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Abstract

We present a novel theoretical mechanism that explains how nonenforceable communication about

future actions has the capacity to improve efficiency. We explore a two-player partnership game where

each player, before choosing a level of effort to exert on a joint project, makes a cheap talk promise

to his partner about his own future effort. We allow agents to incur a psychological cost of reneging

on their promises. We demonstrate a strong tendency for evolutionary processes to select agents

who incur intermediate costs of reneging, and show that these intermediate costs induce second-best

optimal outcomes.
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1 Introduction

Communication about future actions in joint projects is pervasive in the household, within and between

firms, in political processes, and in casual day-to-day interactions. Often, agents can make statements

about their intentions, both as a means of coordination and as a promise. Frequently, they are not

contractually bound by these statements and have an incentive to make false promises and renege upon

them when choosing how to act. Nevertheless, agents in such circumstances commonly use communica-

tion to carry out courses of action that yield a higher payoff to each than would be expected if agents

could make and break promises at no direct cost (cheap talk). Consider, for example, two coauthors

initiating a project and making promises about the number of hours they will separately work on it in

the following year, or countries making commitments to reduce regional levels of pollution.

Our two key contributions are as follows. First, we present a novel theoretical foundation for the

prevalence of intermediate psychological costs of breaking promises (reneging). Second, we demonstrate

that these endogenously determined intermediate psychological costs yield second-best optimal outcomes
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in an important class of strategic interactions. Taken together, these contributions present a novel

explanation for the way in which preplay communication can foster cooperation in one-shot strategic

interactions when agents’ interests are only partially aligned.

The possibility of repeated interaction with a partner means that reputational concerns could moti-

vate agents to keep their promises, even when this does not maximise their payoff in the present encoun-

ter. However, the experimental evidence discussed in Section 2, and indeed much of daily experience,

demonstrates that agents are motivated to some extent to keep their word even in one-off encounters

and suggests a direct concern for keeping promises. In this paper, we put reputational concerns to one

side and consider this second, direct motivation for promise-keeping.

Brief Description of the Model

We study a class of partnership games (also known as input games; see, e.g., Holmstrom, 1982; Cooper &

John, 1988) with cheap talk preplay communication. In the setting we examine, agents simultaneously

communicate promised levels of effort, and, following this, they simultaneously choose their levels of effort

from an interval. Agents experience a direct convex cost of their effort, and a benefit which is increasing

in both their own effort and that of their partner, such that effort choices are strategic complements.

Agents always have an incentive to slightly “undercut” (exert less effort than) their partner so that when

talk is cheap, the only subgame perfect equilibrium of the game involves both agents choosing zero effort.

However, this outcome is Pareto-dominated by outcomes in which players exert effort.

We explore the impact of introducing into this setting a direct cost of reneging on promises. Speci-

fically, we assume that each agent experiences a convex psychological cost of the distance between their

promised and actual effort. A player i’s level of reneging cost is parameterised by his level of reneging

aversion, which we denote by λi. This reneging cost can be seen as representing the guilt or bad feeling

that agents experience when going back on promises they have made. The subjective utility of each

agent is equal to his material payoff (which depends only on the agents’ levels of exerted effort) minus

his reneging cost. Reneging aversion transforms what is ordinarily modeled as a cheap talk promise into

a partially self-enforcing commitment.

Characterisation of Perfect Equilibria

In Theorem 1 we fully characterise the set of perfect equilibria of the partnership game. It turns out that

the partnership game, essentially, admits a unique perfect equilibrium, and that the properties of this

unique equilibrium depend on which of three regions the pair of the players’ levels of reneging aversion

belongs to (as demonstrated in Figure 2 in Section 3.4).

1. There is a convex symmetric region where both players have an intermediate level of reneging

aversion and the unique equilibrium is for both players to promise maximal effort (maximum-

message equilibrium); in the second stage both players exert positive levels of effort. The intuition

is as follows. The indirect benefit of promising a higher level of effort than his partner does

(“overcutting,” which induces his partner to exert more effort in the second stage) is increasing

in the player’s reneging aversion (as his promise is more credible), and decreasing in the partner’s
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reneging aversion (as a higher level of reneging aversion gives the partner less flexibility to respond

to the agent’s promise). Thus, the indirect benefit is sufficiently large to induce an agent to overcut

his partner’s promise if and only if (1) the agent’s level of reneging aversion is sufficiently high,

and (2) the partner’s level of reneging aversion is sufficiently low. This implies that both agents

are induced to overcut each other (which implies that both promise the maximal effort) if and only

if both players’ levels of reneging aversion are neither too low nor too high.

2. There are two disjoint areas in which the partnership game admits the no-effort equilibrium: an

area in which both players have sufficiently low levels of reneging aversion, and an area in which

both players have sufficiently high levels of reneging aversion. The intuition is as follows. Too

low reneging costs induce too little commitment power and, as a result, each agent undercuts his

partner’s effort in the second round, regardless of the promise. Too high reneging costs do not leave

enough flexibility for the second round, making agents unwilling to promise effort. Specifically,

each agent in the second round exerts a level of effort very close to his own promise, regardless of

the partner’s promise. This, in turn, implies that each agent undercuts his partner’s promise in

the first round, which implies that the agents promise zero effort in the first round, and exert zero

effort in the second round.

3. The remaining region is divided into two disjoint areas in which one player has a sufficiently

high level of reneging aversion and he promises the maximal level of effort, and his partner has

a sufficiently low level of reneging aversion and promises a positive nonmaximal level of effort

(two-message equilibrium). The intuition is that only the player with the high level of reneging

aversion has substantial commitment power, while his partner’s promise has a very small impact

on either player’s choice of effort. As a result, the agent with high reneging aversion is essentially

a Stackelberg leader (he essentially chooses his effort by the committing promise he makes in the

first round), while the partner is essentially a Stackelberg follower.

Appealing Properties of Intermediate Reneging Aversion

Let λ+
c be the maximal level of reneging aversion for which the perfect equilibrium of the game between

two players with this level of reneging aversion is a maximum-message equilibrium. Our next result

(Theorem 2) shows that the equilibrium induced by both players having this “intermediate” level of

reneging aversion λ+
c has three appealing properties:

1. “Second-best” outcome: This equilibrium induces the best equilibrium outcome among all equi-

librium outcomes of symmetric partnership games (in terms of subjective utilities, as well as in

terms of material payoffs, which do not include the reneging costs).

2. “First-best” outcome in the limit of small effort costs: When the cost of exerting effort converges

to zero, the equilibrium payoff converges to the maximal feasible payoff induced by both agents

exerting maximal efforts.

3. Better outcome than Stackelberg equilibrium outcome: The equilibrium payoff is larger than the

mean payoff induced in a “Stackelberg” equilibrium without reneging costs (i.e., the equilibrium
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when effort levels are chosen sequentially), if the cost of effort is not too high.

Evolutionary Stability of Intermediate Reneging Aversion

We study the endogenous determination of players’ levels of reneging aversion in an evolutionary fra-

mework. We consider an infinite population of players in which each player is endowed with a level of

reneging aversion. Players are uniformly randomly matched into pairs, and both observe their partner’s

level of reneging aversion before starting the two-stage partnership game described above. We assume

that in each such partnership game, the players play the unique perfect equilibrium of the game.

Our final main result shows that the homogeneous population state in which all agents have the

same intermediate level of reneging aversion λ+
c is evolutionarily stable. Moreover, there does not exist

any other homogeneous stable state. This demonstrates the strong tendency of evolutionary processes

to select for agents who incur intermediate psychological reneging costs.

Variants and Extensions

We demonstrate the robustness of our results by showing that our main results hold also when some of

the key assumptions of our model are relaxed. Specifically, we show that the appealing properties of the

equilibrium induced by λ+
c , and the evolutionary stability of the homogeneous population state in which

agents have a reneging aversion of λ+
c , hold in the following three variants/extensions of our baseline

model:

1. Sequential communication: A variant of the model in which agents make promises sequentially,

rather than simultaneously. That is, nature chooses one of the players at random, and this player

sends his promise first.

2. One-sided reneging cost: A variant in which an agent suffers a reneging cost only when his promise

is higher than the level of effort he exerts in the second stage. Unlike the baseline model, an agent

does not suffer a cost when his promise is lower than his exerted effort.

3. Partial observability: An extension in which the partner’s reneging cost is observed with a suffi-

ciently high probability (which is strictly less than one). Moreover, we show that a weaker version

of this result holds also when players can observe their partner’s level of reneging aversion with a

low, yet positive, probability. In this latter case, we show that in any stable state players must

have positive reneging aversion and exert positive effort in equilibrium.

In addition, we show that our qualitative results (namely, that reneging costs that are too high or

too low induce low effort) hold in the following two variants of the model.

4. Fixed reneging costs A variant in which an agent incurs a fixed reneging cost whenever the exerted

effort is different from that promised, regardless of the size of the difference (rather than a cost

that is proportional to the size of the difference, as in the baseline model).
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5. General (non-quadratic) utility function: An extension in which the material payoff is a general

function with strategic complements and the reneging cost is a general function that is weakly

increasing in the size of the difference between the exerted effort and the promised effort (rather

than the specific quadratic forms of the baseline model).

Structure

The paper is organised as follows. Section 2 discusses the related literature and the contributions made

by this paper. Section 3 presents our model and analyses partnership games. Section 4 shows the

appealing properties of intermediate reneging aversion, λ+
c . In Section 5 we discuss the evolutionary

stability of intermediate reneging aversion, λ+
c . Section 6 shows the robustness of our main results to the

relaxation of various assumptions in our model. We conclude in Section 7. All the appendices appear

in the online supplementary material. The formal definition of a trembling-hand perfect equilibrium

with a continuum of strategies is presented in Appendix A. We discuss a few technical aspects of our

evolutionary interpretation in Appendix B. Additional illustrative figures are presented in Appendix C.

Formal proofs appear in Appendix D.

2 Related Literature and Contribution

Our paper contributes to several strands of literature, which we discuss in this section. The theoretical

literature on signaling intentions through cheap talk explores the potential for preplay communication

to select among multiple equilibria by breaking symmetries, offering assurance, and creating a focal

point for play (for a theoretical discussion, see Farrell, 1988; Farrell & Rabin, 1996; for experimental

evidence see Crawford, 1998; Charness, 2000). However, extensive experimental evidence shows that

communication can also lead players to coordinate on mutually beneficial but nonequilibrium outcomes

(Kerr & Kaufman-Gilliland, 1994; Sally, 1995; Ellingsen & Johannesson, 2004; Bicchieri & Lev-On, 2011).

In particular, players often make and keep promises to cooperate in two-player partnership games where

the unique subgame-perfect equilibrium involves no such cooperation (Charness & Dufwenberg, 2006;

Vanberg, 2008; Ederer & Stremitzer, 2017; Di Bartolomeo et al., 2018). We advance the theoretical

analysis of preplay communication by presenting a novel mechanism (intermediate reneging costs) by

which communication is able to sustain such cooperative but apparently nonequilibrium action, and

demonstrate its evolutionary stability.

