Our data consist of 3

measures of price dispersion reported by EKLS: coefficient of variation, (75th pctile�25th pctile)/median,

and (90th pctile�10th pctile)/median. Note that these measures are aggregated at the market level,

defined as identical products sold by the same seller. For example, consider the measure
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of coefficient of variation reported by EKLS that for the mean market corresponds to 11.1

percent (see EKLS, p. 223, Table 2). In our model, there is more than one market (defined

as a combination of ELB and θ) that generates the same mean price dispersion conditional

on the network structure from step 1.1.22 Thus, ELB and θ are not jointly identified from

the market level data reported by EKLS and cannot be estimated.

To show that the model can reproduce the amount of price dispersion in eBay we calibrate

the parameters of the model, (ELB, θ), as follows. First, for the parameter ELB we use the

search behavior documented by Blake, Nosko, and Tadelis (2016). Consider a buyer who is

“linked” to a seller according to our model in section 3. A necessary condition to have a link

in eBay is to have “clicked” on the listing (i.e. to have seen the complete listing according

to the definition of the link in the model). So one can interpret the mean clicked items per

buyer as an upper bound to the mean ELB. The mean clicked items per buyer in eBay is

5.25 per category (Blake, Nosko, and Tadelis 2016, p. 13, Table 1).23

Second, we find the value of θ that minimizes the distance between the predicted measure

of price dispersion in eBay reported by EKLS and the corresponding prediction by our model,

conditional on the network structure from Step 1.1 and ELB = 5.25. For each summary

statistic of coefficient of variation (e.g. mean, 25th percentile, 75th percentile, etc.), this

procedure outputs a θ that gives the best prediction of the model relative to the number

reported by EKLS.

Table 1 displays the results for the coefficient of variation. The first line in Panel A

reports the results from EKLS. The second line, “eBay Network Structure,” reports the

corresponding measure obtained by our model using the network structure from Step 1.1.

The model reproduces the amount of price dispersion observed in eBay quite well.24

Step 3: Change in the Network Structure as a Counterfactual Policy

With the calibrated model we consider the counterfactual policy where all sellers and buyers

receive the same expected number of links (i.e. a change in the network structure from

Step 1.1, with only one representative type). This policy can be thought as the result of an

enhancement in eBay’s search algorithm that reduces price dispersion in the network.25

For the counterfactual policy we simulate the network using the calibrated model (i.e.

ELB = 5.25 and the calibrated θ for the relevant summary statistic of the measure of

price dispersion) and a “Uniform Network Structure,” whereby links are drawn with equal

22For example, (ELBL, θH) = (3, 4.4) and (ELBH , θL) = (7, 1.1) generate the same mean price dispersion
of 11.1 percent.

23 Blake, Nosko, and Tadelis (2016) investigate returns to consumer search, so they do not focus on identical
products. The mean click items per buyer across categories is 12.5 and the mean categories per buyer is 2.39
(5.25 = 12.55/2.39).

24We obtain similar results for the other measures of price dispersion reported by EKLS. Results are
available upon request.

25Intuitively one can think of the search results being displayed such that all identical products are pooled
together automatically by the search algorithm. With individual level data one could also allow more realistic
change in the network structure (e.g. allow sellers with high feedback score to provide amenities valued by
consumers, such as fast shipping, returns, etc.).
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Table 1: Price Dispersion at eBay with Different Network Structures

Coefficient of Variation
Panel A: Calibration 25th Percentile Mean 75th Percentile

Einav, Kuchler, Levin, and Sundaresan (2015) 0.018 0.111 0.148
eBay Network Structure 0.018 0.109 0.149
Uniform Network Structure 0.010 0.063 0.097

Uniform Network Structure/eBay Network Structure 0.551 0.576 0.649

Panel B: Robustness

Uniform Network Structure/eBay Network Structure (0.306,0.598) (0.545,0.835) (0.618,0.857)

Notes: Price dispersion from simulations of the calibrated model. The first row shows three moments of the coefficient of

variation (CV) for different seller-listing pairs in Einav, Kuchler, Levin, and Sundaresan (2015). We simulate a large number of

markets using two network structures of the model where: (i) certain sellers’ types have higher probabilities of receiving a link

than others (“eBay Network Structure” as reported by Backus, Podwol, and Schneider (2013); see Step 1 in the text in section 4)

and (ii) all sellers have the same probability of receiving a link (“Uniform Network Structure”). We find that markets with market

tightness (θ) equal to 7.8, 2.0, and 1.6, reproduce the 25th percentile CV, the mean CV, and 75th percentile CV from Einav,

Kuchler, Levin, and Sundaresan (2015), respectively. Under “Uniform Network Structure” the market is re-simulated so that all

sellers have the same probability of receiving a link (i.e. representative seller), keeping the number of links and market tightness

constant. The ratio (Uniform Network Structure/eBay Network Structure) shows the ratio of the CV for the two market structures.

For the baseline results in Panel A, we use ELB = 5.25 (the mean clicked items per category documented by Blake, Nosko, and

Tadelis 2016) and we assume that buyers’ valuations are drawn from a uniform distribution [0, 100]. For robustness in Panel B,

we repeat the exercise for different values of ELB 2 [0.5, 10] and for different distributions of buyer’s valuations as discussed in

subsection 4.3. Panel B shows the lower and upper bounds of the ratio (Uniform Network Structure/eBay Network Structure) when

varying ELB and the distribution of valuations.

probability for all sellers, and all buyers receive the same expected number of links, ELB =

5.25.

The line labeled “Uniform Network Structure” in Table 1, Panel A shows the results.

Under a “Uniform Network Structure” the amount of price dispersion measured by the mean

coefficient of variation drops by 53 percent ((0.109�0.063)/1
2
(0.109+0.063)) relative to the eBay’s

network structure. The network structure alone explains 42.2 percent (1 � 0.063/0.109) of the

price dispersion in eBay, as measured by the mean coefficient of variation. Table 1 shows

that similar results are obtained using other statistics of the coefficient of variation, such as

the 25th and 75th percentiles.26

4.3 Discussion

Robustness to Alternative Distribution of Valuations and ELB. Our data con-

sists of one cross section of summary statistics (aggregate or market level data as it is

typically referred in the industrial organization literature) on several standardized mea-

sures of price dispersion. It is impossible to identify the distribution of buyers’ valua-

26We also obtain similar results using other measures of price dispersion (such as percentile differences
ratios). Results are available upon request.
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tions from this data. For the calibration exercise we use a uniform distribution of buy-

ers’ valuations whose support we normalize between 0 and 100. For robustness, we have

repeated the quantitative analysis using a lognormal distribution and a normal distribu-

tion truncated at 0 for the buyers’ valuations,27 and different values for ELB. Panel B

in Table 1 summarizes the results of this robustness analysis. It shows the lower and up-

per bounds of the ratio (Uniform Network Structure/eBay Network Structure). That is, to obtain the

lower and upper bounds in Panel B we proceed as follows. (1) For each distributions of

buyers’ valuations (uniform [0, 100], lognormal, and normal truncated at zero, the last two

distributions with the same mean and standard deviation as the uniform [0, 100] distribu-

tion) and for each ELB 2 [0.5, 10], we repeat the quantitative analysis T times.28 Each

combination of distribution of buyers’ valuations and ELB outputs a number for the ratio,

(Uniform Network Structure/eBay Network Structure), for each summary statistic of the coefficient of vari-

ation. (2) The lower bound, for each summary statistic, is the minimum number obtained for

the ratio, (Uniform Network Structure/eBay Network Structure), across t = 1, . . . , T from step 1. Similarly

for the upper bound.

Link Formation Process in eBay. Our theoretical analysis provides a general framework

to study price dispersion and ex post competition in any realized network (i.e. conditional

on the realized network). It provides no guidance, however, to the link formation process

or the search behavior of buyers. Thus, our analysis in this subsection takes as given the

network structure documented by Backus, Podwol, and Schneider (2013) and the search

behavior documented by Blake, Nosko, and Tadelis (2016). Although our model is not

intended to capture the specific ways in which the links in the network arise, nevertheless

our approximation using random networks (see subsection 4.2) summarizes the main aspects

of eBay that are relevant to model its network structure. Enriching the model in these

dimensions is an avenue of future research.

5 Price Dispersion in Finite Random Networks

In this section, we investigate price dispersion in finite random networks. First we explain

how we simulate random networks. Then we discuss simulation results.

5.1 Simulation

As in the eBay application, there are three parameters in the seller-buyer model: the number

of buyers (J), the number of sellers (I), and the expected number of links per buyer (ELB).

We start the baseline simulation with I = 10, 000 identical sellers and J = 10, 000 ⇥ θ

27The level of these distributions is not identified with our data, so we use the same mean and standard
deviation as the uniform [0, 100] distribution. This is allows us to compare the results in the two panels of
Table 1.

28We use increments of 0.1 for ELB 2 [0.5, 10], so we repeat the quantitative analysis T = 288 times:

(3)
|{z}

3 Distribution of Buyers’ Valuations

⇥ (96)
|{z}

ELB2[0.5,10], with 0.1 increments

= 288.
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heterogeneous buyers. Similar to the eBay application, we use a uniform [0, 100] for the

distribution of buyers’ valuations, which bounds the minimum and maximum prices between

those values. We consider markets with J 2 [1000, 50000], so θ 2 [0.1, 5]. We also consider

markets with ELB 2 [1, 10].29 The higher the ELB, the lower the frictions in the market.

The product of the number of buyers and the ELB determines the number of active links

in the market. The total number of possible links in the market is J ⇥ I. The proportion

of active links relative to the total number of possible links in a network is a measure of

the sparsity of the network. Given the parameters J , I, and ELB, a network is formed by

randomly drawing buyers and sellers to form links. Once the network is constructed, we

apply the algorithm from Section 4.2 to the network. As in the eBay application, the “bids”

in the first stage of the algorithm take place on a grid of possible prices with 2J grid points.

We compare the price distributions to the frictionless outcome (henceforth Walrasian

outcome), where all buyers are linked to all sellers. The Walrasian outcome price, pWalrasian,

is given by:

pWalrasian =

8

<

:

0 if θ  1

(1� 1
θ
)⇥ 100 if θ > 1.

Recall that the Walrasian outcome has a constant price (see Remark 1). When θ  1, there

are more sellers than buyers and so there is always a seller who is indifferent between selling

the good at 0 or not selling it at all. In other words, the reservation price of the marginal

seller is zero, which is what determines the market price. When θ > 1, there are more buyers

than sellers. Only 1
θ

of the buyers buy the good. Hence the valuation of the marginal buyer is

(1� 1
θ
)⇥ 100. This buyer is indifferent between paying (1� 1

θ
)⇥ 100 and leaving the market,

and so the market price is (1� 1
θ
)⇥ 100.

5.2 Results

Distribution of Prices. Figure 1 displays the distribution of prices for the buyer-preferred

match by market tightness (horizontal axis in each panel) and ELB (different panels). Each

vertical box corresponds to a simulated market characterized by those parameters. Each

panel shows the population distribution of prices for different levels of frictions in different

markets. The top-left panel shows the price distribution for high frictions, where ELB equals

1. The top-right and bottom panels show what happens in markets with lower frictions (when

ELB equals 2, 3, and 5, respectively). At low levels of θ there are many sellers for each buyer.

So low numbers for θ indicate “loose” seller markets where sellers are at a disadvantage. In

addition, each panel displays the Walrasian outcome.

