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Abstract

This paper presents micro-econometric evidence for collaborative knowledge cre-
ation at the level of individual researchers. The key determinant for developing
new ideas is the exchange of differentiated knowledge among collaborators. To
stay creative, inventors seek opportunities to shift their technological expertise to
unexplored niches by utilizing the differentiated knowledge of new collaborators.
Moreover, the knowledge stock of an inventor, proxied by the scope of an inven-
tor’s past research, has positive and negative effects on their productivity. This is
because it facilitates successful collaboration; however, simultaneously, the depen-
dence on older knowledge hinders invention possibly due to the obsolescence and
exhaustion of niches by imitation.
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1 Introduction

Knowledge creation has been a key factor in various aspects of economic modeling.

Some new ideas result in innovations and fuel economic growth.1 The structure of

market and that of competition may depend on the extent of diffusion and imitations of

technologies.2 The concentration of R&D activities is the defining feature of the largest

cities.3 However, knowledge creation at the ultimate micro level of individual inventors

has been abstracted in these strands of the literature. The corresponding empirical

studies are necessarily scarce. This study investigates data on Japanese patents applied

between 1995 and 2009. It focuses on causalities in collaborative knowledge creation

primarily based on the microeconomic model proposed by Berliant and Fujita (2008)

which, to our knowledge, is the first attempt to formalize active knowledge creation

by individual inventors.4,5

The productivity of inventors is volatile. In our data, we find substantial downward

pressure on inventor productivity as well as substantial churning of the productivity

ranking of inventors over time.6 Specifically, less than half of inventors with above-

median productivity in a given period maintain at least the same relative productivity

in the next period. In this case, some top inventors stay highly productive, whereas

some inferior inventors overthrow superior ones and climb the productivity ladder.7

The extant literature provides an explanation for the declining trend of inventor

productivity. Inventors have an incentive to exploit their expertise on the existent

technologies through learning-by-doing (Horii, 2012). However, once made pub-

lic, technologies face incessant innovations by which new technologies replace old

ones (e.g., Grossman and Helpman, 1991; Klette and Kortum, 2004; Lucas and Moll,

2014). Moreover, publicized technologies attract imitations that deprive opportunities

to profit by refining them (e.g., Chu, 2009; Cozzi and Galli, 2014). The latter negative

1See, for example, Shell (1966); Romer (1990); Grossman and Helpman (1991); Aghion and Howitt
(1992); Kortum (1997); Klette and Kortum (2004); their extensions (e.g., Lentz and Mortensen, 2008;
Akcigit and Kerr, 2018; Cai and Li, 2019), and the studies that have focused on knowledge diffusion
(e.g., Scherer, 1982; Jovanovic and Rob, 1989; Coe and Helpman, 1995; Lucas and Moll, 2014; Perla and
Tonetti, 2018).

2See, for example, König et al. (2019); Panebianco et al. (2016) on the interdependencies among R&D
collaboration, technology diffusion, and product market competition among firms; related studies in
the context of economic growth (e.g., Yang and Maskus, 2001; Glass and Saggi, 2002; Tanaka et al., 2007);
and those in conjunction with the role of patent system (e.g., Grossman and Shapiro, 1978; Chang, 1995;
Matutes et al., 1996; Schotchmer, 1996).

3For example, Duranton and Puga (2001); Bettencourt et al. (2007); Davis and Dingel (2019).
4We focus on knowledge creation and not innovation as patents may not induce innovation.
5In an alternative model by Weitzman (1998), a new idea induces the development of other new

ideas if recombined with the existing ideas. In the model by Olsson (2000, 2005), a new idea is created
from a convex combination of existing ideas or existing and impromptu ideas. Unlike the model of
Berliant and Fujita (2008), however, knowledge creation in these models is passive and accidentally.

6Multiple measures of inventor productivity are considered. See sections 2.1 and 5.2 for the details.
7Here, three five-year periods between 1995 and 2009 are considered. See Section 2 for the details.
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effects eventually dominate because learning-by-doing is subject to decreasing returns

(Horii, 2012).

How can inventors achieve high productivity in these circumstances? Horii (2012)

proposed a model of innovation associated with technological shifts. In his model,

consumers wish to satisfy an infinite range of wants. This induces an inventor to

seek an unexplored technological niche wherein they can create demand for new

products realized by new technology. While this model lacks a micro mechanism for

the technological shifts, it is complemented by the model of Berliant and Fujita (2008).

In the Berliant–Fujita (BF) model, agents communicate via common knowledge

and invent in pairs by utilizing their mutual differentiated knowledge. Here, an

appropriate balance between common and differentiated knowledge facilitates collab-

orative innovation. A longer duration of collaboration by the same pair increases their

common knowledge while decreasing their mutual differentiated knowledge. Simul-

taneously, this accumulates differentiated knowledge between them and the remaining

agents. Agents optimally choose the set of their collaborators and time allocation for

each collaboration to achieve the best knowledge composition and maximize their total

output.

Given these facts and theoretical backgrounds, three regression models are devel-

oped. The first model is a simplified representation of the BF model. It expresses

knowledge creation by an inventor and their average collaborator, where the inven-

tor’s optimal choice of polyadic collaboration is implicit. In this model, we focus on the

differentiated knowledge of collaborators while abstracting from the common knowl-

edge and the differentiated knowledge of the inventor. This is because it is the key

source of new ideas in the theoretical model. It is quantified in terms of the collabo-

rator’s output, excluding the patents jointly developed with the inventor. Our baseline

results indicate that a 10% increase in collaborators’ differentiated knowledge for an

inventor raises their research output by 1.7–3.4%. This implies positive but decreasing

returns of this knowledge and is consistent with the results of the theoretical model.

The second model decomposes the contribution by collaborators’ differentiated

knowledge to the research output of an inventor (computed from the regression of the

first model) into the fractions accruing to the quality and quantity of their output. We

find that the contribution is mostly dedicated to increasing the quantity rather than

the quality of output if the patent quality is measured by the cited count. However,

approximately 65% of the contribution accounts for increasing the quality of output if

the patent quality is measured by technological novelty. Accordingly, a major role of

collaboration is to induce technological shifts of an inventor to a new niche.

The third model investigates factors that determine the amount of differentiated

knowledge that each inventor obtains from their collaborators. We find that a more

active recombination has a positive selection effect on collaborations, leading to a set
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of new collaborators with a larger average differentiated knowledge. Our baseline

results indicate that a 10% increase in the number of new collaborators of an inventor

raises the average differentiated knowledge of collaborators by 12–17%. This even-

tually raises the inventor’s research output by 3–8%. Furthermore, a larger research

experience, measured by the scope of an inventor’s past research and broadly inter-

preted as knowledge stock, exhibits a positive effect on attracting collaborators with

more differentiated knowledge even though it has a negative direct effect on inventor

productivity as discussed above.

In these regressions, we control for individual fixed effects by exploiting panel data

and a variety of establishment, firm, industrial, and other local factors. However, we

face identification problems due to network endogeneity that arises from endogenous

collaborations of inventors. The identification and estimation of models with endoge-

nous networks are substantial challenges in the literature on network econometrics

(e.g., Jackson et al., 2017). The most common way to tackle network endogeneity

in the context of our problem is to consider a network formation model to identify

and estimate the parameters of interest.8 However, because the BF model provides

no simple econometric model of network formation as will be clear in Section 3, this

approach fails in our case. Therefore, we propose an alternative approach to manage

endogenous regressors for an inventor through instrumental variables constructed

from information on their indirect collaborators.

Typically, using more distant indirect collaborators to construct the instrumental

variables is double-edged. This is because it not only reduces the reflection problem

(see, e.g., Bramoullé et al., 2009) but also makes the instrument weaker. However, we

benefit from a special situation in which the relevance of instruments is extrinsic to the

inventor network as it comes from the positive assortative matching by productivity

among firms and workers.9 The matching is essentially exogenous to individual in-

ventors given that it occurs prior to the formation of a research network and is based

on more diverse aspects of firms’ profit maximization than on R&D activities. Con-

sequently, the relevance of instruments is maintained even when the information of

only distant indirect collaborators is used without resorting to external variations (as

in, e.g., Azoulay et al., 2010; Waldinger, 2010, 2012). This is possible as long as the

assortative matching simultaneously affects the indirect collaborators and the targeted

inventors.

In the extant literature, the most closely related study is by Akcigit et al. (2018). They

8See, for example, Goldsmith-Pinkham and Imbens (2013); Hsieh and Lee (2016); Comola and Prina
(2017); Li and Zhao (2016); Patacchini et al. (2017); Johnsson and Moon (2019). Another typical approach
assumes an exogenous network (e.g., Bramoullé et al., 2009; Akcigit et al., 2018).

9See, for example, Mori and Turrini (2005); Mendes et al. (2010); Bartolucci and Devicienti (2013);
Behrens et al. (2014); Eeckhout and Kircher (2018); Gaubert (2018). In Section 6.3, we add supportive
evidence from the financial and ownership data of firms in Japan.
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estimated a reduced-form model of team-level innovation similar to the knowledge

creation model of Berliant and Fujita (2008). Their key explanatory variables are the

quantity and quality of interactions within a team. The crucial differences from our

approach are that their “interaction” effect results from the past experience of the team

leader and not from their current collaborators (as in our case). Furthermore, the

collaboration network in their study is assumed to be exogenous.

Other related studies include those on positive externality in knowledge creation

(e.g., Azoulay et al., 2010; Waldinger, 2010, 2012; Iaria et al., 2018) and on knowledge

diffusion (e.g., Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014;

Kerr and Kominers, 2015). Our paper is closer to the former, which tests if superior

researchers positively impact their collaborators’ productivity. A crucial difference is

that we are explicit about the causal channel through the exchange of differentiated

knowledge between collaborators, whereas the mechanisms are abstracted in the form

of spillover effects in their studies. The latter studies concern the distance and routes

through which knowledge spreads and not how they are created.10

The rest of the paper is organized as follows. Section 2 presents key observations

on the dynamics of knowledge creation and inventor productivities. Sections 3 and 4

describe the BF model and the corresponding regression models, respectively. Section 5

presents the data, Section 6 discusses the identification strategy, and Section 7 presents

the baseline regression results. Section 8 provides a series of robustness checks, and

Section 9 presents the conclusion.

2 Facts

We make three observations on patent development in Japan to guide our analyses.

2.1 Productivity of an inventor

Our panel data comprise three periods, each of which aggregates five consecutive

years: periods 0, 1, and 2 include years from 1995 to 1999, 2000 to 2004, and 2005 to

2009, respectively. We focus on the balanced set I of 107,724 inventors, each of whom

participate in at least one patent in each period.

Let Git be the set of patents in which inventor i participates in period t, and G j for

j ∈ Git is the set of inventors who participate in patent j. Denoting the output of patent

project j by a scalar g j > 0, the productivity of the inventor i is defined in terms of the

total output of patents in which they participated, with the output of each patent being

10See Breschi et al. (2003); Garcia-Vega (2006); Østergaard et al. (2011); Huo and Motohashi (2015);
Inoue et al. (2015) for quantifications of common and differentiated knowledge in developing new ideas.
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discounted by the number of inventors involved in the patent:

ȳit =
∑

j∈Git

g j/|G j| (2.1)

where |G j| means the cardinality of set G j. (Hereafter, the expression |X| for any set X

means the cardinality of X.)

We consider two quality measures of inventor productivity in our baseline analysis

(and three others to check the robustness of results in Section 8.3). One is the cited

count, where g j represents the count of citations that patent j received in three years of

publication. The other is novelty, where g j represents the degree of technological novelty

of patent j as defined by the reciprocal, 1/r j, of the order, r j = 1,2, . . ., of j in terms of

its application date among all the patents classified in the same technological category

as j.11,12 The technological category of a patent is identified by the “subgroup” of the

International Patent Classification (IPC) in the baseline analyses.13

2.2 Dynamics of the relative productivities of inventors

Let ITOP
t (x) represent the set of inventors in the top x% in I in terms of their productivity

in each period t= 0,1, and 2. The set of inventors in each 5% interval of the productivity

percentiles from 0% to 100% can then be expressed by Γt(x) ≡ ITOP
t (x)\ITOP

t (x− 5) for

x = 5,10, . . . ,100, where “\” is a set difference operator. Call Γt(x) the (productivity) class

x of inventors in period t.

For classes x = 5,10, . . . ,100 under citation and novelty-adjusted productivities, the

height of each blue bar in Panels (a) and (b) in Figure 2.1, respectively, indicates the

share of inventors of class x in period 0 who stay at least in the same class x′ (≤ x) in

period 1. The graphs reveal a clear pattern:14

Observation 1 (Churning of relative productivities) Under either measure of productiv-

ity, less than half of inventors above the median productivity x < 50 in period t−1 remain at

least as productive in period t ∈ {1,2}. This indicates a strong pressure to prevent inventors

from maintaining their relative productivity. In other words, a sizable proportion of inferior

inventors replaces superior ones in their productivity ranking in each period.

11Our data include all the patents applied in 1993 and thereafter as well as some older applications
published in 1993 or later. By construction, our measure of novelty overstates the novelty in technological
categories defined before 1993. However, because our regression analyses use novelty data from 2000
and later (i.e., periods 1 and 2), the effect of truncation should not be too problematic as we have a
seven-year lead time before 2000.

12Our novelty measure reflects the nicheness of the technological invention publicized by the patent. It
can also be interpreted as an inverse measure of crowdedness in the market for the technological category.

13Approximately 40,000 IPC subgroups are active in each period, and a single primary IPC subgroup
is assigned to each patent. Refer to Section 5.1 for the details.

14A similar result is obtained for the transition from periods 1 to 2.
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Citation-adjusted productivity percentile (top %)

Share (%)

To the top 5%
To the current ranking or higher

Novelty-adjusted productivity percentile (top %)

To the top 5%
To the current ranking or higher

(a) Citation adjusted (b) Novelty adjusted

Figure 2.1: Change in the productivity class of inventors from period 0 to period 1

As discussed in the Introduction, a major reason for this downward pressure may

be the obsolescence and imitations of technologies as well as decreasing returns in

learning-by-doing from the extant technologies. Yet, we find that some top inventors

stay highly productive, whereas some inferior ones surpass superior inventors. Each

red bar in Figure 2.1 indicates the share of inventors in the corresponding class in

period 0 who transitioned to the top 5% class in period 1. The transitions are observed

from a wide range of lower classes.15

2.3 Collaborator recombinations and technological shifts

The data indicate a key relation among productivity, collaboration, and the technolog-

ical specialization of inventors for knowledge creation that suggests the relevance of

the BF model. Let

Nit ≡ ∪ j∈Git
G j\{i} (2.2)

represent the set of collaborators of inventor i ∈ I such that each inventor in Nit partici-

pates in at least one common patent with i in period t. The collaborator recombination of

inventor i in period t is then defined by the number of new collaborators in period t:16

∆nit ≡ |Nit\Ni,t−1| . (2.3)

The average values of ∆nit for inventors in I are 9.84 and 6.37 in periods 1 and 2,

respectively. These values coincide with the average numbers of collaborators that

were replaced provided that the number of collaborators is the same across periods.

Next, define the technological specialization of inventor i in period t by set Sit of the IPC

subgroups attached to the patents in which i is involved in period t. The technological

15A similar observation was made for US data between 1880 and 1940 by Akcigit et al. (2017). They
found evidence that new inventors receive more patent citations than incumbent inventors.

16Alternatively, it may be defined by the sum of the number of new collaborations and that of
separations from the collaborations in the previous period, i.e., ∆nit = |Nit\Ni,t−1|+ |Ni,t−1\Nit|. The
qualitative result remains the same under both definitions.
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shift of inventor i is then defined, similarly to the collaborator recombination in (2.3),

by the number of IPC subgroups in which i is newly specialized in period t:

∆sit ≡ |Sit\Si,t−1| . (2.4)

The average values of ∆sit are 4.41 and 2.66 in periods 1 and 2, respectively. High

correlations, 0.55 and 0.54, between ln∆nit and ln∆sit in periods 1 and 2, respectively,

suggest that new collaborations result in a shift of inventors’ technological expertise.

High correlations, 0.30 and 0.29, between the novelty-adjusted ln ȳit and ln∆sit in

periods 1 and 2, respectively, further indicate that technological shifts lead to higher

novelty of invention.

These high correlations naturally extend to include citation-adjusted productivity.

This is particularly transparent when we focus on the set of inventors in each given

citation-adjusted productivity class x = 5,10, . . . ,100 persistently in both periods 1 and

2, i.e., Γ(x) ≡ ∩t=1,2Γt(x), so that inventors in Γ(x) are persistently more productive than

those in Γ(x′) for x < x′ for both periods.

For an inventor in class x in period t, denote the average collaborator recombination,

average technological shift, and average productivity by ∆nt(x) ≡ 1
|Γ(x)|

∑

i∈Γ(x)∆nit, ∆st(x) ≡
1
|Γ(x)|

∑

i∈Γ(x)∆sit, and ȳt ≡
1
|Γ(x)|

∑

i∈Γ(x) ȳit, respectively. Figure 2.2 plots ∆nt(x), ∆st(x),

and novelty-adjusted ȳt for t = 1,2 for each citation-adjusted productivity class x =

5,10, . . . ,100, in which we find the following:

Observation 2 (Recombinations, technological shifts, and inventor productivities) A

more citation-wise productive inventor practices a more active recombination of collaborators

and is associated with a larger technological shift as well as higher novelty in the created

knowledge on average.

Citation-adjusted productivity percentile (top %)

(novelty-adjusted)

(novelty-adjusted)

(novelty-adjusted)

Figure 2.2: Recombinations, technological shifts, and productivities of inventors
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2.4 Invention strategies and research experience

Our final observation concerns the difference in invention strategies of inventors with

different research experience. To see this, let the cumulative research scope of inventor

i in period t be quantified by the cumulative number of technological categories kit =
∣

∣

∣∪
t′<t

Sit′
∣

∣

∣ such that inventor i has worked in the past. Here, a larger research scope of an

inventor can be interpreted to indicate their larger research experience and, in turn, is

expected to be positively correlated with their knowledge stock.17

Research experience naturally translates to productivity. For example, the top 5%

of inventors citation-wise have, on average, 3.3 and 2.3 times larger research scope

than the bottom 5% of inventors in periods 1 and 2, respectively; thus, the former can

potentially rely more on their past research experience to create new knowledge than

the latter.

Period 1
Period 2

Period 1
Period 2

(a) Citation adjusted (b) Novelty adjusted

Research scope percentile (top %) Research scope percentile (top %)

Figure 2.3: Recombination of upgrading versus downgrading inventors in period 1

Let ∆n
Top 5%
t (x) represent the average size of collaborator recombinations by inven-

tors who upgraded their productivity class from x in period t− 1 to the top 5% in

period t. Similarly, let ∆nDown
t (x) be the average size of collaborator recombinations of

inventors who downgraded their class from x to x′ > x for x = 5,10, . . . ,95.18 Panels (a)

and (b) in Figure 2.3 plot ∆n
Top 5%
t (x)/∆nDown

t (x) under citation- and novelty-adjusted

productivities, respectively, against research scope percentile.19

Although the case of novelty-adjusted productivities in period 2 shown in Figure

2.3(b) is an exception, one can find a general tendency summarized as follows.

Observation 3 (Collaborator recombination versus stock of knowledge) More experi-

enced inventors with a larger research scope rely relatively more on their own stock of knowledge

17Cumulative inventor productivity may be a more natural representation of knowledge stock.
However, the cumulative research scope of an inventor defined in this way is less sensitive to the
truncation of data due to the short time horizon because inventors stick to their past research fields due
to the learning-by-doing effect (Horii, 2012). Because these two measures are expected to be positively
correlated, the latter is considered to be a reasonable proxy for the former.

18The lowest class x = 100 is omitted because there is no further downgrading from there.
19The inventors are binned in 1 of the 20 5% interval bins of research scope percentile.
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than knowledge from new collaborators for inventing, whereas the opposite is true for less ex-

perienced inventors with a smaller research scope.

3 The Berliant–Fujita model

This section briefly describes the BF model. Each agent develops new knowledge

either in isolation or by collaborating in pairs, building on their accumulated stock of

knowledge. Let I be the set of all agents who engage in knowledge creation, where

all agents are assumed to be symmetric. Let δi j ∈ [0,1] be the proportion of time that

agent i ∈ I allocates for collaboration with j ∈ I. If agent i works in isolation, then their

knowledge creation is subject to constant returns technology as given by yii = δiiakii if

δii ∈ (0,1] and 0 otherwise, where a > 0, kii is the knowledge stock of agent i and yii is

the output. If the subject instead collaborates with agent j (, i), then their joint output

yi j is given by

yi j = δi jb
(

kC
ij

)θ(

kD
ij

)
1−θ

2
(

kD
ji

)
1−θ

2 (3.1)

for δi j ∈ (0,1] and yi j = 0 otherwise, where b> 0, kC
ij

is the common knowledge of i and j;

kD
ij

is the knowledge of agent i differentiated from that of j; and θ ∈ (0,1) is the relative

importance of common knowledge.

All knowledge stocks are symmetric, and the output from the collaboration of

agents i and j becomes their common knowledge. Thus, the common knowledge

of i and j increases as their collaboration lasts longer, and the differentiated knowl-

edge between i with other agents also increases relative to their common knowledge.

To achieve the best combination of common and differentiated knowledge with col-

laborators, agents collectively decide the group of collaborators, where each agent i

optimally chooses δi j for each j of their collaborators to maximize the total output
∑

j yi j/2 (assuming an equal split of output between collaborators).20

4 Regression model

This section introduces three regression models to identify the causal relation among

the productivity of inventions, collaborators’ differentiated knowledge, and the mag-

nitude of collaborator recombination based on the BF model. In the regressions, we

focus on collaborative inventions and do not address the choice between working

in collaboration and working in isolation. Accordingly, our formulation assumes a

strictly positive number of collaborators for each inventor in each period.

Let t = 0,1, . . . ,T be the consecutive periods in which data are available, and let It be

the set of all inventors who participated in the development of at least one patent in

20Myopic core is adopted as the equilibrium concept.
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period t. The subset of inventors, each of whom is involved in the development of at

least one patent in every period (introduced in Section 2.1), is denoted by I (⊂ It).

Let Gt represent the set of all patents applied in period t. We call the development

of each patent j ∈ Gt a project j. Then, G j introduced in Section 2.1 represents the set

of inventors who participated in project j. The set of projects in which inventor i ∈ It

participated (also introduced in Section 2.1) can be rewritten as Git ≡ { j ∈ Gt : i ∈ G j}.

Accordingly, set Nit of the collaborators of inventor i in period t is given by (2.2) , and

output ȳit of inventor i is given by (2.1) in sections 2.3 and 2.1, respectively.

4.1 The Berliant–Fujita model of collaborative knowledge creation

To bring the theory to the data, we simplify the original specification and focus on

the role of knowledge exchange among collaborators. First, we formulate a regression

model for the knowledge creation function between an inventor and their average

collaborator rather than for the total output by an inventor, thereby abstracting from

the role of the number of collaborators:

ln yit = α+β lnkD
it +γ1 lnkit+γ2 (lnkit)

2
+ lnAit+λi+τt+εit (4.1)

where yit ≡ ȳit/nit represents the average pairwise output by inventor i in period t and nit ≡

|Nit|. In this formulation, each piece of knowledge is assumed to be created by pairwise

collaboration (even though a patent is developed by more than two collaborators), so

that the time spent with an average collaborator j is assumed to be given by δi j = 1/nit

of period t.

Second, among the endogenous variables of the theoretical model, we focus on

the differentiated knowledge kD
ji

of collaborators in (3.1) because this is the primary

source of new ideas as discussed in Section 2 while abstracting from the role of common

knowledge kC
ij

and differentiated knowledge kD
ij

of inventor i. This key variable appears

as kD
it

in the second term on the right hand side (RHS) of (4.1) in the form of the average

differentiated knowledge of collaborators of i and is defined by the average output that the

collaborators of i produced outside the joint projects with i:

kD
it =

1

nit

∑

j∈Nit

∑

k∈G jt\Git

gk

|Gk|
. (4.2)

Here, kD
it

includes only the fresh knowledge of collaborators that they create with

inventors other than i in the current period and not their knowledge stock from the past.