Our analysis of direct psychological costs of going back on one’s word is related to the theoretical

literature incorporating exogenously given (and, typically, small) psychological lying costs into strategic

models. Kartik et al. (2007) and Kartik (2009) study sender-receiver games in which the informed agent

has an incentive to distort the receiver’s belief, and incurs a convex cost of sending a false message. Mat-

sushima (2008) and Kartik et al. (2014) introduce arbitrarily small lying costs into settings of mechanism

design and implementation. The present paper moves beyond the existing literature by analysing bila-

teral communication about agents’ own future actions rather than unilateral communication about an

exogenously given state of the world. Additionally, we endogenise the reneging costs, and allow them to
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be determined as part of a stable population state.1

We contribute to the literature on partnerships with strategic complementarities by introducing re-

neging costs into a general class of partnership games. Games in which n players experience a common

outcome, which is increasing in a privately costly action, are examined from a mechanism design per-

spective in Holmstrom (1982). Radner et al. (1986) analyse a two-player partnership game in which a

project succeeds with a probability equal to the minimum of the players’ effort choices, which are made

at quadratic cost, and show the capacity of repeated interaction to sustain effort when such an outcome

is efficient but is not an equilibrium of the one-shot game (see also related models of partnership games

in Cooper & John, 1988; Admati & Perry, 1991; Cahuc & Kempf, 1997; Marx & Matthews, 2000). We

demonstrate that reneging costs is a new means by which cooperation can be sustained in partnerships

in one-off encounters with nonenforceable effort choices.

The theoretical model that we present is able to rationalise and ground the main stylised facts of the

experimental literature on promising and lying. Intrinsic costs of lying or reneging on one’s promise have

been examined in a number of laboratory setups including: (1) trust games (Ellingsen & Johannesson,

2004; Charness & Dufwenberg, 2006; Vanberg, 2008; Ederer & Stremitzer, 2017; Di Bartolomeo et al.,

2018), (2) sender-receiver games (Gneezy, 2005; Sánchez-Pagés & Vorsatz, 2007; Hurkens & Kartik, 2009;

Lundquist et al., 2009), and (3) reporting the outcome of a private dice roll (Fischbacher & Föllmi-Heusi,

2013; Shalvi et al., 2011; Gneezy et al., 2018; Abeler et al., Forthcoming). Experimental evidence suggests

that subjects do not always lie to gain money, even when their doing so cannot be detected.2 In promising

experiments, subjects only sometimes renege on promises to carry out actions that are socially beneficial

but reduce their own payoff and, on average, achieve more efficient outcomes than when promises cannot

be made (Charness & Dufwenberg, 2006; Vanberg, 2008; Ederer & Stremitzer, 2017; Di Bartolomeo

et al., 2018).

We defer further discussion of the relation between our model and the experimental evidence to

Section 7. We note here that the main stylised facts from these experiments suggest that the intrinsic

costs of lying/reneging are intermediate, and are increasing (potentially convexly) with one or more of

the following factors: (I) the difference between the reported/exerted outcome and the true/promised

outcome, (II) the damage induced to the partner by an agent lying/reneging, and (III) others’ perceptions

of the agent’s behaviour. In our model the intrinsic cost of reneging is proportional to the difference

between the promised effort and the exerted effort, which directly captures factor (I). In a richer model,

in which others observe the exerted effort with some random noise, this difference can also capture factor

(III). In Section 6.2, we study a variant of our model in which an intrinsic cost of reneging is incurred

only if the promised effort is smaller than the exerted effort. This captures factor (II), as in this variant

the partner suffers a utility loss proportional to the extent to which promised effort was higher than

exerted effort. Our model therefore captures the central findings of these studies, but also allows the level

1Demichelis & Weibull (2008) study the influence of the introduction of lexicographic reneging costs into a setup in
which players communicate before playing a coordination game. They show that the introduction of these reneging costs
implies that the unique evolutionarily stable outcome is Pareto efficient. Heller (2014) shows that this sharp equilibrium
selection result is implied by the discontinuity of preferences, rather than by small reneging costs per se.

2In the case of reporting a private dice roll, Abeler et al.’s Finding 1 demonstrates that subjects obtain only about a
quarter of the payoff they could obtain by reporting the die’s maximal outcome. When subjects lie, they sometimes do so
by using a nonmaximal lie (see, e.g., Abeler et al., Finding 5), suggesting that bigger lies induce higher intrinsic costs.
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of reneging aversion to be endogenously determined by an evolutionary process, providing a theoretical

foundation and explanation for these stylised experimental facts.

In our theoretical exploration of the potential evolutionary determinants of reneging aversion, we

build on the “indirect” evolutionary approach, pioneered by Güth & Yaari (1992), and developed by,

among others,Ok & Vega-Redondo (2001), Guttman (2003), Dekel et al. (2007), Herold & Kuzmics

(2009), Alger & Weibull (2010), and Alger & Weibull (2012). We make two main contributions to

this literature. First, to the best of our knowledge, we are the first to apply the indirect evolutionary

approach to study reneging costs. Second, our main result is qualitatively different from the stylised

result in the existing literature, according to which if preferences are observed with high probability,

then the Pareto-efficient outcome is played in any stable population state. We show that in the setup in

which the set of feasible preferences is the set of levels of reneging aversion, evolutionary forces take the

population into stable states in which agents have intermediate reneging aversion and the agents achieve

partial, rather than full, efficiency.

Heifetz et al. (2007b) study payoff-monotonic selection dynamics in normal-form games in which the

set of strategies of each player is an open subset of Rn and preference “distortions” (divergences between

the subjective utility function and the material payoff function) are perfectly observable. They show that

in almost every such game and for almost every family of distortions of a player’s actual payoffs, some

degree of distortion is beneficial to the player, and will not be driven out by any evolutionary process

in the sense that there will not be a convergence to a population in which everyone has zero distortion.

Heifetz et al. (2007a) make additional assumptions: (1) the set of actions of each player is an interval in

R, (2) the underlying game has a unique pure equilibrium for each pair of distortions, and (3) the type

game is dominance solvable. Under these assumptions the authors show that the selection dynamics

converge to every player having the same distorted type, and that this result can be extended to a setup

with partial observability. The game studied in this paper does not satisfy these additional assumptions

(in particular, the set of strategies of the normal-form game is infinite-dimensional). Nevertheless, we

are able to show results that are consistent with the results of Heifetz et al. (2007a) and, in addition, to

explicitly characterise the unique stable level of reneging aversion.

Finally, the role of commitment in strategic situations has been extensively investigated since the

seminal work of Schelling (1980) (see, e.g., Caruana & Einav, 2008; Ellingsen & Miettinen, 2008; Heller

& Winter, 2016 for recent papers in this vast literature). One of the main stylised insights of this

literature is that the ability to commit is advantageous to a player and that, typically, a better ability

to commit yields higher payoffs. Our model yields the insight that too great a capacity for commitment

(i.e., too high a level of reneging aversion) might be detrimental. Specifically, we show that there is an

intermediate level of commitment that is optimal for an agent, as it balances his interest in making a

strong commitment in order to induce high effort from his partner, against his conflicting desire to retain

some flexibility to exert less effort.
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3 The Partnership Game

In this section, we formally describe the partnership game and analyse the subgame perfect equilibria of

encounters between any two players with weakly positive aversion to reneging on promises.

3.1 Model

There are two players (i and j) and two stages of the game. In the first stage, both players simultaneously

send a message sk ∈ [0, 1] to their opponent (where k = i, j). The interpretation is that players’ messages

take the form of a promise about effort in the second stage. In the second stage, players simultaneously

choose their level of effort, xk ∈ [0, 1].

Remark 1. For simplicity, we define the maximum message (and level of effort) to be one. All of our

results remain qualitatively the same, for any other upper limit M > 0 to the set of messages.

We focus on a specific family of quadratic payoff functions. We define the material payoff of a player

who exerts effort xi and whose partner exerts effort xj as the following function:

π(xi, xj , c) = xi · xj − c · x2
i

2
: c ∈ (1, 2) . (1)

The interpretation of the material payoff is as follows. Both players receive the same gross return

from the partnership, equal to the product of their two effort choices. They each incur a cost proportional

to the square of their own effort. The parameter c ∈ (1, 2) governs the cost of effort.3

The subjective utility of each player i is defined as follows:

Ui(xi, xj , si, c) = xi · xj − c · x2
i

2
− λi

2
(si − xi)

2. (2)

Subjective utility is the sum of a player’s material payoff and a term representing the psychological

cost of breaking a promise (reneging). Here, reneging is defined as exerting a level of effort not equal to

the message sent (i.e., the effort promised) in the first stage. The “size” of player i’s reneging is defined

as |si − xi|. The utility loss from reneging is proportional to the square of its size, multiplied by λi, a

parameter that we call i’s level of reneging aversion. In the main model we assume that each player

perfectly observes his partner’s level of reneging aversion, i.e., that the parameters λi, λj are common

knowledge.

We extend the material payoffs and the subjective utility to mixed strategies in the usual linear way

(i.e., players are expected utility maximisers). It turns out that, essentially, all perfect equilibria are

pure; thus, we focus in the main text on pure strategies. (We formally deal with mixed strategies in

Lemma 1 and Footnote 15.)

Remark 2. Various assumptions of the baseline model are relaxed in Section 6, in which we show that

our results hold in the following extensions and variants of the model: (1) sequential communication:

3We restrict attention to c ∈ (1, 2) as this is the interval in which (1) players exerting maximal effort is efficient and (2),
as shown below, the game with simultaneous effort choices encourages shirking above an effort of zero. Note that when
c > 2, the efficient outcome is for both players to exert zero effort. When c < 1, the unique Nash equilibrium in the game
with simultaneous effort choices is xi = xj = 1.
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pre-play communication is sequential rather than simultaneous, (2) one-sided reneging costs: an agent

bears a cost only when he exerts less effort than he promised, (3) fixed reneging costs: an agent incurs

a fixed reneging cost whenever the exerted effort is different from the promised effort, regardless of the

size of the difference, (4) partial observability: players sometimes do not observe their partner’s level of

reneging aversion, and (5) general (non-quadratic) utility functions.

3.2 Unique Second-Stage Equilibrium

In the second stage of the game, player i’s first-order condition for his choice of xi is given by4

xj − cxi + λi(si − xi) = 0. (3)

The strict concavity of the utility function in xi implies that the second-stage best reply is a unique

pure strategy, which implies that we can focus in the second stage, without loss of generality, on pure

strategies. The unique best-reply strategy is given by the function

x∗
i (xj , si, sj , λi, λj , c) =

xj + λisi

c + λi
. (4)

This equation embodies a player’s (possibly conflicting) desires to undercut (exert less effort than) his

partner and to minimise his reneging.

Fact 1. We first observe that when λi = λj = 0 (i.e., both players’ messages are cheap talk), the best

reply of player i reduces to
xj

c
. This implies that when talk is cheap, both players wish to undercut their

partner in the second stage, effort choices are independent of messages sent, and in all subgame-perfect

equilibria, neither player exerts effort and communication plays no committing role.