29We obtain almost identical results: (i) using 1,000 or 100,000 sellers (instead of I = 10, 000); (ii) varying
expected links per seller, ELS (instead of varying the expected links per buyer, ELB); and using alternative
distributions (e.g. normal distribution truncated at 0 or a lognormal distribution, both with the same mean
and standard deviation as the uniform [0, 100]) for buyers’ valuations (instead of uniform [0, 100]). Results
are available upon request.
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For market tightness less than one, the market looks like a monopsony and nearly all

sellers are paid their valuation. This is because it is unlikely for a seller to receive multiple

links. Even if a seller receives two links, it is likely that at least one of the buyers has an

outside option of zero. This happens if the buyer is also linked with another seller who has

no other links.

On the other hand, as market tightness is increased the market becomes more competitive

between buyers and more favorable for sellers. The median price increases as does price

dispersion. There are now many buyers linked to each seller and the buyers have worse

outside options. Even if a buyer is linked to a second seller, it is likely that the second seller

is linked to many other buyers. In markets with lower frictions, competition between buyers

increases, thus increasing prices until they reach the Walrasian outcome.

Price Dispersion and the Walrasian Outcome. Price dispersion decreases when fric-

tions decrease. There are many buyers linked to each seller, but there are also many sellers

linked to each buyer, improving the outside options of both parties. These improved outside

options reduces price dispersion (i.e. the likelihood that a seller has to take a low price is low,

but at the same time the probability that a buyer has to pay a high price is also low). The top

panel in Figure 2 shows the evolution of the price distribution for the buyer-preferred match.

It shows the price percentile difference (95th percentile minus 5th percentile or P95 � P5)

when θ = 3. Almost identical results are obtained for other values of θ. While there is price

dispersion when ELB  4, the price distribution begins to collapse for larger values of ELB.

When ELB = 5, ninety percent of the prices are equal to the Walrasian outcome. Likewise,

when ELB = 8, ninety-nine percent of the prices are equal to the Walrasian outcome. In

other words, at least 90 percent or 99 percent of the sellers are paid the same price when

the number of active links relative to the total number of links is only 5/10,000 or 8/10,000,

respectively. The price distribution in the model collapses with less than 0.1 percent of the

possible links in the network.

Price Dispersion in Finite-Sized Random Networks. Figure 2 shows how price dis-

persion depends on the market size, market tightness, number of links, and the structure of

the network (Poisson and non-Poisson random networks). We use the 95th-5th percentile dif-

ference in prices as our measure of price dispersion.30 The top panel shows the finite-network

properties of proposition 2 in subsection 3.5, where the market tightness is θ = 3, the ex-

pected links per buyer is ELB=λ⇥n = ( logn+log logn+cn
n

)⇥n, and we use cN = ± log log(N)+c.

Results are similar for other values of θ. The three lines correspond to three rates at which

30Results are similar if we use other percentile differences or the fraction of prices that are equal to the
Walrasian price. Results are available upon request.
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λ monotonically goes to zero under the conditions of the proposition in subsection 3.5:

- if cN = � log log(N) + c, then P(Hamiltionian Cycle) = 0 as N ! 1,

- if cN = c, then P(Hamiltionian Cycle) 2 (0, 1) as N ! 1,

- if cN = + log log(N) + c, then P(Hamiltionian Cycle) = 1 as N ! 1.

Our analysis of finite-sized random networks shows that: (1) price dispersion can disap-

pear even in finite-sized markets; (2) price dispersion decreases even when the probability that

a buyer meets a seller goes to zero too fast to guarantee a Hamiltonian cycle asymptotically.31

The bottom panels investigate how price dispersion depends on market tightness (θ),

ELB, and the structure of the network. The bottom left panel shows the price dispersion in

markets with Poisson random networks, where every seller has equal probability of drawing

a link (λij = λ). The bottom right panel shows the price dispersion in non-Poisson random

networks, where sellers have different probabilities of receiving a link. We chose a distribution

of probabilities such that the lowest probability seller receives links at half the rate than the

average probability seller, and the highest probability seller receives links at twice the rate

than the average probability seller.32

To summarize, our analysis of finite random networks shows the following. (1) Price

dispersion in these networks is large when ELB is small. (2) Price dispersion decreases

rapidly as buyers are linked to more sellers. This has implications for policies that reduce

frictions as price dispersion decreases quickly with the number of links. (3) The structure

of the network matters. The non-Poisson markets have substantially higher levels of price

dispersion compared to the Poisson markets. This indicates that policies that affect how

buyers and sellers meet can be important in decreasing price dispersion, as discussed in our

eBay application in the previous section.

31In the online appendix we show that price dispersion does not change with the size of the market when
ELB is fixed.

32Specifically, let j 2 {1, 2, . . . , 10, 000} index sellers from lowest probability to highest probability of
receiving a link. The non-Poisson random networks are generated by setting the probability that seller j
receives a link with buyer i relative to the probability that seller j = 10, 000 (the highest probability seller)

receives a link with buyer i to:
λij

λi10,000
= 0.25 + 0.75 j

10,000 .
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Figure 1: Distribution: Buyer-Preferred Prices.

Notes: Starting in the top left, panels 1 to 4 figure display the empirical distribution of prices from the model using the buyer-preferred match

disaggregated by: i) Market Tightness (which ranges from 0.1 to 5 in the horizontal axis in each graph) and ii) Expected Links per Buyer (1, 2,

3, and 5). Each vertical box corresponds to a simulated market characterized by those parameters. Each vertical box displays the 95th percentile

(upper whisker), 75th percentile (upper hinge), median (black circle marker), 25th percentile (lower hinge), and 5th percentile (lower whisker).

Note that buyers’ valuation is normalized to range between 0 and 100 which, in turn, bounds the minimum and maximum prices between those

values. If the 95th percentile coincides with the 5th percentile, then the figure shows only a dot (which corresponds to the median too). In addition,

each panel displays the Walrasian outcome, pWalrasian. We describe how to calculate the Walrasian outcome in subsection 5. The distributions

for the seller-preferred prices, although stochastically dominating the buyer-preferred prices, exhibit similar distributions. See online appendix for

figures showing both distributions.
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Figure 2: Price Dispersion in Finite-sized Random Networked Markets

Poisson Random Networks Non-Poisson Random Networks

Notes: The figure displays the price dispersion for simulated random markets. The top panel shows the finite-network properties of proposition 2

in subsection 3.5, where the market tightness (θ) is set to 3 and the expected links per buyer is ELB=λ ⇤ n = ( log n+log log n+cn
n

) ⇤ n and we use

cn = ± log log(N) + c. Results are similar for other values of θ. The bottom panels show how the price dispersion in random markets with 10,000

sellers depends on θ, ELB, and the random network formation process. The figure on the bottom left shows the price dispersion in markets with

Poisson random networks, where every seller has equal probability of drawing a link (λ). The figure on the lower right, shows the price dispersion

in non-Poisson random networks, where sellers have different probabilities of receiving a link. Let j 2 {1, 2, .., 10000} index sellers from lowest

probability to highest probability of receiving a link. The non-Poisson random networks are generated by setting the relative probability that seller

j receives a link (compared to the highest probability seller j = 10000) to
Prj

Pr10000
= 0.25 + 0.75 j

10000
.
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6 Concluding Remarks

The defining characteristic of markets with frictions is that similar goods or services are

traded at different prices, resulting in price dispersion. In this paper we investigate how price

dispersion depends on the structure of the network in a decentralized market with frictions,

where each buyer interacts with a subset of sellers.

The contributions of this paper are twofold. First, from a theoretical perspective, we

characterize the relationship between prices in the market and the structure of the network.

We do this by characterizing the set of graphs where the only prices that support pairwise

stable matchings are constant prices. Such graphs can never exhibit price dispersion. This

result leads to a reinterpretation of what constitutes a frictionless economy. The main fea-

ture that describes a competitive economy where all buyers may interact with all sellers is

that price dispersion is precluded. Thus, rather than defining a frictionless economy as one

described by a complete graph, one may define a frictionless economy as one where price

dispersion is always precluded. Theorem 1 characterizes all such frictionless economies. We

then use tools from the random networks’ literature to derive conditions under which ran-

dom graphs have no price dispersion. We use simulations to understand the relevance of our

asymptotic results in large, but finite, networks. Second, from an empirical perspective, we

calibrate our model to the online trading platform eBay and show that our model replicates

the price dispersion documented at eBay quite well. We use the calibrated model to provide

predictions on counterfactual network structures at eBay.

From a normative perspective, these results provide important insights for market plat-

forms, regulators, competition authorities, and antitrust agencies. On the one hand, our

analysis shows that low cost policies could substantially reduce frictions in online decentral-

ized markets. Such policies can be easily implemented by market platforms such as eBay or

Amazon by, for example, automatically pooling together identical products by the platform’s

search algorithm. On the other hand, allowing online algorithms to discriminate sellers or

buyers based on their individual covariates could increase the level of frictions, thus reducing

indirect competition and market efficiency. These effects should be taken into consideration

by the Department of Justice, the Federal Trade Commission, and the Federal Communica-

tions Commission when regulating these markets or negotiating merger remedies.
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Appendix

A Proofs of Propositions and Theorems

In this section we provide proofs for all Propositions and Theorems in section 3.

Proposition 1. Let N be a network and M be a matching. Let A be a maximal abstraction of N in
fully-connected networks that does not break M .

1 If pM supports M , there exists ρ : A ! R such that ρ induces pM , and ρ supports M in A.

2 If ρ supports M in A, there exists pM : M ! R such that pM induces ρ, and pM supports M in N .

Then M is pairwise stable with respect to some price function pM if, and only if, pM induces prices, ρ, that
support M in A. Equivalently, M is pairwise stable with respect to some price function, pM , if, and only, if
pM is induced by prices, ρ, that support M in A.

Proof. For this proof, let N ⌘ (I,J , E, µ), M and A ⌘ (A,E⇤) be as in the statement of the theorem.
Item 1:
Let pM support M . Because M is pairwise stable, it must be maximal. Define ρ as follows:

• If a 2 A is written as a = ({i}, ;, ;), ρ(a) = µ(i),

• If a 2 A is written as a = (;, {j}, ;), ρ(a) = µ(j),

• Else, ρ(a) = pM (i, j) for some (i, j) 2 M . This is well defined because A does not break M , and a is
fully connected.

By definition ρ induces pM . Also, ρ induces stability with respect to each subnetwork. Let (a, a0) 2 E⇤.
Because M is maximal, there is j in a and i in a0 such that (j, i) 2 E \ M . Thus ρ(a) = pM (j, i⇤(j)) 
pM (j⇤(i), i) = ρ(a0), so cheapest sorting holds. Thus, ρ supports M in A.

Item 2:
For each i 2 I, let ai 2 A be such that i belongs to ai (i.e. i 2 Iai

). For each j 2 J , let aj 2 A be such
that i belongs to aj (i.e. i 2 Jaj

). Since A does not break M , if (i, j) 2 M , ai = aj . For each (i, j) 2 M , let
pM (i, j) = ρ(ai). Because ρ supports M in A, then pM is individually rational. Assume that (i, j) 2 E \M
wants to block M . Then v(M,pM )(i) < v(M,pM )(j). There are two cases. Case 1: ai 6= aj . Then,
(aj , ai) 2 E⇤. Since, v(M,pM )(i) < v(M,pM )(j), then ρ(ai) < ρ(aj), which contradicts that ρ supports M in
A. Case 2: ai = aj . Then v(M,pM )(i) = v(M,PM )(j), which contradicts that v(M,pM )(i) < v(M,pM )(j).
Therefore pM supports M . This concludes the proof.