This definition mitigates the discrepancy between theory and reality by reflecting on

Observation 1 in Section 2.2 that past knowledge is strongly associated with negative

effects. Note that there are no negative effects of past knowledge in the BF model



Collaborative knowledge knowledge creation 11

because all the (infinite number of) potential pieces of knowledge are symmetric.

Instead of attempting to disentangle the positive effect from the negative one in the

past knowledge, we choose a simpler specification in which knowledge as a source of

new ideas fully depreciates in one period.

The value of kD
it

may also be interpreted as the average productivity of i’s collabo-

rators outside the joint projects with i. This feature plays a role when we construct an

instrument for this variable in Section 6.

Third, we control for the (cumulative) research scope of inventor i’s past projects:

kit =
∣

∣

∣∪
t′<t

Sit′
∣

∣

∣ . (4.3)

Because the specialized research fields of inventors persist due to the positive learning-

by-doing effect (e.g., Horii, 2012), the cumulative set of technological categories of past

patents in which an inventor has been involved is less sensitive to the truncation of

data due to its short time horizon (as in our case) than their cumulative output in terms

of patents. Nonetheless, the research scope defined this way can be considered as a

proxy for the knowledge stock of i because they are naturally expected to be positively

correlated.

Moreover, because the common knowledge of i and their collaborators as well as

the differentiated knowledge of i are contained in the knowledge stock of i, their effects

are also partly controlled for by the research scope of i. The research scope of i is also

expected to control for other effects, including obsolescence, imitations, and learning-

by-doing effects, on the extant technologies discussed in Section 2.2. The third and

fourth terms on the RHS of (4.1) capture their overall effects up to the second order.

Finally, in the fifth term, Ait bundles the inventor- and time-specific productivity

shifters for inventor i, Ait ≡ eX
′
it
η, where Xit represents a vector that includes spillover

effects from other inventors in the geographical neighborhood, proximity to R&D

expenditure, manufacturing employment/production, and residential population. The

last three terms, λi, τt, and εit, on the RHS are the time-invariant inventor fixed effect,

period fixed effect, and inventor- and period-specific error, respectively. The values of

parameters α,β,γ1,γ2,η, and τt are estimated by regressions.

4.2 Quantity–quality decomposition

The definition of inventor productivity given by (2.1) implies the log-linear relation

between quantity and quality of their output:

ln yit = ln y
p

it
+ ln y

q

it
. (4.4)
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In the first term on the RHS of (4.4), y
p

it
denotes the quantity, i.e., the average count of

patents of inventor i’s pairwise output given by y
p

it
≡ ȳ

p

it
/nit, where ȳ

p

it
≡
∑

j∈Git
1/|G j|,

which coincides with ȳit under g j = 1 in (2.1). In the second term, y
q

it
represents the

average quality of i’s pairwise output y
q

it
≡ yit/y

p

it

(

= ȳit/ȳ
p

it

)

. We can thus decompose

the effect of each explanatory variable in (4.1) into those on the quantity and quality of

inventors’ pairwise output yit by estimating the model:

ln ym
it = α

m+βm lnkD
it +γ

m
1 lnkit+γ

m
2 (lnkit)

2
+ lnAm

it +λ
m
i +τ

m
t +ε

m
it (4.5)

for m = p and q, where the coefficients of each explanatory variable for m = p and q add

up to those of the corresponding variable in (4.1). In particular, we have β = βp+βq for

the effect of collaborators’ differentiated knowledge.

4.3 Recombinations and differentiated knowledge of collaborators

Our third regression model identifies the factors that determine the value of kD
it

:

lnkD
it = α̃+ β̃ ln∆nit+ γ̃1 lnkit+ γ̃2 (lnkit)

2
+ ln Ãit+ λ̃i+ τ̃t+ǫit (4.6)

where ∆nit given by (2.3) is considered to be endogenous, reflecting the active efforts

of an inventor to find suitable collaborators.

The aim of this regression is twofold. One is to see the role of collaborator recom-

bination in obtaining differentiated knowledge from collaborators. While the choice

of the magnitude of collaborator recombination in the study by Berliant and Fujita

(2008) is expressed in terms of the choice of δi j (or equivalently nit) in a given period t,

its consequence on the amount of differentiated knowledge of collaborators cannot be

captured in our data. Thus, in (4.6), we focus on the inter-temporal recombination of

collaborators to see if more substantial recombination results in a larger differentiated

knowledge from collaborators on average. If so, this contributes to inventor produc-

tivity in addition to the regression results of (4.1), as indicated in Observation 2. To be

consistent with the BF model, the overall effect of ∆nit through kD
it

on yit is expected

to exhibit positive but decreasing returns because a successful collaboration requires a

certain share of common knowledge.

The other is to see if the invention strategy adopted by an inventor differs depend-

ing on their past research experience as suggested by Observation 3; however, such

distinction is abstracted in the BF model.21

21We present the results of two separate estimations for (4.1) and (4.6) rather than incorporating the
collaborator recombination explicitly in the estimation of (4.1). The practical reason for the separation
is the estimation problem in combining the two models (refer to footnote 37 in Section 7).
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5 Data

This section describes our dataset, while the details are relegated to Appendix A.

5.1 Patent data

The patent data are taken from the published patent applications of Japan (Artificial Life

Laboratory, Inc., 2018). It provides information about published patent applications

to be examined for approval rather than approved patents. The advantage of using

applied patents rather than approved ones is that the flow of the former at a given

point in time reflects the amount of research activity at that point more precisely than

the flow of the latter. In this data, each inventor is uniquely identified as long as their

name and establishment affiliation have not changed.

Patent projects – Our analysis targets inventors who participated in the development

of patents applied between 1995 and 2009. Because patent development typically takes

several years, the productivity of an inventor is evaluated by their output over five

years.22 The choice of a five-year window also reflects the availability of census data.

As described in Section 2.1, we obtain a panel with three periods: 0, 1, and 2.

Because kit and ∆nit require information from the previous period, period 0 is not

included in the regressions. The information in 2010–2016 data is used to explain the

time lag between the applied and published dates as well as to count the forward

citations for each patent. Consequently, our panel for regressions comprises two

periods, 1 and 2 (summarized in Table A.1 in Appendix A).

We focus on the (|I| =) 107,724 inventors who have been active in all three periods

although the information on other inventors is still used as long as they collaborated

with the selected inventors. Approximately 90% of inventors in I have at least one col-

laborator, which justifies our focus on collaborative knowledge creation. The number

of inventors in a project throughout the study period is about two on average, and the

number of collaborators for an inventor is six to nine on average. This is consistent

with the assumption of polyadic pairwise collaboration in the BF model.

IPC – Each applied patent is associated with at least one technological classification

based on the IPC, which is maintained by the World Intellectual Property Organi-

zation.23 The IPC hierarchically classifies technologies into eight classes, subclasses,

groups and then to about 40,000 subgroups.24 The IPC’s labeling scheme is consistent

over time, and a newly introduced category is basically associated with a new technol-

ogy. Hence, the set of technological categories specified in the IPC at a given point in

22The same time window is adopted by Akcigit et al. (2018).
23Website: http://www.wipo.int/portal/en/index.html.
24See Appendix A.2 for the details.
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time roughly represents the set of the state-of-the-art technologies at that time, making

it an appropriate proxy for the set of technological knowledge.

Although an applicant can claim more than one IPC category for their patent, we

adopt only the primary IPC category of each patent to represent its technological

category to avoid subjective variation. We adopt the finest subgroup classifications

for our baseline analyses and the next finest subclass classifications for the robustness

check, which together comprise 40,691 and 609 (38,339 and 616) categories associated

with the applied patents in our data in period 1 (period 2), respectively.

Let S denote the set of all technological categories (in terms of either one of the IPC

subclasses and subgroups), and the technological category assigned to patent j is s j ∈ S.

The technological specialization of inventor i in period t is then defined by

Sit = ∪ j∈Git
{s j}. (5.1)

We control for the IPC class fixed effect to explain the possible incompatibility of

the quality adjustment of patents across different technology categories, where each

inventor is associated with their most frequently engaging IPC class.

5.2 Productivity and differentiated knowledge

One of our preferred measures of patent quality is the cited count following the studies

by Trajitenberg (2002) and Akcigit et al. (2018).25 In our baseline analysis, we count

the forward citations of each patent within three years of publication following the

study by Akcigit et al. (2018).26 In our data, the cited counts in the first three years

from publication explain more than 75% of the total cited count in the first 10 years

for all samples; hence, a three-year period appears to be sufficient to evaluate the

patent quality. Alternatively, patent quality is measured by its novelty within the

associated IPC category as described in Section 2.1. Cultivating novel technology

requires knowledge, suggesting a more direct relation between knowledge input and

the novelty of inventions (see Table A.2 in Appendix A.1 for the descriptive statistics

for productivity variables).27

25Cited counts may not be an optimal measure of patent quality when there is an incentive to block
follow-up patents as discussed by Abrams et al. (2013).

26It is assumed that there is at least one self-citation, namely, g j ≥ 1, under the citation-adjusted
measure. That is, the cited count for each patent is inflated by 1 if there is no self-citation. Some authors
(e.g., Inoue et al., 2015) have argued that the citation-adjusted output of a patent project should exclude
self-citations by inventors in the project. Our analyses, however, include them because there is no clear
incentive to inflate the cited counts for patents (unlike the case of academic papers); hence, self-citations
reflect genuine technological dependence. In fact, no qualitative difference is found between the results
with and without citation weights (see Section 8.3).

27Appendix E.1 explores alternative specifications of patent quality for robustness check. We consider
the five-year window for the citation-adjusted measure, and the IPC subclass instead of subclass is
adopted for the novelty-adjusted measure. Furthermore, two more alternative measures are considered:
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5.3 Locational factors

Existing studies have suggested the possible influence of various exogenous locational

factors on knowledge creation. We briefly describe each factor included in the regres-

sion, with the precise definitions relegated to Appendix A.3.

R&D activities are disproportionately concentrated in large cities (see Figure A.1). If

an urban agglomeration (UA) is defined as a contiguous area of population density of at

least 1000/km2 with the total population of at least 10,000,28 in 2000, 99% of all inventors

concentrated in UAs, 81% in the largest three UAs, and 54% in the largest UA (Tokyo).

The corresponding shares for the population were 75%, 54%, and 32%, respectively.

Inventors located within a 10 km buffer of any of the 453 UAs are assigned to the

closest UA; otherwise, their locations are considered to be rural. In the regressions, the

standard errors are clustered by UAs.29

Local concentrations of five types of activities are controlled: the concentrations of

inventors (aINV
it

), R&D expenditure (aR&D
it

), manufacturing employment (aMNFe

it
), output

(aMNFo

it
), and residential population (aPOP

it
). Each local concentration is defined by the

size of concentration in a circle of given radius around inventor i.

6 Identification by instrumental variables

This section presents our strategy for identifying the causalities of knowledge creation

by dealing with the endogeneity of differentiated knowledge and recombinations of

collaborators for individual inventors. There are two sources of endogeneity. One

results from inventors’ endogenous collaboration, i.e., network endogeneity, where

unobservable influences exist on inventors’ collaboration decisions and their produc-

tivities. The other results from the mutual dependence of productivities between an

inventor and their collaborators through kD
it

in (4.1) (as well as (4.5)). This is the

so-called ”reflection problem” in the context of econometric network analysis (e.g.,

Manski, 1993; Bramoullé et al., 2009). While we lack any useful exogenous variations

that can be used to identify the causal effects of knowledge creation (cf., e.g., Bramoullé

et al., 2009; Azoulay et al., 2010; Waldinger, 2010, 2012), we argue that the endogenous

variables kD
it

in (4.1) and ∆nit in (4.6) for inventor i can be instrumented by the average

value of the same variable for the distant indirect collaborators of i.

Below, we formally define the instruments for the endogenous variables in Section

one is based on the count of patent claims, and the other is unweighted count of patents.
28Population data are obtained from the Population Census (2010a) by MIAC.
29As UAs spatially expand over time on average, we use the boundaries of UAs in 2010, each of which

provides the largest spatial extent during the study period 1995–2009 on average. However, the choice
of the particular time point should not affect the basic results because most inventors are concentrated
in relatively large UAs whose spatial coverage is relatively stable over the study period.
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6.1 and explain their exogeneity and relevance in sections 6.2 and 6.3, respectively.30

6.1 Instruments

Let N̄ℓ
it

be the set of the 0-th to ℓ-th indirect collaborators of inventor i given by

N̄ℓit = N̄ℓ−1
it ∪

[

∪ j∈N̄ℓ−1
it

N jt

]

ℓ = 1,2, . . . (6.1)

where the set of the “0-th indirect collaborators” is defined by the set of inventors

comprising i and their direct collaborators N̄0
it
≡ Nit∪ {i}. To obtain N̄ℓ

it
from N̄ℓ−1

it
for

each ℓ = 1,2, . . ., we expand N̄ℓ−1
it

by the union of all the direct collaborators of j ∈ N̄ℓ−1
it

as in (6.1). The set of the ℓ-th indirect collaborators of i can then be given by

Nℓit = N̄ℓit\N̄
ℓ−1
it l = 1,2, . . . (6.2)

The instruments k
IVℓ
it

for kD
it

and ∆n
IVℓ
it

for ∆nit are constructed as the average values

of the differentiated knowledge of collaborators and of collaborator recombination,

respectively, for each ℓ-th indirect collaborator j ∈Nℓ
it
:

k
D,IVℓ
it

=
1

nℓ
it

∑

j∈Nℓ
it

kD
jt and ∆n

IVℓ
it
=

1

nℓ
it

∑

j∈Nℓ
it

∆n jt (6.3)

where nℓ
it
≡
∣

∣

∣Nℓ
it

∣

∣

∣. Alternatively, to strengthen the relevance of instruments, they may

allow for the repeated appearance of the same indirect collaborators:

k
D,IVℓ
it

=
1

ñℓ
it

∑

l∈Nℓ−1
it

∑

j∈Nl

kD
jt and ∆n

IVℓ
it
=

1

ñℓ
it

∑

l∈Nℓ−1
it

∑

j∈Nl

∆n jt (6.4)

where ñℓ
it
≡
∑

j∈Nℓ−1
it

n j.

6.2 Exogeneity

This section explains how our instruments can virtually eliminate the endogeneities

caused by the reflection problem and inventors’ unobserved variables that induce

endogenous collaboration.

30In Appendix B, we briefly discuss the similarities and differences in the nature of endogeneity and
the approach to the issue between our model and the linear-in-means models of social interactions as
in the study by Bramoullé et al. (2009).
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6.2.1 Reflection problem

Existing models of social interactions (e.g., Bramoullé et al., 2009; De Giorgi et al.,

2010; Calvó-Armengol et al., 2009) have suggested two reasons that reflection effects

in our context can be reduced by using instruments constructed from farther indirect

collaborators. One is the distance effect such that the farther an indirect collaborator is

from an inventor in the collaboration network, the smaller the influence of their output

on the inventor’s productivity through more distant indirect linkages on the network.31

Thus, the reflection effects can be virtually eliminated by constructing instruments from

sufficiently distant indirect collaborators. The other is the averaging effect. As long as

the number of ℓ-th indirect collaborators increases as ℓ increases, the reflection effect

on an inventor from each of their ℓ-th indirect collaborators is mitigated by averaging

over a larger number of indirect collaborators provided that the effects are uncorrelated

among them.32

Fortunately, the research network in our data comprises a set of large network

components so that we could identify up to the fifth indirect collaborator for a large

number of inventors. Column 1 of Table 6.1 lists the average number of the ℓ-th indirect

collaborators of an inventor for ℓ = 0 to 5, where the 0-th indirect collaborators are the

direct collaborators. The number of indirect collaborators of an inventor dramatically

increases from 8.52 to 4,251 (6.32 to 2,563) for ℓ = 0 to 5 in period 1 (period 2). This

suggests that the reflection emanating from each fifth indirect collaborator has only

marginal effects due to distance and averaging effects.

6.2.2 Unobserved factors

We suppose that inventors with similar (observable and unobservable) characteris-

tics have proclivities to collaborate with each other; hence, they might influence their

mutual productivities. We also suppose that more distant indirect collaborators share

less common characteristics with each other. Thus, we can eliminate the effects from

unobserved factors by constructing instruments from sufficiently distant indirect col-

laborators.

The most plausible situation in which unobserved factors become problematic may

arise when inventors have similar technological specialization. In this case, these

inventors likely share opportunities and environment to exchange and learn ideas

from each other through seminars, conferences, and journals of common research

subjects, thereby affecting their R&D productivities. Our data indicate, however, that

31For example, in eq. (6) in the study by Bramoullé et al. (2009), the endogenous peer effect from the
ℓ-th indirect peer is given by β1+ℓ, where β ∈ (0,1) and ℓ = 0,1,2, . . . with the 0-th indirect peer being the
direct peer. The peer effect β1+ℓ from the ℓ-th indirect peers diminishes as ℓ increases.

32The network component of an inventor may be influenced by the unobserved factors specific to its
associated firms and establishments. This possibility will be examined in sections 8.1 and 8.2.
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the commonality of research subjects between a pair of inventors diminishes rapidly

and eventually becomes negligible as the degree of separation in the network increases

between the pair.

Columns 2–5 in Table 6.1 list the total research scope S̄ℓ
it
≡ |∪ j∈Nℓ

it
S jt| of i’s ℓ-th indirect

collaborators (ℓ = 0,1, . . . ,5) in period t in terms of IPC sections, classes, subclasses, and

subgroups, respectively. While an inventor, on average, specializes in 1.81, 2.47, 2.98,

and 5.47 (1.53, 1.92, 2.24, and 3.71) in these categories, respectively, in period 1 (period

2) (refer to rows 12–15 in Table A.1 in Appendix A), the total research scope increases for

more indirect collaborators. For their fifth indirect collaborators, these numbers reach

7.50, 83.07, 275.8, and 1400 (7.29, 70.14, 213.3, and 1007), respectively, in period 1 (period

2) (rows 6 and 12 of columns 2–5 in Table 6.1). Because the total number of IPC sections

is eight, they are almost fully covered. For IPC classes, subclasses, and subgroups,

they cover 98.8%, 96.9%, and 64.6% (97.9%, 94.2%, and 60.6%), respectively, among all

patents applied in period 1 (period 2). Thus, the set of the fifth indirect collaborators

of an inventor comprises an almost full set of specialists.

Table 6.1: Diversity and similarity of technological specialization of inventors

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Indirectness ℓ Count
Total research scope S̄ℓ

it
Similarity in technological specialization jℓ

it

Section Class Subclass Subgroup Section Class Subclass Subgroup

Period 1

(1) 0 8.518 3.207 7.214 10.88 27.17 0.709 0.569 0.499 0.330

(9.321) (1.681) (6.313) (10.97) (29.65) (0.197) (0.229) (0.236) (0.214)

(2) 1 51.36 4.670 17.38 32.49 94.83 0.567 0.370 0.280 0.087

(64.79) (2.057) (14.62) (32.57) (102.82) (0.215) (0.228) (0.220) (0.120)

(3) 2 205.41 5.860 32.48 72.72 242.03 0.493 0.280 0.193 0.045

(284.89) (2.074) (23.65 (64.70) (240.91) (0.202) (0.202) (0.186) (0.083)

(4) 3 665.27 6.691 50.07 129.69 492.17 0.433 0.213 0.135 0.025

(944.31) (1.869) (30.23) (97.96) (433.84) (0.188) (0.176) (0.155) (0.062)

(5) 4 1794.44 7.200 67.56 199.24 866.81 0.380 0.161 0.092 0.014

(2385.52) (1.584) (33.33) (126.37) (675.22) (0.172) (0.148) (0.123) (0.046)

(6) 5 4250.87 7.501 83.07 275.77 1399.86 0.341 0.125 0.064 0.009

(5076.27) (1.314) (33.31) (146.28) (969.11) (0.156) (0.124) (0.098) (0.036)

Period 2

(7) 0 6.323 2.658 5.057 7.352 17.57 0.757 0.648 0.588 0.432

(7.579) (1.530) (4.642) (7.972) (21.84) (0.207) (0.247) (0.263) (0.271)

(8) 1 36.79 4.073 12.35 22.07 63.30 0.582 0.404 0.312 0.100

(48.06) (2.006) (10.85) (23.28) (74.30) (0.246) (0.264) (0.258) (0.149)

(9) 2 137.59 5.306 23.84 50.43 164.62 0.505 0.309 0.218 0.054

(195.61) (2.147) (18.70) (48.17) (179.36) (0.229) (0.234) (0.219) (0.106)

(10) 3 424.14 6.256 38.60 93.40 343.90 0.443 0.237 0.153 0.030

(642.62) (2.022) (25.89) (77.71) (341.13) (0.210) (0.204) (0.182) (0.077)

(11) 4 1115.16 6.888 54.59 148.78 617.58 0.390 0.182 0.106 0.018

(1693.19) (1.771) (30.70) (106.36) (548.77) (0.191) (0.175) (0.148) (0.063)

(12) 5 2563.23 7.286 70.14 213.31 1006.73 0.347 0.141 0.074 0.011

(3589.15) (1.506) (32.81) (129.82) (793.74) (0.171) (0.146) (0.118) (0.049)

Numbers are the average values, with standard deviations in parentheses.

The expanding research scope of more distant indirect collaborators of an inventor
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reflects the shrinking commonality in technological specialization between them and

the inventor. It can be quantified by the average Jaccar index between the technological

specialization Sit of inventor i and those of their indirect collaborators j ∈Nℓ
it
:

jℓ
it
=

1

nℓ
it

∑

j∈Nℓ
it

|Sit∩S jt|

|Sit∪S jt|
∈ [0,1] . (6.5)

A larger value of jℓ
it

implies higher average similarity in technological specialization

between inventor i and their ℓ-th indirect collaborators. In particular, it takes the value

0 if their specializations do not overlap (i.e., Sit∩S jt = 0 for all j ∈ Nℓ
it
) and takes the

value 1 if they are identical (i.e., Sit = S jt for all j ∈Nℓ
it
).

Columns 6–9 of Table 6.1 indicate the average values of jℓ
it

in terms of IPC sections,

classes, subclasses, and subgroups, respectively. These values between an inventor

and their direct collaborators are, on average, 0.71, 0.57, 0.40, and 0.33 (0.76, 0.65,

0.59, and 0.43) in period 1 (period 2), respectively (rows 1 and 7 of columns 6–9 in

Table 6.1). The numbers of technological categories that an inventor shares with their

collaborators are, on average, 1.39, 1.53, 1.62, and 2.05 (1.26, 1.35, 1.41, and 1.71) at IPC

section, class, subclass, and subgroup levels, respectively, in period 1 (period 2).

Between an inventor and their fifth indirect collaborators, however, the common-

ality of technological specialization is substantially smaller. The corresponding Jaccar

indices reduce to 0.34, 0.13, 0.06, and 0.01 (0.35, 0.14, 0.07, and 0.01), respectively, in

period 1 (period 2) (rows 6 and 12 of columns 6–9 in Table 6.1), The numbers of tech-

nological categories that an inventor shares with their fifth indirect collaborator are as

small as 0.79, 0.40, 0.24, and 0.07 (0.80, 0.43, 0.25, and 0.07) on average, respectively,

in period 1 (period 2). Thus, we conclude that as long as inventors are sufficiently far

apart on the collaborator network, say fifth indirect collaborators, their research fields

are virtually irrelevant.

There may still remain a concern that the formation of a network component is due

to positive assortative matching among inventors. This invalidates the use of indirect

collaborators to construct instruments for the endogenous variables. However, we will

see in Section 7.1 that this is likely not the case. In addition, the firm- and location-

specific effects underlying the similarity in productivity among indirect collaborators

in the outcome of models (4.1) and (4.6) are controlled by inventors’ fixed effects as

well as various local factors. Hence, there is little concern about the endogeneity due

to unobserved factors behind the productivity similarity among indirect collaborators.

In sections 8.1 and 8.2, we further explore the influence of time-varying factors of

the firm or establishment to which an inventor belongs as well as that of the group of

firms or establishments involved in a joint patent.
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6.3 Relevance

We argue that the relevance of our instruments derives from assortative matching by

productivity at the firm level, which is exogenous to individual inventors as their firm

affiliation is predetermined in our data. In Section 6.3.1, we start by showing evidence

for assortative matching among firms in their investment decisions in terms of their

financial performance and worker productivity. In Section 6.3.2, we indicate that

the pool of potential collaborators for an inventor is largely confined within a single

firm or its affiliated partners. Hence, the firm-level assortative matching results in

the exogenous positive correlation of inventor productivities among the collaborators,

thereby justifying the construction of instruments based on indirect collaborators.