To consider the general case of positive reneging costs, we solve the best-reply functions simulta-

neously and obtain the unique Nash equilibrium strategy for player i in the subgame induced by an

arbitrary pair of messages si and sj :

xe
i (si, sj , λi, λj , c) =

(c + λj)λisi + λjsj

(c + λi)(c + λj) − 1
. (5)

To gain some intuition, we can consider the subgame after si = sj = s is played. In this case, xi <

xj ⇐⇒ λi < λj . Both players have an incentive to undercut one another (and by implication renege

on their own first-stage promises), but at the same time they do not want to incur too great a cost from

reneging. Due to the convex cost of reneging and the diminishing material gains from reducing effort

toward
xj

c
, the optimal choice of xi balances these two aims. In the general case where si 6= sj , the Nash

equilibrium choice of xi is some convex combination of5 si, sj , and 0. As a player’s level of reneging

aversion increases, he will exert effort closer to his own promise.

4The second derivative of the utility function with respect to xi is −c−λi. The fact that it is always negative guarantees
that the solution to the first-order condition is a global maximum of the utility function and that the optimal choice in the
second stage is a unique pure strategy.

5To see this, observe that the denominator of the fraction is strictly positive and strictly greater than the sum of the
coefficients on si and s−i in the numerator.
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3.3 First-Stage Best-Reply Functions

The subgame-perfect equilibrium of the game is easily obtained using backward induction. Given the

unique Nash equilibrium strategies in each subgame, we can derive the player’s utility Ui(si, sj , c) as a

function of the messages sent by the agent and his partner (assuming that both players follow the unique

Nash equilibrium in the second stage of the game).

Ui(si, sj , c) ≡ Ui

(
xe

i (si, sj , λi, λj , c), xe
j(si, sj , λi, λj , c), si, c

)
. (6)

Clearly, if λi = 0, then a player’s choice of message has no impact upon his own or his partner’s choices

and any message is a best reply. When λi > 0, it turns out that the derived utility function Ui(si, sj , c)

leads to a unique pure best reply in all but a measure zero of cases,6 which implies that, without loss of

generality, we can focus on pure strategies (formal details for this argument are presented in the proof

of Proposition 1 in Appendix D.2).

Our first result characterises the first-stage best-reply functions. Let s∗
i (sj |λi, λj , c) denote the best

reply of agent i (with reneging aversion λi) to a partner’s message of sj , where the cost of effort is

c. We show that there exists a threshold λ̄c ≡ 2−c2

c−1 , such that an agent overcuts his partner (i.e.,

s∗
i (sj |λi, λj , c) > sj for each sj ∈ (0, 1)) if and only if the partner’s reneging aversion is below this

threshold and the agent’s reneging aversion is sufficiently high. Formally:

Proposition 1. There exists a function g : R+ × [1, 2] → R+, such that:

1. Overcutting: s∗
i (sj |λi, λj , c) > sj if λj < 2−c2

c−1 , λi > g (λj , c) and sj ∈ (0, 1).

2. Undercutting: s∗
i (sj |λi, λj , c) < sj if sj > 0 and

(
λj ≥ 2−c2

c−1 or λi ∈ (0, g (λj , c))
)
.

Observe that c ≥
√

2 implies 2−c2

c−1 ≤ 0 and that each agent will undercut his partner’s message. The

division of the parameter space into these best-reply types (undercutting vs. overcutting) is illustrated

in Figure 1 for the effort costs of c = 1.1 and c = 1.2 (additional effort costs (namely, 1.05, 1.15, 1.24

and 1.26) are illustrated in Appendix C).

3.4 Unique Perfect Equilibrium

We now characterise the subgame-perfect equilibria of the partnership game. Recall that a strategy

profile
(
s∗

i , s∗
j , x∗

i , x∗
j

)
(where s∗

i , s∗
j ∈ [0, 1] are the first-stage promises and the functions x∗

i , x∗
j : [0, 1]2 →

[0, 1] describe the second-stage efforts as a function of the observed promises) is a subgame-perfect

equilibrium if for each player i (1) x∗
i (−→s ) = xe

i (si, sj , λi, λj , c) (i.e., best replying in the second stage),

and (2) Ui(s
∗
i , s∗

j , c) ≥ Ui(s
′
i, s∗

j , c) for each message s′
i ∈ [0, 1] (i.e., best replying in the first stage), where

the derived utility Ui(s
∗
i , s∗

j , c) is as defined in (6).

We show that all subgame-perfect equilibria can be classified into three types:

1. Maximum-message equilibrium, in which agents send maximal promises, i.e., s∗
i = s∗

j = 1.

6The choice of best reply in these measure-zero cases plays no role in our analysis.
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(a) c = 1.1 (b) c = 1.2

Figure 1: Best-Reply Types for Player i in a Reneging Aversion Parameter Space. The
x axis in each figure presents the player’s level of reneging aversion (λi) and the y axis presents the
partner’s level of reneging aversion (λj). The left panel deals with a cost of effort of c = 1.1 and the
right figure deals with c = 1.2. The dark area in each panel is the region in which player i’s best reply
is to undercut his partner, i.e., s∗

i (sj) < sj ; the light area in each panel is the region in which player
i’s best reply is to overcut his partner, i.e., s∗

i (sj) > sj . The dashed line in each figure shows the

value λj = λ̄c ≡ 2−c2

c−1 > 0 presented in Proposition 1, above which player i’s best reply is to undercut
his partner regardless of the value of λi.

2. No-effort equilibrium, in which agents exert no effort, i.e., x∗
i

(−→
s∗
)

= x∗
j

(−→
s∗
)

= 0. In this equili-

brium any agent with a positive reneging aversion promises nothing, i.e., λi > 0 ⇒ s∗
i = 0.

3. Two-message equilibrium. In this equilibrium the agent with higher reneging aversion sends the

maximal message, while his partner undercuts the agent’s message, i.e., either si = 1 > sj or

sj = 1 > si.

In some parameterisations of the game, the subgame-perfect equilibrium is unique. In all the remaining

cases (except the “measure zero” set of pairs with multiple equilibria discussed below), the game admits

two subgame-perfect equilibria, where only one of these equilibria satisfies trembling-hand perfection

(see the formal definition, à la Selten, 1975; Simon & Stinchcombe, 1995, in Appendix A). The imperfect

equilibrium is characterised by each agent sending a zero message. However, any small perturbation

(e.g., with a small probability, ǫ, each player trembles and chooses his promise uniformly) induces at

least one of the agents to overcut his partner, leading to this equilibrium being eliminated from the

perturbed game.
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Theorem 1, below, shows that:

1. There is a convex symmetric region of intermediate levels of reneging aversion, Λc
max, in which

the game admits only a maximum-message equilibrium. This region is nonempty if and only if

c < 1.25 and, in this case, there is a symmetric point
(
λ+

c , λ+
c

)
in the boundary of this region,

which is higher than any point in the region.

2. There are two disjoint areas in which one agent has a sufficiently low level of reneging aversion

and his partner has a sufficiently high level of reneging aversion, and the game admits only a

two-message equilibrium. This region, Λc
2ms, is nonempty if and only if c <

√
2.

3. In the remaining region, Λc
0ef , the partnership game admits only a no-effort equilibrium. This

region includes two areas: (1) an area in which both agents have sufficiently high levels of reneging

aversion and (2) an area in which both agents have sufficiently low levels of reneging aversion.

Figure 2 illustrates the division of the reneging aversion parameter space into the three classes of unique

perfect equilibria for the effort costs of c = 1.1 and c = 1.2 (additional effort costs, namely, 1.05, 1.15,

1.24, and 1.26) are illustrated in Appendix C.

Formally, letting PE (λi, λj , c) denote the set of all trembling-hand perfect equilibria of the part-

nership game with levels of reneging aversion λi and λj and effort cost c (where the formal definition of

trembling-hand perfect equilibrium is relegated to Appendix A):

Theorem 1. For each c > 1, there exist pairwise disjoint symmetric sets Λc
0ef , Λc

max, Λc
2ms ⊆ [0, ∞)2

with an exhaustive union of closures (i.e., Cl
(
Λc

0ef

)
∪ Cl (Λc

max) ∪ Cl (Λc
2ms) = [0, ∞)2) that satisfy the

following properties:7

1. Region of maximum-message equilibrium Λc
max:

(a) If (λ, λ′) ∈ Λc
max and

(
s∗

i , s∗
j , x∗

i , x∗
j

)
∈ PE (λi, λj , c), then s∗

i = s∗
j = 1.

(b) Λc
max is a convex set, which is nonempty iff c ∈ (1, 1.25).

(c) For each c < 1.25, there exists
(
λ+

c , λ+
c

) ∈ Cl (Λc
max) such that (λ, λ′) ∈ Λc

max ⇒ λ, λ′ < λ+
c .

2. Region of two-message equilibrium Λc
2ms:

(a) If (λi, λj) ∈ Λc
2ms, λj < λi and

(
s∗

i , s∗
j , x∗

i , x∗
j

)
∈ PE (λi, λj , c), then s∗

j < s∗
i = 1.

(b) Λc
2ms is nonempty iff c ∈

(
1,

√
2
)
.

(c) If 0 < λj < 2
c

− c and λi is sufficiently high, then (λi, λj) ∈ Λc
2ms.

3. Region of no-effort equilibrium Λc
0ef :

(a) If (λi, λj) ∈ Λc
0ef and

(
s∗

i , s∗
j , x∗

i , x∗
j

)
∈ PE (λi, λj , c), then x∗

i (−→s ∗) = x∗
j (−→s ∗) = s∗

i = s∗
j = 0.

(b) There exist 0 < λc < λc such that (λi, λj) ∈ Λc
0ef if either 0 < λi, λj < λc or λi, λj > λc.

7Cl (Λ) is the closure of the set Λ, i.e., the set Λ together with all its limit points.
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(a) c = 1.1 (b) c = 1.2

Figure 2: Unique Perfect Equilibrium Types in a Reneging Aversion Parameter Space.
The x axis in each figure presents the player’s level of reneging aversion (λi) and the y axis presents
the partner’s level of reneging aversion (λj). The left panel deals with a cost of effort of c = 1.1 and
the right panel deals with c = 1.2. The dark areas in each figure are the regions in which both agents
exert no effort in equilibrium (“No Effort”). The light area in each figure is the region in which
both agents promise maximal efforts in the unique perfect equilibrium (“Maximum Message”). The
remaining areas are the regions in which one of the agents sends a maximal promise (“2 Message”).

Sketch of proof for the (main) case of c ∈ (1, 1.25). When both λi and λj are low or when both are high,

the unique equilibrium is a no-effort equilibrium. Intuitively, too low reneging costs induce too little

commitment power and, as a result, each agent undercuts his partner’s effort in the second round

regardless of the promises. Too high reneging costs leave too little flexibility for the second round, which

induces each agent to undercut his partner’s promise in the first round.

When one player has a high level of reneging aversion and the other a low level, the unique equilibrium

is a two-message equilibrium. The intuition is that only the agent with the high reneging cost has a

substantial commitment power, while their partner’s promise has a very small impact on either player’s

effort choice. As a result, the agent with the high reneging cost is essentially a Stackelberg leader (he

essentially chooses his effort by the committing promise he makes in the first round), while the partner

is essentially a Stackelberg follower (her promise in the first round has little influence on her choice of

effort in the second round). The lower the cost of effort is, the higher the effort that the Stackelberg

follower will exert in reply to a given promise by the leader. When the effort cost is low enough, it

therefore becomes worthwhile for the leader to make the promise of high effort.
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Finally, if both players’ levels of reneging aversion are intermediate (and sufficiently similar) then we

have the maximum-message equilibrium. If the partner’s level of reneging aversion is not too high, the

indirect benefit of overcutting the partner’s message (which induces the partner to exert more effort in

the second stage) is increasing in the agent’s level of reneging aversion, as his promise is more credible.