We now prove Theorem 1: a graph satisfies the SLOP if, and only if, it satisfies the Strong Alternating
Cycles condition. To make the proof simple, we split it into four lemmas. After we present and prove the
lemmas, we present and prove the theorem. As mentioned before, since we work with valuation profiles
where linked agents have positive gains from trade, the set of pairwise stable matchings is the set of maximal
matchings. We also use the following observation: for directed graphs, the property of being connected (i.e.
given any two nodes, there is always a path from one to the other) and the property of having a complete
cycle (i.e. there exists a directed path that starts and ends in the same node, and visits all nodes) are
equivalent properties. Since abstractions are directed graphs, an abstraction is connected if, and only if, it
has a complete cycle.

Lemma 1. Let G be a graph that satisfies the SLOP. For all maximal matchings, M , there exists a maximal
abstraction of G|M , that does not break M and is connected.

Proof. Let G = (I,J , E) be a graph, and let M be any maximal matching. Enumerate M = {(i1, j1), ...,
(iK , jK), (j1, i1), ..., (jK , iK)}. Define A = ({a1, ..., aK}, E⇤) as follows: ak = ({ik}, {jk}, {(ik, jk), (jk, iK)}),
and E⇤ as in the definition of abstractions. By construction, A does not break M ; it only remains to be
shown that A is connected. Consider the following valuation profile, µ. First, for all sellers, normalize all
costs to 0: that is, µ(i) = 0 for each i 2 I. Second, let a 2 A be arbitrarily chosen, and let Ā = {â 2 A :
â = a or there exists a directed path that connects a to â}. For each buyer j in â 2 Ā let µ(j) = p > 0, for
all other j let µ(j) = q 2 (0, p). Given µ, define ρ as follows: ρ(â) = p if â 2 Ā, and ρ(â) = q otherwise.
Note that ρ induces stability with respect to each node. Moreover, cheapest sorting is verified for ρ: indeed,
for all a0, a00 2 A, if there is a path from a0 to a00, then it cannot be that a0 2 Ā, and a00 /2 Ā. Thus, for all
a0, a00 2 A, ρ(a0)  ρ(a00) with strict inequality if a0 /2 Ā and a00 2 Ā. Since M is pairwise stable with respect
to ρ in A, and since SLOP holds, this can only hold if A = Ā. Since a 2 A was arbitrarily chosen, then A is
connected abstraction.

40



Lemma 2. Let G be a graph. Assume that for all maximal matchings (M), there exists a connected maximal
abstraction of G|M (say, A) that does not break M . Then G satisfies the SLOP.

Proof. Pick G, M and A arbitrarily as in the statement of the Lemma. Let µ be any valuation profile such
that M is pairwise stable given µ.33 Let ρ : A ! R be such that M is pairwise stable with respect to ρ in
A, and let pM be the corresponding prices in G. Then ρ is constant because A is connected. Thus, pM is
constant. Since µ and ρ where arbitrarily chosen, this implies SLOP holds.

Lemma 3. Let G be a graph, and M be a maximal matching in G. Suppose there exists a connected
abstraction of G|M that does not break M . Then G satisfies the M -AC.

Proof. Let G, and M be as in the statement of the Lemma. Let A be the connected abstraction of G|M
that does not break M . If a connected abstraction that does not break M exists, then so does a con-
nected abstraction where each node contains a single matched pair. Indeed, if a node in the abstraction
contains T pairs, it can be split into T different nodes that each contain one pair, and where each has
a directed link to the other. Thus, without loss of generality, we assume A is of this form. Enumer-
ate M = {(i1, j1), ..., (iK , jK), (j1, i1), ..., (jK , iK)} and A = {a1, ..., aK} such that ak is associated to the
subgraph ({ik}, {jk}, {(ik, jk), (jk, ik)}). Since A is a directed connected graph, then it is cyclical. Let
C⇤ = {c⇤1, ..., c

⇤

T } be a cycle in A. Construct a cycle C = {c1, ..., c2T } in G|M as follows:

• Let c1 = c⇤1, c3 = c⇤2, (...), c2t�1 = c⇤t ,

• For each odd t, if c⇤t = (ak0 , ak) (with k0 6= k), let ct+1 = (ik, jk).

In words, the odd links join buyers and sellers that belong to different nodes in the abstraction, the even
links join buyers and sellers that belong to the same node in the abstraction. Because A does not break M ,
this is an alternating cycle: et /2 M for all odd t, and et 2 M for all even t. Thus, G satisfies the M -AC.

Lemma 4. Let G be a graph that satisfies the SAC. Let M be any maximal matching in G. Then, there
exists a maximal abstraction of G|M (say, A) such that M does not break A, and A is connected.

Proof. Let G be a graph, and M = {(jt, it) : 1  t  K} [ {(it, jt) : 1  t  K} be any maximal matching
in G. Define A as in Lemma 1, with ak = ({jk}, {ik}, {(jk, ik), (ik, jk)}). Because G satisfies the SAC then
there exits a cycle C in G such that et 2 M for all even t, and et /2 M for all odd t. Without loss of generality,
the cycle starts with a buyer: i.e. c1 = (jk, ik0) for some k, k0 2 N. Since, by construction, A does not break
M , cycle C induces a cycle in A. Thus, A is connected, and this proves the lemma.

Theorem 1 Let G be a graph. Then G satisfies the SLOP , it satisfies the SAC.

Proof. This is a straightforward application of the previous four lemmas. Suppose G satisfies the SLOP.
Let M be an arbitrarily selected maximal matching. By lemma 1, there exists a maximal abstraction of
G|M (say, A) that is connected and does not break M . By Lemma 3, G satisfies the M -AC. Since M was
arbitrarily selected, then G satisfies the SAC. Conversely, if G satisfies the SAC, then (by Lemma 4) for
any maximal matching M there exists an abstraction A of G|M such that A does not break M and A is
connected. Therefore, by Lemma 2, G satisfies the SLOP.

Corollary 2. Let G = (I,J , E) be a graph, and M ⇢ E be a maximal matching.
( 8µ : I [J ! R), (8pM ), such that M is pairwise stable in (I,J , E;µ), and such that pM supports M , pM
is constant , G satisfies the MAC.

Proof. Immediate from the proof of the previous theorem.

We now prove Proposition 2. To do this, we need a series of lemmas. The first, states that if a graph,
G, is such that for all maximal matchings, M , G|M has a Hamiltonian cycle, then G satisfies the SAC. The
second lemma states that, when we require all agents to have gains from trade, if a graph G is Hamiltonian,
and M is a pairwise stable matching in G, then M has to be perfect. That is, M matches all agents. With
these two lemmas we can prove Proposition 2 for balanced bipartite graphs. That is, for bipartite graphs
where both sets of nodes have the same size. To generalize the result for when the number of buyers and
sellers is different, we require an additional lemma, pertaining to the Hamiltonicity of balanced subgraphs of
an unbalanced graph.

33Since M is maximal, such µ always exists: for example, µ(j) = 3 if buyer j is matched, and µ(j) = 1
otherwise; µ(i) = 0 if seller i is matched, µ(i) = 2 otherwise. Because M is maximal no two unmatched
agents can be linked, so µ(j) > µ(i) for all linked pairs (i, j).
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For the first of these lemma we use the notion of path concatenation. Let C and D be two paths,
with the property that C ends at the same node where D begins. Then C ⇤D denotes the path that travels
through C, and then continues as in D. Formally, let C = (e1, ...., eK) 2 EK and D = (d1, ..., dT ) 2 ET ,
where eK = (x, y) for some x, y 2 I[J and d1 = (y, z) for some z 2 I[J ; then C⇤D = (e1, ..., eK , d1, ..., dT ).

Lemma 5. Let G be a graph, and M a maximal matching. If G|M has a Hamiltonian cycle then G|M
satisfies the M -AC.

Proof. Let G and M be as in the statement of the Lemma. Since the proof only involves G|M , we abuse
notation and use I, J , and E to denote the set of buyers, sellers and undirected links between buyers and
sellers in G|M (as opposed to the set of sellers, buyers, and undirected links in G.) If M contains a single
matched pair (that is, M = {(i, j), (j, i)} for some i 2 I and some j 2 J ) G|M satisfies the M -AC by
convention, and this concludes the proof. Assume M contains more than a single matched pair. Let C be
the Hamiltonian cycle. Enumerate C = ((i1, j1), (j1, i2), ..., (it, jt), (jt, it+1), ..., (jT , i1)}, where T = #J =
#I > 1. Notice that because the cycle is Hamiltonian, jt 6= jt0 whenever t 6= t0; similarly, it 6= it0 whenever
t 6= t0. Since in G|M all sellers are matched, then there exists a permutation σ : {1, ..., T} ! {1, ..., T} with
the following property: for all t 2 {1, ..., T}, (it, jσ(t)) 2 M . This is well defined because it 6= it0 iff t 6= t0

iff σ(t) 6= σ(t0) iff jσ(t) 6= jσ(t0), so no agent is matched to two of his counterparts. In the remainder of this

proof, given any number k 2 N, we use the convention that σk is the composition of σ a number k times. We
say a set L ⇢ {1, ..., T} is a loop if there exists a number x 2 {1, ..., T} such that L = {x,σ(x), ...,σt�1(x)},
where t = min{τ 2 N : στ (x) = x}.
Part 1:

First, assume that {1, .., T} is a loop. That is, for all x, min{τ 2 N : στ (x) = x} = T > 1. In particular, this
implies that σ has no fixed points, so σt(x) 6= σt�1(x) for all x and all t < T .34 Consider the following edges
(should they be well defined):

• e1 = (i1, jσ(1)) 2 M .

• given et�1, if t� 1 is odd, let et = (jσt�1 , iσt�1(1)),

• given et�1, if t� 1 is even, let et = (iσt�1(1), jσt).

Before proceeding, we check these edges are well defined. First, all odd edges are well defined because
(iσt�1(1), jσt(1)) 2 M ⇢ E (by definition, all edges of the form (it, jσ(t)) are elements of M). Second, all even
edges are well defined because (jσt�1(1), iσt�1(1)) 2 C (by definition, all edges of the form (jt, it) are elements
of C). By construction σt(x) 6= σt�1(x) for all t < T , so et /2 M for all even values of t.35 Construct the cycle
C0 = (e1, e2, ..., (jσT (1), iσT (1))). By construction C0 is an alternating cycle, so G|M satisfies the M -AC.
Part 2:

Now, assume that {1, ..., T} has K loops, for some K > 1. Enumerate them L1, ..., LK , and without loss of
generality 1 2 L1. Furthermore, let Ξ = {t 2 {1, ..., T} : (9k 2 {1, ...,K}) t 2 Lk, t+1 /2 Lk}. Enumerate
Ξ = {Ξ1, ...,ΞN} for some N  T . Without loss of generality, the enumeration is monotone increasing:
Ξ1 < Ξ2 < ... < ΞN The K loops define K disjoint subgraphs of G|M : for each k, set Ik ⌘ {ix : x 2 Lk} ⇢ I
and Jk ⌘ {jx : x 2 Lk} ⇢ J , and Ek = E \ ((Ik ⇥Jk)[ (Jk ⇥ Ik)). Denote with Gk the k-th such subgraph.
With these ingredients, we inductively construct an alternating cycle. Start with loop L1, and construct an
alternating cycle on G1 as we did in Part 1: C1 = ((i1, jσ(1)), (jσ(1), iσ(1)), ..., (j1, i1)). Augment path C1 so
that it continues following C1 but ends in jΞ1

. Formally, C̄1 = C1 ⇤ ((i1, jσ(1)), (jσ(1), iσ(1)), ..., (iσ�1(Ξ1), jΞ1
)).