6.3.1 Positive assortative matching of firms by worker productivity

If firms with investment relations as well as firms and their workers exhibit assorta-

tive matching by productivity, then we expect the productivities of inventors in these

matched firms to be positively correlated. Evidence for assortative matching between

firms and workers can be found in the existing literature (e.g., Mendes et al., 2010; Bar-

tolucci and Devicienti, 2013; Dauth et al., 2018).33 While direct evidence for assortative

matching among firms is not available in the literature, it is suggested by the financial

and ownership data for Japanese firms (Tokyo Shoko Research, 2014).34

From 315,347 firms with financial information available in Japan in 2014, we identify

58,634 firm pairs with investment relationships. We then construct an (undirected)

network of firms with each firm as a node and each firm pair with an investment

relation as an edge. Table 6.2 indicates average values of Spearman’s rank correlations

for average wage in addition to four financial indices between a firm and its direct and

indirect partners in the network. The “indirectness” is defined analogously to that of

the inventor network so that value 0 indicates the direct investment relation and value

j ≥ 1 indicates the j-th indirect investment relation.

The firms with investment relations exhibit positive correlations in the listed finan-

cial indices as well as average wage of workers (row 1). While the correlation quickly

diminishes for more distant indirect partners, the relatively high correlations persist

up to the first indirect relation. Because the workers include inventors in these firms,

inventor productivities are expected to be correlated among these firms.

33See, e.g., Eeckhout and Kircher (2018) for a theoretical model.
34There is indirect evidence in the literature for assortative matching by productivity among firms.

Namely, Bettencourt et al. (2007); Gaubert (2018); Dauth et al. (2018) indicated evidence for spatial
sorting of firms and workers by productivity. Nakajima et al. (2012) and Otazawa et al. (2018) revealed
that firms with transaction linkages are geographically concentrated. See, for example, Mori and Turrini
(2005); Behrens et al. (2014) for theoretical models of spatial sorting.
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Table 6.2: Rank correlations of financial indices between firms with ownership

Indirectness Avg. wage VA/worker
Capital-asset Pretax profit- Third-party

ratio asset ratio evaluation

(1) 0 0.1267 0.0923 0.1824 0.1465 0.2577
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(2) 1 0.0930 0.0416 0.0490 0.0280 0.0926
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(3) 2 0.0260 0.0087 0.0045 0.0067 0.0132
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

(i) The numbers in the parentheses are p-values of two-sided tests. (ii) “Avg. wage” represents the
average nominal wage per (regular) worker; “VA/worker” represents the value added per worker;
“Capital-asset ratio” represents the owned capital to total asset ratio; “Pretax profit-asset ratio”
represents the pretax profit to total asset ratio; and third-party evaluation is the score ranging in
[0,100] based on over 200 financial indices provided by the Tokyo Shoko Research.

6.3.2 Collaboration and firm affiliation of inventors

If the size of a firm/establishment in period t is defined by the number of inventors

who belong to the firm/establishment at some point in the period, then the average

and median of the firm size are 26,923 and 7,757 (23,025 and 8,207) while those of the

establishment size are 3,500 and 1,059 (2,972 and 962) in period 1 (period 2).

In Table 6.3, columns 1 and 2 indicate the average shares of the ℓ-th indirect collab-

orators of an inventor who belong to the same firm as the inventor (ℓ = 0,1, . . . ,5) and

columns 3 and 4 show similar shares for establishments in periods 1 and 2, respectively.

Note that on average, more than 80% of collaborators are confined within a single firm

as well as within a single establishment.35 Although the shares decrease as ℓ increases,

they still remain as high as 25.6% and 31.7% for the fifth indirect collaborator for firms

and 20.6% and 25.3% for establishments in periods 1 and 2, respectively.

To assess the number of firms involved in order to reach the ℓ-th indirect collabo-

rators, we construct the collaboration network of firms with each firm as a node and

each pair of firms conducting a joint patent development as an edge. Columns 5 and

6 of Table 6.3 list the values for the average shortest-path length from the firm of an

inventor to the firm of their ℓ-th indirect collaborator on this network in periods 1 and

2, respectively. Although the shortest-path length, i.e., the smallest number of distinct

firms to reach the ℓ-th indirect collaborator, increases as ℓ increases in both periods, it

still remains smaller than two even for the fifth indirect collaborator.

The pool of potential collaborators for an inventor is mostly confined to a single firm

or its closely affiliated firms, and is essentially exogenous to inventors in our regression

as we focus on the inventors who do not change their firm affiliation. Because these

affiliated firms exhibit assortative matching in terms of worker productivity, provided

35For the samples limited to the Japanese patents applied by corporations, more than 90% of inven-
tions occur within a single establishment (Inoue et al., 2017).
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that joint R&D occurs more often among firms with closer investment relations, the

productivities of inventors in the potential pool of collaborators are expected to be

positively correlated. Given that kD
it

is the average productivity of collaborators of i

outside the joint projects with i, the values of lnkD
it

in the affiliated firms are expected

to be positively correlated.

Table 6.3: Firm and establishment affiliations of inventors
(1) (2) (3) (4) (5) (6)

Same firm share Same establishment share Path length to firm

Indirectness Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

(1) 0 0.819 0.824 0.811 0.814 0.453 0.399

(0.248) (0.261) (0.263) (0.275) (0.498) (0.490)

(2) 1 0.721 0.731 0.687 0.694 0.887 0.789

(0.271) (0.289) (0.303) (0.319) (0.568) (0.626)

(3) 2 0.616 0.640 0.565 0.584 1.179 1.107

(0.294) (0.308) (0.325) (0.338) (0.543) (0.630)

(4) 3 0.501 0.539 0.440 0.473 1.410 1.354

(0.302) (0.316) (0.328) (0.340) (0.534) (0.625)

(5) 4 0.377 0.430 0.318 0.360 1.633 1.584

(0.293) (0.311) (0.307) (0.325) (0.525) (0.618)

(6) 5 0.256 0.317 0.206 0.253 1.843 1.794

(0.260) (0.290) (0.260) (0.291) (0.499) (0.602)

(i) Numbers in parentheses are standard deviations. (ii) “Same firm share” and “same estab-
lishment share” denote the shares of ℓ-th indirect collaborators (ℓ = 0,1, . . . ,5) of an inventor
who belong to the same firm and the same establishment as the inventor, respectively. (iii)
“Path length to firm” means the average number of firms on the shortest path from an inventor
to the ℓ-th indirect collaborator on the research collaboration network of firms.

As for∆nit, recall Observation 2 in Section 2.3 that inventors with higher productiv-

ities conduct more active recombination of collaborators. Consequently, the size of the

collaborator recombination ∆nit is expected to be similar among indirect collaborators

with similar productivities. Yet, between inventor i and their indirect collaborator j,

the relevance between ∆nit and ∆n jt induced by the assortative matching among firms

and workers is weaker than that between kD
it

and kD
jt

because the former pair is not

directly related to the productivities of i and j unlike the latter pair. Thus, rather than

(6.3), we adopt the alternative instrument given by (6.4) for ∆nit that focuses more on

indirect collaborators who are more frequently connected to i.

7 Regression results

This section presents our main regression results for models (4.1), (4.5), and (4.6). In

all the regressions conducted, the fixed effects of inventors, periods, and IPC classes

(see Section 5.1) are controlled. The local factors described in Section 5.3, except for

residential population, are constructed for a circle with a 1 km radius around each

inventor, whereas it is set to 20 km for residential population to account for urban
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environments. Standard errors are clustered by UAs (refer to Section 5.3).36

7.1 The Berliant-Fujita model

Table 7.1 summarizes the regression results for model (4.1), with columns 1–5 and 6–10

indicating the results for citation- and novelty-adjusted productivities, respectively.

Columns 1 and 6 report the results from the ordinary least squares (OLS) regression for

the respective cases, and the rest report those from the two-stage least squares (2SLS)

instrumental variable (IV) regressions. For the IV regressions, we use the third to fifth

indirect collaborators to construct IVs for lnkD
it

. More specifically, we use all three

instruments lnk
IVℓ
it

for ℓ = 3,4 and 5 in column 2 (column 7), while only one of them is

used in columns 3–5 (8–10), respectively, for citation (novelty)-adjusted productivity.37

To make the results comparable, the observations are restricted to the set of 58,464

inventors (rather than the 107,724 considered in sections 2 and 5), with at least one fifth

indirect collaborator.38

The IV results support the mechanism of knowledge creation proposed by Berliant

and Fujita (2008) (row 1, columns 2–5 and 8–10). In particular, the estimated coefficients

of lnkD
it

are persistently positive, 0.27–0.29 (0.34–0.38), and significant for citation-

(novelty)-adjusted productivity; however, values below 1 indicate decreasing returns

to the differentiated knowledge of collaborators as the benefit from collaborators’

differentiated knowledge will eventually be dominated by that of common knowledge

with collaborators and differentiated knowledge of the inventor.

The estimated positive effect of research scope lnkit of an inventor (row 2) and

the negative effect of its squared term (lnkit)
2 (row 3) are consistent with the positive

but decreasing returns of learning-by-doing from the extant technologies discussed

in sections 2 and 4. However, because lnkit > 0 from the definition of kit (≥ 1) in our

data, the second-order effects appear to dominate the first-order effects; in other words,

the net effect of lnkit is mostly negative. The overall negative effects associated with

past knowledge imply that the positive learning-by-doing effects are dominated by the

negative effects from imitations and obsolescence, which accounts for the persistent

downward pressure on inventor productivity in Observation 1 in Section 2.2.

36Because the instruments lnk
D,IVℓ
it

for lnkD
it

in (4.1) and (4.5) as well as ln∆n
IVℓ
it

for ln∆nit in (4.6)
involve inventors located in different UAs, one might suspect that cluster-robust standard errors are
incorrect because the instruments for any inventor i might be correlated with errors ε jt in (4.1), εm

jt
in

(4.4), and ǫ jt in (4.6) for any inventor j even if inventors i and j are located in different UAs. However,
we consider that these cluster-robust standard errors still provide correct standard errors because the
inventor fixed effects are controlled in all regressions that encompass UA-specific fixed effects, making
the errors free from the correlation with UAs while allowing for standard errors to vary across UAs.

37It looks as if the instrument ln∆n
IVℓ
it

for ln∆nit works as an instrument for lnkD
it

in the estimation of

(4.1) because ln∆n
IVℓ
it

has relevance with lnkD
it

via (4.6). However, the relevance turned out to be weak

between ∆n
IVℓ
it

and kD
it

although we find that ∆nit has positive significant effect on kD
it

in Section 7.3.
38The basic properties of each variable remain the same as described in Table A.1.
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For all the choices of IVs, the first-stage F values are large (row 12, columns 2–5

and 7–10), meaning that the IVs do not seem to be weak.39 To confirm the exogeneity

of the IVs, we use lnk
IVℓ
it

for all ℓ = 3,4 and 5 in columns 2 and 7 for citation- and

novelty-adjusted productivities, respectively, and conduct Hansen’s (1982) J test for

overidentifying restrictions. The p-values of the test are 0.928 and 0.768 for the respec-

tive cases (row 11, columns 2 and 7), meaning that the exogeneity of the IVs cannot

be rejected.40 Moreover, the estimated coefficients for the alternative choices of the IVs

are remarkably similar (compare columns 2–5 and columns 7–10), which indicates that

these IVs are reasonably exogenous.

The OLS result is consistent with the IV results in terms of the signs of the estimated

coefficients, but it appears to have biases in several estimated coefficients. For the

effect of lnkD
it

, we find downward bias in the OLS estimates (compare columns 1 and

2–5 and columns 6 and 7–10 in row 1).41 An explanation for the bias is that the more

productive inventors attract (or are assigned by their firm) a larger number of relatively

unexperienced collaborators and inherit more collaborators with lower productivity

than the inventor intends. The removal of this reverse causality has lead to a larger

positive selection effect in the IV estimates.

If the collaborations were subject to endogenous positive assortative matching

among inventors, then the OLS estimate of β is expected to be biased upward and not

downward because the positive assortative matching among inventors implies positive

reflection effects (see, e.g., Bramoullé et al., 2009, for the case of social interaction

models). The possible bias for this reason is, therefore, at least not dominating.

Under the OLS, this selection effect may be partly picked up by the effect of the local

concentration of inventors lnaINV
it

, which has upward bias (compare columns 1 and 2

and columns 6 and 7 in row 4). This is because a larger inventor concentration induces

more fruitful collaborations, resulting in larger average differentiated knowledge from

collaborators. Consequently, in the IV result, the part of the OLS estimate of the

coefficient of lnaINV
it

for which the collaborator recombination is responsible is absorbed

into the coefficient of lnkD
it

. What is left in the estimated effect of lnaINV
it

may be

interpreted as the positive spillover effect from the local inventor concentration.42

Specifically, a 10% increase in the inventor concentration results in 1.2% and 1.8–2.0%

increases in citation- and novelty-adjusted productivity, respectively.

The concentration of R&D expenditure has a persistent positive effect for all the

specifications (row 5), where its 10% increase raises citation- and novelty-adjusted

39See Table C.1 in Appendix C for the results of the first-stage regressions.
40Of course, this result of Hansen’s J test is by no means sufficient to guarantee the exogeneity of the

instruments if all the instruments are subject to the same type and magnitude of bias.
41Akcigit et al. (2018) reported a similar downward bias on the effects of interaction levels on inno-

vation productivity within a patent team.
42In Section 8.2, we find that the effect of lnaINV

it
is largely explained by factors specific to the

establishments affiliated through joint patent projects.
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productivities by 0.26% and 0.35–0.36%, respectively. The size of manufacturing output

has essentially no impact on inventor productivity.

The positive significant effects of local manufacturing employment on citation-

adjusted productivity (row 6, columns 2–5), where its 10% increase raises productivity

by 0.23–0.24%, reflect that innovations are linked to production. Furthermore, citations

are often made by the related production units of nearby firms. It is insignificant for

novelty-adjusted productivity (row 5, columns 7–10) as technological novelty is not

necessarily relevant for the present production levels.

The nearby residential population appears to be irrelevant for inventor productivity.

Table 7.1: Regression results for (4.1) (Dependent variable: ln yit)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.163∗∗∗ 0.286∗∗∗ 0.286∗∗∗ 0.287∗∗∗ 0.273∗∗∗ 0.164∗∗∗ 0.344∗∗∗ 0.341∗∗∗ 0.353∗∗∗ 0.377∗∗∗

(0.0102) (0.0254) (0.0257) (0.0353) (0.0399) (0.00493) (0.0310) (0.0335) (0.0296) (0.0629)

(2) lnkit 0.110∗∗∗ 0.0931∗∗∗ 0.0931∗∗∗ 0.0929∗∗∗ 0.0949∗∗∗ 0.147∗∗∗ 0.114∗∗∗ 0.115∗∗∗ 0.113∗∗∗ 0.108∗∗∗

(0.0153) (0.0119) (0.0119) (0.0143) (0.0165) (0.0172) (0.0228) (0.0229) (0.0226) (0.0248)

(3) (lnkit)
2 -0.0890∗∗∗ -0.0820∗∗∗ -0.0820∗∗∗ -0.0820∗∗∗ -0.0828∗∗∗ -0.195∗∗∗ -0.178∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.175∗∗∗

(0.00967) (0.00868) (0.00865) (0.00954) (0.00991) (0.00926) (0.00594) (0.00564) (0.00665) (0.0108)

(4) lnaINV
it

0.171∗∗∗ 0.117∗ 0.117∗ 0.117∗ 0.123∗∗ 0.310∗∗∗ 0.200∗∗ 0.202∗∗ 0.195∗∗ 0.180∗∗∗

(0.0579) (0.0633) (0.0635) (0.0597) (0.0540) (0.0913) (0.0939) (0.0965) (0.0887) (0.0672)

(5) lnaR&D
it

0.0272∗∗∗ 0.0256∗∗∗ 0.0256∗∗∗ 0.0256∗∗∗ 0.0258∗∗∗ 0.0420∗∗∗ 0.0364∗∗∗ 0.0365∗∗∗ 0.0362∗∗∗ 0.0354∗∗∗

(0.00786) (0.00679) (0.00679) (0.00664) (0.00670) (0.0156) (0.0127) (0.0128) (0.0125) (0.0120)

(6) lnaMNFe
it

0.0149∗∗∗ 0.0240∗∗∗ 0.0240∗∗∗ 0.0240∗∗∗ 0.0230∗∗∗ -0.00859 0.0132 0.0128 0.0143 0.0172
(0.00566) (0.00438) (0.00436) (0.00533) (0.00598) (0.0105) (0.00989) (0.00955) (0.0108) (0.0158)

(7) lnaMNFo
it

0.00832 0.00522 0.00522 0.00520 0.00555 -0.00362 -0.00512 -0.00509 -0.00519 -0.00539
(0.00581) (0.00804) (0.00806) (0.00779) (0.00732) (0.00552) (0.00721) (0.00717) (0.00732) (0.00761)

(8) lnaPOP
it

-0.449 -0.660 -0.660 -0.661 -0.637 0.793∗ 0.0701 0.0837 0.0346 -0.0611
(0.519) (0.490) (0.490) (0.493) (0.470) (0.442) (0.415) (0.427) (0.390) (0.358)

(9) τ1 0.227∗∗∗ 0.173∗∗∗ 0.173∗∗∗ 0.172∗∗∗ 0.178∗∗∗ 0.304∗∗∗ 0.173∗∗∗ 0.175∗∗∗ 0.166∗∗∗ 0.149∗∗∗

(0.0159) (0.0150) (0.0149) (0.0213) (0.0245) (0.0307) (0.0382) (0.0403) (0.0352) (0.0477)

(10) R2 0.151 0.184
(11) Hansen J p-val. 0.928 0.768

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05,
* p<0.1.

7.2 Quantity-quality decomposition

In this section, the effect of each explanatory variable in (4.1) is decomposed into the

fractions that accrue to the quantity and quality of an inventor’s output. The regression

result for the former is relegated to Appendix D (Table D.1), and those for the latter are

given in Table 7.2, which is organized similarly to Table 7.1.43 Together with the results

shown in Table 7.1, the present results reveal the extent to which each explanatory

variable contributes to the quality and quantity of the patent output.

43The first stage of the regression is shared with (4.1). To confirm the exogeneity of the IVs, we

use lnk
IVℓ
it

for all ℓ = 3,4 and 5 in columns 2 and 7 for quality- and novelty-adjusted productivities,
respectively. We conduct Hansen’s (1982) J test for overidentifying restrictions. The p-values of the test
are 0.419 and 0.314 for quality- and novelty-adjusted productivities, respectively (row 11, columns 2
and 7), meaning that the exogeneity of the IVs cannot be rejected.
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We find contrasting roles of differentiated knowledge of collaborators between

the two measures of patent quality: more than 90% of its contribution is attributed

to increasing the quantity rather than quality of research output under the citation-

adjusted measure (row 1 and columns 2–5 in tables 7.1 and 7.2), whereas around 65%

of the contribution accrues to increasing the quality rather than quantity of research

output under the novelty-adjusted measure (row 1 and columns 7–10 in tables 7.1 and

7.2).

This result indicates that knowledge exchange is an especially effective source of

technological novelty. This appears to be the key factor for inducing the technological

shift of an inventor to a new niche, which is consistent with the results of Berliant and

Fujita (2008) as well as Horii (2012).

The decompositions of the effects of other explanatory variables are also worth

explanations although there are no formal theories that account for them. For both

citation- and novelty-adjusted productivity measures, the inventor as well as R&D

expenditure concentrations exhibit positive significant effect on the quantity but not

on the quality of inventions (rows 4 and 5 in tables 7.2 and D.1). The manufacturing

employment concentration raises the quality rather than the quantity of inventions

(rows 6 and 7 in tables 7.2 and D.1). The former result suggests that positive exter-

nalities from researcher agglomeration promote starting inventions, whereas the latter

result may reflect that the proximity to manufacturing concentration promotes targeted

inventions with higher quality.

Table 7.2: Regression results for (4.5) (Dependent variable: ln y
q

it
)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.0273∗∗∗ 0.0264∗∗ 0.0269∗∗ 0.0154 0.00321 0.119∗∗∗ 0.230∗∗∗ 0.231∗∗∗ 0.221∗∗∗ 0.247∗∗∗

(0.00169) (0.0120) (0.0119) (0.0192) (0.0221) (0.00278) (0.0143) (0.0146) (0.0168) (0.0330)

(2) lnkit 0.0104∗ 0.0106 0.0105 0.0121 0.0138∗ 0.0364 0.0162 0.0161 0.0179 0.0132
(0.00578) (0.00714) (0.00710) (0.00832) (0.00758) (0.0240) (0.0274) (0.0274) (0.0272) (0.0272)

(3) (lnkit)
2 -0.00549∗∗∗ -0.00554∗∗∗ -0.00551∗∗∗ -0.00616∗∗∗ -0.00684∗∗∗ -0.108∗∗∗ -0.0976∗∗∗ -0.0976∗∗∗ -0.0985∗∗∗ -0.0961∗∗∗

(0.00101) (0.00138) (0.00136) (0.00189) (0.00202) (0.00520) (0.00651) (0.00655) (0.00653) (0.00657)

(4) lnaINV
it

-0.0364∗∗∗ -0.0361∗∗ -0.0363∗∗ -0.0313∗∗ -0.0260∗∗ 0.0719∗∗ 0.00411 0.00368 0.00967 -0.00596
(0.0126) (0.0141) (0.0142) (0.0137) (0.0102) (0.0318) (0.0392) (0.0397) (0.0383) (0.0400)

(5) lnaR&D
it

-0.00252 -0.00251 -0.00252 -0.00236 -0.00220 0.0118∗ 0.00839 0.00837 0.00868 0.00789
(0.00414) (0.00421) (0.00422) (0.00409) (0.00377) (0.00638) (0.00570) (0.00569) (0.00569) (0.00598)

(6) lnaMNFe
it

0.0271∗∗∗ 0.0271∗∗∗ 0.0271∗∗∗ 0.0262∗∗∗ 0.0254∗∗∗ 0.00798 0.0215∗∗ 0.0216∗∗ 0.0204∗∗ 0.0235∗∗

(0.00559) (0.00521) (0.00520) (0.00531) (0.00641) (0.00850) (0.00929) (0.00919) (0.00949) (0.0112)

(7) lnaMNFo
it

0.00861 0.00863 0.00862 0.00891∗ 0.00921∗ -0.00636 -0.00728 -0.00729 -0.00720 -0.00742
(0.00556) (0.00534) (0.00535) (0.00518) (0.00526) (0.00458) (0.00656) (0.00657) (0.00637) (0.00684)

(8) lnaPOP
it

-0.582∗∗ -0.580∗∗ -0.581∗∗ -0.562∗∗ -0.541∗∗ 0.610 0.163 0.160 0.200 0.0971
(0.238) (0.240) (0.239) (0.250) (0.251) (0.440) (0.477) (0.476) (0.479) (0.497)

(9) τ1 0.101∗∗∗ 0.102∗∗∗ 0.101∗∗∗ 0.107∗∗∗ 0.112∗∗∗ 0.151∗∗∗ 0.0699∗∗∗ 0.0694∗∗∗ 0.0765∗∗∗ 0.0578∗

(0.0180) (0.0223) (0.0223) (0.0245) (0.0200) (0.0202) (0.0210) (0.0209) (0.0225) (0.0323)

(10) R2 0.086 0.140
(11) Hansen J p-val. 0.419 0.314

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05, *
p<0.1.

The results of our regressions identify the causal relation suggested by the BF model
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concerning the correlation between collaborators’ differentiated knowledge and inven-

tor productivity in Observation 2 in Section 2.3.44 In particular, technological shift ∆sit,

which was found to be correlated with higher productivity in Observation 2, is inten-

tionally directed toward less explored niches because of inventors’ (or firms’) quest

for more novel invented technologies. The technological shift caused by knowledge

exchange appears to be a means to overcome the negative effects of inventors’ past

knowledge stock as pointed out in Observation 1. This part of the result is missing in

the BF model, which assumes symmetry among all pieces of knowledge. However,

this finding agrees with the theoretical result of Horii (2012), who considered a more

realistic economy with demand for new technologies.