If the agent’s level of reneging aversion is sufficiently high, this benefit outweighs the direct cost of

restricting his ability to shirk in the second stage. Therefore, if both players have a level of reneging

aversion that is high enough to give them committing power but is not so high that they do not have

some flexibility in the second stage, they will wish to overcut each other. This happens in a convex

region of intermediate levels of reneging aversion. In this region, both players are sufficiently bound by

their message to be able to strategically induce high effort in their partner, but are also flexible enough

to respond to their partner’s promise.

4 Appealing Properties of Intermediate Reneging Aversion, λ
+
c

4.1 Induced Population Game

Theorem 1 has shown that almost all partnership games have a unique trembling-hand perfect equili-

brium. Multiple perfect equilibria may occur only on a “measure-zero” of pairs of λi, λj that are located

on the boundaries between the open sets Λc
0ef , Λc

max, and Λc
2ms. In this “measure-one” set of pairs of

levels of reneging aversion, we define πc (λi, λj) to be the unique (trembling-hand) perfect equilibrium

payoff of an agent with reneging aversion λi who is matched with a partner with reneging aversion λj .

Recall, that, for each c ∈ (1, 1.25), one of the pairs in these measure-zero boundaries is
(
λ+

c , λ+
c

)
,

which is the upper limit of all pairs in the set Λc
max of intermediate levels of reneging aversion that

induce maximal messages. In Corollary 2 of Theorem 1 (Appendix D.5), we show that the pair of levels

of reneging aversion
(
λ+

c , λ+
c

)
induces a continuum of perfect equilibria. Specifically, for each message

s∗ ∈ [0, 1], there is a perfect equilibrium in which both agents send message s∗. We define πc

(
λ+

c , λ+
c

)
as

the highest equilibrium payoff among these equilibria (i.e., the payoff induced in the equilibrium in which

the agents send the maximal message, s∗ = 1). We discuss this equilibrium selection in Remark 3 below.

Given any other pair (λi, λj) with multiple equilibria, we can apply any arbitrary equilibrium selection

function (without affecting our results), and we let πc (λ, λ′) (Uc (λ, λ′)) be the material (subjective)

payoff induced by the arbitrarily selected equilibrium.

The payoff function πc : R+ × R
+ → R

+ defined above induces a symmetric two-player population

game Γ =
(
R

+, πc

)
. This population game can be interpreted as being played between two principals,

where each principal simultaneously chooses a reneging cost for his agent, the two agents are matched

to play the partnership game (where each agent observes his partner’s reneging cost), and they play

the perfect equilibrium of the partnership game (applying the equilibrium selection function mentioned

above when multiple perfect equilibria exist). In Section 5 we discuss an evolutionary interpretation of

the population game and of our results.

A pure (mixed) strategy in this game corresponds to a level of reneging aversion (a distribution over

levels of reneging aversion). We say that (λ, λ) is a symmetric (strict) pure Nash equilibrium of the

population game if πc (λ, λ) ≥ πc (λ′, λ) (πc (λ, λ) > πc (λ′, λ)) for each λ′ 6= λ.
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4.2 Appealing Properties of λ
+
c

In the following result we focus on the case of low costs of effort, in which maximum-message equilibria

exist (i.e., we focus on the case of c < 1.25). We show that the maximum-message equilibrium induced by

the symmetric pair of intermediate levels of reneging aversion
(
λ+

c , λ+
c

)
has various appealing properties:

1. “Second-best” symmetric outcome: The equilibrium induced by
(
λ+

c , λ+
c

)
induces the best equi-

librium outcome among all equilibrium outcomes of symmetric partnership games. This holds

both for the material payoff, as well as for the subjective payoff, i.e., πc

(
λ+

c , λ+
c

)
> πc

(
λ

′
, λ′
)

and

Uc

(
λ+

c , λ+
c

)
> Uc

(
λ

′
, λ′
)

for any λ′ 6= λ+
c .

2. As c converges to 1, the equilibrium the material payoff and equilibrium subjective payoff both

converge to the maximum feasible payoff, achieved by both agents promising and exerting the

maximum effort of one. This maximum feasible payoff is equal to 1 − 1
c
, and it converges to 0.5 as

c converges to one.

3. It is a strict equilibrium of the population game (i.e., (πc

(
λ+

c , λ+
c

)
> πc

(
λ′, λ+

c

)
).

4. The equilibrium material payoff πc

(
λ+

c , λ+
c

)
is larger than the mean payoff induced in a “Stac-

kelberg” equilibrium without reneging costs (i.e., the equilibrium when effort levels are chosen

sequentially), if the cost of effort is low (c < 1.22).

5. The population game does not admit any other symmetric pure equilibrium.

Formally:

Theorem 2. Fix c ∈ (1, 1.25). Let
(
λ+

c , λ+
c

)
be the highest symmetric pair of levels of reneging aver-

sion inducing a maximum-message equilibrium (as defined in Theorem 1). The equilibrium induced by
(
λ+

c , λ+
c

)
has the following properties:

1. “Second-best” symmetric outcome: πc

(
λ+

c , λ+
c

)
> πc

(
λ

′
, λ′
)

and Uc

(
λ+

c , λ+
c

)
> Uc

(
λ

′
, λ′
)

for any

λ′ 6= λ+
c .

2. Convergence to “first-best” outcome: limc→1 πc

(
λ+

c , λ+
c

)
= limc→1 Uc

(
λ+

c , λ+
c

)
= 1

2 (which is the

best symmetric feasible payoff).

3. Strict equilibrium of the population game: πc

(
λ+

c , λ+
c

)
> πc

(
λ′, λ+

c

)
for each λ′ 6= λ+

c .

4. Better outcome than the sequential-game equilibrium outcome when effort costs are low: Let πs
i be

the payoff to player i in the unique equilibrium of the game where efforts are chosen sequentially

(and there are no reneging costs). Then if c < 1.22, πc

(
λ+

c , λ+
c

)
> 1

2 ·
(
πs

i + πs
j

)
.

5. Unique pure symmetric equilibrium: If c < 1.24 and there is λ∗ such that πc (λ∗, λ∗) ≥ πc (λ′, λ∗)

for each λ′, then8 λ∗ = λ+
c .

8Our proof technique allows us to prove the uniqueness results only for c ∈ (1, 1.24). Numeric simulations suggest that
the result also holds for c ∈ (1.24, 1.25).
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Sketch of proof.

1. “Second-best” symmetric outcome: Recall that λ+
c is the highest level of reneging aversion that

induces a maximum-message equilibrium. Theorem 2 implies that any higher symmetric level of

reneging aversion λ > λ+
c induces the no-effort equilibrium with the lowest possible payoff. One can

show that the weaker commitment power induced by lower symmetric levels of reneging aversion

λ < λ+
c induces agents to exert less effort relative to the symmetric equilibrium induced by λ+

c ,

and thus to achieve a lower material payoff. For a given level of reneging (i.e., a given difference

between the promised effort and the exerted effort), the reneging cost is increasing linearly in the

players’ levels of reneging aversion. However, higher levels of reneging aversion have both a positive

“direct” effect of directly increasing players’ chosen levels of efforts (due to the the desire to avoid

the reneging cost) and a compounding “indirect” strategic effect as the players each anticipate the

higher effort that will be exerted by the other. We show that these positive impacts on effort levels

(and the resulting increase in the material payoff and decrease in the level of the players’ reneging)

is great enough to outweigh the increased psychological cost that the players experience for any

given level of reneging, such that λ+
c also induces the “second-best” level of subjective utility.

2. Convergence to “first-best” outcome: Recall that agents promise maximal efforts in the equilibrium

induced by
(
λ+

c , λ+
c

)
, and that they somewhat shirk in the second round due to the fact that the

material payoffs are maximised when exerting 1
c

times the partner’s effort choice. As c converges

to one, the effort level that maximises the material payoff converges to the partner’s effort choice,

the incentives to shirk are diminished, and, as a result, the equilibrium effort levels exerted by the

players converge to one.

3. Strict equilibrium of the population game: For any λ > λ+
c the game induced by

(
λ, λ+

c

)
admits

only the no-effort equilibrium, which yields each player a zero payoff. When λ < λ+
c , the lower

commitment power of the player with reneging aversion λ implies that the players exert less ef-

fort in the unique perfect equilibrium, and that the payoff of both players is strictly worse than

the equilibrium payoff of the game induced by
(
λ+

c , λ+
c

)
. This implies that

(
λ+

c , λ+
c

)
is a strict

equilibrium of the population game.

4. Better outcome than the sequential-game equilibrium outcome: In the sequential effort setting (with

no reneging costs) the “Stackelberg leader” will choose effort level 1 and the follower will choose

effort level 1
c
. In the equilibrium outcome under λ+

c , both agents promise to exert an effort of 1,

and in the second stage due to the substantial reneging costs, the agents choose an effort that is

much closer to one than to 1
c
, when the cost of effort is sufficiently low.9 The intuition for why the

average payoff with reneging costs converges “faster” to the first best as effort costs decrease (as

compared to sequential effort choices) is that, whereas with sequential choices lower effort costs

mean simply that the second player has a smaller incentive to shirk, and so puts in more effort

as effort costs fall (with no change in the leader’s action), with communication there is a positive

9It turns out that the higher payoff in the equilibrium induced by
(
λ+

c , λ+
c

)
holds for any c < 1.22, but it does not hold

for c ∈ (1.22, 1.25).

16



reinforcing mechanism whereby the knowledge that his partner is going to put in more effort means

that a player will choose to put in more effort himself, leading his partner to want to exert more

effort, and so on.

5. Unique pure symmetric equilibrium: We show that an agent can gain by having a higher reneging

cost than his partner for every level of the partner’s reneging cost λ < λ+
c , which implies that (λ, λ)

is not a Nash equilibrium of the population game for any λ < λ+
c . The intuition is that the indirect

gain induced by the stronger commitment power of the agent (which, in turn, induces the partner

to exert more effort in the unique equilibrium) outweighs the loss induced by the smaller flexibility

in the choice of effort in the second stage. Observe that Theorem 1 implies that for any λ > λ+
c

the game induced by (λ, λ) admits the no-effort equilibrium, which yields each player a payoff of

zero. One can show that if an agent deviates to a sufficiently low level of reneging aversion, then

the players play a two-message equilibrium that yields the deviator a positive payoff. This implies

that (λ, λ) is not a Nash equilibrium of the population game for any λ > λ+
c .

5 Evolutionary Interpretation of Our Results

Consider a large population of players (technically, a continuum) in which each player is endowed with

a level of reneging aversion. Players are uniformly randomly matched into pairs, and both observe their

partner’s level of reneging aversion before starting the two-stage partnership game described above. We

assume that in each such partnership game, the players play the unique perfect equilibrium (and they

follow the equilibrium selection function described above when there are multiple equilibria).