By the same arguments as in part 1, this is an alternating path, and the last edge, (iσ�1(Ξ1), jΞ1
), is in M .

Add to this path an edge that will travel across to another loop. Formally, Calt
1 = C̄1 ⇤ ((jΞ1

, iΞ1+1)). Since
(iσ�1(Ξ1), jΞ1

) 2 M and, by construction, (jΞ1
, iΞ1+1) /2 M , then Calt

1 is an alternating path. Now, proceed

inductively. Formally, given a number n� 1 < N , and given Calt
n�1, define the following:

Cn = Calt
n�1 ⇤ ((iΞn�1+1, jσ(Ξn�1+1)), (jσ(Ξn�1+1), iσ(Ξn�1+1)), ..., (jΞn�1+1, iΞn�1+1)))

C̄n = Cn ⇤ ((iΞn�1+1, jσ(Ξn�1+1)), (jσ(Ξn�1+1), iσ(Ξn�1+1)), ..., (iσ�1(Ξn), jΞn
).

Calt
n = C̄n ⇤ ((jΞn

, iΞn+1))

34If there was x and t < T such that σt�1(x) = σt(x), then σt�1(x) is a fixed point of σ, which contradicts
that {1, ..., T} is a loop.

35Indeed, if t is even and et 2 M , then (jσt�1(1), iσt�1(1)) 2 M and (jσt(1), iσt�1(1)) 2 M . This is a
contradiction because σt(1) 6= σt�1(1) and iσt(1) 6= iσt�1(1).

42



This is well defined, because, by construction, (8n) (9k) {Ξn�1 + 1,Ξn} ⇢ Lk for some loop Lk.
36 This

process stops after N rounds. Notice Calt
N is an alternating path, so it only remains to close the cycle. To do

this, notice that ΞN + 1 2 L1 (modulo T + 1 = 1).37 Construct the following paths:

LAST = ((iΞN+1, jσ(ΞN+1)), (jσ(ΞN+1), iσ(ΞN+1)), ..., (j1, i1)),

Calt = CN ⇤ LAST.

By construction, Calt is an alternating cycle. Thus, G|M satisfies the M -AC.

For the next lemma, we assume that the only admissible valuation profiles are those that satisfy the
following: for all i 2 I and all j 2 J , µ(i) < µ(j). This assumption allows us to refine our result on
pairwise stable matchings in the following way: for graphs with Hamiltonian Cycles, the set of pairwise
stable matchings is the set of perfect matchings. That is, matchings where all agents are matched. This
additional structure is useful to prove Proposition 2.

Lemma 6. Let G 2 G(n, n) be Hamiltonian. If M is pairwise stable then M is a perfect matching ( i.e.
every agent is matched).

We prove this lemma by a process of jumps and rotations. In what follows we give an intuitive idea of
how this process works, and then provide the formal proof of the lemma. Suppose we are given a matching,
M , and a Hamiltonian cycle
C = ((j0, i1), (it, jt), (jt, it+1), ..., (in, jn+1))

n
t=1. We want to consider the case where there is at least one

unmatched buyer and at least one unmatched seller. Let buyer j0 be unmatched. The objective is to find a
path from the buyer j0 to some unmatched seller, and this path must alternate edges not in M with edges in
M . Showing that such a path always exists will be crucial to the proof of Lemma 6. Let t⇤ be the smallest
index such that it⇤ is not matched. We say that edges of the form (it, jt) or (jt, it+1) move “forward” in
C, whereas edges of the form (jt, it) or (it+1, jt) move “backwards” in C. Moreover, we say that a vertex
it 2 I is an inflection vertex if (along cycle C) if it is adjacent to two vertexes with which it is not matched
(formally, if (jt�1, it) /2 M and (jt, it) /2 M). If starting at j0 and moving forward in C does not generate an
alternating path that ends in an unmatched seller, then eventually we will encounter an inflection vertex, it,
that is itself matched (i.e. j⇤(it) 6= ;). The construction of the desired path works as follows: start at j0 and
move forward in C until it⇤ is reached, or we reach an inflection vertex. If we reach an infection vertex (say,
iτ ), continue the path with edge (iτ , j

⇤(iτ )). Then, there are two cases. First, j⇤(iτ ) has an index smaller
than t⇤. In this case, upon reaching j⇤(iτ ), we can continue moving from j⇤(iτ ) forward in C until we reach
it⇤ or we encounter another inflection vertex. We call the operation of moving from iτ to j⇤(iτ ), and then
moving forward in C, a jump, because we are jumping forward in C, but we are still moving forward towards
it⇤ . The second case is when the index of j⇤(iτ ) is larger or equal to t⇤. Then, upon reaching j⇤(iτ ), we
continue by moving backwards in C, until we reach an unmatched seller or another inflection vertex. We call
the operation of moving from iτ to j⇤(iτ ), and then backwards in C, a rotation, because we are rotating the
direction in which we traverse C. This process of combining jumps and rotations is illustrated in the figure
below, and is the conceptual core of how the proof of the lemma works.

Example 4. We present two examples of alternating paths where there is one unmatched buyer and
one unmatched seller.

36If Ξn�1 + 1 = Ξn this is trivial. If not, given Ξn�1 2 Lk, let Ξn � Ξn�1 ⌘ l > 0. Then (by construction)
{Ξn�1 + 1, ...,Ξn�1 + (l � 1),Ξn�1 + l} ⇢ Lk. Thus, Ξn 2 Lk also.

37If ΞN = T then ΞN + 1 = 1 2 L1. If ΞN 6= T , by definition, {max{Ξ}+ 1, ..., T} ⇢ Lk for some loop Lk.
Since T 6= ΞN then {T, T + 1} = {T, 1} ⇢ Lk, so k = 1. Thus, ΞN + 1 2 L1.
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Consider the following graphs, where the thick lines indicate a pairwise stable matching and the
Hamiltonian Cycle is C = ((j0, i1), (i1, j1), (j1, i2), ..., (i5, j0)). We show two examples of alternating
paths as described above. In the left panel, the path begins with the unmatched buyer j0 and follows
the Hamiltonian cycle to seller node i1. Node i1 is an inflection vertex ((j0, i1) /2 M and (i1, j1) /2 M)
and the path “jumps” from node i1 to node j2. The path then follows the Hamiltonian Cycle until it
reaches the unmatched seller at node i4. In the right panel, the path again begins with the unmatched
buyer j0 and follows the Hamiltonian cycle until it reaches seller node i2, which is an inflection vertex
((j1, i2) /2 M and (i2, j2) /2 M). The path then “jumps” to buyer node j4. Since the index is now larger
than the index of the unmatched seller (3), we rotate and “move backwards” along the Hamiltonian
cycle to seller node i4. The path continues to move backwards along the Hamiltonian cycle until it
reaches unmatched seller node i3.

Proof. Let G be as in the Lemma. Let M be a pairwise stable matching. We proceed by contradiction:
assume that there exists j 2 J that is unmatched. Thus, there must be at least one vertex in I that is
also unmatched. Furthermore, let µ : I [ J ! R be a valuation profile that makes M pairwise stable
in (I,J , E, µ), and pM be the supporting prices. Notice that, by assumption, µ(j) > µ(i). Since G is
Hamiltonian, we can find a cycle as follows:

C = ((j0, i1), (it, jt), (jt, it+1), ..., (in, jn+1))
n
t=1,

where

• j0 = jn+1 = j, and all other nodes are different (t 6= t0 implies it 6= it0 and jt 6= jt0).

• There exists t⇤ such that it⇤ is unmatched.

• Without loss of generality, t⇤ is the lowest index for which it is unmatched.

We now define a path P = ((j, i1), (it, jt), (jt, it+1))Kt=1, with the following properties:

• iK+1 is unmatched (it may be it⇤ or some other unmatched vertex in I),

• for all t � 1, (tt, it) 2 M .

We construct this path inductively. Let P1 = ((j0, i1)) ⌘ ((j0, i1)).
Assume Pn = ((j0, i1), (i1, j1), ..., (jn�1, in�1), (jn�1, in)) is given, where Pn satisfies that for all t 2 {1, ..., n�
1}, (tt, it) 2 M . Let k 2 {1, ..., T} be such that in = ik. There are seven cases to consider.

• If j⇤(in) = ;, let Pn = P, and this concludes the construction of P. Hence, for the remaining three
cases we assume in is matched.

• Assume that k < t⇤, and that (ik, jk) 2 M . Then, let Pn+1 ⌘ Pn ⇤ ((in, jn), (jn, in+1)) where jn = jk,
and in+1 = ik+1.
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• Assume k < t⇤, (ik, jk) /2 M , and j⇤(ik) = jk0 where k0 < t⇤. Then, define Pn+1 ⌘ Pn ⇤
((in, jn), (jn, in+1)) where jn = jk0 , and in+1 = ik0+1.

• Assume k < t⇤, (ik, jk) /2 M , and j⇤(ik) = jk0 where k0 � t⇤. Then, define Pn+1 ⌘ Pn ⇤
((in, jn), (jn, in+1)) where jn = jk0 , and in+1 = ik0 .

• Assume that k > t⇤, and that (ik, jk�1) 2 M . Then, let Pn+1 ⌘ Pn ⇤ ((in, jn), (jn, in+1)) where
jn = jk�1, and in+1 = ik�1.

• Assume k > t⇤, (ik, jk�1) /2 M , and j⇤(ik) = jk0 where k0 < t⇤. Then, define Pn+1 ⌘ Pn ⇤
((in, jn), (jn, in+1)) where jn = jk0 , and in+1 = ik0+1.

• Assume k > t⇤, (ik, jk�1) /2 M , and j⇤(ik) = jk0 where k0 � t⇤. Then, define Pn+1 ⌘ Pn ⇤
((in, jn), (jn, in+1)) where jn = jk0 , and in+1 = ik0 .

Since C is a cycle of length 2n, then P utilizes at most 3n edges. Hence, this inductive process eventually
stops. Let iT 2 I be the endpoint of P; by construction, iT is unmatched. Because P satisfies (it, jt) 2 M ,
and because (j, i1) 2 E, (jT�1, iT ) 2 E then the following are true:

• µ(j)  pM (i1, j1),

• pM (it, jt)  pM (it+1, jt+1) for all t 2 {1, ..., T � 2},

• and pM (iT�1, jT�1)  µ(iT ).

Then, µ(j)  µ(iT ), a contradiction. Therefore, if a matching in a Hamiltonian graph is stable, it must not
leave agents unmatched.

We now prove a version of proposition 2 for the case of balanced graphs (that is, when there are equal
number of buyers and sellers). We then generalize to the case of unbalanced graphs.