7.3 Recombination and the differentiated knowledge of collabora-

tors

This section presents the results for model (4.6), which incorporates the fundamental

causality assumed in the BF model that collaborator recombination is an effective means

to collect novel ideas for knowledge creation. The regression results are summarized in

Table 7.3, which is organized similarly to Table 7.1 except that the dependent variable

is ln∆kD
it

and ln∆n
IVℓ
it

for ℓ = 3,4, and 5 serves as the IV for an endogenous variable

ln∆nit.

In the IV results, the estimated coefficients of ln∆nit are persistently positive 1.24–

1.52 (1.71–1.96) and significant for citation- (novelty)-adjusted productivity. This con-

firms our earlier finding in Observation 2 on the implication from Berliant and Fujita

(2008) that collaborator recombination is an effective means to acquire new ideas to

facilitate invention. These estimated elasticities are greater than 1. However, because

research productivity exhibits decreasing returns in the input of collaborators’ dif-

ferentiated knowledge, the overall effect of collaborator recombination on inventor

productivity will be positive but diminishing. Specifically, putting the results from

(4.1) and (4.6) together, we find that a 10% increase in collaborator recombination,

presumably by utilizing the differentiated knowledge of collaborators, induces 3–4%

and 6–8% increases in the respective pairwise output of an inventor.

The effect of cumulative research scope lnkit in collaborator recombination in model

(4.6) appears in contrast to its net negative effect on knowledge creation in model (4.1).

In the IV results for (4.6), we find a positive increasing returns effect of research scope in

acquiring differentiated knowledge from collaborators (columns 2–5 and 7–10 of rows

2 and 3). On the one hand, a highly established inventor with a large research scope

44Although we use inventor productivity ȳ in Section 2 rather than pairwise productivity yit, these
are highly correlated, with correlation coefficients of 0.73 and 0.76 in periods 1 and 2, respectively. Thus,
the observations made for ȳ in Section 2 basically apply to yit as well.
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can attract able collaborators without a large effort, i.e., without much replacement of

collaborators. On the other hand, an inventor with a small research scope must induce

significant effort to find appropriate collaborators for successful inventions (or their

firm should arrange so), thereby leading to a large number of new collaborators. This

accounts for the mechanism behind Observation 3. While past research experience is

useful to achieve better collaboration partners, it may hinder their invention as the old

knowledge quickly reduces to obsolescence and is subject to imitation.

Table 7.3: Regression results for (4.6) (Dependent variable: lnkD
it

)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) ln∆nit 0.104∗∗∗ 1.372∗∗∗ 1.400∗∗∗ 1.523∗∗∗ 1.236∗∗∗ 0.244∗∗∗ 1.722∗∗∗ 1.718∗∗∗ 1.962∗∗∗ 1.714∗∗∗

(0.00626) (0.0629) (0.0748) (0.119) (0.132) (0.00792) (0.0847) (0.0914) (0.157) (0.131)

(2) lnkit 0.131∗∗∗ -0.0220 -0.0253 -0.0401 -0.00554 0.147∗∗∗ -0.0313 -0.0308 -0.0601 -0.0303
(0.0427) (0.0669) (0.0653) (0.0814) (0.0732) (0.0338) (0.0638) (0.0632) (0.0786) (0.0669)

(3) (lnkit)
2 -0.0364∗∗ 0.223∗∗∗ 0.229∗∗∗ 0.254∗∗∗ 0.195∗∗∗ -0.0422∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.310∗∗∗ 0.259∗∗∗

(0.0156) (0.0197) (0.0167) (0.0422) (0.0392) (0.0161) (0.0233) (0.0223) (0.0476) (0.0360)

(4) lnaINV
it

0.387∗∗∗ 0.0138 0.00580 -0.0304 0.0539 0.515∗∗∗ 0.0800 0.0813 0.00957 0.0825
(0.0916) (0.0426) (0.0467) (0.0461) (0.0507) (0.118) (0.103) (0.107) (0.0878) (0.0939)

(5) lnaR&D
it

0.0134 0.000705 0.000432 -0.000799 0.00207 0.0320∗ 0.0172∗ 0.0172∗ 0.0148 0.0173∗

(0.0111) (0.00478) (0.00487) (0.00571) (0.00447) (0.0165) (0.00896) (0.00895) (0.00939) (0.00915)

(6) lnaMNFe
it

-0.0706∗∗∗ -0.0139 -0.0127 -0.00720 -0.0200 -0.110∗∗∗ -0.0436∗∗ -0.0438∗∗ -0.0329 -0.0440∗

(0.0220) (0.0147) (0.0151) (0.0183) (0.0137) (0.0186) (0.0219) (0.0213) (0.0302) (0.0239)

(7) lnaMNFo
it

0.0214 0.00814 0.00786 0.00657 0.00957 0.00221 -0.0133 -0.0132 -0.0158 -0.0132
(0.0215) (0.00992) (0.0101) (0.0110) (0.00960) (0.0265) (0.00922) (0.00923) (0.0107) (0.00920)

(8) lnaPOP
it

1.371 -0.552 -0.594 -0.780 -0.345 3.574∗∗∗ 1.332 1.338 0.968 1.345
(1.043) (1.229) (1.217) (1.403) (1.273) (1.137) (1.050) (1.037) (1.247) (1.103)

(9) τ1 0.415∗∗∗ 0.514∗∗∗ 0.517∗∗∗ 0.526∗∗∗ 0.504∗∗∗ 0.698∗∗∗ 0.814∗∗∗ 0.814∗∗∗ 0.833∗∗∗ 0.814∗∗∗

(0.0269) (0.0504) (0.0525) (0.0481) (0.0428) (0.0373) (0.0285) (0.0287) (0.0310) (0.0291)

(10) R2 0.160 0.178

(11) Hansen J p-val. 0.255 0.363

(12) 1st stage F 237.7 639.9 338.5 253.9 237.7 639.9 338.5 253.9

(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05,
* p<0.1.

As other local factors appear to play minor roles, we find that the research expe-

rience and collaborator recombination remain two effective means for an inventor to

improve their productivity. Taken together, a rather intricate mechanism underlying

the churning of inventor productivities in Observation 1 has been disentangled and

explained from the micro-level behavior of individual inventors à la Berliant and Fujita

(2008) and Horii (2012).

For all the choices of IVs, the first-stage F values are large (row 12, columns 2–5

and 7–10), suggesting that the IVs are not weak.45 To confirm the exogeneity of IVs, we

use ln∆n
IVℓ
it

for all ℓ = 3,4 and 5 in columns 2 and 7 for citation- and novelty-adjusted

productivities, respectively, and conduct Hansen’s (1982) J test for overidentifying

restrictions. The p-values of the test are 0.255 and 0.363 for citation- and novelty-

adjusted productivities, respectively (row 11, columns 2 and 7), meaning that the

exogeneity of the IVs cannot be rejected.46 The estimated coefficients for the alternative

45See Table C.2 in Appendix C for the results from the first-stage regressions.
46The same caveat stated in footnote 40 applies here.
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choices of IVs are less stable than those for model (4.1); however, they agree with each

other qualitatively (columns 2–5 and columns 7–10).

The OLS estimate of the effect of ln∆nit is consistent with the IV results in terms of

the signs and significance of the estimated coefficients; however, it exhibits substantial

downward bias (compare columns 1 and 2 and columns 6 and 7 in row 1). Under the

OLS, a part of the effect of collaborator recombination appears in that of local inventor

concentration because a larger inventor concentration implies a larger pool of potential

collaborators. The downsized effect of lnaINV
it

in the IV regression is consistent with

this interpretation (compare columns 1 and 2–5 and columns 6 and 7–10 in row 4).

Another source of the bias is reverse causality. A higher productivity for an inventor

is, on average, associated with the larger differentiated knowledge of their collaborators

as well as a larger research scope. This bias appears to be reflected in the estimated

coefficient of the research scope lnkit, which has substantial upward bias in the OLS

(compare columns 1 and 2–5 and columns 6 and 7–10 in row 2).

8 Robustness

This section checks the robustness of our baseline results with emphasis on two aspects:

the influence of time-varying firm and establishment-specific factors in Section 8.1 and

that of time-varying affiliated firm and establishment-specific factors in Section 8.2.

We investigate the sensitivity of our baseline results under alternative definitions for

inventor productivities and alternative neighborhood sizes to define local factors, in

addition to alternative IVs in Section 8.3.

8.1 Size and research scope of a firm and an establishment

This section considers two time-varying properties of the firm and establishment to

which each inventor belongs. Let Fit be the set of inventors who belong to the same

firm as inventor i at some point in period t, and let F−i,t ≡ Fit\ (Nit∪{i}), i.e., Fit excluding

i and their collaborators.

The first property is the firm size, fit = |F−i,t|, representing the magnitude of the R&D

activities within the firm to which inventor i belongs; however, outside the projects,

an inventor and collaborators are directly involved. Given that more than 80% of

collaboration occurs within a firm on average, the variation in kD
it

as well as that of ∆nit

may simply reflect firm size in period t.47

47Note that firm size here is rather special as it aggregates all the inventors affiliated with a given firm
at some point in the given period. Firm size may be slightly overstated because inventors who simply
changed establishments within a firm in the same period were counted multiple times. Nonetheless, it
should reflect the basic variation in the number of inventors involved in a given firm.
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The second property is the research scope of the firm of a given inventor i defined

by s
f

it
= | ∪ j∈Fit

S jt\(∪u∈Nit∪{i}Sut)| , which counts the number of distinct technological

categories in which patents are developed in the firm of inventor i and excludes those

associated with the patents developed by i and by their collaborators. The values of

fit and s
f

it
reflect the potential scale effect of a firm; for example, the availability of

common research facilities, funding, and other sources of increasing returns as well as

interdisciplinary spillover.

In a similar manner, we can define the set Eit of inventors who belong to the same

establishment as inventor i in period t and set the establishment size eit = |E−it| as well as

the research scope se
it
= | ∪ j∈Eit

S jt\(∪u∈Nit∪{i}Sut)| of their establishment.

Table 8.1: Regression results for (4.1) with firm- and establishment-specific factors

Citations Novelty

Variables (1) (2) (3) (4) (5) (6) (7) (8)

(1) lnkD
it

0.297∗∗∗ 0.271∗∗∗ 0.251∗∗∗ 0.201∗∗∗ 0.335∗∗∗ 0.276∗∗∗ 0.308∗∗∗ 0.229∗∗∗

(0.0338) (0.0341) (0.0420) (0.0338) (0.0360) (0.0325) (0.0429) (0.0300)

(2) ln fit -0.0370 -0.217∗∗∗ 0.00174 -0.276∗∗∗

(0.0721) (0.0572) (0.104) (0.107)

(3) lns
f

it
0.158∗∗∗ 0.254∗∗∗

(0.0220) (0.0272)

(4) lneit 0.180∗∗∗ 0.0158 0.202∗∗∗ -0.0351
(0.0416) (0.0610) (0.0380) (0.0893)

(5) lnse
it

0.122∗∗∗ 0.188∗∗∗

(0.0221) (0.0414)

(6) lnkit 0.0867∗∗∗ 0.0857∗∗∗ 0.0853∗∗∗ 0.0850∗∗∗ 0.103∗∗∗ 0.106∗∗∗ 0.0992∗∗∗ 0.102∗∗∗

(0.0210) (0.0205) (0.0251) (0.0256) (0.0239) (0.0234) (0.0238) (0.0234)

(7) (lnkit)
2 -0.0807∗∗∗ -0.0811∗∗∗ -0.0814∗∗∗ -0.0811∗∗∗ -0.179∗∗∗ -0.182∗∗∗ -0.179∗∗∗ -0.183∗∗∗

(0.0103) (0.0103) (0.0117) (0.0117) (0.00960) (0.00954) (0.0101) (0.00974)

(8) lnaINV
it

0.115∗∗ 0.116∗∗∗ 0.0143 -0.00638 0.205∗∗∗ 0.222∗∗∗ 0.0993 0.0782
(0.0520) (0.0438) (0.0491) (0.0379) (0.0678) (0.0526) (0.0782) (0.0697)

(9) lnaR&D
it

0.0293∗∗∗ 0.0233∗∗∗ 0.0250∗∗∗ 0.0226∗∗∗ 0.0413∗∗∗ 0.0328∗∗∗ 0.0375∗∗∗ 0.0332∗∗∗

(0.00763) (0.00597) (0.00642) (0.00560) (0.0121) (0.0103) (0.0114) (0.0109)

(10) lnaMNFe
it

0.0270∗∗∗ 0.0195∗∗∗ 0.0465∗∗∗ 0.0434∗∗∗ 0.00594 -0.0111 0.0289∗∗ 0.0224
(0.00528) (0.00606) (0.00577) (0.00544) (0.0112) (0.0102) (0.0130) (0.0144)

(11) lnaMNFo
it

0.00263 0.00534 -0.000942 0.00519 -0.00963 -0.00549 -0.0140 -0.00361
(0.0109) (0.0113) (0.0103) (0.00974) (0.0109) (0.0106) (0.0114) (0.0112)

(12) lnaPOP
it

-0.634 -0.885∗ -1.141∗∗ -1.110∗∗ 0.329 0.0790 -0.146 0.0460
(0.466) (0.502) (0.508) (0.477) (0.361) (0.422) (0.434) (0.433)

(13) τ1 0.180∗∗∗ 0.127∗∗∗ 0.160∗∗∗ 0.134∗∗∗ 0.191∗∗∗ 0.128∗∗∗ 0.173∗∗∗ 0.146∗∗∗

(0.0205) (0.0194) (0.0197) (0.0173) (0.0344) (0.0385) (0.0340) (0.0352)

(14) Hansen J p-val. 0.762 0.777 0.797 0.741 0.161 0.369 0.107 0.347

(15) 1st stage F 209.4 209.4 320.1 664.6 196.2 152.8 217.5 387.6

(16) #Obs. 99,996 99,996 99,996 98,880 99,996 99,996 99,996 98,880

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01,
** p<0.05, * p<0.1.

Columns 1–4 and 5–8 in Table 8.1 indicate the IV results for (4.1) under citation-

and novelty-adjusted measures, respectively, with these additional controls on the

RHS. The IVs are constructed using all the third, fourth, and fifth indirect collaborators

because similar results are obtained when only one of them is used.48

48The first-stage F values (row 15) are reasonably large for all cases, indicating the strong relevance
of the IVs. Hansen (1982)’s J-test indicates no evidence against the exogeneity of the IVs (row 14).
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We find that the coefficient of lnkD
it

in (4.1) is significantly different between the

baseline and the current specifications (under both the citation- and novelty-adjusted

productivity) when the research scope at the firm/establishment and/or establishment

size are controlled.49 More specifically, up to around 30% of the estimated coefficients

for lnkD
it

under the baseline specifications are accounted for by the firm/establishment-

specific factors. Nevertheless, the signs and significance of the effect of lnkD
it

found in

the baseline model persist.

In particular, the coefficients of research scope at both firm and establishment

levels are positive and significant, which may relate to the effects of time-varying R&D

resources at the firm and establishment levels that cannot be controlled by the local

concentration of R&D expenditure lnaR&D
it

.

Firm size ln fit has negative significant effects on inventor productivity after con-

trolling for the research scope lns
f

it
of the firm (columns 2 and 6). This may reflect

the fact that larger firms have a comparably larger number of less skilled/experienced

inventors and that they are necessarily assigned to some patent projects of the firm,

resulting in the lower average productivity of an inventor.

At the establishment level, the size effect lneit and local concentration of inventors

lnaINV
it

become insignificant once the research scope of an establishment lnse
it

is con-

trolled (columns 3, 4, 7, and 8). Thus, the scale effect of an establishment is positive

and is largely represented by the research scope of the establishment.

Next, columns 1–4 and 5–8 in Table 8.2 report the IV results for (4.6) under citation-

and novelty-adjusted measures, respectively, with the additional controls on the RHS.

The IVs are constructed by using all the third, fourth, and fifth indirect collaborators

because similar results are obtained when only one of them is used.50

As in the case of (4.1) in Table 8.1, the research scope at both firm and establish-

ment level has positive significant effects on the amount of differentiated knowledge

of collaborators. The effects of both firm and establishment sizes are negative un-

like the case of (4.1). A similar explanation as above applies here. Namely, a larger

firm/establishment has a comparably larger number of less skilled/experienced inven-

tors. Because most collaboration occurs within a firm/establishment, they are neces-

sarily assigned to some patent projects of the firm/establishment, resulting in lower

average differentiated knowledge of an inventor. The positive effect of the research

scope of the firm/establishment (possibly representing the R&D resource) constitutes

up to 8–9% of the estimated coefficients of ln∆nit in the baseline case. Nevertheless,

the signs and significance of the effect of ln∆nit found in the baseline model persist.

49This is based on the Wald test in the generalized method of moments estimation, which simultane-
ously estimates the baseline and current models with the 2SLS weighting matrix.

50The first-stage F values (row 15) are reasonably large, indicating the strong relevance of the IVs.
Hansen (1982)’s J-test indicates no evidence against the exogeneity of the IVs (row 14).
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Table 8.2: Regression results for (4.6) with firm- and establishment-specific factors

Citations Novelty

Variables (1) (2) (3) (4) (5) (6) (7) (8)

(1) ln∆nit 1.407∗∗∗ 1.390∗∗∗ 1.292∗∗∗ 1.257∗∗∗ 1.775∗∗∗ 1.737∗∗∗ 1.633∗∗∗ 1.567∗∗∗

(0.0864) (0.0847) (0.0842) (0.0667) (0.113) (0.112) (0.115) (0.0927)

(2) ln fit 0.0111 -0.236 0.0493 -0.517∗∗∗

(0.100) (0.144) (0.160) (0.199)

(3) lns
f

it
0.210∗∗∗ 0.481∗∗∗

(0.0642) (0.0877)

(4) lneit 0.195∗∗∗ -0.0952 0.256∗∗∗ -0.360∗∗

(0.0387) (0.124) (0.0655) (0.159)

(5) lnse
it

0.175∗∗ 0.377∗∗∗

(0.0718) (0.0767)

(6) lnkit -0.0215 -0.0268 -0.0153 -0.0237 -0.0323 -0.0445 -0.0248 -0.0411
(0.0744) (0.0700) (0.0741) (0.0680) (0.0722) (0.0633) (0.0714) (0.0591)

(7) (lnkit)
2 0.237∗∗∗ 0.235∗∗∗ 0.214∗∗∗ 0.210∗∗∗ 0.280∗∗∗ 0.275∗∗∗ 0.252∗∗∗ 0.245∗∗∗

(0.0213) (0.0206) (0.0214) (0.0231) (0.0240) (0.0226) (0.0255) (0.0274)

(8) lnaINV
it

0.0187 0.00671 -0.0568 -0.0390 0.0820 0.0543 -0.0103 0.00241
(0.0410) (0.0422) (0.0347) (0.0400) (0.0630) (0.0496) (0.0655) (0.0677)

(9) lnaR&D
it

-0.000660 -0.00895 -0.00413 -0.00673 0.0154 -0.00356 0.0115 0.00359
(0.00682) (0.00723) (0.00665) (0.00690) (0.0113) (0.0123) (0.0107) (0.00999)

(10) lnaMNFe
it

-0.00294 -0.00938 0.0157 0.0193 -0.0319 -0.0466∗∗ -0.00629 -0.00618
(0.0149) (0.0151) (0.0154) (0.0147) (0.0219) (0.0205) (0.0249) (0.0278)

(11) lnaMNFo
it

0.00189 0.00495 -0.00133 0.00889 -0.0167∗∗ -0.00971 -0.0206∗∗∗ 0.000505
(0.0111) (0.0114) (0.0101) (0.00849) (0.00832) (0.00960) (0.00772) (0.00669)

(12) lnaPOP
it

-0.921 -1.257 -1.307 -1.148 0.985 0.215 0.519 0.781
(1.334) (1.243) (1.313) (1.183) (1.365) (1.149) (1.250) (1.036)

(13) τ1 0.524∗∗∗ 0.438∗∗∗ 0.480∗∗∗ 0.419∗∗∗ 0.826∗∗∗ 0.629∗∗∗ 0.775∗∗∗ 0.638∗∗∗

(0.0619) (0.0425) (0.0566) (0.0418) (0.0512) (0.0276) (0.0381) (0.0339)

(14) Hansen J p-val. 0.325 0.323 0.310 0.305 0.451 0.468 0.477 0.504

(15) 1st stage F 198.1 193.5 188.6 175.5 198.1 193.5 188.6 175.5

(16) #Obs. 82,048 82,048 82,048 81,270 82,048 82,048 82,048 81,270

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01,
** p<0.05, * p<0.1.

8.2 Research affiliations of firms and establishments

Although more than 80% of collaboration occurs within a firm and within an establish-

ment on average, the entire collaboration often involves multiple firms and establish-

ments. The productivity of an inventor and the amount of differentiated knowledge

of collaborators may be influenced by the time-varying factors specific to the set of

firms and establishments that affiliate for joint R&D in which they are involved. For

example, variation in productivity as well as the differentiated knowledge of potential

collaborators in the affiliated firms may substantially depend on the capability of the

chief executive officer of the leading firm, the presence or absence of star inventors in

the affiliation, the research funds allocated to the affiliation in a given period, and so

on. These factors specific to affiliated firms and establishments may also be correlated

with the magnitude of collaborator recombination of an inventor. For example, newly

available R&D resources to a given affiliation of firms or establishments may induce

an unusual recombination of collaborators to improve complementarity within new
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research projects. Consequently, the omission of these factors may result in a bias of

the estimated coefficient of lnkD
it

in (4.1) and that of ln∆nit in (4.6).

To evaluate the influence of such factors in models (4.1) and (4.6), we consider

random counterfactual choices of collaborators for each inventor conditional on the

actual number as well as firm/establishment affiliation of each of their collaborators.

Suppose that among the nit collaborators of inventor i in period t, nA
it

belongs to firm

A, nB
it

belongs to firm B, and so on, where nit =
∑

j n
j

it
. Then, these nit collaborators are

replaced by nA
it

randomly chosen collaborators without replacement (according to the

uniform probability distribution) from firm A, nB
it

from firm B, and so on, respectively;

however, the second or closer indirect and direct collaborators of i are excluded from

the selection to mitigate the reflection problem. Alternatively, the counterfactual col-

laborators of inventor i may be chosen conditional on the actual establishment (rather

than firm) affiliation of each collaborator of i.

We construct 1,000 sets of counterfactual collaboration patterns in this way and

compute the counterfactual kD
it

under each. Models (4.1) and (4.6) are estimated by

OLS under each counterfactual value of kD
it

. Our interest is the extent to which the

causality from lnkD
it

to ln yit in (4.1) and from ln∆nit to lnkD
it

can be attributed to

factors specific to the affiliated firms and establishments rather than the direct effects

of knowledge exchange and the collaborator recombination, respectively.51

Table 8.3 summarizes the estimated values of the coefficient β of lnkD
it

of model (4.1)

and that of the coefficient β̃ of ln∆nit under counterfactual data and compares them

with their IV estimates under the actual data.52

As for model (4.1), the affiliated firm-specific factors are significant, on average,

under the citation-adjusted measures (columns 1 and 2); however, their magnitude

is less than 10% of the IV estimate of β under the actual data (column 2 of tables

7.1 and 8.1). Under the novelty-adjusted measures (columns 3 and 4), the affiliated

firm-specific factors are at most weakly significant on average (without firm-specific

controls) though they account for, on average, 3.6% of the IV estimate of β under the

actual data.

The affiliated establishment-specific factors are significant, on average, under both

quality measures (columns 5–8) and account for 17.7% and 15.9% of the total effect

of lnkD
it

under the citation-adjusted measure without and with establishment-specific

controls, respectively. The corresponding numbers under the novelty-adjusted mea-

sure are 8.6% and 6.3%, respectively. Because citations are more likely among affiliated

firms and establishments, both affiliated firm- and establishment-specific factors matter

51There may be a concern for endogeneity if there were positive assortative matching between an
inventor and the affiliated firms and establishments. In that case, the estimation bias for the coefficients
of lnkD

it
and ln∆nit is expected to be upward, which makes our robustness check conservative.

52Here, we consider the IV estimates based on the third to fifth indirect collaborators.
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more for citation-adjusted productivity.

Nonetheless, more than 80% of the original estimates of β and β̃ still remain after

removing the affiliated firm/establishment-specific factors. We find this to be strong

supportive evidence for the BF mechanism of knowledge creation.