Consider first the case in which the set of feasible levels of reneging aversion are discrete (e.g., the

set of feasible λs are 0, 0.01, 0.02, 0.03, ...). This discreteness might be due to having a finite, albeit very

large, set of feasible genotypes in biological evolutionary processes, or due to some constraints in social

evolutionary processes (e.g., each agent follows a simple rule of thumb to guide his behaviour, and the

set of simple rules is finite). It is well known that stable population states in this setup correspond to

symmetric equilibria of the population game, given a smooth and payoff-monotone dynamic process by

which the levels of reneging aversion in the population evolve, such as the replicator dynamics (Taylor

& Jonker, 1978; see Weibull, 1995; Sandholm, 2010 for a textbook introduction). Specifically:

1. Any symmetric strict equilibrium corresponds to a stable population state in which all the in-

cumbents have the same level of reneging aversion. Any agent who is endowed with a different

level of reneging aversion (due to random error or experimentation) is strictly outperformed and

is assumed to be eliminated from the population. The same holds for any sufficiently small group

of “mutant” agents who are endowed with a different level of reneging aversion. In particular, it

is well known that any strict equilibrium is an evolutionarily stable state à la Maynard Smith &

Price (1973).

2. Any stable population state must be a symmetric Nash equilibrium (see, e.g., Nachbar, 1990).

Otherwise, there is a level of reneging aversion that allows a deviator to strictly outperform the
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incumbents; we assume that other agents will start to mimic such a successful deviator, and that

the population will move away from the initial state.

Thus, part (3) of Theorem 2 implies that the homogeneous population state in which all agents have the

same intermediate level of reneging aversion λ+
c is dynamically stable. Part (3) of Theorem 2 implies that

this state is the unique homogeneous stable state. This suggests a tendency of evolutionary processes to

select the level of reneging aversion λ+
c when players each observe their partner’s type.

When the set of feasible levels of reneging aversion is a continuum (i.e., without the discretization

described above), then, as argued by Eshel (1983) and Oechssler & Riedel (2001), a strict equilibrium

might not be a sufficient condition for dynamic stability in setups in which a small perturbation can

slightly change the reneging aversion of all agents in the population. In Section 7 we discuss the rele-

vant notions of continuous stability proposed by these authors, and explain why imposing these more

restrictive solution concepts does not affect our results.

Remark 3 (Alternative equilibrium selection). Theorem 2 depends on the equilibrium election function

choosing the most efficient equilibrium in the game in which both agents have reneging cost λ+
c . In

what follows, we discuss two possible arguments suggesting that the result can hold also without this

assumption.

1. Discrete set of feasible levels of reneging aversion: Consider the setup in which the set of

feasible levels of reneging aversion are discrete (as described above). In such discrete environments

one can state a result that is essentially the same as Theorem 2, in which λ+
c is replaced with the

highest feasible discrete reneging cost that is smaller than λ+
c .

2. Focality of the efficient equilibrium: We do not formalise the dynamic process leading a

population to the homogeneous state in which every individual has the level of reneging aversion

λ+
c . Intuitively, one plausible way in which the population can converge to λ+

c is from a state

in which agents have a lower intermediate level of reneging aversion λ < λ+
c , and they play the

unique perfect equilibrium induced by the state λ in which the messages are maximal. As argued

in the proof of part (4), the state λ is vulnerable to a few agents (“mutants”) experimenting with

a higher level of reneging aversion λ′ ∈ (
λ, λ+

c

)
, where the mutants also play the unique perfect

equilibrium (with maximal messages) against the incumbents. Such a sequence of invasions of

mutants will take the population to the state in which all agents have a reneging aversion of

λ+
c , and along this dynamic sequence the agents play the unique perfect equilibrium, which has

maximal messages. Arguably, it is plausible that also after the population converges to every agent

having reneging aversion λ+
c (and multiple equilibria exist) the agents will continue to play the the

“focal” equilibrium, which is similar to the unique maximum-message equilibrium played against

the previous incumbents with λ < λ+
c .

6 Variants and Extensions

Our main model makes the following assumptions: (1) agents send their promises simultaneously, (2) an

agent incurs a reneging cost when his effort is higher than his promise (as well as when it is lower), (3)
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the reneging costs of the agent are continuous around zero reneging, (4) the reneging costs are perfectly

observed in the population game, and (5) the utility function has a specific quadratic form. In this

section we relax each of these assumptions, and demonstrate the robustness of our main results.

6.1 Sequential Communication

In this subsection, we examine a variant of the partnership game where promises are sequential rather

than simultaneous. We show that the equilibrium induced by the symmetric pair of intermediate levels

of reneging aversion
(
λ+

c , λ+
c

)
still satisfies the appealing properties of Theorem 2.

Adaptations to the Model The partnership game with sequential communication proceeds as fol-

lows. In stage 0, nature chooses at random which player (denoted by i) will be the first to communicate

(where each player has a probability of 50% to be the first). In stage 1, player i sends a message si ∈ [0, 1]

to player j and player j observes this. In stage 2, player j chooses a message sj ∈ [0, 1] to send to player

i and player i observes this. In stage 3, the players simultaneously choose effort levels xi, xj ∈ [0, 1].

Utility levels and material payoffs are the same functions of messages and effort levels as in the baseline

model with simultaneous communication.

Robustness of Main Results We now show that the equilibrium induced by the partnership game

with sequential communication in which both players have reneging aversion λ+
c induces a unique perfect

equilibrium that satisfies the same appealing properties as in the baseline model:10 (1) “second-best”

symmetric outcome, (2) convergence to “first-best” outcome, (3) strict equilibrium of the population

game, and (4) better outcome than that of the sequential-game equilibrium without reneging costs.

Formally:

Proposition 2. Fix c ∈ (1, 1.25). Let
(
λ+

c , λ+
c

)
be the highest symmetric pair of levels of reneging aver-

sion inducing a maximum-message equilibrium in the simultaneous communication game (as defined in

Theorem 1). The unique subgame-perfect equilibrium induced by
(
λ+

c , λ+
c

)
under sequential communica-

tion has the following properties:

1. The agents promise maximal efforts, and exert the same level of effort as in the baseline model.

2. “Second-best” outcome: If c < 1.18 then πc

(
λ+

c , λ+
c

)
> πc

(
λ

′
, λ′
)

and Uc

(
λ+

c , λ+
c

)
> Uc

(
λ

′
, λ′
)

for any λ′ 6= λ+
c .

3. Convergence to “first-best” outcome: limc→1 πc

(
λ+

c , λ+
c

)
= limc→1 Uc

(
λ+

c , λ+
c

)
= 1

2 (which is the

best feasible material payoff).

4. Strict equilibrium of population game: πc

(
λ+

c , λ+
c

)
> πc

(
λ′, λ+

c

)
for each λ′ 6= λ+

c .

5. Better outcome than that of the sequential-game equilibrium without reneging costs: Let πs
i be the

payoff to player i in the unique equilibrium of the game where efforts are chosen sequentially (and

there are no reneging costs). Then, if c < 1.22 then πc

(
λ+

c , λ+
c

)
> 1

2 ·
(
πs

i + πs
j

)
.

10We leave for future research the question of whether the population game with sequential communication admits
additional symmetric pure equilibria.
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Sketch of proof. It turns out that for the combinations of levels of reneging aversion that induce

maximum-message equilibria or two-message equilibria in the game with simultaneous communication,

under sequential communication a unique subgame-perfect equilibrium (which is therefore also trembling-

hand perfect) is induced in which promises (and therefore effort levels and payoffs) are the same as under

simultaneous communication. Therefore, the function πc (λi, λj) takes the the same values in these regi-

ons as in the simultaneous game, and the results in relation to these regions carry over to the sequential

communication setting. For combinations of levels of reneging aversion that induce a no-effort equili-

brium under simultaneous communication, promises, effort levels, and payoffs are weakly greater in the

unique subgame-perfect equilibrium under sequential communication. Yet, it is shown that, despite these

somewhat higher payoffs under these combinations of reneging aversion, it is still not profitable for any

player to deviate from
(
λ+

c , λ+
c

)
in the population game. Finally, we show that even though with some

symmetric pairs of reneging aversion higher than λ+
c there exist some asymmetric equilibria (analogous

to the “two-message” equilibria in the simultaneous communication game) that yield one player a higher

realised payoff than πc

(
λ+

c , λ+
c

)
, nevertheless, when the cost of effort is low enough (i.e., when c < 1.18)

the average material payoff (and subjective utility) across the two players in such equilibria (and hence

the ex-ante expected payoff for each player) is lower than the payoff induced by
(
λ+

c , λ+
c

)
, which therefore

remains the “second-best” outcome.

6.2 One-Sided Reneging Costs

In this subsection, we examine a variant of the model in which an agent suffers a reneging cost only

when he exerts less effort in the second stage than he promised in the first. Unlike the baseline model,

an agent does not suffer a cost when he exerts more effort than he promised. This “one-sided” reneging

cost may reflect “guilt” that is proportional to the damage caused to the partner due to the fact that the

agent broke his promise (see, e.g., Charness & Dufwenberg, 2006). When the agent exerts more effort

than he promised, there is no damage to the partner, and thus no guilt. When the agent’s exerted effort

(xi) is less than his promise (si), then the loss to the partner is xj · (si − xi) , which is proportional to

the difference between the promised and exerted effort.

Our main result in this subsection shows that the equilibrium induced by the symmetric pair of in-

termediate levels of reneging aversion
(
λ+

c , λ+
c

)
still satisfies most of the appealing properties of Theorem

2. Specifically, we show that
(
λ+

c , λ+
c

)
is a strict Nash equilibrium of the population game, it induces the

second-best symmetric outcome, it converges to the first-best outcome in the limit when c converges to

one, and it induces a better outcome than the sequential-game equilibrium without reneging costs.

Adaptations to the Model The material payoffs remain the same as in the baseline model. The

reneging cost term in the subjective utility function of each player i is redefined as follows:

Ui(xi, xj , si, c) = xi · xj − c · x2
i

2
− 1si>xi

λi

2
(si − xi)

2. (7)

That is, an agent incurs an intrinsic cost of reneging only if his promise is higher than his exerted effort.

In this case, he incurs a quadratic cost analogous to that in the baseline model. All other aspects of the
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partnership game remain the same as in the baseline model. We make two assumptions regarding the

equilibrium selection function in cases in which the partnership game admits multiple equilibria:

1. It turns out that the set of equilibria in the symmetric partnership game
(
λ+

c , λ+
c

)
with one-sided

reneging costs coincides with the set of equilibria in the baseline model with two-sided reneging

costs, and, thus, we apply in this case the same equilibrium selection function as in the baseline

model.

2. Unlike in the baseline model, with one-sided reneging costs, some symmetric partnership games

(λ, λ) (with λ 6= λ+
c ) have multiple equilibria. We allow in this case an arbitrary equilibrium

selection function. If an asymmetric equilibrium is selected (in which one of the agents is assigned

to the role of player one, while the partner is assigned to the role of player two), we define πc (λ, λ)

as the mean payoff of the two players’ roles. This corresponds to a homogeneous population of

agents with reneging aversion λ, in which each agent has equal probability of being assigned to

each role in the selected asymmetric equilibrium.