Proposition 2 Let θ > 0, let G(J, J) be the set of all bipartite, undirected balanced graphs with node
sets of cardinality J . For each λ 2 (0, 1) let Pλ be a probability distribution over G(θJ, J) such that each

graph with K undirected edges is drawn with equal probability λK(1�λ)θJ
2
�K . Consider a sequence (λt)t2N

such that λt >
ln(t)+ln(ln(t))+ct

t where ct ! 1 with t. Then limt!1 Pλt
({G: G satisfies the SLOP}) = 1.

Proof. Fix (λt)t be as in the statement of the Proposition. Define the following sets:

S = {G 2 G(t, t) : G satisfies the SLOP.}

HAM = {G 2 G(t, t) : G has a Hamiltonian cycle.}

The previous lemma shows that HAM ⇢ S. Indeed, pick any G 2 HAM , and pick any matching M in
G that is pairwise stable. By our previous lemma, M must be perfect. Thus, G|M = G. Since G has a
Hamiltonian cycle, then G|M has a Hamiltonian cycle. Thus, by Lemma 5, G|M has an alternating cycle.
Since M was arbitrarily selected, this implies that G has the M -AC property for all pairwise stable M .
Therefore, G has the SAC property, so G 2 S. This proves the claim that HAM ⇢ S. By Frieze (1985), we
know Pλt

(HAM) ! 1 as t ! 1. Thus. Pλt
(S) ! 1 as t ! 1, and this conclude the proof.

We now generalize the previous proposition when there can be different number of buyers and sellers
(formally, when θ 6= 1). Without loss of generality we assume θ > 1. Before doing this we need an extra
Lemma. In what follows, given any graph G, we use E(G) to denote the set of edges of G.

Lemma 7. Let (λt)t be as in Proposition 2. Define the set

SubHAM = {G 2 G(θt, t) : (8 subgraphs Ĝ 2 G(t, t) of G) Ĝ has a Hamiltonian cycle.}

Then, Pλt
(SubHAM) ! 1 as t ! 1.

Proof. For any given t, take G /2 SubHAM . Then, there exists a subgraph ΓG 2 G(t, t) of G such that ΓG is
not Hamiltonian. For each G /2 SubHAM pick a ΓG as above. Furthermore, we can factorize the probability
of drawing G as follows:

Pλt
(G) = λ

|E(ΓG|
t (1� λt)

t2�|E(ΓG)|λ
|(E(G))|�|E(ΓG)|
t (1� λt)

t2(θ�1)+|E(ΓG)|�|E(G)|
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where E(ΓG) is the set of edges in ΓG and E(G) is the set of edges in G. Let λk
t (1 � λt)

t2(θ�1)�k ⌘ R(k).
Then taking the convention that a sum over an empty set of indices is 0,

1� Pλt
(SubHAM) =

X

{Γ2G(t,t): Γ is not Hamiltonian}

{
X

{G/2SubHAM :ΓG=Γ}

Pλt
(G)}}


X

{Γ2G(t,t): Γ is not Hamiltonian}

{λ
|E(Γ|
t (1� λt)

t2�|E(Γ)|{

t2(θ�1)
X

k=0

✓

t2(θ � 1)

k

◆

R(k)}}

=
X

{Γ2G(t,t): Γ is not Hamiltonian}

λ
|E(Γ|
t (1� λt)

t2�|E(Γ)|}

 Pλt
({Γ 2 G(t, t) : Γ is not Hamiltonain)

Pick any ε > 0 and T 2 N such that for all t > T , P ({Γ 2 G(t, t) : Γ is not Hamiltonain})  ε. Such a T
exists by Frieze (1985). Then, for all t > T , Pλt

(SubHAM) � 1� ε, and this concludes the proof.

We now prove Proposition 2 for the case with θ 6= 1.

Proof. Fix (λt)t be as in the statement of the Proposition. Without loss of generality assume that θ > 1, so
that there are more sellers than buyers (the proof for the case θ < 1 is analogous). Define the following sets:

S = {G 2 G(θt, t) : G satisfies the SLOP.}

SubHAM = {G 2 G(θt, t) : (8 subgraphs Ĝ 2 G(t, t) of G) Ĝ has a Hamiltonian cycle.}

We now prove that SubHAM ⇢ S. Indeed, pick any G 2 SubHAM , and pick any matching M in G that
is pairwise stable. Pick any subgraph Ĝ of G such that Ĝ 2 G(t, t) and G|M is a subgraph of Ĝ.38 Then,
M is also pairwise stable in Ĝ. Since M is pairwise stable in Ĝ 2 G(t, t) then Lemma 6 implies M is perfect
in Ĝ 2 G(t, t). Thus, |M | = t, so G = Ĝ = G|M . Since G has a Hamiltonian cycle, then G|M has a
Hamiltonian cycle. Thus, by Lemma 5, G|M has an alternating cycle. Since M was arbitrarily selected, this
implies that G has the M -AC property for all pairwise stable M . Therefore, G has the SAC property, so
G 2 S. This proves the claim that SubHAM ⇢ S. By Lemma 7, we know Pλt

(SubHAM) ! 1 as t ! 1.
Thus, Pλt

(S) ! 1 as t ! 1, and this conclude the proof.

38Such a graph Ĝ always exists. Let Ĵ = J . Since |{i 2 I : j⇤(i) 6= ;}|  t then there exists Î ⇢ I such
that |Î| = t and {i 2 I : j⇤(i) 6= ;} ⇢ Î. Let Ĝ be the graph spanned by (Ĵ , Î).

46



Appendix to “Networks, Frictions, and

Price Dispersion”

(For Online Publication)

Javier D. Donna Pablo Schenone Gregory Veramendi

The Ohio State University Arizona State University Arizona State University

February 18, 2019

Javier D. Donna Pablo Schenone

Department of Economics Department of Economics

The Ohio State University W.P. Carey School of Business

1945 N High St Arizona State University

425 Arps Hall 501 E. Orange Street

Columbus, OH 43210 Tempe, AZ 85287

Phone: 614-688-0364 Phone: 480-965-5596

Email: donna.1@osu.edu Email: pablo.schenone@asu.edu

Gregory Veramendi

Department of Economics

W.P. Carey School of Business

Arizona State University

501 E. Orange Street

Tempe, AZ 85287

Phone: 480-965-0894

Email: gregory.veramendi@asu.edu



Contents

B Other Related Literature A-1

C Non-Maximal Abstractions A-2

D Formal algorithm and proof of Proposition 3 A-3

E The case with negative gains from trade. A-10

F Example of unstable matching A-13

G Comparisons with the literature A-14

G.1 Comparison with Fainmesser and Galeotti (2015) . . . . . . . . . . . . . . . A-14

G.2 Comparison of abstractions with the decomposition in Corominas-Bosch (2004)A-14

H Additional Figures for Study of Finite Random Networks A-17

H.1 Buyer-Seller Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-17



Appendix

This is the online appendix for “Networks, Frictions, and Price Dispersion” by Javier Donna,

Pablo Schenone, and Gregory Veramendi.

B Other Related Literature

Since we model markets of buyers and sellers, our paper relates to other fields such as match-

ing, financial networks, and computer science. Here we briefly relate our paper to these other

fields.

Our paper is related to the literature on the matching role of markets (e.g. Gale and

Shapley 1962; Shapley and Shubik 1972; Shapley and Scarf 1974; Crawford and Knoer 1981;

Kelso and Crawford 1982; Ausubel and Milgrom 2002; Hatfield and Milgrom (2005); and

Hatfield and Kojima 2008, 2010).1 We follow the matching literature by developing a deferred-

acceptance algorithm that picks specific stable matchings. The algorithm has two stages. The

first stage outputs an allocation and is motivated by the wage adjusting process in Crawford

and Knoer (1981) and Kelso and Crawford (1982). This allocation has the property that there

exist prices for which it is pairwise stable. The second stage outputs two prices: the pointwise

minimum price at which the stage 1 allocation is stable, and the pointwise maximum price

at which the stage 1 allocation is stable.2

There is also a growing literature that uses networks to study trading in financial settings

such as over-the-counter (OTC) markets (e.g. Gofman 2011; Malamud and Rostek 2013;

Babus and Kondor 2013; and Alvarez and Barlevy 2014). They use concrete games to

investigate OTC markets where dealers trade with other dealers. In contrast, we study

markets where the set of sellers and buyers belong to two disjoint sets: sellers can only trade

with buyers while buyers can only trade with sellers (i.e. bipartite networks as defined in

section 3 in the paper).

In the computer science literature, Kakade, Kearns, and Ortiz (2004) study trade using

an Arrow-Debreu economy (without firms) where consumers trade goods with other con-

sumers. Kakade, Kearns, Ortiz, Pemantle, and Suri (2004) use a concrete game to study

the interaction between the statistical structure of the underlying network and the variation

in prices at equilibrium.3 Our model also relates to the classical assignment problem. The

1Roth (2008) discusses recent progress in the study of deferred-acceptance algorithms. See Roth and
Sotomayor (1990) for a comprehensive survey of the two-sided matching literature.

2See section 4.2 for details.
3Kakade, Kearns, Ortiz, Pemantle, and Suri (2004) analyze networked markets where the numbers of

buyers and sellers are equal. They show that, for their particular game, there is no equilibrium price dispersion
when the following conditions hold: (1) the number of buyers and sellers go to infinity, (2) the links are formed
uniformly at random, and (3) the probability of forming a link is high enough. In their model there is limiting
price dispersion (as the number of buyers and sellers go to infinity) when the network is formed via preferential
attachment. In contrast, the only constraint we impose on allocations is that they be pairwise stable. So our
results are game-free. In addition, in our simulations we study price dispersion in bipartite networks varying
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goal of this literature is to develop efficient algorithms (e.g. Hungarian algorithm, auction

algorithms, simplex algorithms, etc.) to maximize total output in a setup similar to ours

(i.e. obtain the Pareto efficient matching). The first stage of our algorithm is similar to the

auction algorithm which is known to perform well with sparse matrices (see Bertsekas 1992

for a survey). The goal of the algorithms literature is to find one allocation and possibly

one price per match that maximizes output. In contrast, the goal of our algorithm is to find

the set of prices that support pairwise stable allocations and study the relationship between

frictions and price dispersion.

C Non-Maximal Abstractions

Proposition 1. Let N be a network and M be a matching. Then the following are equivalent:

1. There exists a price function, pM , such that M is pairwise stable in N at prices pM .

2. There exists an abstraction of N in fully connected networks, A, and a price function

ρ for A, such that ρ supports M in A.

While most of the intuition for our results comes from Proposition 1, this proposition

does not characterize the full set of prices that support any given pairwise stable match.

Proposition 1 tells us that any matching that is pairwise stable in a network, N , is also

pairwise stable with respect to some price function, ρ, for some abstraction of N . Let A

denote one such abstraction, and P∗ denote the set of prices that support M in A. Then,

each ρ ∈ P∗ induces a price function for N that supports M . Thus, given a matching, an

abstraction that does not break the matching induces prices that support it. However, there

might be other prices that also support the matching, which are not induced by a price that

supports the matching in that particular abstraction. The example below shows this.