Table 8.3: Effects of affiliated firm/establishment-specific factors

Firms Establishments

Citations Novelty Citations Novelty

(1) (2) (3) (4) (5) (6) (7) (8)

Model (4.1)
Average estimate of β 0.028∗∗∗ 0.026∗∗∗ 0.012∗ 0.008 0.051∗∗∗ 0.032∗∗∗ 0.029∗∗∗ 0.015∗

(S.D.) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Share in the actual 0.099 0.094 0.036 0.029 0.177 0.159 0.086 0.063

Model (4.6)
Average estimate of β̃ -0.028 -0.033∗∗ 0.183∗∗∗ 0.175∗∗∗ 0.052∗∗∗ 0.012 0.267∗∗∗ 0.211∗∗∗

(S.D.) (0.010) (0.010) (0.017) (0.017) (0.009) (0.009) (0.014) (0.009)

Share in the actual -0.021 -0.025 0.106 0.101 0.038 0.010 0.155 0.134

Additional controls ln fit, lns
f

it
X X

lneit, lnse
it

X X

Columns 1–4 and 5–8 report the results conditional on the actual firm- and establishment-level affiliations, respectively. The
productivity measures are quality-adjusted in columns 1, 2, 5, and 6 and novelty-adjusted in columns 3, 4, 7, and 8. Columns

of odd numbers show the results under (4.1), with the actual kD
it

replaced by the counterfactual one. The columns of even
numbers show the results with additional controls of the size and technological scope of a firm or establishment. The “share
in the actual” indicates the ratio of the average estimate of β under the counterfactual data to the estimate of that under the
actual data. The estimated values of β under the actual data are the IV estimates, with IVs constructed by using the third
through fifth indirect collaborators. Specifically, these are 0.286 for columns 1 and 5, 0.344 for columns 3 and 7 (refer to Table
7.1), and 0.271, 0.276, 0.201, and 0.229 for columns 2, 6, 4, and 8, respectively (refer to Table 8.1). The superscripts ∗ ∗ ∗, ∗∗, and

∗ indicate that the estimated values of β and β̃ are significant at the 0.01, 0.05, and 0.1 levels, respectively, on average.

8.3 Other robustness analyses

Finally, this section briefly discusses the results of other robustness analyses. In all

cases, the signs and significance of the estimated coefficients of lnkD
it

in (4.1) and ln∆nit

in (4.6) are consistent with our baseline results shown in tables 7.1 and 7.3.

Alternative productivity measures – The regressions for (4.1) and (4.6) are conducted

under four alternative measures of inventor productivity, where the output g j of patent

j in (2.1) is given by (i) cited count in five years from publication, (ii) technological

novelty based on the IPC subclass, and (iii) count of patent claims,53 or (iv) count of

patents, i.e., g j = 1 for all j. See Appendix E.1 for the details.

Differentiated knowledge of collaborators by IPC – The differentiated knowledge of

collaborators may be defined by the IPC categories as kD
it
= 1

nit

∑

j∈Nit

∣

∣

∣S jt\Sit

∣

∣

∣ instead of

the productivity-based measures; however, it corresponds less precisely to the knowl-

edge creation function (3.1). See Appendix E.2 for the details.54

53Each claim indicates an aspect of the patent to be protected; thus, its count reflects the technological
novelty within a patent. Although the claims are made by applicants, this is not an entirely subjective
measure of quality because each claim incurs monetary costs.

54The qualitative results remain the same if the IPC subclass instead of subgroup is adopted to define
the differentiated knowledge of collaborators as well as the cumulative research scope of inventors.
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Alternative radius values for local concentration – We consider alternative radius

values (5, 10, and 20 km) to quantify the magnitude of local concentration of inventors,

R&D expenditure, manufacturing, and population around each individual inventor.

The direct effects of local concentrations on the outcome variables are generally robust

under the alternative radius values, with some exceptions. Specifically, for (4.1), the

effects of local concentrations are spatially confined for the inventor, R&D expenditure,

and manufacturing concentrations in the sense that the effect is significant up to a 5 km

radius (if significant at all). The effect of residential population concentration lnaPOP
it

is

insignificant for all radius values 5–20 km. For (4.6), the negative effects of lnaINV
it

and

lnaMNFe

it
persist for larger radius values, possibly reflecting the tougher competition

for human resources with co-localizing R&D activities as well as the manufacturing

sector. See Appendix E.3 for the details.

IVs based on indirect collaborators in different firms – Finally, we consider alternative

IVs for lnkD
it

and ln∆nit, which are the same as lnk
D,IVℓ
it

in (6.3) and ln∆n
IVℓ
it

in (6.4)

except that the inventors in the same firm as i are excluded from Nℓ
it
. Using these IVs,

we can mitigate the influence of unobserved firm-specific factors associated with the

IVs that may correlate with the error term.

The results remain qualitatively the same as those from the baseline analyses shown

in tables 7.1 and 7.3 except that the estimated coefficient for lnkD
it

in (4.1) is insignificant

under the IVs constructed from the fourth and fifth indirect collaborators for the case

of citation-adjusted productivity. This is not surprising provided that the correlations

of worker productivity among firms attenuate rather quickly as firms become far from

each other on the investment network as discussed in Section 6.3.

Nevertheless, weak IVs are not found under the novelty-adjusted productivity

measures. Moreover, for all cases, if we use both baseline and present IVs constructed

from the ℓ-th indirect collaborators for ℓ = 3,4 and 5, then the null hypothesis of the

Hansen (1982)’s J-test is not rejected, which suggests that unobserved firm-specific

factors are of minor concern. For (4.6), we have qualitatively the same results under

the alternative IVs as those obtained in Section 7.3. See Appendix E.4 for the details.

9 Discussion and further research directions

We have shown evidence consistent with the polyadic collaborative knowledge cre-

ation mechanism proposed by Berliant and Fujita (2008). To our knowledge, our work

is the first attempt to provide micro-econometric evidence for knowledge creation at

the individual inventor level under endogenous collaboration.

We have also addressed two major counterfactual aspects of the BF model, guided

by Horii’s (2012) result. One is that each inventor in their model belongs to a fixed net-
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work component in a typical steady state, meaning that polyadic interactions happen

only within a given set of collaborators. However, in the data, the set of collaborators

evolves for each agent over time and the intertemporal recombination of collabora-

tors is found to revise inventors’ technological expertise by meeting new agents and

adopting their differentiated knowledge.

The other is that inventors in their model face no imitation or obsolescence of their

technological knowledge because the potential knowledge is infinite and symmetric.

In reality, however, the past research experience of an inventor may hinder their

future invention (except for superstars with particularly high research profiles) as

old knowledge quickly reduces to obsolescence and is subject to imitation. Thus, if

inventors stick to their past achievements, then they most likely lose their present level

of creativity in the long run. If instead agents are willing to explore new research

directions by meeting new collaborators with different backgrounds from theirs, then

they are more likely to keep their creativity by shifting their technological expertise to

unexplored niches. We have explained this causal relation by estimating the second

and third regression models, (4.5) and (4.6), in addition to the original BF model (4.1).

Specifically, collaborator recombination is found to be an effective means for raising the

quality of collaborators’ differentiated knowledge and thereby enhancing the quality

of the inventor’s output.

This evidence has important policy implications. For example, firms, cities, regions,

and countries that promote encounters and collaboration among individual inventors

across organizations and institutions, despite the possibility of imitations and unde-

sired diffusions, may have better chances to foster innovation there. While lower

organizational and institutional barriers for research collaboration are not incompati-

ble with the protection of intellectual property by patents, our finding supports more

active coordination than divisions among researchers to encourage innovation.55

Among a number of short- and long-run extensions, we touch on three. First, it is

an obvious interest to further investigate the roles of firms and establishments in R&D

activities. Because the financial resources for R&D are typically provided by firms,

firm-specific patterns of collaborations and R&D policies could affect the productivity

of individual inventors and firms.56 By matching the addresses of establishments in

the patent database with those of the Census of Manufacturers, it is also possible to

investigate the impact of patent development on firm productivity.

Second, non-technological diversity among collaborators in terms of, for example,

gender, age, and cultural background, may affect productivity. For example, Øster-

gaard et al. (2011) and Inui et al. (2014) found a positive influence of gender diversity

55See Boldrin and Levine (2013) for a related survey of the literature arguing that the patent system
hinders rather than promotes innovation.

56See Akcigit and Kerr (2018) for an initial attempt in this direction as they distinguish between R&D
that is internal and external to firms and study the firm dynamics that arise from this distinction.
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on innovation productivity of Danish and Japanese firms, respectively.

Finally, it is intriguing to explore the differences in the location patterns of R&D

activities and industries. It is argued that large cities are typically associated with a con-

centration of knowledge-intensive activities (e.g., Davis and Dingel, 2019). However,

the fundamental distinction between knowledge-intensive and non-intensive activities

has not been made clear thus far. From our findings, knowledge-intensive R&D activ-

ities are clearly expected to be more concentrated geographically given their incentive

for frequent collaborator recombination than industrial activities whose concentrations

are typically induced by input–output linkages, demand, and production externalities.

Figure 9.1(a) plots the aggregate novelty-adjusted patent output and manufacturing

output against the population size of a UA in period 1, where all values are expressed

by shares in all UAs.57 The solid and dashed lines indicate the fitted OLS lines for

the patent and manufacturing output plots, respectively. While both plots indicate

increasing per capita productivity in the UA size, it is substantially more so for patent

output: Doubling the population size of a UA raises R&D productivity by 2.5 times58

while raising manufacturing productivity only by 1.2 times.

Figure 9.1(b) plots the diversity in IPC subclasses of applied patents as well as

industrial diversity in terms of the number of four-digit Japanese SIC manufacturing

industries against the population size of UAs in 2000, where all values are in shares

again.59 Comparing UAs in terms of the diversity in IPC subclass and SIC four-digit

industry categories is reasonable because they are comparable in terms of the total

number of active categories, which is 608 for the former and 562 for the latter. The

solid and dashed lines indicate the fitted OLS lines for the patent class and industrial

diversity plots, respectively. While diversity is increasing in the population size of a

UA for both patent categories and manufacturing industries, the increase of the former

is substantially more. Thus, doubling the population size of a UA almost doubles the

diversity in the technological category of patents applied in the UA, whereas it only

increases the industrial diversity by 55%. Thus, while a larger UA is associated with

both larger intensive (i.e., per capita output) and extensive margins (i.e., diversity)

in both R&D and production activities, this tendency is substantially stronger for the

former.

These findings suggest a positive association between population concentration

and matching externalities that promote collaborator recombination in large cities.60

57The location of a patent is identified by that of the patent applicant. Manufacturing output is
obtained from the micro data of the Census of Manufacturers in 2000.

58Estimated elasticities of patent output with respect to UA population are similar among alternative
output measures: under IPC subclass and cited count, they are 1.516 and 1.458, respectively,

59The industrial diversity of a given UA is defined as the number of four-digit manufacturing
industries that have positive employment in the UA.

60See Agrawal et al. (2017); Perlman (2016) for evidence of the effect of transport costs on R&D
agglomeration.
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However, the mechanism behind the difference between R&D and industrial location

patterns has not been fully explored either theoretically or empirically, and this remains

a future research subject.61
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Figure 9.1: Industrial and research outputs and diversities in UAs in 2000

61It is also possible to identify the geographic scope of collaborations, e.g., within an establishment,
a district, a metropolitan area, and so on. See Gordon (2013) for an initial attempt in this direction.
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Calvó-Armengol, Antoni, Elenora Patacchini, and Yves Zenou, “Peer effects and social
network in education,” Review of Economic Studies, 2009, 76 (4), 1239–1267.

Chang, Howard F., “Patent scope, antitrust policy, and cumulative innovation,” RAND
Journal of Economics, 1995, 26 (1), 34–57.

Chu, Angus C., “Effects of blocking patents on R&D: A quantitative DGE analysis,”
Journal of Economi Growth, 2009, 14 (1), 55–78.

Coe, Davit T. and Elhanan Helpman, “International R&D spillovers,” European Economic
Review, 1995, 39 (5), 859–887.

Comola, Margherita and Silvia Prina, “Treatment effects accounting for network
changes,” 2017. Unpublished manuscript. Paris School of Economics.

Cozzi, Guido and Silvia Galli, “Sequential R&D and blocking patents in the dynamics
of growth,” Journal of Economic Growth, 2014, 19 (2), 183–219.

Dauth, Wolfgang, Sebastian Findeisen, Enrico Moretti, and Jens Suedekum, “Match-
ing in cities,” 2018. Discussion paper No.25227, National Bureau of Economic Research.

Davis, Donald R. and Jonathan I. Dingel, “A spatial knowledge economy,” American
Economic Review, 2019, 109 (1), 153–170.

Duranton, Gilles and Diego Puga, “Nursery cities: Urban diversity, process innovation,
and the life cycle of products,” American Economic Review, 2001, 91 (5), 1454–1477.

Eeckhout, Jan and Philipp Kircher, “Assortative matching with large firms,” Economet-
rica, 2018, 86 (1), 85–132.

Garcia-Vega, Maria, “Does technological diversification promote innovation? An em-
pirical analysis for European firms,” Research Policy, 2006, 35 (2), 230–246.

Gaubert, Cecile, “Firm sorting and agglomeration,” American Economic Review, 2018, 108
(11), 3117–3153.

Giorgi, Giacomo De, Michele Pellizza, and Silvia Redaelli, “Identification of social
interactions through partially overlapping peer groups,” American Economic Journal:
Applied Economics, 2010, 2 (2), 241–275.

Glass, Amy Jocelyn and Kamal Saggi, “Licensing versus direct investment: Implications
for economic growth,” Journal of International Economics, 2002, 56 (1), 131–153.

Goldsmith-Pinkham, Paul and Guido W. Imbens, “Social networks and identification
of peer effects,” Journal of Business & Economic Statistics, 2013, 31 (3), 253–264.

Gordon, Peter, “Thinking about economic growth: Cities, networs, creativity and supply
chains for ideas,” Annals of Regional Science, 2013, 50 (3), 667–684.

Grossman, Gene M. and Carl Shapiro, “Dynanic R&D competition,” The Economic
Journal, 1978, 97 (386), 372–387.

and Elhanan Helpman, Innovation and Growth in the Global Economy, Cambridge, MA:
The MIT Press, 1991.



Collaborative knowledge knowledge creation 41

Hansen, Lars Peter, “Large sample properties of generalized method of moments esti-
mators,” Econometrica, 1982, 50 (4), 1029–1054.

Horii, Ryo, “Wants and past knowledge: Growth cycles iwth emerging industries,”
Journal of Economic Dynamics and Control, 2012, 36 (2), 220–238.

Hsieh, Chih-Sheng and Lung-Fei Lee, “A social interactions model with endogenous
friendship formation,” Journal of Applied Econometrics, 2016, 31 (2), 1–21.

Huo, Dong and Kazuyuki Motohashi, “Understanding two types of technological di-
versity and their effects on the technological value of outcomes from bilateral inter-firm
R&D alliances,” 2015. Discussion paper No. 15-E-06, The Research Institute of Econ-
omy, Trade and Industry (RIETI).

Iaria, Alessandro, Carlo Schwartz, and Fabian Waldinger, “Frontier knowledge and sci-
entific production: Evidence from the collapse of international science,” The Quarterly
Journal of Economics, 2018, 133 (2), 927–991.

Inoue, Hiroyasu, Kentaro Nakajima, and Yukiko Saito Umeno, “Innovation and col-
laboration patterns between research establishments,” 2015. Discussion paper No.
15-E-049, The Research Institute of Economy, Trade and Industry (RIETI).

, , and Yukiko Umeno Saito, “Localization of knowledge-creating establishments,”
Japan and the World Economy, 2017, 43, 23–29.

Inui, Tomohiko, Makiko Nakamuro, Kazuma Edamura, and Junko Ozawa, “Impact of
diversity and work-life balance (in Japanese),” 2014. Discussion paper No. 14-J-055,
Research Institute of Economy, Trade and Industry (RIETI).

Jackson, Matthew O., Brian W. Rogers, and Yves Zenou, “The economic consequence
of social-network structure,” Journal of Economic Literature, 2017, 55 (1), 49–95.

Jaffe, Adam B., Manuel Trajtenberg, and Rebecca Henderson, “Geographic localization
of knowledge spillovers as evidenced by patent citations,” The Quarterly Journal of
Economics, 1993, 108 (3), 577–598.

Johnsson, Ida and Hyungsik Roger Moon, “Estimation of peer effects in endogenous
social networks: Control function approach,” 2019. arXiv:econ.EM/1709.10024v2.

Jovanovic, Boyan and Rafael Rob, “The diffusion and growth of knowledge,” Review of
Economic Studies, 1989, 56 (4), 569–582.

Kerr, William R. and Scott Duke Kominers, “Agglomerative forces and cluster shapes,”
Review of Economics and Statistics, 2015, 97 (4), 877–899.

Klette, Tor Jakob and Samuel Kortum, “Innovating firms and aggregate innovation,”
Journal of Political Economy, 2004, 112 (5), 986–1018.

König, Michael D., Xiaodong Liu, and Yves Zenou, “R&D networks: Theory, empirics
and policy implications,” Review of Economics and Statistics, 2019, forthcoming.

Kortum, Samuel, “Research, patenting, and technological change,” Econometrica, 1997,
65 (6), 1389–1419.



Collaborative knowledge knowledge creation 42

Lentz, Rasmus and Dale T. Mortensen, “An empirical model of growth through product
innovation,” Econometrica, 2008, 76 (6), 1317–1373.

Li, Tong and Li Zhao, “A partial identification subnetwork approach to discrete games
in large networks: An application to quantifying peer effects,” 2016. Unpublished
manuscript, Vanderbilt University.

Lucas, Robert E. and Benjamin Moll, “Knowledge growth and the allocation of time,”
Journal of Political Economy, 2014, 122 (1), 1–51.

Manski, Charles F., “Identification of endogenous social effects: The reflection problem,”
Review of Economic Studies, 1993, 60 (3), 531–542.

Matutes, Carmen, Pierre Regibeau, and Katharine Rockett, “Optimal patent design
and the diffusion of innovations,” RAND Journal of Economics, 1996, 27 (1), 60–83.

Mendes, Rute, Gerard J. van den Berg, and Maarten Lindeboom, “An empirical as-
sessment of assortative matching in the labor market,” Labour Economics, 2010, 17 (6),
919–929.

Ministry of Economy, Trade and Industry of Japan, Census of Manufactures 1995, 2000,
2005.

, METI Basic Survey of Japanese Business Structure and Activities 1995-2010.

Ministry of Internal Affairs and Communications of Japan, Population Census (Tabula-
tion for standard area mesh) 1995, 2000, 2005.

, Establishment and Enterprise Census 1996, 2001, 2006.

, Survey of Research and Development 1997-2010.

, Economic Census for Business Frame 2009.

, Population Census (Tabulation for standard area mesh) 2010.

Mori, Tomoya and Alessandro Turrini, “Skills, agglomeration and segmentation,” Eu-
ropean Economic Review, 2005, 49 (1), 201–225.

Murata, Yasusada, Ryosuke Okamoto Ryo Nakajima, and Ryuichi Tamura, “Localized
knowledge spillovers and patent citations: A distanced-based approach,” Review of
Economics and Statistics, 2014, 96 (5), 967–985.

Nakajima, Kentaro, Yukiko Umeno Saito, and Iichiro Uesugi, “Localization of interfirm
transaction relationships and industry agglomeration,” April 2012. Discussion paper
12-E-023, Research Institute of Economy, Trade and Industry.

Olsson, Ola, “Knowledge as a set in idea space: An epistemological view on growth,”
Journal of Economic Growth, 2000, 5 (3), 253–275.

, “Technological opportunity and growth,” Journal of Economic Growth, 2005, 10 (1),
31–53.

Østergaard, Christian R., Bram Timmermans, and Kari Kristinsson, “Does a different
view create something new? The effect of employee diversity on innovation,” Research
Policy, 2011, 40 (3), 500–509.



Collaborative knowledge knowledge creation 43

Otazawa, Toshimori, Yuki Ohira, and Jos van Ommeren, “Inter-firm transaction net-
works and location in a city,” August 2018. Discusssion paper 18-E-054, Research
Institute of Economy, Trade and Industry.

Panebianco, Fabrizio, Thierry Verdier, and Yves Zenou, “Innovation, pricing and tar-
geting in networks,” 2016. Discussion paper No.11398, Center for Economic Policy
Research.

Patacchini, Eleonora, Edoardo Rainone, and Yves Zenou, “Heterogeneous peer effects
in education,” Journal of Economic Behavior & Organization, 2017, 134 (C), 190–227.

Perla, Jesse and Christopher Tonetti, “Equilibrium imitation and growth,” Journal of
Political Economy, 2018, 122 (1), 52–76.

Perlman, Elizabeth Ruth, “Dense enough to be brilliant: Patents, urbanization, and
transportation in nineteenth century America market access, and information flows,”
2016. Unpublished manuscript, Boston University.

Romer, Paul M., “Endogenous technological change,” Journal of Political Economy, 1990,
98 (5), 71–102.

Scherer, Frederic M., “Inter-industry technology flows and productivity growth,” Review
of Economics and Statistics, 1982, 64 (4), 627–634.

Schotchmer, Suzanne, “Protecting early inventors: Should second-generation products
be patentable?,” RAND Journal of Economics, 1996, 27 (2), 322–331.

Shell, Karl, “Toward a theory of inventive activitgy and capital accumulation,” American
Economic Review, 1966, 56 (1/2), 62–68.

Tanaka, Hitoshi, Tatsuro Iwaisako, and Koichi Futagami, “Dynamic analysis of innova-
tion and international transfer of technology through licensing,” Journal of International
Economics, September 2007, 73 (1), 189–212.

Thompson, Peter and Melanie Fox-Kean, “Patent citations and the geography of knowl-
edge spillovers: A reassessment,” The American Economic Review, 2005, 95 (1), 450–460.

Tokyo Shoko Research, “Kigyo Zaimu Joho and Sokan File,” 2014.

Trajitenberg, Manuel, “A penny for your quotes: Patent citations and the value of
innovations,” in Adam B. Jaffe and Manuel Trajtenberg, eds., Patents, Citations &
Innovations, Cambridge, MA: The MIT Press, 2002, chapter 2, pp. 27–49.

Waldinger, Fabian, “Quality matters: The expulsion of professors and the consequences
for PhD student outcomes in Nazi Germany,” Journal of Political Economy, 2010, 118
(4), 787–831.

, “Peer effects in science: Evidence from the Dismissal of scientists in Nazi Germany,”
The Review of Economic Studies, April 2012, 79 (2), 838–861.

Weitzman, Martin L., “Recombinant growth,” Quarterly Journal of Economics, 1998, 113
(2), 331–360.

Yang, Guifang and Keith E. Maskus, “Intellectual property rights, licensing, and in-
novation in an endogenous product-cycle model,” Journal of International Economics,
2001, 53 (1), 169–187.



Collaborative knowledge knowledge creation 44

Appendix

A Details of data

A.1 Descriptive statistics for the basic data

Table A.1: Descriptive statistics of basic variables

Period

(1) (2)

Variable 1 2

(1) Number of patents
∣

∣

∣∪i∈IGit

∣

∣

∣ 1,758,780 1,546,596

(2) Number of IPC classes 120 122

(3) Number of IPC subclasses 608 615

(4) Number of IPC subgroups
∣

∣

∣∪i∈I Sit

∣

∣

∣ 40,691 38,339

(5) Number of inventors in period t |It | 1,208,197 1,094,789

(6) Number of inventors active in all periods |I| 107,724 107,724

(7) Number of inventors per patent |G jt | 2.193 2.244
(1.538) (1.609)

(8) Share of collaborating inventors
∣

∣

∣{i ∈ It : |Nit | > 0}
∣

∣

∣/|It | 0.896 0.868

(9) Number of collaborators per inventor |Nit | 8.518 6.323
(9.321) (7.579)

(10) Number of new collaborators per inventor ∆nit 6.893 4.354
(7.907) (5.848)

(11) Number of patents per inventor |Git | 10.66 6.858
(16.21) (11.95)

(12) Number of IPC sections per inventor 1.812 1.533
(0.952) (0.799)

(13) Number of IPC classes per inventor 2.473 1.918
(1.788) (1.381)

(14) Number of IPC subclasses per inventor 2.984 2.241
(2.409) (1.874)

(15) Number of IPC subgroups per inventor |Sit | 5.471 3.713
(5.223) (4.026)

(16) Size of cumulative IPC subgroups per inventor | ∪t′<t Sit′ | 4.550 8.958
(4.659) (7.582)

Numbers in rows 7–16 are the average values with the standard deviations in parentheses.