Robustness of Main Results We now show that the equilibrium induced by λ+
c satisfies the same

appealing properties as in the baseline model: (1) “second-best” symmetric outcome, (2) convergence to

“first-best” outcome, (3) strict equilibrium of the population game, and (4) better outcome than that of

the sequential-game equilibrium without reneging costs. Formally:

Proposition 3. Fix c ∈ (1, 1.25). Let
(
λ+

c , λ+
c

)
be the highest symmetric pair of levels of reneging

aversion inducing a maximum-message equilibrium in the partnership game with two-sided reneging costs

(as defined in Theorem 1). The equilibrium induced by
(
λ+

c , λ+
c

)
with one-sided reneging costs has the

following properties:

1. The agents promise maximal efforts, and exert the same level of effort as in the baseline model.

2. “Second-best” outcome: If c < 1.22 then πc

(
λ+

c , λ+
c

)
> πc

(
λ

′
, λ′
)

for any λ′ 6= λ+
c .

3. Convergence to “first-best” outcome: limc→1 πc

(
λ+

c , λ+
c

)
= limc→1 Uc

(
λ+

c , λ+
c

)
= 1

2 (which is the

best feasible material payoff).

4. Strict equilibrium of the population game: πc

(
λ+

c , λ+
c

)
> πc

(
λ′, λ+

c

)
for each λ′ 6= λ+

c .

5. Better outcome than that of the sequential-game equilibrium without reneging costs: Let πs
i be the

payoff to player i in the unique equilibrium of the game where efforts are chosen sequentially (and

there are no reneging costs). Then, if c < 1.22 then πc

(
λ+

c , λ+
c

)
> 1

2 ·
(
πs

i + πs
j

)
.

Sketch of proof. We show that in the setup with one-sided reneging costs, a player’s best reply function

either leads him to “renege downward” (i.e., exert effort lower than his promise) in which case the trade-

off he faces is essentially the same as in the game with two-sided costs, or leads him to promise low effort

and then “renege upward” and perfectly undercut his partner by playing xi =
xj

c
. In the game induced

by
(
λ+

c , λ+
c

)
, a maximum-message equilibrium in which players renege downward and exert effort levels

equal to those in the two-sided case exists and remains unique. For pairs of levels of reneging aversion
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that induce a “two-message” equilibrium in the two-sided game, there may exist equilibria in which one

player promises maximum effort and his partner makes a promise of low effort and reneges upward (and

the equilibria with promises and effort levels equal to those in the two-sided case may or may not exist,

depending on the parameters of the game). While the player who makes a promise of ow effort undercuts

“perfectly” in such an equilibrium, the effort levels induced are so low that any player deviating from

λ+
c to a level of reneging aversion that induces them to renege upward in equilibrium achieves a lower

payoff than πc

(
λ+

c , λ+
c

)
. For this reason, when the cost of effort is low (i.e., when c < 1.22),

(
λ+

c , λ+
c

)

still induces the second-best equilibrium outcome.

6.3 Fixed Reneging Costs

In our baseline model we assumed that the reneging cost is proportional to the difference between the

promised and exerted effort. In this subsection, we examine a variant of the model in which an agent

incurs a fixed reneging cost whenever the exerted effort is different from the promised effort, regardless

of the size of the difference. That is, agents care about perfectly keeping their promises. Any reneging

on a promise, regardless of the size of the reneging, incurs the same intrinsic cost to the agent. In what

follows we show that our main results on the appealing properties of intermediate reneging aversion can

be extended to this setup.

Adaptations to the Model Fix c ∈ (1, 2). For each βi, βj ≥ 0 we define the partnership game with

fixed reneging costs βi, βj in the same way as the partnership game defined in Section 3, except that we

change the reneging cost term such that the subjective utility function of each player i is redefined as

follows:

Ui(xi, xj , si, c) = xi · xj − c · x2
i

2
− βi · 1si 6=xi

. (8)

We interpret βi ≥ 0 as the fixed reneging aversion of player i (i.e., the intrinsic cost he incurs by reneging

on a promise, regardless of the extent of the reneging).

Robustness of Main Results Observe that the payoff function defined in (8) satisfies all the as-

sumptions of Proposition 8, which implies that both agents essentially exert no effort in any pure

subgame-perfect equilibrium whenever the fixed reneging costs are either too low or too high.

Our next result shows that for any c ∈ (1, 2), there exists an intermediate level of fixed reneging

aversion, β+
c , that induces the players to promise and exert the maximal level of effort as part of a

trembling-hand perfect equilibrium. In particular, this equilibrium induces the first-best outcome (i.e.,

it yields the best feasible symmetric payoff, which maximises the sum of payoffs of the players).

Proposition 4. For any c ∈ (1, 2), there exists an intermediate level of reneging aversion β+
c , for

which there exists a trembling-hand perfect equilibrium of the partnership game with fixed reneging costs

βi = βj = β+
c , in which both agents promise and exert the maximal effort.

Sketch of proof. Let β+
c be the level of fixed reneging aversion, for which an agent who has promised

maximal effort, and believes his partner be exerting maximal effort, is indifferent between exerting

maximal effort (and keeping his promise) and breaking his promise and exerting an effort of 1
c

(which is
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the effort that maximises the agent’s payoff, conditional on breaking his promise). The definition of β+
c

implies that following a pair of maximal promises, exerting maximal effort by both players is a second-

stage equilibrium in the induced subgame. Next, consider a deviation of player i to promising effort

si < 1. The fact that agent i promises nonmaximal effort implies that he will exert nonmaximal effort in

any second-stage equilibrium of the induced subgame. One can show that this implies that player j (who

anticipates that her partner will exert nonmaximal effort) strictly prefers exerting nonmaximal effort

(and breaking her promise) to exerting maximal effort (and keeping her promise). Player i therefore

cannot successfully undercut player j at the promising stage, and so this deviation is not profitable.

Remark 4. It is difficult to adapt the evolutionary analysis of the baseline model to this setup, because

the partnership game with fixed reneging costs may admit multiple trembling-hand perfect equilibria,

which makes it difficult to define the payoffs in the induced population game, and to study evolutionary

stability of population states.

6.4 Partial Observability of Reneging Aversion

In this subsection we extend the model endogenising reneging aversion, to allow for cases in which players

sometimes do not observe their partner’s level of reneging aversion.

Population Game with Partial Observability In what follows, we describe the adaptations to the

model of the population game presented in Section 4 (and to its evolutionary interpretation presented

in Section 5) that are required to accommodate partial observability. Let q ∈ [0, 1] denote the fraction

of matches in which both players observe their partner’s level of reneging aversion. That is, we assume

that when the agents are randomly matched into pairs, in a share q of the pairs both agents observe

their partner’s level of reneging aversion, while in the remaining share 1 − q of the pairs the partners

are “strangers,” and neither of them observes any information about their partner’s reneging aversion.

One may interpret the observation of reneging aversion to be the result of obtaining information about

a partner’s past behaviour (either through direct observation or by communicating with agents who

interacted with the partner in the past). Under this interpretation, q may represent the likelihood that

agents who are matched together have prior information about each other.

For tractability, we make the simplifying assumption that the observations of the two matched agents

are perfectly correlated, i.e., that an agent observes his partner’s reneging aversion if and only if the

partner observes the agent’s reneging aversion (similar to the model of partial observability in Heifetz

et al., 2007a), while leaving the extension to more general observation structures for future research.

Consider a setup in which the incumbent agents have reneging aversion λ ∈ R
+, while occasionally

one of the agents is endowed with a different level of reneging aversion (henceforth, a mutant). Let

πno
c (λ′, λ|λ) be the material payoff of a mutant (he) with a reneging aversion of λ′ who faces an incumbent

partner (she) with a reneging aversion of λ who believes with probability one that her partner has a

reneging aversion of λ. Note that this belief is consistent with a situation in which a single mutant

experiments with a different level of reneging aversion within an infinite population of agents. The

partner plays her part of the unique perfect equilibrium of the game with observability, denoted by

Gc (λ, λ), while the mutant plays his best reply to her strategy.
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Given λ, λ′ ∈ R
+, let Gq

c(λ, λ′|λ) denote a partnership game between an incumbent with reneging

aversion λ and a mutant with reneging aversion λ′ in which both players observe their partner’s reneging

aversion with a probability of q, and neither of them observes their partner’s reneging aversion with the

remaining probability of 1 − q. In this latter case, both players believe with probability one that the

partner has the incumbents’ reneging aversion of λ. Let πq
c (λ′, λ|λ) be the mutant’s material payoff in

Gq
c(λ, λ′|λ):

πq
c

(
λ′, λ|λ) = q · πc

(
λ′, λ

)
+ (1 − q) · πno

c

(
λ′, λ|λ) .

Observe that when q = 1 the current model coincides with the perfect observability described in

Section 4, whereas when q = 0 it corresponds to the nonobservability of the partner’s reneging aversion.

We say that the level of reneging aversion λ ∈ R
+ is a symmetric pure (strict) Nash equilibrium

in the population game with partial observability level q if for each λ′ ∈ R
+, πq

c (λ′, λ|λ) ≤ πc (λ, λ)

(πq
c (λ′, λ|λ) < πc (λ, λ)).

As in the case of perfect observability discussed above, stable homogeneous population states corre-

spond to symmetric pure equilibria of the population game. Specifically:

1. Any symmetric strict equilibrium corresponds to a stable homogeneous population state in which

all the incumbents have the same level of reneging aversion.

2. Any homogeneous stable population state must be a symmetric Nash equilibrium.

Robustness of Theorem 2 The following result demonstrates the robustness of Theorem 2 to almost

perfect observability. It is immediate that the equilibrium outcome induced by
(
λ+

c , λ+
c

)
is still a second-

best symmetric outcome, that it converges to the first-best outcome, and that it is better than the

sequential-game equilibrium, for any q ∈ [0, 1] (as the payoff in a homogeneous population is independent

of q). In what follows we show that the remaining results of Theorem 2 hold also for any observability

level q < 1 that is sufficiently close to one. Formally:

Proposition 5. Fix c ∈ (1, 1.25). Let
(
λ+

c , λ+
c

)
be the highest symmetric pair of levels of reneging

aversion inducing a maximum-message equilibrium (as defined in Theorem 1). Then, there exists q̄ ∈
(0, 1) such that for each q ∈ [q̄, 1], the equilibrium induced by

(
λ+

c , λ+
c

)
has the following properties:

1. Second-best outcome: πc

(
λ+

c , λ+
c

)
> πc

(
λ

′
, λ′
)

and Uc

(
λ+

c , λ+
c

)
> Uc

(
λ

′
, λ′
)

for any λ′ 6= λ+
c .

2. Convergence to first-best outcome: limc→1 πc

(
λ+

c , λ+
c

)
= limc→1 Uc

(
λ+

c , λ+
c

)
= 1

2 .

3. Strict equilibrium of the population game: πc

(
λ+

c , λ+
c

)
> πq

c

(
λ′, λ+

c |λ+
c

)
for each λ′ 6= λ+

c .

4. Better outcome than the sequential-game equilibrium outcome: let πs
i be the payoff to player i in

the unique equilibrium of the game where efforts are chosen sequentially (and there are no reneging

costs). Then, if c < 1.22 then πc

(
λ+

c , λ+
c

)
> 1

2 ·
(
πs

i + πs
j

)
.