Example 1. In this example we present a network (left) and construct two ab-

stractions from it. Assume that the valuations of the buyers are ordered as their

labels (µ(A) > µ(B) > µ(C) > µ(D)), and costs are normalized to 0.

arbitrarily the number of buyers, the number of sellers, and the number of links per seller or buyer.
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Abstraction in Maximal Abstraction
Network Fully-connected in Fully-connected

Subnetworks Subnetworks

1

2

3

A

B

C

D

BuyersSellers

1

2

3

A

C

B

D

G

G0

1

2

3

A

C

B

D

G

G000

G00

The abstraction in the middle imposes two constraints that prices need to

satisfy in order to make the matching pairwise stable in the abstraction: stability

in every subnetwork implies ρ(G) ∈ [0, µ(C)], ρ(G0) ∈ [µ(D), µ(B)]; cheapest

sorting implies ρ(G0) ≤ ρ(G). Let P⇤ be set of price functions satisfying these

conditions. Notice that any ρ ∈ P⇤ induces prices in the original network (say,

pM) that support M . However, there are other prices (say, p0M) that also support

M in the original network but are not induced by any ρ ∈ P⇤. For example,

p0M(1, A) = p0M(2, C) = µ(C) and p0M(3, B) = µ(B) support M in the original

network, but is not induced by prices in P⇤.

Now, consider the abstraction on the right. The following are the constraints

on prices that support M in the abstraction: ρ(G) ∈ [µ(D), µ(C)], ρ(G00) ∈

[µ(D), µ(B)]. Now, any price function pM that makes M pairwise stable in the

original network is induced by a price function, ρ, that satisfies the above con-

straints.

Proposition 1 identifies a class of abstractions, which we call maximal, such that the

constraints imposed by these abstractions are necessary and sufficient for stability. An exam-

ple of a maximal abstraction is the rightmost abstraction in example 1. Thus, the maximality

property of an abstraction buys us the full set of prices at which a matching is stable, not

just a subset.

D Formal algorithm and proof of Proposition 3

In this appendix we discuss the formal algorithm used in the main paper and prove

some of its properties. We now present the basic notation we use in the match determination

program. Let st ∈ R
J⇥I be a matrix of prices for each seller-buyer pair. Each element, sti,j,

represents the price that buyer j would have to bid for seller i if j were to bid for i in round
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t. Vector qt represents the bidding queue in period t: qtn = j 2 J represents that in round

t, buyer j is the n-th bidder in the queue. The algorithm ends when l(q) = 0, where l(q)

indicates the length of q. Quantity D(j) indicates j’s demand. Quantities with primes will

indicate quantities that will carry over to the next round of the algorithm. Finally, for each

seller j, we use the following payoff function to model that a buyer can only buy a good from

a seller if the two are linked in the network: uj : I ⇥ R
I⇥J :! R̄, uj(i, s) = µ(j) � si,j if

(i, j) 2 E and uj(i, s) = �1 otherwise.

Recall some notational conventions: given a matching M , i⇤(·) : J ! I [ {;} satisfies

(i⇤(j), j) 2 M for each M -matched j, and i⇤(j) = ; if j is M -unmatched. Analogously,

j⇤(·) : I ! J [ {;} satisfies (i, j⇤(i)) 2 M for each M -matched i, and j⇤(i) = ; if i is M -

unmatched. Also, even if not explicitly stated, the network is denoted N = (I,J , E;µ(·)),

I = #I, J = #J , and µ(s) = b 2 R for all s. This last normalization is simply for

convenience of the simulation.

Match Determination Program.

Input= (N , s0, (u1, ..., uJ), h
0, q) where:

• s0 = (s01, ..., s
0
J) 2 R

J⇥I , s0j = (b, ..., b) 2 R
I ,

• For each buyer j, and each t 2 N [ {0}, uj(i, s
t) = µ(j) � sti,j if (i, j) 2 E and

uj(i, s
t) = �1 if (i, j) /2 E,

• h0 = (0, ..., 0) 2 R
I⇥J .

• q0 2 J J such that q0n = q0m iff m = n.

Start step R(1):

R(t). Set ht = h, st = s, qt = q, j = q1.

1. If max{uj(i, s) : i 2 I} < 0 set s0 = s and h0 = h, q0 = (q2, ..., ql(q)).

a. If l(q0) = 0, stop, set M = {(i, j) : hi,j = 1}, and Output= M .

b. If l(q0) 6= 0, set qt+1 = q0, st+1 = s0, ht+1 = h0 and proceed to R(t+ 1).

2. If max{uj(i, s) : i 2 I} � 0 let D(j) 2 argmax{uj(i, s) : i 2 I}.

a. If argmax{uj(i, s) : i 2 I} has more than one element, select D(j) 2 argmaxi2I{uj(i, s)}

randomly.

3. Set the following parameters:

a. s0D(j),j = sD(j),j; for all j0 6= j, s0D(j),j0 = sD(j),j +
∆

2
; s0i00,j00 = si00,j00 elsewhere,

b. If hD(j),j0 = 0 for all j0 6= j, set q0 = (q2, ..., ql(q)); if hD(j),j0 = 1 for some j0 6= j, set

q0 = (q2, ..., ql(q), j
0),
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c. h0

D(j),j = 1; for all j0 6= j, h0

D(j),j0 = 0; h0

i00,j00 = hi00,j00 elsewhere.

4. If l(q0) = 0, stop. Set M = {(i, j) : hi,j = 1}. Output= M .

If l(q) 6= 0 set h0 = ht+1 and s0 = st+1 and q0 = qt+1. Then start R(t+ 1).

Although this algorithm is motivated by Crawford and Knoer (1981) and Kelso and Crawford

(1982), there are three important differences. The first is that firm productivities increase in

increments of ∆ whereas bids increase in increments of ∆

2
. Since Crawford and Knoer (1981)

and Kelso and Crawford (1982) work with a discrete core, the algorithm they run produces

a stable match when both bid increments and productivities increase by the same amount.

However, since we work with a continuous core, it is not true that the matching generated

by such an algorithm is stable. One can construct examples where the matching generated

by the algorithms in Crawford and Knoer (1981) and Kelso and Crawford (1982) (say, M)

satisfies that there is no price function pM such that M is stable with respect to pM . We

provide one example in section F (Figure A1). The modification we introduce, that bids live

in a finer grid than firm productivities, helps us bypass this problem. The second difference

with the algorithms in Crawford and Knoer (1981) and Kelso and Crawford (1982) is that

we only use their program to find the matching, but not the prices that make it stable. The

reason is that their algorithm makes prices rise too quickly. While in some networks the price

generated by the algorithms in Crawford and Knoer (1981) and Kelso and Crawford (1982) is

the pointwise minimum price that makes the matching stable, this is not always guaranteed.

This is because in our setting we violate the non-indifference assumptions made in Crawford

and Knoer (1981) and Kelso and Crawford (1982). In order to capture, for each matching,

the pointwise maximum and minimum prices at which that matching is stable we run two

independent programs. We call these the Price Determination Programs, and we describe

them below. The first Price Determination Program (I), outputs the pointwise minimum

price function at which a matching is stable. The second Price Determination program (II),

outputs the pointwise maximum price function at which a matching is stable. The third

difference is that, when a seller i accepts a bid from a buyer j, then any future bid buyer j0

submits to i must outbid j’s bid. In symbols, if in round t seller i accepts bid sti,j from j, then

at the end of round t all sellers j0 linked to i have their bid price raised to st+1
i,j0 = sti,j +

∆

2
.

This modification reduces the run time of the algorithm by a factor of four.

Price Determination Program (I).

Input= (N ,M).

1. For each i 2 I such that j⇤(i) = ; set ρ
1
i = b.

2. For each i 2 I such that j⇤(i) 6= ; set ρ
1
i = max{µ(j) : (i, j) 2 E and i⇤(j) = ;}.

3. Set t = 1. Start step 4(1).
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4(t). Given (ρt1, ..., ρ
t

I
):

a. For each i 2 I such that j⇤(i) = ; set ρ
t+1

i
= ρ

t

i
.

b. For each i 2 I such that j⇤(i) 6= ;, let j ⌘ j⇤(i). Then, set

ρ
t+1

i
= max{ρt

i0
: (9j0)(i0, j0) 2 M , (i, j0) 2 E}.

c. If for all i 2 I ρ
t+1

i
= ρ

t

i
:

⇤ For each i such that j⇤(i) 6= ; set pM(i, j⇤(i)) = ρ
t+1

i
.

⇤ Output= (pM(·)).

d. Otherwise, start step 4(t+ 1).

Price Determination program (I) outputs the minimum price at which M can be made

stable.

Price Determination Program (II).

Input= (N ,M).

1. For each i 2 I such that j⇤(i) = ; set ρ
1
i
= b.

2. For each i 2 I such that j⇤(i) 6= ; set ρ
1
i
= µ(j⇤(i)).

3. Set t = 1. Start step 4(1).

4(t). Given (ρt1, ..., ρ
t

I
):

a. For each i 2 I such that j⇤(i) = ; set ρ
t+1

i
= ρ

t

i
.

b. For each i 2 I such that j⇤(i) 6= ;, let j ⌘ j⇤(i). Then, set

ρ
t+1

i
= min{ρt

i0
: (i0, j) 2 E}.

c. If for all i 2 I ρ
t+1

i
= ρ

t

i
:

⇤ For each i such that j⇤(i) 6= ; set pM(i, j⇤(i)) = ρ
t+1

i
.

⇤ Output= (pM(·)).

d. Otherwise, start step 4(t+ 1).

Price Determination program (II) outputs the maximum price at which M can be made

stable.
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In section 4.2 we claimed our algorithm has four properties: it ends in finite time, it

selects a pairwise stable allocation, and for each allocation it selects the pointwise minimum

and maximum prices that sustain it.

Proposition 3: The deferred acceptance algorithm has the following properties:

1. It stops after a finite number of rounds.

2. It outputs a pairwise stable allocation.

3. Price Determination program (I) outputs the pointwise minimum price function at

which M is stable.

4. Price Determination program (II) outputs the pointwise maximum price function at

which M is stable.

We now prove these items one at a time. In what follows, we use MDP and PDP

to abbreviate the Matching Determination Program and the Price Determination Program

respectively. Finally, if (xi)i2I is a vector indexed by I we use the convenient shorthand

notation x· to denote the whole vector, whenever ambiguity is unlikely.

We need two lemmas: the first, shows that, given M produced by the MDP, there

exist prices pM such that M is stable with respect to M . The second shows that the prices

generated by the PDP are weakly lower than any pM such that M is stable with respect to

M . To prove these Lemmas, recall that (ρti)i2I,t�1 from the PDP(I) is defined as follows:

• If j⇤(i) = ;, ρti = b for all t.

• If j⇤(i) = j for some j 2 J , ρ1i = max{µ(j) : (i, j) 2 E, i⇤(j) = ;} for each i 2 I, and

ρ
t
i = max{ρt�1

i0 : (9j0, i0) : (j0, i0) 2 M , (j0, i) 2 E} for all t � 2.

The following properties imply that there exists a value T such that, for all i and all t � T ,

ρ
t
i = ρ

t+1

i . That is, (ρt
·
)t�0 is eventually constant. We let ρ1

·
⌘ limt!1 ρ

t
·
.

1. For all i, ρti  ρ
t+1

i . This follows because ρ
t�1

i 2 {ρt�1

i0 : (9j0) : (j0, i0) 2 M , (j0, i) 2 E}

whenever j⇤(i) = j and ρ
t
i = b whenever j⇤(i) = ;.

2. For all i, ρti  max{µ(j) : j 2 J }.

3. For all i, if ρti 6= ρ
t+1

i then ρ
t+1

i � ρ
t
i � ∆.

Finally, recall that ∆ 2 R is chosen so that for all j 2 J , µ(j) = b+kj∆ for for kj 2 N[{0}.