Table A.2: Descriptive statistics of productivity variables

Productivity measure Cited counts Novelty

(1) (2) (3) (4)

Period 1 2 1 2

(1) Output of a patent g jt 1.535 1.423 0.013 0.009
(2.527) (3.850) (0.056) (0.049)

(2) Productivity of an inventor ȳit 7.906 5.048 0.047 0.024
(16.83) (163.31) (0.134) (0.084)

(3) Pairwise productivity of an inventor yit 1.389 1.728 0.009 0.006
(3.160) (175.04) (0.049) (0.032)

(4) Avg. diff. knowledge of collaborators kD
it

1.411 1.053 0.008 0.005
(7.520) (4.539) (0.043) (0.034)

Numbers are the average values with standard deviations in parentheses.
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A.2 IPC

The IPC classifies technologies into eight sections: A (human necessities), B (perform-

ing operations; transporting),. . ., H (electricity). These sections are divided into classes

such as A01 (agriculture; forestry; animal husbandry; hunting; trapping; fishing) and

then into subclasses such as A01C (planting; sowing; fertilizing). Each subclass is

further divided into groups, e.g., A01C1 (apparatus, or methods of use thereof, for

testing or treating seed, roots, or the like, prior to sowing or planting), and then into

subgroups, e.g., A01C1/06 (coating or dressing seed) and A01C1/08 (immunizing seed).

The IPC’s labeling scheme is consistent over time, and a newly introduced category is

basically associated with a new technology (e.g., the classes B81 for microtechnology

and B82 for nanotechnology introduced in 2000). As another example, the shale revo-

lution in the late 2000s in the United States was made possible by some key innovations

in excavation technology that mainly belong to a new subclass C09K (compositions for

drilling of boreholes or wells; compositions for treating boreholes or wells) that was

split from E21B (earth or rock drilling; obtaining oil, gas, water, soluble or meltable ma-

terials or a slurry of minerals from wells) in 2006. If there are no fundamental changes

in technology in a given category, the classification remains the same (e.g., A47C for

furniture; domestic articles or appliances; coffee mills; spice mills; suction cleaners in

general). Taken together, the set of technological categories specified in the IPC at a

given point in time roughly represents the set of the state-of-the-art technologies at that

time, and hence makes an appropriate proxy for the set of technological knowledge.

We have 121, 609, and 40,691 (123, 616, and 38,339) relevant IPC classes, subclasses,

and subgroups, respectively for period 1 (period 2), associated with the applied patents

in our data.

A.3 Locational factors

In this section, the description of UAs and precise definitions for the measures of the

local factors discussed in Section 5.3 are given.

UAs – Panels (a) and (b) in Figure A.1 show the spatial distribution of inventors in I

and 453 UAs as of 2010, respectively, where the warmer colors in each panel indicate

higher population density. Each inventor is assigned to the closest UA if there is any

UA within 10 km of their location.

Inventor population – The local population, aINV
it

, of inventors within a given distance,

d̄, of the location of inventor i is defined as

aINV
it =

∣

∣

∣

∣

{

j ∈ It\Nit : d(i, j) < d̄
}

∣

∣

∣

∣

, (A.1)
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(a) Spatial distribution of inventors (b) Urban agglomerations in 2010

Figure A.1: Spatial distribution of researchers and UAs

where d(i, j) represents the great-circle distance between inventors i and j (rows 1-

4, Table A.3). To evaluate the pure spillover effects, this population excludes the

collaborators, Nit, of i.62

R&D expenditure – Focusing on manufacturing, we first aggregate firm-level R&D

expenditure at the industry level according to the three-digit Japanese SIC in each

period t. Denote the industry-level R&D expenditure (in million yen) by vm for each

industry m ∈Mt, where Mt is the set of three-digit manufacturing industries in period

t.63

Next, from the micro data of the Establishment and Enterprise Census as well as

the Economic Census (MIAC, 1996, 2001, 2006; 2009), we find the set of establishments,

Emt, in each industry m ∈Mt in period t, and compute the employment share, ekt, of

each establishment k ∈ Emt within industry m.

Assuming that the R&D expenditure of each establishment in each industry is pro-

portional to the employment size of the establishment, the value of R&D expenditure

of each establishment in period t is approximated by vmtemt. Assuming that the R&D

expenditure in the previous period t− 1 affects the productivity of inventors in the

current period t, the R&D around inventor i in period t is given as follows (rows 5-8,

62The effects of externalities from the nearby inventors and firms that have been recognized in the
literature (e.g., Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014; Kerr and Kominers,
2015).

63Data on R&D expenditure at the firm level are available for firms with at least four employees for
every year from 1997 to 2009 from the Survey of Research and Development. Since we do not have data
in 1995 and 1996, the total expenditure in 1997–1999 has been inflated by 1.67 times to obtain the value
of R&D expenditure in period 0.
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Table A.3):64

aR&D
it =

∑

m∈Mt

∑

k∈{ j∈Em : d(i, j)<d̄}

vm,t−1ek,t−1. (A.2)

aR&D
it

is naturally expected to influence patent development.

Table A.3: Descriptive statistics of the locational factors

(1) (2)
Period 1 2

(1) inventor population 1km 5,750 5,629
(7,225) (7,282)

(2) 5km 31,026 30,158
(42,143) (42,269)

(3) 10km 70,720 66,011
(79,277) (77,330)

(4) 20km 140,204 127,470
(129,401) (120,751)

(5) R&D investment 1km 10,454 18,480
(78,020) (180,284)

(6) 5km 150,581 278,911
(338,668) (703,381)

(7) 10km 300,256 520,066
(466,130) (920,505)

(8) 20km 550,420 899,652
(584,891) (1,098,091)

(9) Manufacturing employment 1km 2,240 6,676
(1,505) (7,106)

(10) 5km 52,974 76,491
(32,395) (74,655)

(11) 10km 182,597 212,371
(106,414) (166,473)

(12) 20km 551,875 509,703
(318,789) (322,326)

(13) Manufacturing output 1km 21,801,942 20,774,589
(in thousand) (58,182,730) (83,883,736)

(14) 5km 158,183,183 104,957,604
(129,167,825) (129,388,708)

(15) 10km 445,908,195 317,846,559
(255,976,915) (226,259,080)

(16) 20km 1,213,122,353 956,808,207
(626,842,420) (532,719,932)

(17) Residential population 5km 595,461 615,722
(386,442) (399,930)

(18) 10km 2,100,541 2,156,271
(1,388,078) (1,432,171)

(19) 20km 6,386,959 6,573,357
(4,252,098) (4,416,168)

Numbers are the average values with standard deviations in parentheses.

Manufacturing concentration – Assuming that the employment size and output of an

establishment correlate with demand for new knowledge, we proxy the local market

size for an invented technology around inventor i by the local manufacturing employ-

64The R&D expenditure values are obtained from the Survey of Research and Development (1997-
2010b) by MIAC and from METI Basic Survey of Japanese Business Structure and Activities (1995-2010)
by METI.



Collaborative knowledge knowledge creation 48

ment and output around i:65

a
MNF j

it
=

∑

k∈{ j∈Et : d(i, j)<d̄}

ekt (A.3)

where Et = ∪m∈MtEmt, and ekt represents the total output value (employment) of estab-

lishment k for j = o ( j = e) (rows 9-16, Table A.3).66

Residential population – The local residential population is defined as

aPOP
it =

∑

k∈{ j∈R : d(i, j)<d̄}

rkt (A.4)

where R represents the set of 1km-by-1km cells covering the relevant location space in

Japan; the centroid of each cell is considered to be the representative location of the cell

in measuring the distance from the cell; rkt is the residential population in cell k ∈ R at

the beginning of period t (rows 17-19, Table A.3).67

B Similarity and difference with linear-in-means models

This section discusses the similarity and difference of instruments between the linear-

in-means models of social interactions as in Bramoullé et al. (2009) and our model.

The most relevant similarity is the reflection problem intrinsic to the agent network

in both cases, while the most fundamental difference is whether the relevance of the

IVs is intrinsic or extrinsic to the network of agents in the model.

In the case of the peer effects in the linear-in-means models, the relevance accrues

from the simultaneous equation structure of the model, and thus it is intrinsic to the

network. As a consequence, adding degrees of separation in the network is double-

edged: the IVs constructed from more distant indirect collaborators can gain exogeneity

only at the cost of loosing the relevance. For this reason, the IVs in Bramoullé et al. (2009)

are constructed from the exogenous variables of relatively close indirect collaborators

in order to retain sufficiently strong relevance. A great advantage in their model is

that their IVs formally satisfy the exclusion restriction, provided that the network is

exogenous.

In our case, the relevance of the IVs is extrinsic to the inventor network, since it

65Another interpretation of aMNF
it

is the spillover from the manufacturing concentration around i in
period t.

66The manufacturing employment values are obtained from the Establishment and Enterprise Census
for (1996, 2001, 2006) and Economic Census for Business Frame (2009) by MIAC; the manufacturing
output values are obtained from the micro data of the Census of Manufacturers (1995, 2000, 2005) and
Economic Census for Business Frame (2009) by MIAC.

67The residential population in the 1 km-by-1 km cells is available from the Population Census (1995,
2000, 2005) by MIAC.
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comes from the similarity in inventor productivity as a result of assortative matching

between firms and workers that happened prior to the formation of the inventor

network. As a consequence, the relevance is maintained even when the information

of the distant indirect collaborators is solely used, as long as the assortative matching

affects the indirect collaborators and the targeted inventors simultaneously. That is, the

increasing the separation in the network is not double edged. While the endogeneity of

the IVs is only virtually (but never completely) eliminated by using sufficiently distant

indirect collaborators to construct IVs in our case unlike the case of the linear-in-means

models, we instead can allow for the endogenous network formation.

C First-stage regressions for models (4.1) and (4.6)

This section presents the results of the first-stage regressions for the 2SLS IV regressions

corresponding to columns 2-5 and 7-10 in Table 7.1 and those in Table 7.3 in tables C.1

and C.2, respectively.

Table C.1: Regression results (Dependent variable: lnkD
it

)

Citations Novelty

Variables (1) IV3-5 (2) IV3 (3) IV4 (4) IV5 (5) IV3-5 (6) IV3 (7) IV4 (8) IV5

(1) k
D,IV3
it

0.436∗∗∗ 0.453∗∗∗ 0.340∗∗∗ 0.402∗∗∗

(0.0266) (0.0169) (0.0146) (0.0132)

(2) k
D,IV4
it

0.0235∗ 0.349∗∗∗ 0.0880∗∗∗ 0.347∗∗∗

(0.0128) (0.0136) (0.0149) (0.0149)

(3) k
D,IV5
it

0.00544 0.249∗∗∗ 0.0411∗ 0.266∗∗∗

(0.0409) (0.0271) (0.0225) (0.0250)

(4) lnkit 0.124∗∗∗ 0.124∗∗∗ 0.131∗∗∗ 0.134∗∗∗ 0.156∗∗∗ 0.156∗∗∗ 0.166∗∗∗ 0.176∗∗∗

(0.0212) (0.0210) (0.0266) (0.0304) (0.0126) (0.0128) (0.0130) (0.0145)

(5) (lnkit)
2 -0.0491∗∗∗ -0.0491∗∗∗ -0.0524∗∗∗ -0.0545∗∗∗ -0.0900∗∗∗ -0.0892∗∗∗ -0.0934∗∗∗ -0.0949∗∗∗

(0.00741) (0.00738) (0.0107) (0.0126) (0.00766) (0.00777) (0.00967) (0.0114)

(6) lnaINV
it

0.359∗∗∗ 0.360∗∗∗ 0.390∗∗∗ 0.402∗∗∗ 0.504∗∗∗ 0.515∗∗∗ 0.538∗∗∗ 0.561∗∗∗

(0.0787) (0.0772) (0.0845) (0.0859) (0.0969) (0.0988) (0.108) (0.115)

(7) lnaR&D
it

0.00240 0.00259 0.00553 0.00979 0.0140 0.0158 0.0178 0.0252
(0.00909) (0.00921) (0.0104) (0.0113) (0.0137) (0.0142) (0.0166) (0.0181)

(8) lnaMNFe
it

-0.0668∗∗∗ -0.0663∗∗∗ -0.0745∗∗∗ -0.0759∗∗∗ -0.0954∗∗∗ -0.0943∗∗∗ -0.111∗∗∗ -0.118∗∗∗

(0.0196) (0.0189) (0.0244) (0.0266) (0.0221) (0.0197) (0.0238) (0.0239)

(9) lnaMNFo
it

0.0227 0.0227 0.0242 0.0242 0.0160 0.0151 0.0149 0.00968
(0.0207) (0.0204) (0.0247) (0.0246) (0.0294) (0.0273) (0.0320) (0.0317)

(10) lnaPOP
it

1.139 1.143 1.391 1.510 3.041∗∗∗ 3.084∗∗∗ 3.466∗∗∗ 3.699∗∗∗

(0.935) (0.918) (1.112) (1.148) (1.042) (0.985) (1.163) (1.240)

(11) τ1 0.285∗∗∗ 0.288∗∗∗ 0.333∗∗∗ 0.369∗∗∗ 0.474∗∗∗ 0.504∗∗∗ 0.548∗∗∗ 0.611∗∗∗

(0.0211) (0.0190) (0.0233) (0.0288) (0.0346) (0.0345) (0.0382) (0.0443)

(12) R2 0.205 0.205 0.183 0.171 0.203 0.201 0.188 0.179

(13) F 443.2 718.4 652.5 84.21 398.6 925.4 541.2 113.2

(14) p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

(15) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects
are controlled. (iii) ***p<0.01, **p<0.05, * p<0.1
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Table C.2: Regression results (Dependent variable: ln∆nit)

Citations Novelty

Variables (1) IV3-5 (2) IV3 (3) IV4 (4) IV5 (5) IV3-5 (6) IV3 (7) IV4 (8) IV5

(1) ln∆n
IV3
it

0.244∗∗∗ 0.278∗∗∗ 0.244∗∗∗ 0.278∗∗∗

(0.0212) (0.0138) (0.0212) (0.0138)

(2) ln∆n
IV4
it

0.00997 0.231∗∗∗ 0.00997 0.231∗∗∗

(0.0321) (0.0304) (0.0321) (0.0304)

(3) ln∆n
IV5
it

0.106∗∗∗ 0.208∗∗∗ 0.106∗∗∗ 0.208∗∗∗

(0.0339) (0.0392) (0.0339) (0.0392)

(4) lnkit 0.114∗∗∗ 0.116∗∗∗ 0.117∗∗∗ 0.117∗∗∗ 0.114∗∗∗ 0.116∗∗∗ 0.117∗∗∗ 0.117∗∗∗

(0.0268) (0.0266) (0.0261) (0.0255) (0.0268) (0.0266) (0.0261) (0.0255)

(5) (lnkit)
2 -0.202∗∗∗ -0.202∗∗∗ -0.203∗∗∗ -0.204∗∗∗ -0.202∗∗∗ -0.202∗∗∗ -0.203∗∗∗ -0.204∗∗∗

(0.00986) (0.00962) (0.00971) (0.00984) (0.00986) (0.00962) (0.00971) (0.00984)

(6) lnaINV
it

0.232∗∗∗ 0.237∗∗∗ 0.261∗∗∗ 0.273∗∗∗ 0.232∗∗∗ 0.237∗∗∗ 0.261∗∗∗ 0.273∗∗∗

(0.0529) (0.0542) (0.0600) (0.0651) (0.0529) (0.0542) (0.0600) (0.0651)

(7) lnaR&D
it

0.00704 0.00845 0.00680 0.00712 0.00704 0.00845 0.00680 0.00712
(0.00751) (0.00733) (0.00840) (0.00874) (0.00751) (0.00733) (0.00840) (0.00874)

(8) lnaMNFe
it

-0.0329 -0.0326∗ -0.0412∗ -0.0427∗ -0.0329 -0.0326∗ -0.0412∗ -0.0427∗

(0.0200) (0.0194) (0.0220) (0.0240) (0.0200) (0.0194) (0.0220) (0.0240)

(9) lnaMNFo
it

0.00479 0.00514 0.00793 0.00868 0.00479 0.00514 0.00793 0.00868
(0.0142) (0.0142) (0.0155) (0.0170) (0.0142) (0.0142) (0.0155) (0.0170)

(10) lnaPOP
it

1.053∗∗ 1.106∗∗ 1.210∗∗ 1.338∗∗ 1.053∗∗ 1.106∗∗ 1.210∗∗ 1.338∗∗

(0.506) (0.539) (0.585) (0.585) (0.506) (0.539) (0.585) (0.585)

(11) τ1 -0.167∗∗∗ -0.146∗∗∗ -0.139∗∗∗ -0.131∗∗∗ -0.167∗∗∗ -0.146∗∗∗ -0.139∗∗∗ -0.131∗∗∗

(0.0206) (0.0187) (0.0252) (0.0263) (0.0206) (0.0187) (0.0252) (0.0263)

(12) R2 0.197 0.196 0.190 0.189 0.197 0.196 0.190 0.189

(13) F 142.2 406.1 57.40 28.24 142.2 406.1 57.40 28.24

(14) p-value 0.000 0.000 0.000 3.44e-07 0.000 0.000 0.000 3.44e-07

(15) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standard errors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects
are controlled. (iii) ***p<0.01, **p<0.05, * p<0.1

D Results for model (4.5) with m = p

Table D.1 shows the second stage regression results for model (4.5) with m = p.

Table D.1: Regression results (Dependent variable: ln y
p

it
)

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.135∗∗∗ 0.260∗∗∗ 0.259∗∗∗ 0.272∗∗∗ 0.270∗∗∗ 0.0451∗∗∗ 0.114∗∗∗ 0.110∗∗∗ 0.132∗∗∗ 0.130∗∗∗

(0.0103) (0.0283) (0.0290) (0.0271) (0.0373) (0.00521) (0.0214) (0.0246) (0.0170) (0.0416)

(2) lnkit 0.0999∗∗∗ 0.0825∗∗∗ 0.0826∗∗∗ 0.0808∗∗∗ 0.0811∗∗∗ 0.111∗∗∗ 0.0982∗∗∗ 0.0989∗∗∗ 0.0949∗∗∗ 0.0952∗∗∗

(0.0110) (0.00729) (0.00725) (0.00844) (0.0125) (0.0144) (0.0112) (0.0106) (0.0125) (0.0194)

(3) (lnkit)
2 -0.0835∗∗∗ -0.0765∗∗∗ -0.0765∗∗∗ -0.0758∗∗∗ -0.0759∗∗∗ -0.0868∗∗∗ -0.0803∗∗∗ -0.0807∗∗∗ -0.0787∗∗∗ -0.0788∗∗∗

(0.00921) (0.00761) (0.00759) (0.00796) (0.00884) (0.0104) (0.00821) (0.00800) (0.00869) (0.0115)

(4) lnaINV
it

0.207∗∗∗ 0.153∗∗ 0.153∗∗ 0.148∗∗ 0.149∗∗∗ 0.238∗∗∗ 0.196∗∗∗ 0.199∗∗∗ 0.185∗∗∗ 0.186∗∗∗

(0.0678) (0.0752) (0.0755) (0.0700) (0.0574) (0.0651) (0.0659) (0.0683) (0.0612) (0.0389)

(5) lnaR&D
it

0.0298∗∗∗ 0.0281∗∗∗ 0.0281∗∗∗ 0.0279∗∗∗ 0.0280∗∗∗ 0.0302∗∗∗ 0.0280∗∗∗ 0.0282∗∗∗ 0.0275∗∗∗ 0.0276∗∗∗

(0.0105) (0.00925) (0.00927) (0.00892) (0.00867) (0.0112) (0.0101) (0.0102) (0.00967) (0.00885)

(6) lnaMNFe
it

-0.0122∗ -0.00309 -0.00313 -0.00222 -0.00236 -0.0166∗∗ -0.00823 -0.00872 -0.00604 -0.00626
(0.00702) (0.00616) (0.00611) (0.00725) (0.00869) (0.00772) (0.00745) (0.00756) (0.00718) (0.00950)

(7) lnaMNFo
it

-0.000286 -0.00341 -0.00340 -0.00371 -0.00366 0.00274 0.00217 0.00220 0.00202 0.00203
(0.00354) (0.00438) (0.00438) (0.00435) (0.00426) (0.00420) (0.00344) (0.00345) (0.00339) (0.00343)

(8) lnaPOP
it

0.133 -0.0794 -0.0785 -0.0997 -0.0965 0.183 -0.0932 -0.0768 -0.165 -0.158
(0.461) (0.420) (0.420) (0.409) (0.387) (0.535) (0.509) (0.517) (0.495) (0.458)

(9) τ1 0.126∗∗∗ 0.0708∗∗∗ 0.0710∗∗∗ 0.0655∗∗∗ 0.0663∗∗∗ 0.153∗∗∗ 0.103∗∗∗ 0.106∗∗∗ 0.0898∗∗∗ 0.0911∗∗∗

(0.0183) (0.0215) (0.0217) (0.0199) (0.0223) (0.0179) (0.0236) (0.0254) (0.0206) (0.0342)

(10) R2 0.102 0.087 0.087 0.084 0.084 0.089 0.078 0.079 0.072 0.072

(11) Hansen J p-val. 0.878 0.177

(12) 1st stage F 727.1 2178 1080 509.6 557.6 1590 918.7 471.4

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ∗∗∗p<0.01, ** p<0.05, *
p<0.1.
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E Other robustness analyses

E.1 Alternative productivity measures

This section presents the regression results for (4.1) and (4.6) under the four alternative

measures of inventor productivity, where the output, g j, of patent j in (2.1) is given by

(i) the cited count within five years from publication, (ii) technological novelty based

on the IPC subclass, (iii) count of patent claims; or (iv) count of patents, i.e., g j = 1

for all j. Table E.1 shows the descriptive statistics for productivities and differentiated

knowledge of collaborators under these measures.

Table E.1: Descriptive statistics of knowledge and productivity variables

Unit of productivity Citations (5 years) Novelty (IPC subclass) Claim counts Patent counts

(1) (2) (3) (4) (5) (6) (7) (8)

Period 1 2 1 2 1 2 1 2

(1) Output of a patent g jt 1.789 1.595 0.000 0.000 7.231 8.906 1.000 1.000
(3.676) (4.186) (0.002) (0.003) (9.555) (81.53) (0.000) (0.000)

(2) Productivity of an inventor yit 9.369 5.597 0.001 0.000 36.67 40.89 4.824 3.099
(22.02) (163.73) (0.004) (0.003) (109.14) (4173.48) (7.749) (5.936)

(3) Pairwise productivity of an inventor yit 1.622 1.838 0.000 0.000 6.682 25.48 0.894 0.677
(3.730) (175.40) (0.001) (0.001) (88.27) (4478.60) (1.911) (1.739)

(4) Avg. diff. knowledge kD
it

1.666 1.186 0.008 0.005 6.579 5.647 0.874 0.748
of collaborators (8.940) (5.391) (0.043) (0.034) (49.51) (25.86) (4.699) (3.057)

Numbers are the average values with standard deviations in parentheses.