Nonrobustness of No-Effort Equilibrium We recover a central result from the evolutionary lite-

rature on the stability of payoff-maximising preferences under anonymity but show that it is not robust
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to any positive probability of correlated observation of preferences in our model. The following simple

result shows that when there is no observability (i.e., q = 0) no effort is exerted in any equilibrium of

the population game. Formally:

Proposition 6. Fix c ∈ (1, 1.25) and q = 0. In any symmetric pure Nash equilibrium of the population

game, all agents exert an effort of zero on the equilibrium path, and any agent i with λi > 0 sends a

message of zero.

This result is similar to those in the existing literature that show that when agents are matched

uniformly and anonymously (i.e., no observability or assortativity) and the selection dynamics are payoff

monotone, then players maximise their material payoffs in any stable population state (see, e.g., Ok &

Vega-Redondo, 2001; Dekel et al., 2007).11

Next we show that the no-effort equilibrium is not robust to the presence of any arbitrarily low level of

observability. In particular, we show that for any arbitrarily small q > 0, the agents must exert positive

effort on the equilibrium path, which implies that they make positive promises and have a positive level

of reneging aversion.

Proposition 7. Fix c ∈ (1, 1.25) and q > 0. Then, in any symmetric pure Nash equilibrium of the

population game, players exert positive levels of effort on the equilibrium path.

This result demonstrates that even with low levels of observability of reneging aversion, evolutionary

dynamics will take the population away from any cheap talk state in which players are unable to make

and keep promises.

6.5 General Utility Functions

In this subsection, we generalize the model to deal with general games with strategic complements and

show that if both agents have either too low or too high reneging costs then essentially no effort is

exerted by either player in the game.

Material Payoffs with Strategic Complements Let π(xi, xj) be the material payoff of an agent

exerting effort xi ∈ [0, 1], given that his partner exerts effort xj ∈ [0, 1]. Throughout this subsection we

assume that the material payoff function, π, is twice continuously differentiable, has positive externalities,

i.e., π(xi, xj) is strictly increasing in its second argument (
∂π(xi,xj)

∂xj
> 0), and has strategic complements,

i.e.,
∂2πi(xi,xj)

∂xi·∂xj
> 0 for each xi, xj ∈ [0, 1]. Recall (see, e.g., Milgrom & Roberts, 1990; Levin, 2003) that

a game with strategic complements admits a highest pure Nash equilibrium, which we denote by (x̄, x̄)

(i.e., x, x′ ≤ x̄ for each Nash equilibrium (x, x′)).

11A notable exception is Frenkel et al. (2018) who present a plausible model of evolutionary dynamics that are not
payoff-monotone due to sexual inheritance in a biological process, or due to combining traits from more than one mentor in
a social learning process. They show that in such processes, stable population states do not correspond to Nash equilibria
of the underlying material payoff game.
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General Reneging Costs We assume that each player i is endowed with a level of reneging aversion

λi. The players’ levels of reneging aversion are common knowledge. The subjective utility of each player

i is the sum of the material payoff and a term representing the psychological cost of breaking a promise

(reneging). Formally:

Ui(xi, xj , si, λi) = π(xi, xj) − λi · D (|si − xi|) .

Hence, reneging is defined as exerting a level of effort not equal to the message sent (i.e., the effort

promised) in the first stage. The “size” of player i’s reneging is defined as |si − xi|. The function

D : [0, 1] → R+ determines the shape of the reneging cost function. We assume that this function is

weakly increasing (i.e., x ≥ y implies D (x) ≥ D (y)), and that D (x) > D (0) for each x > 0. That is,

any difference between the promise and the exerted effort induces a positive intrinsic cost. To simplify

notation, we normalise D such that D (0) = 0.

Nonintermediate Costs Induce Zero Effort Our final result shows that agents do not exert effort

above x̄ in any pure subgame-perfect equilibrium of the partnership game whenever the reneging costs

are either too low or too high. The intuition is as follows:

1. Too low reneging costs induce too little commitment power. As a result, no promise to exert effort

greater than x̄ is sufficiently “credible” to induce effort from the agent’s partner and each agent will

undercut any level of their partner’s effort above x̄ in the second round, regardless of the promises

made. As a result, both agents exert effort of at most x̄.

2. Too high reneging costs leave too little flexibility for the second round, making agents unwilling to

promise effort. Specifically, each agent in the second round exerts a level of effort very close to his

own promise, regardless of his partner’s promise. This, in turn, implies that each agent undercuts

his partner’s promise in the first round, which implies that both agents promise effort of at most

x̄ in the first round and exert effort of at most x̄ in the second round.

Proposition 8. For any ǫ > 0, there exist λǫ > λǫ > 0, such that the effort level exerted by any agent

in any pure subgame-perfect equilibrium of the partnership game is at most x̄ + ǫ if either (1) λi, λj < λǫ

or (2) λi, λj > λǫ.

7 Conclusion

We have demonstrated that an intermediate level of reneging aversion is evolutionarily stable and has a

number of appealing properties: it induces a second-best outcome, which converges to the first-best in

the limit of small costs of exerting efforts, and it induces a socially better outcome than the Stackelberg-

leader setup. While our baseline model assumes a specific family of quadratic payoff functions, we have

shown in the previous section that our main results are robust to relaxations of the model’s assumptions

to allow for sequential communication, one-sided reneging costs, reneging costs that are discontinuous

around zero, partial observability, and non-quadratic utility.

These results demonstrate a strong tendency of evolution to select preferences for the partial keeping

of promises. In stable populations, we see players making slightly “overoptimistic” promises and, while
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these are not fully realised, the outcome is welfare-maximising among symmetric equilibria of the game.

This outcome stands in sharp contrast to the cheap talk prediction of no effort ever being exerted in

these partnerships.

We have here developed the first evolutionary analysis of a direct concern for keeping one’s word.

In doing so, we give an evolutionary explanation of several key observations in the related empirical

literature. In our model, a population of players with the stable level of reneging aversion will exert

no effort if they are not allowed to communicate before choosing their actions, but the opportunity

to send messages will lead to promises being made and higher levels of effort being exerted. This

replicates the finding of several experimental studies (Charness & Dufwenberg 2006; Vanberg 2008;

Ederer & Stremitzer 2017; Di Bartolomeo et al. 2018) that players are significantly more likely to make

“cooperative” choices in a partnership setting when they have the ability to communicate before playing,

and that players communicating promises are particularly likely to cooperate.12 Secondly, in the presence

of communication, the degree of cooperation in our model is both incomplete (some reneging always takes

place) and sensitive to the returns from the partnership. The four aforementioned studies all find that:

(1) not all pairs make choices that achieve the cooperative outcome and (2) most players keep promises

to play the cooperative or efficient action but some players break their promise. Additionally, Charness

& Dufwenberg (2006), who vary the value of the outside option from not engaging in the partnership,

find that players are less likely to promise and achieve cooperation when the return from not cooperating

is high. The setup in Ederer & Stremitzer (2017) allows agents to choose to “perform” a promised action

to varying degrees (where higher performance reduces their own payoff but increases the social payoff)

and they find substantial amounts of partial reneging, consistent with our modeling of convex reneging

costs.

There is in the experimental literature a debate over whether individuals are inclined to keep their

promises because they have an aversion to breaking their promises per se or because they are averse to

letting down others’ payoff expectations (so-called guilt aversion).13 We lay the theoretical foundations

for both of these accounts of promise-keeping. In our baseline model, the reneging costs can be interpreted

as a cost of promise-breaking per se. In the one-sided variant of Section 6.2, individuals suffer a cost

of reneging only if they exert less effort than promised, and hence cause their partner to have a lower

payoff than if they did not renege, and the cost they experience is proportional to the impact on their

partner’s payoff, such that it can be interpreted as guilt aversion. In both cases, we demonstrate the

evolutionary stability and efficiency of intermediate levels of reneging aversion.

This research lends support to the focus of experimental and theoretical research on direct costs of

lying or reneging on one’s word in communication settings. Future research could explore the robustness

of the stability of intermediate reneging aversion in alternative types of games and with more general

12The appendix of Charness & Dufwenberg (2006) provides the text of the messages sent by players and demonstrates
that they were indeed often used to make explicit promises about their own future action. Ederer & Stremitzer (2017) and
Di Bartolomeo et al. (2018) classify communication according to whether or not it constituted a promise and show that
promises are associated with higher total payoffs relative to general forms of communication.

13Ederer & Stremitzer (2017) and Di Bartolomeo et al. (2018) further distinguish between agents who care about letting
down others’ payoff expectations in general (guilt aversion) and agents who care about letting down others’ expectations
when their promise has caused those expectations to be raised (conditional guilt aversion). In our model, these notions
coincide as payoffs are a function solely of players’ actions.
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information structures about preferences. Finally, following Alger & Weibull (2013), we conjecture that

evolution under positive assortative matching could support the stability of non-cheap talk preferences

even when preferences are unobserved.
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Appendices (for Online Publication)

A Trembling-Hand Perfection

In this section we formally define the refinement of trembling-hand perfection in our setup. This refine-

ment requires that the equilibrium behaviour should be a limit of equilibria of perturbed environments

in which the players occasionally make mistakes (“tremble”), where the limit is taken when the error

probability converges to zero.

It turns out that none of our results depend on whether or not players occasionally tremble in the

second stage. Thus, in order to simplify the notation, we present a simpler definition in which players

only tremble in the first stage. Specifically, we study a one-shot game (the promise game), in which agents

simultaneously choose promises si, sj ∈ [0, 1]2 , and the utility of the players Ui (si, sj , c) is determined

by assuming that in the second stage the players must follow the unique second-stage Nash equilibrium

(as defined in Eq. (6)).

Originally, Selten (1975) defined the notion of trembling-hand perfection only for finite games. Be-

cause the set of promises in our setup is a continuum, we follow Simon & Stinchcombe’s (1995) adaptation

of trembling-hand perfection to infinite games (called strong perfect equilibrium in Simon & Stinchcombe,

Definition 1.2).

Fix c ∈ (1, 2). Let ∆fs ([0, 1]) be the set of (Borel) probability measures on [0, 1] assigning strictly

positive mass to every nonempty open subset of [0, 1]. Given a strategy σj ∈ ∆fs ([0, 1]), let BRc
i (σ−i) ⊆

[0, 1] be the set of distributions over promises (mixed promises) that are best replies to σ−i (where the

players are assumed to follow the unique Nash equilibrium when choosing their effort levels in the

second-stage of the game), i.e.,

BRc
i (σj) =

{
argmaxσi∈[0,1]

(
Ui (σi, σ−i, c) ≡

∫

[0,1]2
(σi (si) · σj (sj) · Ui (si, s−i, c)) dsidsj

)}
.

An ǫ-perfect equilibrium is a full-support strategy profile in which each player assigns a probability

of at least 1 − ǫ to best replies to the opponent’s strategy. Formally:

Definition 1. An ǫ-perfect equilibrium is a pair (σǫ
1, σǫ

2) ∈
(
∆fs ([0, 1])

)2
such that for each player

i ∈ {1, 2},

inf
σ̃i∈BRc

i (σǫ
j)

sup (|σǫ
i (B) − σ̃i (B) |B measurable|) < ǫ.