In particular, µ(j) � b for all j. This normalization only rules out uninteresting cases where

a buyer never places a bid and is never matched to a seller.
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Lemma 1. Let M be the matching produced by the MDP. Then, there exists pM such that

M is stable with respect to pM .

Proof. For each edge (i, j) 2 M define pM(i, j) = ρ
1

i where (ρti)i2J ,t2N[{1} is as defined in

the PDP(I). Also, let T be the last round of the MDP and let [sTi,j]i2I,j2J be the matrix of

final prices generated by the MDP. We show that M is stable with respect to pM . Assume

first that (i, j) 2 E are such that j⇤(i) = i⇤(j) = ;. Then i received no bids, so sTi,j = b.

Since the algorithm ended, it must be that uj(i, s
T ) < 0 , µ(j) < b, a contradiction. Thus,

there does not exist an edge (i, j) 2 E such that j⇤(i) = i⇤(j) = ; so, a fortiori, no such

edge (i, j) 2 E blocks M . Now let (i, j) 2 M . Pick j0 6= j such that (i, j0) 2 E. We show

(i, j0) 2 E does not block M . If i⇤(j0) = ; then µ(j0)  ρ
1
i  ρ

1

i = pM(i, j). If i⇤(j0) 6= ;

then ρ
1

i � ρ
1

i⇤(j0) by construction. Thus, pM(i, j) � pM(i⇤(j0), j0). Thus, (i, j0) does not block

M . Pick i0 6= i such that (i0, j) 2 E. We show (i0, j) 2 E does not block M . If j⇤(i0) 6= ;

then ρ
1

i0 � ρ
1

i by construction. Thus, pM(i0, j⇤(i0)) � pM(i, j). Let j⇤(i0) = ;. Then i0 never

received a bid. Let t be the last time j bids for i. Since bidders bid for the cheapest seller

sti,j  sti0,j = b. By definition of t, sti,j = sTi,j so sTi,j = pM(i, j) = b. We use this to argue that

ρ
1
î
= b for all matched î such that (i, j⇤(̂i)) 2 E (note that i is one such î). Pick î such that

j⇤(̂i) 6= ; and (i, j⇤(̂i)) 2 E. Then, sT
î,j⇤ (̂i)

 sT
i,j⇤ (̂i)

. 4 Since sTi,j = b and sT
i,j⇤ (̂i)

 sTi,j +
∆

2
,

then sT
î,j⇤ (̂i)

 b+ ∆

2
. If there exists j̃ such that i⇤(j̃) = ; and (̂i, j̃) 2 E, then it must be that

µ(j̃) = b. Indeed, if µ(j̃) > b then µ(j̃) � b+∆ which is a contradiction: since sT
î,j⇤ (̂i)

 b+ ∆

2

and i⇤(j̃) = ;, uj̃ (̂i, s
T ) � 0, which contradicts T being the last round of the MDP. Thus,

µ(j̃) = b. Hence, ρ1
î
= b. We now conclude the argument in an inductive manner: if ρk

î
= b

for some k and all î that satisfy j⇤(̂i) 6= ; and (i, j⇤(̂i)) 2 E, then by construction ρ
k+1
i = b.

Thus, ρ1i = b = pM(i, j). Thus, (i0, j) does not block M . Therefore, M is stable with respect

to pM .

Lemma 2. Let M be the matching generated by the MDP. Let pM be any price function

such that M is stable with respect to pM (which is well defined by lemma ) and let v be

the associated payment function. Let p⇤M be the price generated by the PDP(I) and v⇤ the

corresponding payment function. Then, v⇤  v.

Proof. Let M , pM , v, p⇤M and v⇤ be as in the statement of the lemma. Then, for all i,

v(i) � ρ
1
i . Indeed, if j⇤(i) = ; then v(i) = b = ρ

1
i . If j⇤(i) = j for some j then, by stability

of M with respect to pM , v(i) � µ(j0) for each j0 such that i⇤(j0) = ;. Thus, v(i) � ρ
1
i .

We now show that if v � ρ
t for some k, then v � ρ

t+1. Indeed, for all i such that j⇤(i) = ;,

v(i) = b = ρ
t
i = ρ

t+1
i . For all i such that j⇤(i) = j, we have the following:

ρ
t+1
i = max{ρti0 : (9j

0, i0)(i0, j0) 2 M and (i, j0) 2 E}

 max{v(i0) : (9j0, i0)(i0, j0) 2 M and (i, j0) 2 E}  v(i),

4 Indeed, let t be the last time j∗(̂i) bids for î. Then, st
î,j∗ (̂i)

= sT
î,j∗ (̂i)

, and st
î,j∗ (̂i)

 st
i,j∗ (̂i)

, where the

last inequality holds because buyers always bid for the cheapest sellers. By monotonicity of the matrix of

prices, st
i,j∗ (̂i)

 sT
i,j∗ (̂i)

. Thus, sT
î,j∗ (̂i)

 sT
i,j∗ (̂i)

.
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where the last inequality follows from stability of M with respect to pM . Thus, for each t

and each i, ρti  v(i). Hence ρ
1

·
⌘ v⇤(·)  v(·).

We now prove items 1 through 4 of Proposition 1.

1. The algorithm ends in finite time.

Proof. By the same arguments as Crawford-Knoer, the matching determination program

ends in finite time. Furthermore, let K 2 N satisfy max{µ(j) : j 2 J } = b+K∆. Then the

price determination program ends in at most 2K rounds.

2. The algorithm outputs a pairwise stable matching.

Lemma 2 proves this item.

3. Price Determination program (I) outputs the pointwise minimum price

function at which M is stable.

Proof. Let pM be the prices generated by the Price Determination program (I). By construc-

tion, M is stable apM . The rest follows from lemma 2

4. Price Determination program (II) outputs the pointwise maximum price

function at which M is stable. The result then follows from Lemmas 3 and 4

Lemma 3. Let M be the matching generated by the MDP, and let pM be the prices generated

by the PDP(II). M is stable with respect to pM .

Proof. Let M be the matching outputted by the matching determination program, and pM

be the prices generated by the price determination program. Assume (i, j) 2 E, j⇤(i) =

i⇤(j) = ;. Since there exists p̂M such that M is stable with respect to p̂M then µ(j)  b.

Thus (i, j) do not block M at ρ1. Now consider (i, j) 2 M . We show no seller and no buyer

wishes to block (i, j):

a. No Buyer blocks: Let j0 be such that (i, j0) 2 E. If i⇤(j0) 6= ; then, by construction,

ρ
1

i⇤(j0)  ρ
1

i , so (i, j0) does not block. Assume now that i⇤(j0) = ;. We say a seller i0

is indirectly connected to seller j if there exists sequences (i1, ..., ik) and (j1, ..., jk�1)

such that (i1, j) 2 E, (i1, j1) 2 E, (i2, j1) 2 E, ..., (ik, jk�1) 2 E, with i0 = ik.

That is, if a path can be constructed from j to i0. By construction, min{µ(j⇤(i0)) :

i0 is indirectly connected to j}  ρ
1

i where, by convention, µ(;) = b. Now consider

the abstraction used in Proposition 1: each matched pair (̂i, ĵ) 2 M is assigned their

own subgraph, and all unmatched buyers/sellers are assigned a trivial subgraph that
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contains only them. Because there exist prices p̂M such that M is stable at p̂M , cheapest

sorting implies that

µ(j0) ≤ p̂M(i, j) ≤ min{v(i0) : i0 is indirectly connected to j}

≤ min{µ(j⇤(i0)) : i0 is indirectly connected to j}.

Thus, µ(j0) ≤ ρ
1

i
so (i, j0) does not block.

b No Seller blocks: Let i0 be such that (i0, j) ∈ E. By construction, ρ1
i

≤ ρ
1

i0
. Thus,

(i0, j) does not block.

Lemma 4. Let M be the matching generated by the MDP. Let pM be any price function such

that M is stable with respect to pM (which is well defined by our previous lemma) and let v

be the associated payment function. Let p⇤
M

be the price generated by the PDP(II) and v⇤ the

corresponding payment function. Then, v⇤ ≥ v.

Proof. Let M , pM , v, p⇤
M

and v⇤ be as in the statement of the lemma. Then, v(i) ≤ ρ
1
i

for

all i. Indeed, if j⇤(i) = ∅ then v(i) = b = ρ
1
i
. If j⇤(i) = j for some j then, by stability of M

with respect to pM , v(i) ≤ µ(j) = ρ
1
i
.

We now show that if v ≤ ρ
t for some k, then v ≤ ρ

t+1. Indeed, for all i such that j⇤(i) = ∅,

v(i) = b = ρ
t

i
= ρ

t+1

i
. For all i such that j⇤(i) = j, we have the following:

ρ
t+1

i
= min{ρt

i0
: (i0, j) ∈ E}

≥ min{v(i0) : (i0, j) ∈ E} ≥ v(i),

where the last inequality follows from stability of M with respect to pM . Thus, for each t

and eaxh i, ρt
i
≥ v(i). Hence ρ

1

·
≡ v⇤(·) ≥ v(·).

E The case with negative gains from trade.

In the main text, we assume that linked agents in a network have positive gains from trade.

While this assumption is natural, and has been used in related works, in this appendix we

drop the assumption and obtain theorems analogous to 1 and 1. We do this in the interest

of completeness.

For Proposition 1, the assumption is essentially without loss of generality. Intuitively,

linked agents that can’t engage in profitable trades (i.e. agents with negative gains from

trade) do not affect the set of pairwise stable matching, nor do they affect the prices that

support the pairwise stable matchings. The only agents that change the set of pairwise stable
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matchings, and their supporting prices, are those that have 0 gains form trade. More formally,

we proceed in three steps. First, we define a matching that contains trivial matches. Second,

for any given network, N , we construct an alternative network, N̂ , by eliminating the links

between agents that have negative gains from trade. Third, we show that N and N̂ have

the same set of stable matchings up to matchings that contain trivial matches. Regarding

Theorem 1, this theorem is without loss of generality. That is, it is still true that a graph G

satisfies the SLOP if, and only if, it satisfies the M -AC for all matchings M such that (for

some valuation profile) M is stable in the network induced by G and the valuation profile.

However, once we drop the assumption that linked pairs have positive gains from trade, the

set of matchings M that are pairwise stable (given a suitable valuation profile) is now larger.

When only positive gains from trade are allowed, only maximal matchings are pairwise stable

(given a suitable valuation profile), whereas now any matching is pairwise stable (again, given

a suitable valuation profile. In particular, this implies that the complete graph is (essentially)

the only graph where SLOP holds.

We begin by defining a matching with trivial matches. Say N is a network, and M is

a matching. We say M contains trivial matches if there exists a pair (i, j) ∈ M such that

µ(i) = µ(j). We call this a trivial match because any price at which i and j could trade is a

price that leaves them indifferent between trading and not trading.

Proposition 2. Let N = (I,J , E;µ) be a network. Let N̂ = (I,J , Ê, µ) be as follows:

(i, j) ∈ Ê and (j, i) ∈ Ê if, and only if, (i, j) ∈ E and µ(i) ≤ µ(j). Finally, let M ⊂ E be a

an arbitrary matching (in N ) that contains no trivial matches. Then, the following are true:

1 Matching M ⊂ E is pairwise stable in N if, and only, if M is pairwise stable in N̂ ,

2 pM supports M ⊂ E in N if, and only if, pM supports M in N̂ .