Tables E.2 and E.3 present the results from the second-stage regressions for models

(4.1) and (4.6), respectively. Under each alternative measure, the tables show the OLS

and the IV results, where the IVs for lnkD
it

and ln∆nit are constructed by using all

indirect collaborators for ℓ = 3,4 and 5, since the result is similar if only one of them is

used (just like in our baseline results).
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Table E.2: Regression results for (4.1) under alternative productivity measures

Citations (5 years) Novelty (IPC subclass) Claim count Patent count

Variables (1) OLS (2) IV3-5 (3)OLS (4) IV3-5 (5) OLS (6) IV3-5 (7)OLS (8) IV3-5

(1) lnkD
it

0.163∗∗∗ 0.282∗∗∗ 0.179∗∗∗ 0.323∗∗∗ 0.198∗∗∗ 0.339∗∗∗ 0.163∗∗∗ 0.326∗∗∗

(0.0109) (0.0276) (0.00882) (0.0347) (0.0133) (0.0383) (0.0112) (0.0304)

(2) lnkit 0.116∗∗∗ 0.0991∗∗∗ 0.0586∗∗∗ 0.0394∗∗ 0.140∗∗∗ 0.115∗∗∗ 0.0981∗∗∗ 0.0775∗∗∗

(0.0155) (0.0117) (0.0199) (0.0186) (0.0135) (0.0152) (0.0114) (0.00723)

(3) (lnkit)
2 -0.0887∗∗∗ -0.0820∗∗∗ -0.159∗∗∗ -0.146∗∗∗ -0.0953∗∗∗ -0.0858∗∗∗ -0.0826∗∗∗ -0.0742∗∗∗

(0.01000) (0.00892) (0.0184) (0.0121) (0.00337) (0.00338) (0.00911) (0.00715)

(4) lnaINV
it

0.167∗∗∗ 0.118∗ 0.232∗∗∗ 0.153∗∗ 0.212∗∗∗ 0.142∗∗ 0.187∗∗∗ 0.109
(0.0539) (0.0606) (0.0644) (0.0707) (0.0559) (0.0579) (0.0658) (0.0734)

(5) lnaR&D
it

0.0269∗∗∗ 0.0254∗∗∗ 0.0415∗∗∗ 0.0379∗∗∗ 0.0276∗∗∗ 0.0251∗∗∗ 0.0290∗∗∗ 0.0265∗∗∗

(0.00744) (0.00650) (0.0127) (0.0106) (0.0101) (0.00865) (0.00971) (0.00767)

(6) lnaMNFe
it

0.0188∗∗∗ 0.0269∗∗∗ 0.00689 0.0214∗∗ 0.0148∗∗ 0.0274∗∗∗ -0.00502 0.0120∗∗

(0.00566) (0.00465) (0.0107) (0.00993) (0.00658) (0.00542) (0.00639) (0.00504)

(7) lnaMNFo
it

0.00857 0.00546 -0.00516 -0.00643 0.0127∗∗ 0.00860 0.000798 -0.00151
(0.00616) (0.00835) (0.00456) (0.00637) (0.00508) (0.00604) (0.00344) (0.00586)

(8) lnaPOP
it

-0.435 -0.626 0.394 0.00176 0.594 0.154 0.0162 -0.331
(0.527) (0.494) (0.533) (0.466) (0.478) (0.484) (0.450) (0.409)

(9) τ1 0.272∗∗∗ 0.214∗∗∗ 0.433∗∗∗ 0.327∗∗∗ 0.122∗∗∗ 0.0788∗∗∗ 0.133∗∗∗ 0.0801∗∗∗

(0.0175) (0.0156) (0.0247) (0.0352) (0.0236) (0.0230) (0.0160) (0.0155)

(10) R2 0.165 0.236 0.105 0.107

(11) Hansen J p-val. 0.845 0.184 0.399 0.629

(12) 1st stage F 712.6 500.8 889.2 774.7

(13) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii)
*** p<0.01, ** p<0.05, * p<0.1.

Table E.3: Regression results for (4.6) under alternative productivity measures

Citations (5 years) Novelty (IPC subclass) Claim count Patent count

Variables (1) OLS (2) IV3-5 (3)OLS (4) IV3-5 (5) OLS (6) IV3-5 (7)OLS (8) IV3-5

(1) ln∆nit 0.107∗∗∗ 1.383∗∗∗ 0.174∗∗∗ 1.427∗∗∗ 0.110∗∗∗ 1.525∗∗∗ 0.0851∗∗∗ 1.318∗∗∗

(0.00587) (0.0683) (0.00853) (0.0920) (0.00630) (0.0540) (0.00595) (0.0512)

(2) lnkit 0.137∗∗∗ -0.0166 0.122∗∗∗ 0.000294 0.166∗∗∗ -0.00414 0.116∗∗∗ -0.0324
(0.0452) (0.0688) (0.0467) (0.0914) (0.0234) (0.0526) (0.0307) (0.0563)

(3) (lnkit)
2 -0.0366∗∗ 0.225∗∗∗ -0.0551 0.242∗∗∗ -0.0456∗∗∗ 0.244∗∗∗ -0.0343∗∗∗ 0.218∗∗∗

(0.0160) (0.0191) (0.0340) (0.0389) (0.0103) (0.0200) (0.0131) (0.0200)

(4) lnaINV
it

0.365∗∗∗ -0.00994 0.479∗∗∗ 0.144∗∗ 0.445∗∗∗ 0.0288 0.450∗∗∗ 0.0876
(0.0965) (0.0387) (0.0967) (0.0611) (0.131) (0.0561) (0.0913) (0.0534)

(5) lnaR&D
it

0.0129 0.000127 0.0239 0.00825 0.0186 0.00446 0.0156 0.00330
(0.0106) (0.00535) (0.0151) (0.00960) (0.0129) (0.00568) (0.0140) (0.00545)

(6) lnaMNFe

it
-0.0666∗∗∗ -0.00955 -0.0990∗∗∗ -0.0673∗∗∗ -0.0916∗∗∗ -0.0283 -0.106∗∗∗ -0.0505∗∗∗

(0.0212) (0.0150) (0.0220) (0.0176) (0.0233) (0.0203) (0.0219) (0.0139)

(7) lnaMNFo

it
0.0221 0.00871 0.00282 -0.0220∗ 0.0225 0.00768 0.00888 -0.00401

(0.0204) (0.0112) (0.0265) (0.0130) (0.0257) (0.0132) (0.0253) (0.00891)

(8) lnaPOP
it

1.238 -0.698 2.201∗∗ -0.0572 2.924∗∗∗ 0.778 1.808∗ -0.0609
(1.058) (1.278) (0.879) (1.056) (0.886) (1.167) (0.951) (1.000)

(9) τ1 0.459∗∗∗ 0.560∗∗∗ 0.674∗∗∗ 0.522∗∗∗ 0.287∗∗∗ 0.398∗∗∗ 0.301∗∗∗ 0.398∗∗∗

(0.0289) (0.0539) (0.0265) (0.0398) (0.0262) (0.0322) (0.0215) (0.0319)

(10) R2 0.177 0.217 0.089 0.111

(11) Hansen J p-val. 0.254 0.297 0.245 0.251

(12) 1st stage F 237.7 251.2 237.7 237.7
(13) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) ***
p<0.01, ** p<0.05, * p<0.1.

E.2 Alternative definition of collaborators’ knowledge

Table E.4 shows the regression results for (4.1) under citation- and novelty-adjusted

productivity measures in columns 1–2 and 3–4, respectively, and those for (4.6) in
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columns 5–6 when kD
it

is defined in terms of IPC subgroups as described in Section

8.3. For each specification, we compare the OLS and IV results, where the latter are

shown only for the case in which IVs are constructed by using all the third-, forth- and

fifth-indirect collaborators, since the result is similar, even if only either of the third-,

forth- or fifth-indirect collaborators were used.

In all the specifications, the first-stage F values are reasonably large, so that the

relevance appears to be strong as in the baseline case. In terms of the Hansen (1982)’s

J-test, there is no evidence against the exogeneity of the instruments.

Table E.4: Regression results with knowledge in terms of IPC subgroups

(4.1) Dependent variable : ln yit (4.6) Dependent

Citations Novelty variable : ln∆nit

Variables (1) OLS (2) IV3-5 (3)OLS (4) IV3-5 (5) OLS (6) IV3-5

(1) lnkD
it

0.169∗∗∗ 0.604∗∗∗ 0.287∗∗∗ 1.331∗∗∗

(0.0431) (0.118) (0.0597) (0.244)

(2) ln∆nit -0.0210∗∗∗ 0.368∗∗∗

(0.00386) (0.0160)

(3) lnkit 0.128∗∗∗ 0.111∗∗∗ 0.167∗∗∗ 0.126∗∗∗ 0.0432∗∗∗ -0.00226
(0.0201) (0.0166) (0.0163) (0.0246) (0.00642) (0.0157)

(4) (lnkit)
2 -0.0983∗∗∗ -0.0936∗∗∗ -0.208∗∗∗ -0.197∗∗∗ -0.0179∗∗∗ 0.0611∗∗∗

(0.0116) (0.0107) (0.0106) (0.00802) (0.00184) (0.00651)

(5) lnaINV
it

0.230∗∗∗ 0.189∗∗∗ 0.386∗∗∗ 0.287∗∗∗ 0.105∗∗∗ -0.00729
(0.0596) (0.0610) (0.103) (0.109) (0.0277) (0.0213)

(6) lnaR&D
it

0.0281∗∗∗ 0.0270∗∗∗ 0.0448∗∗∗ 0.0422∗∗∗ 0.00259 -0.00116
(0.00879) (0.00771) (0.0170) (0.0143) (0.00380) (0.00188)

(7) lnaMNFe

it
0.00313 0.00820 -0.0293∗∗ -0.0171 -0.0148∗∗∗ 0.00371

(0.00823) (0.00705) (0.0114) (0.0110) (0.00461) (0.00650)

(8) lnaMNFo

it
0.0113∗∗∗ 0.0112∗∗ -0.00369 -0.00392 -0.00126 -0.00551
(0.00431) (0.00555) (0.00661) (0.00810) (0.00579) (0.00378)

(9) lnaPOP
it

-0.375 -0.727 1.238∗∗ 0.392 0.903∗∗∗ 0.299
(0.627) (0.635) (0.535) (0.587) (0.200) (0.247)

(10) τ1 0.279∗∗∗ 0.256∗∗∗ 0.399∗∗∗ 0.344∗∗∗ 0.0453∗∗∗ 0.0754∗∗∗

(0.0195) (0.0176) (0.0339) (0.0387) (0.00639) (0.00867)

(11) R2 0.132 0.169 0.018

(12) Hansen J p-val. 0.931 0.109 0.235

(13) 1st stage F 328.8 328.8 235.2

(14) #Obs. 113,454 113,454 113,454 113,454 92,098 92,098

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects
are controlled. (iii) *** p<0.01, ** p<0.05, * p<0.1.

E.3 Results for the alternative radiuses for locational factors

This section presents the results from the second-stage regressions for (4.1) in Section 7.1

and (4.6) in Section 7.3 under the alternative radius values for the local factors defined

in Section 5.3 in stables E.5 and E.6 (E.7 and E.8), respectively for quality-adjusted

(novelty-adjusted) productivity.

One can see that the choice of radius values for the local factors does not alter

the qualitative results obtained in the baseline setup shown in tables 7.1 and 7.3 in

Section 7 regarding the effect of collaborators’ differentiated knowledge and that of

the knowledge stock of an inventor on their productivity as well as the role of the

collaborator recombination in the size of collaborators’ differentiated knowledge. The
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values of the estimated coefficients for the endogenous variables, lnkD
it

and ln∆nit, as

well as those for the knowledge stock, lnkit and (lnkit)
2, appear to be stable in all cases.

Table E.5: Regression results (Dependent variable: ln yit)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.293∗∗∗ 0.296∗∗∗ 0.294∗∗∗ 0.286∗∗∗ 0.288∗∗∗ 0.288∗∗∗ 0.286∗∗∗

(0.0225) (0.0193) (0.0214) (0.0254) (0.0239) (0.0242) (0.0254)

(2) lnkit 0.0923∗∗∗ 0.0893∗∗∗ 0.0889∗∗∗ 0.0931∗∗∗ 0.0917∗∗∗ 0.0911∗∗∗ 0.0931∗∗∗

(0.0124) (0.0135) (0.0141) (0.0119) (0.0121) (0.0121) (0.0119)

(3) (lnkit)
2 -0.0814∗∗∗ -0.0803∗∗∗ -0.0802∗∗∗ -0.0820∗∗∗ -0.0815∗∗∗ -0.0816∗∗∗ -0.0820∗∗∗

(0.00886) (0.00903) (0.00911) (0.00868) (0.00879) (0.00866) (0.00868)

(4) lnaINV
it

1km 0.117∗ 0.126*∗ 0.125∗ 0.117∗

(0.0633) (0.0634) (0.0709) (0.0633)

5km 0.162∗∗∗

(0.0624)
10km 0.0886

(0.108)

20km 0.127
(0.135)

(5) lnaR&D
it

1km 0.0267∗∗∗ 0.0260∗∗∗ 0.0270∗∗∗ 0.0256∗∗∗

(0.00611) (0.00734) (0.00838) (0.00679)

5km 0.0256∗∗∗

(0.00679)

10km 0.0294∗∗∗

(0.0106)

20km 0.0314∗∗∗

(0.00865)

(6) lnaMNFe

it

1km 0.0113 0.0176*∗ 0.0209∗∗∗ 0.0240∗∗∗ 0.0277∗∗∗ 0.0202∗∗∗

(0.00825) (0.00799) (0.00487) (0.00438) (0.00597) (0.00427)

5km 0.0240∗∗∗

(0.00438)

(7) lnaMNFo

it

1km 0.00492 0.00563 0.00650 0.00522 0.00534 0.00588 0.00522
(0.00863) (0.00821) (0.00880) (0.00804) (0.00667) (0.00722) (0.00804)

(8) lnaPOP
it

1km -0.624 -0.628 -0.628 -0.660 -0.939∗ -0.522 -0.660
(0.472) (0.517) (0.546) (0.490) (0.497) (0.504) (0.490)

(9) τ1 0.165∗∗∗ 0.166∗∗∗ 0.163∗∗∗ 0.173∗∗∗ 0.164∗∗∗ 0.166∗∗∗ 0.173∗∗∗

(0.0143) (0.0174) (0.0190) (0.0150) (0.0196) (0.0117) (0.0150)

(10) H. J p-value 0.952 0.972 0.974 0.928 0.938 0.878 0.928

(11) F 768.5 775.2 758.3 727.1 734 733.4 727.1

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) ∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table E.5: Regression results continued (Dependent variable: ln yit)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.284∗∗∗ 0.286∗∗∗ 0.284∗∗∗ 0.287∗∗∗ 0.280∗∗∗ 0.285∗∗∗ 0.280∗∗∗

(0.0249) (0.0248) (0.0274) (0.0248) (0.0280) (0.0249) (0.0264)

(2) lnkit 0.0932∗∗∗ 0.0923∗∗∗ 0.0913∗∗∗ 0.0931∗∗∗ 0.0907∗∗∗ 0.0921∗∗∗ 0.0903∗∗∗

(0.0115) (0.0105) (0.0121) (0.0119) (0.0117) (0.0107) (0.0117)

(3) (lnkit)
2 -0.0822∗∗∗ -0.0820∗∗∗ -0.0817∗∗∗ -0.0821∗∗∗ -0.0817∗∗∗ -0.0815∗∗∗ -0.0809∗∗∗

(0.00864) (0.00848) (0.00867) (0.00857) (0.00861) (0.00834) (0.00861)

(4) lnaINV
it

1km 0.117∗ 0.124∗∗ 0.119∗ 0.118∗ 0.115∗ 0.116∗ 0.108∗

(0.0634) (0.0599) (0.0609) (0.0608) (0.0632) (0.0654) (0.0598)

(5) lnaR&D
it

1km 0.0251∗∗∗ 0.0240∗∗∗ 0.0209∗∗∗ 0.0274∗∗∗ 0.0177∗∗∗ 0.0275∗∗∗ 0.0271∗∗∗

(0.00780) (0.00911) (0.00498) (0.00570) (0.00635) (0.00634) (0.00530)

(6) lnaMNFe

it

1km 0.0488∗∗∗ 0.0155 0.0283∗∗∗ 0.0218∗∗∗ 0.0217∗∗∗

(0.0159) (0.0157) (0.00899) (0.00515) (0.00695)

10km -0.0245
(0.0165)

20km -0.105
(0.0783)

(7) lnaMNFo

it

1km -0.00201 -0.00280 0.00736 0.0102∗

(0.0119) (0.0129) (0.00539) (0.00619)

5km 0.0573∗∗∗

(0.0199)

10km -0.0122
(0.0481)

20km 0.137∗∗∗

(0.0483)

(8) lnaPOP
it

5km 0.0295
(0.276)

10km 0.666
(0.547)

20km -0.592 -0.491 -0.217 -0.806 0.232
(0.562) (0.542) (0.533) (0.749) (0.592)

(9) τ1 0.177∗∗∗ 0.190∗∗∗ 0.160∗∗∗ 0.178∗∗∗ 0.162∗∗∗ 0.189∗∗∗ 0.203∗∗∗

(0.0153) (0.0173) (0.0132) (0.0159) (0.0162) (0.0213) (0.0271)

(10) H. J p-value 0.943 0.944 0.875 0.934 0.846 0.920 0.935

(11) F 721.8 728.7 728.5 728.6 722.6 729.1 709.6

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) *** p<0.01, ** p<0.05, * p<0.1.
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Table E.6: Regression results (Dependent variable: lnkD
it

)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.381∗∗∗ 1.403∗∗∗ 1.404∗∗∗ 1.372∗∗∗ 1.378∗∗∗ 1.372∗∗∗ 1.372∗∗∗

(0.0616) (0.0560) (0.0571) (0.0629) (0.0583) (0.0634) (0.0629)

(2) lnkit -0.0243 -0.0279 -0.0257 -0.0220 -0.0212 -0.0225 -0.0220
(0.0660) (0.0671) (0.0671) (0.0669) (0.0673) (0.0675) (0.0669)

(3) (lnkit)
2 0.226∗∗∗ 0.231∗∗∗ 0.230∗∗∗ 0.223∗∗∗ 0.224∗∗∗ 0.223∗∗∗ 0.223∗∗∗

(0.0184) (0.0200) (0.0216) (0.0197) (0.0207) (0.0199) (0.0197)

(4) lnaINV
it

1km 0.0138 0.0109 0.0144 0.0138
(0.0426) (0.0473) (0.0418) (0.0426)

5km -0.0460
(0.0699)

10km -0.287∗∗∗

(0.100)

20km -0.338∗∗

(0.171)

(5) lnaR&D
it

1km 0.000665 0.00203 -0.000853 0.000705
(0.00443) (0.00617) (0.00529) (0.00478)

5km 0.000705
(0.00478)

10km -0.0150∗

(0.00821)

20km 0.00480
(0.0109)

(6) lnaMNFe
it

1km -0.0106 0.00436 -0.00815 -0.0139 -0.0161 -0.0144
(0.0167) (0.0151) (0.0141) (0.0147) (0.0175) (0.0146)

5km -0.0139
(0.0147)

(7) lnaMNFo
it

1km 0.00833 0.00795 0.00566 0.00814 0.0117 0.00741 0.00814
(0.00995) (0.00980) (0.0111) (0.00992) (0.0112) (0.00973) (0.00992)

(8) lnaPOP
it

20km -0.539 -0.458 -0.471 -0.552 -0.688 -0.464 -0.552
(1.231) (1.061) (1.023) (1.229) (1.247) (1.179) (1.229)

(9) τ1 0.520∗∗∗ 0.555∗∗∗ 0.557∗∗∗ 0.514∗∗∗ 0.494∗∗∗ 0.520∗∗∗ 0.514∗∗∗

(0.0550) (0.0441) (0.0358) (0.0504) (0.0552) (0.0471) (0.0504)

(10) H. J p-value 0.253 0.243 0.251 0.255 0.253 0.254 0.255

(11) F 266 258.3 249.5 237.7 238 239.6 237.7

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are con-
trolled. (iii) ∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table E.6: Regression results continued (Dependent variable: lnkD
it

)

Citations (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.371∗∗∗ 1.377∗∗∗ 1.379∗∗∗ 1.381∗∗∗ 1.375∗∗∗ 1.366∗∗∗ 1.366∗∗∗

(0.0601) (0.0652) (0.0631) (0.0595) (0.0628) (0.0614) (0.0537)

(2) lnkit -0.0228 -0.0232 -0.0212 -0.0205 -0.0228 -0.0233 -0.0227
(0.0666) (0.0661) (0.0664) (0.0648) (0.0659) (0.0652) (0.0647)

(3) (lnkit)
2 0.223∗∗∗ 0.224∗∗∗ 0.224∗∗∗ 0.225∗∗∗ 0.224∗∗∗ 0.223∗∗∗ 0.223∗∗∗

(0.0206) (0.0194) (0.0194) (0.0197) (0.0192) (0.0185) (0.0204)

(4) lnaINV
it

1km 0.0148 0.0176 0.0124 0.0220 0.0127 0.0117 0.0120
(0.0421) (0.0429) (0.0443) (0.0440) (0.0434) (0.0446) (0.0491)

(5) lnaR&D
it

1km 0.000500 9.21e-05 0.00515 0.0153∗∗ 0.000744 0.00240 0.00211
(0.00483) (0.00500) (0.00487) (0.00729) (0.00518) (0.00631) (0.00686)

(6) lnaMNFe

it

1km -0.0372 -0.0761∗∗ -0.0190∗ -0.0183 -0.0154
(0.0268) (0.0386) (0.00986) (0.0151) (0.0163)

10km -0.0345
(0.0464)

20km -0.0559
(0.0614)

(7) lnaMNFo

it

1km 0.00762 0.00926 0.0107 0.0103
(0.00909) (0.00726) (0.00763) (0.00854)

5km -0.0337
(0.0369)

10km -0.152∗

(0.0809)

20km 0.0171
(0.0579)

(8) lnaPOP
it

5km 0.135
(0.450)

10km 0.111
(1.355)

20km -0.566 -0.524 -0.954 -1.760 -0.529
(1.298) (1.304) (1.278) (1.340) (1.368)

(9) τ1 0.516∗∗∗ 0.522∗∗∗ 0.529∗∗∗ 0.553∗∗∗ 0.517∗∗∗ 0.529∗∗∗ 0.529∗∗∗

(0.0531) (0.0574) (0.0503) (0.0535) (0.0512) (0.0384) (0.0501)

(10) H. J p-value 0.256 0.252 0.258 0.258 0.256 0.258 0.252

(11) F 238.6 241.1 238.8 239.2 238.4 242.9 230.5

(12) #Obs 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standarderrors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) *** p<0.01, ** p<0.05, * p<0.1.
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Table E.7: Regression results (Dependent variable: ln yit)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.355∗∗∗ 0.358∗∗∗ 0.351∗∗∗ 0.344∗∗∗ 0.344∗∗∗ 0.345∗∗∗ 0.344∗∗∗

(0.0290) (0.0303) (0.0312) (0.0310) (0.0285) (0.0306) (0.0310)

(2) lnkit 0.112∗∗∗ 0.108∗∗∗ 0.107∗∗∗ 0.114∗∗∗ 0.113∗∗∗ 0.111∗∗∗ 0.114∗∗∗

(0.0227) (0.0211) (0.0204) (0.0228) (0.0219) (0.0231) (0.0228)

(3) (lnkit)
2 -0.176∗∗∗ -0.175∗∗∗ -0.175∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.177∗∗∗ -0.178∗∗∗

(0.00650) (0.00698) (0.00731) (0.00594) (0.00608) (0.00621) (0.00594)

(4) lnaINV
it

1km 0.200∗∗ 0.213∗∗ 0.212∗∗ 0.200∗∗

(0.0939) (0.0957) (0.104) (0.0939)

5km 0.256∗∗∗

(0.0789)

10km 0.223
(0.149)

20km 0.397∗∗

(0.155)

(5) lnaR&D
it

1km 0.0381∗∗∗ 0.0366∗∗∗ 0.0395∗∗∗ 0.0364∗∗∗

(0.0116) (0.0124) (0.0137) (0.0127)

5km 0.0364∗∗∗

(0.0127)

10km 0.0399∗∗

(0.0189)

20km 0.0492∗∗∗

(0.0154)

(6) lnaMNFe

it

1km -0.00656 -0.00148 0.00538 0.0132 0.0181 0.00757
(0.00776) (0.00851) (0.00928) (0.00989) (0.0126) (0.0110)

5km 0.0132
(0.00989)

(7) lnaMNFo

it

1km -0.00532 -0.00412 -0.00151 -0.00512 -0.00445 -0.00496 -0.00512
(0.00882) (0.00790) (0.00931) (0.00721) (0.00467) (0.00493) (0.00721)

(8) lnaPOP
it

20km 0.112 0.0752 0.0741 0.0701 -0.340 0.361 0.0701
(0.414) (0.426) (0.489) (0.415) (0.377) (0.443) (0.415)

(9) τ1 0.158∗∗∗ 0.150∗∗∗ 0.137∗∗∗ 0.173∗∗∗ 0.159∗∗∗ 0.171∗∗∗ 0.173∗∗∗

(0.0376) (0.0377) (0.0338) (0.0382) (0.0366) (0.0426) (0.0382)

(10) H. J p-value 0.663 0.619 0.642 0.768 0.823 0.782 0.768

(11) F 588.2 593.8 568.5 557.6 564.3 563.9 557.6

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standarderrors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) *∗∗p<0.01, ** p<0.05, * p<0.1.
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Table E.7: Regression results continued (Dependent variable: ln yit)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) lnkD
it

0.338∗∗∗ 0.344∗∗∗ 0.342∗∗∗ 0.345∗∗∗ 0.340∗∗∗ 0.343∗∗∗ 0.332∗∗∗

(0.0300) (0.0299) (0.0301) (0.0313) (0.0303) (0.0289) (0.0302)

(2) lnkit 0.114∗∗∗ 0.113∗∗∗ 0.112∗∗∗ 0.114∗∗∗ 0.111∗∗∗ 0.113∗∗∗ 0.109∗∗∗

(0.0225) (0.0235) (0.0233) (0.0226) (0.0235) (0.0237) (0.0229)

(3) (lnkit)
2 -0.178∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.177∗∗∗ -0.177∗∗∗

(0.00592) (0.00566) (0.00622) (0.00596) (0.00618) (0.00549) (0.00558)

(4) lnaINV
it

0.203∗∗ 0.212∗∗ 0.202∗∗ 0.199∗∗ 0.195∗∗ 0.198∗∗ 0.180∗∗

(0.0917) (0.0878) (0.0912) (0.0893) (0.0950) (0.100) (0.0886)

(5) lnaR&D
it

0.0356∗∗ 0.0341∗∗ 0.0285∗∗∗ 0.0355∗∗∗ 0.0252∗∗ 0.0367∗∗∗ 0.0353∗∗∗

(0.0147) (0.0160) (0.00994) (0.0107) (0.0120) (0.0122) (0.00869)

(6) lnaMNFe

it

1km 0.0557∗∗∗ 0.0182 0.0276∗∗∗ 0.00800 0.0110
(0.0202) (0.0382) (0.0101) (0.0126) (0.00690)

10km -0.0728∗∗

(0.0294)

20km -0.169
(0.106)

(7) lnaMNFo

it

1km -0.0147∗∗ -0.0128 -0.00360 0.00286
(0.00740) (0.00967) (0.00616) (0.00574)

5km 0.0767∗∗∗

(0.0259)

10km 0.00257
(0.0890)

20km 0.168∗∗∗

(0.0404)

(8) lnaPOP
it

5km 0.248
(0.331)

10km 1.870∗∗∗

(0.672)

20km 0.155 0.286 0.803∗ 0.144 1.293∗∗

(0.500) (0.457) (0.474) (0.885) (0.535)

(9) τ1 0.184∗∗∗ 0.199∗∗∗ 0.150∗∗∗ 0.169∗∗∗ 0.153∗∗∗ 0.177∗∗∗ 0.214∗∗∗

(0.0398) (0.0322) (0.0414) (0.0358) (0.0424) (0.0299) (0.0355)

(10) H. J p-value 0.776 0.654 0.850 0.729 0.842 0.809 0.767

(11) F 550.6 563.4 555.8 557.7 552.2 562.4 537.2

(12) #Obs. 116,928 116,928 116,928 116,928 116,928 116,928 116,928

(i) Standarderrors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) *** p<0.01, ** p<0.05, * p<0.1.
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Table E.8: Regression results (Dependent variable: lnkD
it

)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.743∗∗∗ 1.764∗∗∗ 1.743∗∗∗ 1.722∗∗∗ 1.730∗∗∗ 1.727∗∗∗ 1.722∗∗∗

(0.0748) (0.0706) (0.0784) (0.0847) (0.0799) (0.0815) (0.0847)

(2) lnkit -0.0355 -0.0397 -0.0359 -0.0313 -0.0310 -0.0342 -0.0313
(0.0635) (0.0655) (0.0659) (0.0638) (0.0647) (0.0654) (0.0638)

(3) (lnkit)
2 0.266∗∗∗ 0.271∗∗∗ 0.266∗∗∗ 0.261∗∗∗ 0.262∗∗∗ 0.262∗∗∗ 0.261∗∗∗

(0.0226) (0.0241) (0.0243) (0.0233) (0.0250) (0.0241) (0.0233)

(4) lnaINV
it

1km 0.0800 0.0820 0.0849 0.0800
(0.103) (0.112) (0.106) (0.103)

5km 0.0170
(0.132)

10km -0.208
(0.150)

20km 0.00578
(0.208)

(5) lnaR&D
it

1km 0.0177∗∗ 0.0186∗ 0.0177∗∗ 0.0172∗

(0.00874) (0.00989) (0.00861) (0.00896)

5km 0.0172∗

(0.00896)

10km -0.00246
(0.0159)

20km 0.0285
(0.0177)

(6) lnaMNFe

it

1km -0.0451∗∗∗ -0.0307∗ -0.0441∗∗ -0.0436∗∗ -0.0442 -0.0464∗∗

(0.0172) (0.0159) (0.0195) (0.0219) (0.0276) (0.0218)

5km -0.0436∗∗

(0.0219)

(7) lnaMNFo

it

1km -0.0133 -0.0134 -0.0132 -0.0133 -0.00819 -0.0142 -0.0133
(0.00886) (0.00828) (0.00945) (0.00922) (0.00928) (0.0101) (0.00922)

(8) lnaPOP
it

20km 1.361 1.429 1.365 1.332 0.966 1.594∗ 1.332
(1.039) (0.896) (1.030) (1.050) (1.078) (0.895) (1.050)

I2000 0.820∗∗∗ 0.850∗∗∗ 0.821∗∗∗ 0.814∗∗∗ 0.780∗∗∗ 0.821∗∗∗ 0.814∗∗∗

(0.0324) (0.0283) (0.0333) (0.0285) (0.0390) (0.0280) (0.0285)

(10) H. J p-value 0.358 0.348 0.363 0.363 0.352 0.363 0.363

(11) F 266 258.3 249.5 237.7 238 239.6 237.7

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standarderrors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) ∗∗∗p<0.01, ** p<0.05, * p<0.1.
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Table E.8: Regression results continued (Dependent variable: lnkD
it

)

Novelty (IV3-5)

Variables (1) (2) (3) (4) (5) (6) (7)

(1) ln∆nit 1.719∗∗∗ 1.734∗∗∗ 1.720∗∗∗ 1.724∗∗∗ 1.717∗∗∗ 1.728∗∗∗ 1.711∗∗∗

(0.0840) (0.0892) (0.0827) (0.0786) (0.0817) (0.0811) (0.0761)

(2) lnkit -0.0339 -0.03 49 -0.0293 -0.0278 -0.0305 -0.0333 -0.0337
(0.0627) (0.0624) (0.0647) (0.0628) (0.0642) (0.0618) (0.0605)

(3) (lnkit)
2 0.261∗∗∗ 0.264∗∗∗ 0.260∗∗∗ 0.261∗∗∗ 0.260∗∗∗ 0.262∗∗∗ 0.259∗∗∗

(0.0234) (0.0224) (0.0235) (0.0237) (0.0234) (0.0232) (0.0238)

(4) lnaINV
it

1km 0.0832 0.0902 0.0800 0.0935 0.0811 0.0756 0.0647
(0.103) (0.102) (0.106) (0.0974) (0.102) (0.114) (0.108)

(5) lnaR&D
it

1km 0.0165∗ 0.0156∗ 0.0187∗ 0.0348∗∗ 0.0156 0.0143 0.0125
(0.00931) (0.00926) (0.0107) (0.0154) (0.0104) (0.00888) (0.00974)

(6) lnaMNFe

it

1km -0.0511 -0.114 -0.0338∗ -0.0512∗ -0.0425∗

(0.0434) (0.0779) (0.0192) (0.0272) (0.0221)

10km -0.107∗

(0.0572)

20km -0.148∗∗

(0.0729)

(7) lnaMNFo

it

1km -0.0147∗ -0.00892 -0.0138 -0.0108
(0.00890) (0.00783) (0.00843) (0.0109)

5km -0.0346
(0.0540)

10km -0.219
(0.156)

20km -0.00425
(0.0639)

(8) lnaPOP
it

5km 0.494
(0.529)

10km 1.445
(1.530)

20km 1.287 1.390 1.178 -0.112 1.461
(1.112) (1.129) (1.043) (1.348) (1.194)

(9) τ1 0.819∗∗∗ 0.834∗∗∗ 0.817∗∗∗ 0.856∗∗∗ 0.807∗∗∗ 0.795∗∗∗ 0.809∗∗∗

(0.0296) (0.0348) (0.0330) (0.0489) (0.0301) (0.0177) (0.0318)

(10) H. J p-value 0.361 0.359 0.361 0.359 0.362 0.356 0.348

(11) F 238.6 241.1 238.8 239.2 238.4 242.9 230.5

(12) #Obs. 94,694 94,694 94,694 94,694 94,694 94,694 94,694

(i) Standarderrors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled.
(iii) *** p<0.01, ** p<0.05, * p<0.1.

E.4 IVs based on indirect collaborators in different firms

Tables E.9 and E.10 show the first-stage, and tables E.11 and E.12 show the second-stage

regression results for models (4.1) and (4.6), respectively. The choices of IVs in tables

E.11 and E.12 are similar to those in tables 7.1 and 7.3, respectively.



Collaborative knowledge knowledge creation 62

Table E.9: First-stage regression results for (4.1) under alternative IVs

Citations Novelty

Variables (1) IV3-5 (2) IV3 (3) IV4 (4) IV5 (5) IV3-5 (6) IV3 (7) IV4 (8) IV5

(1) k
D,IV3
it

0.239∗∗∗ 0.267∗∗∗ 0.251∗∗∗ 0.313∗∗∗

(0.0254) (0.0110) (0.0203) (0.0111)

(2) k
D,IV4
it

0.0592∗∗ 0.226∗∗∗ 0.106∗∗∗ 0.314∗∗∗

(0.0235) (0.0215) (0.0279) (0.0150)

(3) k
D,IV5
it

-0.0131 0.163∗∗∗ 0.0282 0.277∗∗∗

(0.0493) (0.0417) (0.0338) (0.0267)

(4) lnkit 0.130∗∗∗ 0.130∗∗∗ 0.134∗∗∗ 0.136∗∗∗ 0.158∗∗∗ 0.159∗∗∗ 0.167∗∗∗ 0.170∗∗∗

(0.0331) (0.0330) (0.0356) (0.0369) (0.0126) (0.0128) (0.0163) (0.0163)

(5) (lnkit)
2 -0.0513∗∗∗ -0.0513∗∗∗ -0.0525∗∗∗ -0.0532∗∗∗ -0.0878∗∗∗ -0.0882∗∗∗ -0.0891∗∗∗ -0.0897∗∗∗

(0.0117) (0.0116) (0.0131) (0.0136) (0.00845) (0.00836) (0.0102) (0.0107)

(6) lnaINV
it

0.419∗∗∗ 0.419∗∗∗ 0.428∗∗∗ 0.431∗∗∗ 0.553∗∗∗ 0.561∗∗∗ 0.573∗∗∗ 0.581∗∗∗

(0.0777) (0.0770) (0.0779) (0.0784) (0.104) (0.105) (0.108) (0.112)

(7) lnaR&D
it

0.00353 0.00387 0.00520 0.00810 0.0145 0.0153 0.0186 0.0242
(0.0100) (0.0102) (0.0105) (0.0110) (0.0150) (0.0157) (0.0162) (0.0175)

(8) lnaMNFe
it

-0.0640∗∗ -0.0640∗∗ -0.0652∗∗ -0.0652∗∗ -0.110∗∗∗ -0.110∗∗∗ -0.117∗∗∗ -0.120∗∗∗

(0.0270) (0.0265) (0.0295) (0.0302) (0.0201) (0.0177) (0.0232) (0.0259)

(9) lnaMNFo
it

0.0191 0.0198 0.0182 0.0196 0.00403 0.00514 0.00312 0.00233
(0.0245) (0.0236) (0.0255) (0.0251) (0.0283) (0.0260) (0.0304) (0.0296)

(10) lnaPOP
it

0.652 0.708 0.674 0.855 2.930∗∗ 3.063∗∗∗ 2.971∗∗ 3.219∗∗

(1.281) (1.199) (1.326) (1.297) (1.249) (1.136) (1.326) (1.300)

(11) τ1 0.318∗∗∗ 0.324∗∗∗ 0.343∗∗∗ 0.369∗∗∗ 0.498∗∗∗ 0.524∗∗∗ 0.549∗∗∗ 0.587∗∗∗

(0.0383) (0.0314) (0.0396) (0.0430) (0.0276) (0.0300) (0.0299) (0.0332)

(12) R2 0.182 0.181 0.172 0.165 0.194 0.193 0.185 0.177
(13) F 268.1 593.7 110 15.33 494 799 437.2 108.1
(14) p-value 0 0 0 0.000129 0 0 0 0
(15) #Obs. 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862

(i) Standarderrors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects
are controlled. (iii) ***p<0.01, **p<0.05, * p<0.1

Table E.10: First-stage regression results for (4.6) under alternatie IVs

Citations Novelty

Variables (1) IV3-5 (2) IV3 (3) IV4 (4) IV5 (5) IV3-5 (6) IV3 (7) IV4 (8) IV5

(1) ln∆n
IV3
it

0.247∗∗∗ 0.233∗∗∗ 0.247∗∗∗ 0.233∗∗∗

(0.00775) (0.00780) (0.00775) (0.00780)

(2) ln∆n
IV4
it

-0.0345∗∗ 0.219∗∗∗ -0.0345∗∗ 0.219∗∗∗

(0.0153) (0.00834) (0.0153) (0.00834)

(3) ln∆n
IV5
it

0.0209 0.200∗∗∗ 0.0209 0.200∗∗∗

(0.0160) (0.00837) (0.0160) (0.00837)

(4) lnkit 0.0655∗∗ 0.0657∗∗ 0.0746∗∗∗ 0.0811∗∗∗ 0.0655∗∗ 0.0657∗∗ 0.0746∗∗∗ 0.0811∗∗∗

(0.0268) (0.0267) (0.0285) (0.0296) (0.0268) (0.0267) (0.0285) (0.0296)

(5) (lnkit)
2 -0.165∗∗∗ -0.165∗∗∗ -0.171∗∗∗ -0.175∗∗∗ -0.165∗∗∗ -0.165∗∗∗ -0.171∗∗∗ -0.175∗∗∗

(0.00833) (0.00829) (0.00939) (0.00999) (0.00833) (0.00829) (0.00939) (0.00999)

(6) lnaINV
it

0.136∗∗∗ 0.135∗∗∗ 0.134∗∗∗ 0.156∗∗ 0.136∗∗∗ 0.135∗∗∗ 0.134∗∗∗ 0.156∗∗

(0.0433) (0.0430) (0.0511) (0.0615) (0.0433) (0.0430) (0.0511) (0.0615)

(7) lnaR&D
it

0.00555 0.00583 0.00413 0.000824 0.00555 0.00583 0.00413 0.000824
(0.00561) (0.00546) (0.00584) (0.00599) (0.00561) (0.00546) (0.00584) (0.00599)

(8) lnaMNFe
it

0.0210* 0.0217* 0.0233 0.0126 0.0210* 0.0217* 0.0233 0.0126
(0.0127) (0.0123) (0.0144) (0.0189) (0.0127) (0.0123) (0.0144) (0.0189)

(9) lnaMNFo
it

0.0106 0.0104 0.0133 0.0164 0.0106 0.0104 0.0133 0.0164
(0.00826) (0.00797) (0.00856) (0.0104) (0.00826) (0.00797) (0.00856) (0.0104)

(10) lnaPOP
it

0.403 0.409 0.568∗∗ 0.671∗∗ 0.403 0.409 0.568∗∗ 0.671∗∗

(0.278) (0.280) (0.281) (0.304) (0.278) (0.280) (0.281) (0.304)

(11) τ1 -0.177∗∗∗ -0.175∗∗∗ -0.189∗∗∗ -0.202∗∗∗ -0.177∗∗∗ -0.175∗∗∗ -0.189∗∗∗ -0.202∗∗∗

(0.0140) (0.0132) (0.0128) (0.0142) (0.0140) (0.0132) (0.0128) (0.0142)

(12) R2 0.329 0.329 0.305 0.284 0.329 0.329 0.305 0.284
(13) F 470 892 692 571 470 892 692 571
(14) p-value 0 0 0 0 0 0 0 0
(15) #Obs. 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204

(i) Standarderrors clustered by UAs are in parentheses. (ii) inventor, IPC class and period fixed effects
are controlled. (iii) ***p<0.01, **p<0.05, * p<0.1
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Table E.11: Regression results for (4.1) under alternative IVs

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) lnkD
it

0.166∗∗∗ 0.225∗∗∗ 0.240∗∗∗ 0.0980 -0.0272 0.167∗∗∗ 0.284∗∗∗ 0.288∗∗∗ 0.268∗∗∗ 0.291∗∗∗

(0.0106) (0.0455) (0.0404) (0.111) (0.191) (0.00529) (0.0412) (0.0418) (0.0444) (0.0702)

(2) lnkit 0.115∗∗∗ 0.107∗∗∗ 0.105∗∗∗ 0.125∗∗∗ 0.142∗∗∗ 0.155∗∗∗ 0.134∗∗∗ 0.133∗∗∗ 0.137∗∗∗ 0.133∗∗∗

(0.0165) (0.0198) (0.0183) (0.0339) (0.0497) (0.0169) (0.0237) (0.0236) (0.0242) (0.0270)

(3) (lnkit)
2 -0.0887∗∗∗ -0.0855∗∗∗ -0.0847∗∗∗ -0.0924∗∗∗ -0.0992∗∗∗ -0.194∗∗∗ -0.183∗∗∗ -0.183∗∗∗ -0.185∗∗∗ -0.183∗∗∗

(0.0105) (0.0123) (0.0118) (0.0174) (0.0231) (0.00999) (0.00675) (0.00641) (0.00742) (0.0119)

(4) lnaINV
it

0.187∗∗∗ 0.161∗∗∗ 0.154∗∗ 0.217∗∗∗ 0.272∗∗∗ 0.334∗∗∗ 0.262∗∗∗ 0.259∗∗∗ 0.272∗∗∗ 0.258∗∗∗

(0.0603) (0.0613) (0.0618) (0.0684) (0.0919) (0.0927) (0.0940) (0.0966) (0.0912) (0.0582)

(5) lnaR&D
it

0.0279∗∗∗ 0.0274∗∗∗ 0.0273∗∗∗ 0.0285∗∗∗ 0.0295∗∗∗ 0.0434∗∗∗ 0.0403∗∗∗ 0.0402∗∗∗ 0.0407∗∗∗ 0.0401∗∗∗

(0.00781) (0.00734) (0.00723) (0.00838) (0.00945) (0.0151) (0.0132) (0.0132) (0.0133) (0.0121)

(6) lnaMNFe
it

0.0117∗ 0.0156∗∗∗ 0.0166∗∗∗ 0.00724 -0.00102 -0.0130 0.00138 0.00189 -0.000597 0.00222
(0.00695) (0.00576) (0.00559) (0.00774) (0.0100) (0.0115) (0.00923) (0.00884) (0.00978) (0.0164)

(7) lnaMNFo
it

0.00630 0.00492 0.00457 0.00788 0.0108∗ -0.00250 -0.00317 -0.00319 -0.00308 -0.00321
(0.00670) (0.00716) (0.00755) (0.00481) (0.00616) (0.00642) (0.00801) (0.00808) (0.00778) (0.00804)

(8) lnaPOP
it

-0.644 -0.713 -0.731 -0.565 -0.419 0.818 0.405 0.390 0.462 0.381
(0.533) (0.514) (0.508) (0.601) (0.731) (0.503) (0.495) (0.504) (0.488) (0.411)

(9) τ1 0.225∗∗∗ 0.201∗∗∗ 0.195∗∗∗ 0.253∗∗∗ 0.306∗∗∗ 0.303∗∗∗ 0.222∗∗∗ 0.219∗∗∗ 0.233∗∗∗ 0.217∗∗∗

(0.0168) (0.0257) (0.0231) (0.0562) (0.0934) (0.0346) (0.0545) (0.0550) (0.0557) (0.0610)

(10) R2 0.153 0.186

(11) Hansen J p-val. 0.494 0.373

(12) 1st stage F 322.6 944.7 522.2 209 372.1 1041 694.2 387.1

(13) #Obs. 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862 103,862

(i) standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05, *
p<0.1.

Table E.12: Regression results for (4.6) under alternative IVs

Citations Novelty

Variables (1) OLS (2) IV3-5 (3) IV3 (4) IV4 (5) IV5 (6) OLS (7) IV3-5 (8) IV3 (9) IV4 (10) IV5

(1) ln∆nit 0.0993∗∗∗ 0.900∗∗∗ 0.901∗∗∗ 0.956∗∗∗ 0.986∗∗∗ 0.236∗∗∗ 1.216∗∗∗ 1.217∗∗∗ 1.280∗∗∗ 1.316∗∗∗

(0.00687) (0.0293) (0.0299) (0.0352) (0.0301) (0.00901) (0.0482) (0.0491) (0.0621) (0.0611)

(2) lnkit 0.133∗∗∗ 0.0365 0.0363 0.0296 0.0260 0.152∗∗∗ 0.0341 0.0339 0.0263 0.0221
(0.0423) (0.0562) (0.0562) (0.0567) (0.0580) (0.0328) (0.0483) (0.0482) (0.0480) (0.0492)

(3) (lnkit)
2 -0.0390∗∗∗ 0.123∗∗∗ 0.123∗∗∗ 0.135∗∗∗ 0.141∗∗∗ -0.0458∗∗∗ 0.153∗∗∗ 0.153∗∗∗ 0.166∗∗∗ 0.173∗∗∗

(0.0148) (0.0162) (0.0160) (0.0153) (0.0165) (0.0142) (0.0135) (0.0133) (0.0114) (0.0127)

(4) lnaINV
it

0.376∗∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.130∗∗∗ 0.121∗∗∗ 0.501∗∗∗ 0.220∗∗∗ 0.219∗∗∗ 0.201∗∗ 0.191∗∗

(0.0928) (0.0354) (0.0352) (0.0324) (0.0319) (0.114) (0.0777) (0.0779) (0.0794) (0.0778)

(5) lnaR&D
it

0.0100 0.00329 0.00328 0.00281 0.00256 0.0290∗ 0.0208∗∗ 0.0208∗∗ 0.0202∗∗ 0.0199∗∗

(0.0109) (0.00561) (0.00560) (0.00541) (0.00528) (0.0165) (0.0102) (0.0102) (0.01000) (0.00984)

(6) lnaMNFe
it

-0.0680∗∗ -0.0322∗∗ -0.0321∗∗ -0.0296∗∗ -0.0283∗ -0.109∗∗∗ -0.0653∗∗∗ -0.0653∗∗∗ -0.0624∗∗∗ -0.0608∗∗∗

(0.0269) (0.0151) (0.0151) (0.0149) (0.0146) (0.0219) (0.0150) (0.0150) (0.0154) (0.0159)

(7) lnaMNFo
it

0.0210 0.0118 0.0118 0.0112 0.0108 0.000656 -0.0106 -0.0106 -0.0113 -0.0118
(0.0231) (0.0115) (0.0115) (0.0109) (0.0107) (0.0266) (0.0106) (0.0106) (0.00974) (0.00940)

(8) lnaPOP
it

1.018 -0.161 -0.163 -0.245 -0.289 3.127∗∗∗ 1.683∗ 1.681∗ 1.588∗ 1.536
(1.124) (1.130) (1.129) (1.136) (1.148) (1.194) (0.960) (0.959) (0.945) (0.950)

(9) τ1 0.393∗∗∗ 0.456∗∗∗ 0.456∗∗∗ 0.460∗∗∗ 0.463∗∗∗ 0.668∗∗∗ 0.745∗∗∗ 0.746∗∗∗ 0.751∗∗∗ 0.753∗∗∗

(0.0325) (0.0443) (0.0443) (0.0455) (0.0457) (0.0312) (0.0269) (0.0269) (0.0279) (0.0280)

(10) R2 0.159 0.175

(11) Hansen J p-val. 0.194 0.185

(12) 1st stage F 2800 8401 6651 5010 2800 8401 6651 5010

(13) #Obs. 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204 88,204

(i) Standard errors clustered by UAs are in parentheses. (ii) IPC class fixed effects are controlled. (iii) *** p<0.01, ** p<0.05, *
p<0.1.