Proof. Let N , N̂ be as in the statement of the Proposition. First, let M be pairwise stable

in N , and let pM be any price function that supports M in N . Notice that if (i, j) ∈ M , then

µ(i) ≤ µ(j), because otherwise individual rationality of pM would fail. Because M contains

no trivial matches, µ(i) < µ(j). Thus, (i, j) ∈ Ê. Moreover, since there are no blocks to

(i, j) in N , and because Ê ⊂ E, then there are no blocks in N̂ . Thus, M is pairwise stable

in N̂ at prices pM . Now, let M be pairwise stable in N̂ , and let pM be any price function

that supports M in N̂ . For an arbitrary pair (i, j) ∈ M , no links in Ê block (i, j). Let

(i, j0) ∈ E \ Ê. Then, µ(i) > µ(j0) so (i, j0) does not block (i, j). Similarly, no link of the

form (i0, j) ∈ E \ Ê blocks (i, j). Thus, M is stable in N , and pM supports it.

Proposition 3. Let G = (I,J , E) be a graph. Let M be any matching (not necessarily max-

imal). Then, there is a valuation profile µ such that M is stable in network N = (I,J , E;µ).

Proof. Let G and M be as in the statement of the Proposition. For all i ∈ I and all j ∈ J

such that i⇤(j) = j⇤(i) = ∅, let µ(i) = 2, µ(j) = 0. For all other agents, let µ(i) = µ(j) = 1.

Then, M is stable in (I,J , E;µ) at prices pM(e) = 1 for all e ∈ M .
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The Proposition above highlights the conceptual role played by the assumption we placed

on gains from trade. Assuming that linked pairs have positive gains from trade yields a

particular structure to the set of matchings that can be made stable. Namely, only maximal

matchings are such that there exists a valuation profile at which they are stable. When

we drop the assumption, then any matching can be made pairwise stable, via choice of an

appropriate valuation profile. In turn, this means that the only graphs that satisfy the slop

are the graphs such that, after eliminating all agent that have no links, the remaining graph

is complete.

Proposition 4. A graph G = (I,J , E) satisfies the SLOP if, and only if, the following

property holds: for all i, i0 2 I (i 6= i0) and all j, j0 2 J (j, 6= j0), if (i, j) 2 E and (i0, j0) 2 E,

then (i0, j) 2 E and (i, j0) 2 E.

Proof. Assume G is a graph that satisfies the SLOP. Let (i, j) 2 E and (i0, j0) 2 E, with

i 6= i0 and j 6= j0. Set µ(i) = µ(i0) = µ(j) = µ(j0) = 1 and µ(i00) = 2 for all other i00 2 I

and µ(j00) = 0 for all other j00 2 J . Set M = {(i, j), (i0, j0), (j, i), (j0, i0)}; then M is stable in

the network induced by G and µ. Thus, for all pM that support M , pM must be constant.

Replicating the argument made in Theorem 1, the above is true if, and only if, G|M satisfies

the M -AC property. Thus, G|M = ({i, i0}, {j, j0}, Ê) where Ê = (I ⇥ J ) [ (J ⇥ I).
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F Example of unstable matching

In a continuous core, it is not true that the matching generated by Crawford and Knoer (1981)

and Kelso and Crawford (1982) algorithm is stable. The following is one such example where

the matching generated by the algorithms in Crawford and Knower, and Kelso and Crawford

(say, M) satisfies that there is no price function pM such that M is stable with respect to

pM .

i

i0

j

j0

j00

Buyers

Sellers

Figure A1: A matching produced by the algorithm in Crawford and Knoer (1981) and Kelso
and Crawford (1982) that is unstable in a continuous core in a market with frictions.

Let ν(j) = ν(j0) = 2∆ and ν(j00) = ∆. With positive probability the algorithms in

Crawford and Knower, and Kelso and Crawford generate matching M = {(j, i), (j00, i00)}

(marked in red) with prices p(i, j) = 2 and p(i0, j00) = 1. In the continuum this is not stable.

Furthermore, in the continuum there is no price function p̂M that makes this matching stable.
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G Comparisons with the literature

G.1 Comparison with Fainmesser and Galeotti (2015)

In our paper, Proposition 1 states that there are two elements that drive price formation:

the fully connected subnetworks we can form, and the existence of links between a buyer

in a subnetwork and a seller in another subnetwork. Indeed, since each fully connected

subnetwork is akin to a competitive economy, these indicate regions of the graph where

prices are constant. Having identified these local regions of constant prices, the connections

across subnetworks identify which regions have lower prices than others: if a seller in a fully

connected subnetwork (say, a) is linked to a seller in another fully connected subnetwork

(say, a0), then the price in a must be lower than the price in a
0. Otherwise, the buyer would

not be trading with his counterpart in a. As a consequence, many links may serve the same

purpose (or be redundant), so the degree on a node is not informative about whether that

node will trade at a high or a low price.

In papers such as Fainmesser and Galeotti (2015), the force behind price formation is

different. In that paper, the seller is a monopolist, and every node is a buyer. Each buyer

cares about their consumption, but also about the consumption of its neighbors. A buyer

is influential if many other buyers care about his/her consumption; alternatively, a buyer is

suceptible to influence if he/she cares about the consumption of many other buyers. Being

influential (or suceptible to influence) is therefore deeply tied to the in/out-degree of the

buyer.

The main reason why the forces that determine prices in our model is different than the

forces that determine prices in models such as Fainmesser and Galeotti (2015), is that the

links represent different objects. In Fainmesser and Galeotti (2015), the monopolist can sell to

any consumer, and the purchase of one consumer “infects" other consumers. Hence, the logic

behind the arguments in Fainmesser and Galeotti (2015) is akin to the contagion literature,

where degree centrality is paramount. In our paper links represent trading opportunities,

so they encode outside options. Law of One Price will hold if we can chain these outside

options in appropriate ways, so that we eliminate all arbitrage opportunities (either directly,

or indirectly). In this sense, the logic underlying our paper is closer to the literature on

bridge walking: what kinds of paths from point a to point a
0 can we support in the graph?

In this literature, degree centrality is not as relevant.

G.2 Comparison of abstractions with the decomposition in Corominas-

Bosch (2004)

We occasionally get asked about the difference between our abstractions and the decompo-

sition in Corominas-Bosch (2004) (henceforth CB). While her decomposition construction

appears similar to ours, there are at least four important differences:
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(a) Corominas-Bosch decomposition does not identify redundant links. CB de-

composes a network into a union of subnetworks, whereas we consider a completely

different network, whose nodes are associated with subnetworks of the original graph.

While this does not seem like a great difference, it hides a crucial difference in our

decompositions: in the CB decomposition, when a node in a subgraph is connected to

another node in another subgraph, CB keeps this information encoded in her construc-

tion; in our construction, the central message is that the identity of these two nodes is

completely irrelevant, only their existence is relevant. For more details on this, see the

discussion in section 3.3 in the paper on how we apply our proposition.

(b) The purpose of her construction is different. CB uses her decomposition to calcu-

late the Perfect Equilibrium Payoffs (PEP) of her bargaining game and to characterize

the graphs that sustain those PEP; in our paper, we use our decomposition result to

characterize the prices that sustain any given pairwise stable allocation.

(c) Corominas-Bosch does not require her subnetworks to be fully connected.

If CB required fully connected subnetworks her theorem would be false.

(d) The CB decomposition imposes constraints that are irrelevant for our pur-

poses. Corominas-Bosch proceeds in the following way: first, she defines a construction

similar to our abstractions; second, if a subnetwork in the construction has more sellers

(resp. buyers) than buyers (resp. sellers), she calls that subnetwork a “seller (resp.

buyer) subnetwork", and otherwise she calls it an “even subnetwork"; finally, she fo-

cuses only on decompositions where the links across nodes of the different subnetworks

join sellers (buyers) in a “seller (buyer) subnetwork" to buyers (sellers) in another “seller

(buyer) subnetwork" (see p.50 of Corominas-Bosch (2004)). While an abstraction my

coincide with a CB decomposition, this is not always the case (see figure A2 for an

example of an abstraction that does not satisfy the CB construction). Since, for the

purposes of her paper, it is useful to focus on this special case, proving existence is

non-trival and this is what her decomposition theorem does. However, for our pur-

poses, these special cases are not particularly useful. Figure A2 shows an example of

a network such that there exists no CB decomposition where each subnetwork is fully

connected. Furthermore, the abstraction that is useful for characterizing the prices that

sustain the proposed stable match does not satisfy the CB constraints. Since we do

not restrict what abstractions we focus on, existence is trivially guaranteed. However,

what is non-trivial is to understand how to associate pairwise stability in the original

network with pairwise stability in an abstraction, nor how this relationship allows us

to construct the algorithm we use for our simulations.
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Figure A2: An abstraction that does not satisfy the conditions in CB

An Abstraction in
Network Fully Connected Subnetworks

1

2

3

4

A

B

C

Buyers

Sellers
1

2

3

4

A

B

C

G

G0

G00

Figure A3: The above network summarizes the differences between our abstractions and the
CB construction: (1) the CB construction keeps the information that seller 2 is linked to
buyer B, the purpose of our construction is to highlight that such information is irrelevant;
If seller 2 were linked to buyer C instead, nothing would change in our analysis. (2) this
network can be decomposed as stated in the CB theorem, but no decomposition involving
only fully connected subnetworks exists (3) let µ(A) > µ(B) > µ(C) so the match in bold is
pairwise stable. The abstraction we propose allows us to completely characterize the prices
that sustain such a match, but this crucial abstraction does not satisfy the CB constraints.
Indeed, seller 2 belongs to a seller subnetwork (G0) but is linked to a buyer in an even
subnetwork (buyer B in subnetwork G00 and buyer A in subnetwork G).
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H Additional Figures for Study of Finite Random Net-

works

H.1 Buyer-Seller Model

Price Distribution: Buyer- vs. Seller-Preferred Matches. Figure A4 shows that

similar results to the ones in Figure 1 in the paper are obtained using the seller-preferred

match. Figure A4 displays, for each market tightness, the distribution of prices using both

the seller- and the buyer-preferred match. (For the buyer-preferred match, each vertical box

in Figure A4 is identical to the corresponding vertical box in Figure 1.) When ELB equals 5,

the 95th and 5th price percentiles coincide with the Walrasian outcome for both the buyer-

and the seller- preferred match. The prices in the buyer-preferred matching represents the

lower bound of the set of prices that support each match. Likewise, the prices in the seller-

preferred match represents the upper-bound of the set of prices that support each match.

Since both the seller-preferred and buyer-preferred price distributions mimic the Walrasian

outcome when ELB=5, it must be true that the price distribution in any allocation that

supports a pairwise stable match must also mimic the Walrasian outcome.
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Figure A4: Price Distribution: Buyer- vs. Seller-Preferred Matches.

Notes: At each market tightness, panels 1 to 4 display the distribution of prices in the model using the sellers

and the buyer-preferred match. For the seller-preferred match, each vertical box in this figure is identical

to the corresponding vertical box in Figure 1. In addition, each panel displays the Walrasian outcome,

pwalras. We describe how to calculate the Walrasian outcome in subsection 5. See the notes in Figure 1 for

a description of the vertical boxes.
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Finite-Sample Convergence Properties of Random Networked Markets.

Figure A5: Finite-Sample Convergence Properties of Random Networked Markets

Notes: The figure shows that convergence does not depend on the size of the market when ELB is fixed.
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