A perfect equilibrium is a limit of ǫ-perfect equilibria as ǫ converges to zero. Formally:

Definition 2. A pair of mixed promises (σ∗
1, σ∗

2) ∈ (∆ ([0, 1]))2 is a trembling-hand perfect equilibrium

if it is the weak limit as ǫn → 0 of a sequence of ǫn-perfect equilibria.

Simon & Stinchcombe (1995, Thm. 2.1) show that the set of perfect equilibria is a closed, nonempty

subset of the set of Nash equilibria of the promise game. The arguments presented in the proof of Lemma

1 below imply that all Nash equilibria (and hence all perfect equilibria) of the promise game are pure

strategy profiles.
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Finally, we say that a subgame-perfect equilibrium
(
s∗

i , s∗
j , x∗

i , x∗
j

)
of the partnership game is trembling-

hand perfect if the pair of promises
(
s∗

i , s∗
j

)
is a trembling-hand perfect equilibrium of the induced

one-shot promise game.

Remark 5. In our analysis we follow the main solution concept introduced by Simon & Stinchcombe

(1995), namely, strong perfect equilibrium. Simon & Stinchcombe, at the end of Section 1.1, argue that

this notion best captures the strategic structure of infinite games. Their alternative notion, weak perfect

equilibrium, replaces the strong metrics with the weak metrics in Definition 1. Weak perfection has no

bite in our setup: any subgame-perfect equilibrium of the partnership game satisfies weak perfection.

Specifically, consider the region Λc
max in which each player’s best reply is overcutting his partner’s

promise (i.e., BRc
i (sj) = min (ai · sj , 1) for some ai > 0). The intuitively unstable Nash equilibrium

of the promise game (0, 0) satisfies weak perfection: if the partner uses a totally mixed strategy with

expectation ǫ
ai

, then the message 0 is ǫ away from the unique best reply message ǫ, which is sufficient for

(0, 0) to be a weak trembling-hand perfect equilibrium. By contrast, the message 0 is never a best reply

to a totally mixed message sent by the partner, which implies that it is not a (strong) trembling-hand

perfect equilibrium.

B Further Discussion of Our Evolutionary Model

In this appendix we discuss two issues related to our evolutionary interpretation of the population game:

(1) mixed and asymmetric equilibria, and (2) refinements of continuous stability.

B.1 Mixed and Asymmetric Equilibria in the Population Game

Our formal results above focused primarily on symmetric pure equilibria. In what follows we comment

on the extension of our results to mixed and asymmetric equilibria.

Theorem 2 shows that
(
λ+

c , λ+
c

)
is the unique symmetric and pure equilibrium of the population

game. Numeric analysis suggests the following stronger result also holds. The population game does

not admit any other Nash equilibrium (i.e.,
(
λ+

c , λ+
c

)
is uniquely stable when we allow also for mixed

equilibria and asymmetric equilibria).14 We leave the analytic analysis of this conjecture (which, we

believe, holds also for partial observability with a sufficiently high q) for future research.

It is relatively straightforward to extend Propositions 6 and 7 to mixed equilibria and to asymmetric

equilibria. We refrain from doing so in order to simplify the notation of Section 6.4 (the formal definition

of symmetric equilibria requires a somewhat more complicated notation). The arguments presented in

the proofs of both propositions hold with minor changes also for mixed and asymmetric equilibria, and it

can be shown that: (1) if q = 0, then all incumbents exert zero effort in any equilibrium of the population

game, and (2) for any q > 0 in any equilibrium of the population game, a positive share of incumbent

agents exert positive effort with positive probability (and hence make positive promises, and are endowed

14The extension to asymmetric equilibria is especially interesting in setups in which the partnership game is played between
agents from two different populations of complementary skills, and a stable state of the two populations corresponds to a
possibly asymmetric Nash equilibrium of the two-population game (see the related setup studied in Ritzberger & Weibull,
1995).
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with positive reneging aversion). Thus, the endowment of players with positive levels of reneging aversion

in stable population states is a robust property that holds for any positive level of partial observability

(at least with the simplifying assumption of perfect correlation between the observations of the two

matched agents).

B.2 Refinements of Continuous Stability

By using strict equilibrium and Nash equilibrium as our solution concepts describing stable population

states, we implicitly assume that a stable population state has to be resistant only to perturbations in

which a few agents change their level of reneging aversion. Eshel (1983) argues that in some setups one

should also require stability against perturbations in which many (or all) agents slightly change their

reneging aversion. Eshel presents the notion of a continuous stable strategy to capture stability also

against the latter class of perturbations, and Oechssler & Riedel (2001) further refine it by presenting

the notion of evolutionary robustness, which requires stability against all small perturbations consistent

with the weak topology (see also the related notions of stability in Milchtaich, 2016). Population state λ∗

is evolutionarily robust if an agent with cost λ∗ outperforms other agents (on average) in any sufficiently

close perturbed population state µ ∈ ∆
(
R

+
)
, i.e.,

∑

λ∈∆(µ)

µ (λ) · π (λ∗, λ) >
∑

λ,λ′∈∆(µ)

µ (λ) · µ
(
λ′) · π

(
λ, λ′) . (9)

One can show that the population state
(
λ+

c , λ+
c

)
satisfies a slightly weaker version of the evolutionary

robustness refinement of (9). Specifically, it satisfies the weak inequality counterpart of Eq. (9) for any

sufficiently close µ ∈ ∆
(
R

+
)
, and it satisfies the strict inequality whenever µ assigns positive mass to

agents having a reneging aversion of at most λ+
c . The intuition is that agents with a slightly higher

reneging aversion (i.e., strictly above λ+
c ) play a no-effort equilibrium against all agents in the perturbed

state µ. Thus, they are trivially weakly outperformed by a level of aversion λ+
c , and strictly outperformed

as long as µ includes some agents with a reneging aversion of at most λ+
c (against whom an agent with

reneging aversion λ+
c achieves strictly positive payoffs). Finally, minor modifications to the arguments

presented in the proof of Theorem 2 show that agents with a reneging aversion strictly below λ+
c are

strictly outperformed by agents with a reneging aversion of λ+
c .

C Additional Figures

The appendix presents additional figures demonstrating: (1) how the value of λ+
c , level of effort, material

payoff, and subjective utility change as a function of the cost of effort c, and (2) the best-reply types

and the equilibrium types for four additional values of cost of effort c: 1.05, 1.15, 1.24, and 1.26.

C.1 Intermediate Reneging Aversion λ
+
c and Equilibrium Values as a Function of c

Figure 3 shows how the value of λ+
c = 1+2c−2c2

2(c−1) +
√

5−4c
2(c−1) depends on the cost of effort c.

Figure 4 shows the level of effort, xi, the material payoff of each player, πi, and the subjective

3



Figure 3: The Intermediate Reneging Aversion λ+
c as a Function of the Cost of Effort c

utility of each player, Ui, as a function of the cost of effort, c, in the unique equilibrium induced by the

partnership game in which both players have the intermediate level of reneging aversion λ+
c .

Figure 4: Equilibrium Effort, Material Payoff and Subjective Utility as a Function of the Cost of Effort

C.2 Best-Reply Types and the Unique Perfect Equilibrium Types

Figure 5 presents the best-reply types for player i in the reneging aversion parameter space for four

costs of effort c: 1.05, 1.15, 1.24, and 1.26. Figure 6 presents the unique perfect equilibrium types in

the reneging aversion parameter space for the same four costs of effort. (The values of 1.1 and 1.2 are

presented in Figures 1 and 2 in Section 3.)
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(a) c = 1.05 (Scale of each axis is [0,20]) (b) c = 1.15

(c) c = 1.24 (d) c = 1.26

Figure 5: Best-Reply Types for Player i in a Reneging Aversion Parameter Space. The
x axis in each figure presents the player’s level of reneging aversion (λi) and the y axis presents the
partner’s level of reneging aversion (λj). The dark area in each panel is the region in which player i’s
best reply is to undercut the partner, i.e., s∗

i (sj) < sj ; the light area in each panel is the region in
which player i’s best reply is to overcut the partner, i.e., s∗

i (sj) > sj . The dashed line in each panel

shows the value λj = λ̄c ≡ 2−c2

c−1 > 0 presented in Proposition 1, above which player i’s best reply is
to undercut his partner regardless of the value of λi.
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(a) c = 1.05 (scale of each axis is [0,20]) (b) c = 1.15

(c) c = 1.24 (d) c = 1.26

Figure 6: Unique Perfect Equilibrium Types in a Reneging Aversion Parameter Space.
The x axis in each panel presents the player’s level of reneging aversion (λi) and the y axis presents
the partner’s level of reneging aversion (λj). The dark areas in each panel are the regions in
which both agents exert no effort in equilibrium (“No Effort”). The light area in each panel is the
region in which both agents promise maximal efforts in the unique perfect equilibrium (“Maximum
Message”); this region is empty in the case of c = 1.26. The remaining areas are the regions in
which one of the agents sends a maximal promise (“2 Message”).
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D Proofs

D.1 Definitions of Notation Used in the Proofs

For ease of exposition, we define the following notation, used in several of the subsequent proofs:

Θi ≡ c(c + λj) +
1

(c + λi)(c + λj)
− 2, Ri ≡





λj

Θi
Θi > 0

∞ Θi ≤ 0.

Throughout the proofs we define the product of ∞ and 0 to be equal to ∞. That is, when Ri = ∞
and Rj = 0, we define Ri · Rj = ∞.

D.2 Proof of Proposition 1

This section consists of several lemmas used in the proof of Proposition 1, followed by the proof itself.

D.2.1 Lemma Characterising the Best-Reply Correspondence

Lemma 1. Let µσj
denote i’s expectation of sj in the first stage of the partnership game when player j

chooses a mixed strategy σj ∈ ∆ ([0, 1]) in the first stage (i.e., a distribution over the set of messages).

The best-reply correspondence in the first stage is15

s∗
i (µσj

, λi, λj , c) =





min{ λj

Θi
· µσj

, 1} Θi > 0 and λi > 0

1 [Θi < 0 or (Θi = 0 and λj · µσj
> 0)] and λi > 0

[0, 1] [Θi = 0 and λj · µσj
= 0] or λi = 0.

(10)

Proof. To derive player i’s first stage best reply, we substitute the equations for equilibrium second-stage

effort levels (Eq. (5)) into the utility function to obtain utility as a function of si and sj :

Ui(si, sj , c) =
[(c + λj)λisi + λjsj ][(c + λi)λjsj + λisi]

[(c + λi)(c + λj) − 1]2

− c[(c + λj)λisi + λjsj ]2

2[(c + λi)(c + λj) − 1]2
− λi

2

[
si − (c + λj)λisi + λjsj

(c + λi)(c + λj) − 1

]2 (11)

When λi = 0, player i’s choice of message has no bearing on his optimal effort choice or that of his

partner and thus does not impact his utility. Therefore, any si is a best reply to any µσj
(and indeed

any sj). When λi > 0, the first derivative of player i’s utility function with respect to si, taking µσj
as

15The choice of the best reply in the latter “knife-edge” case, in which Θi = λj · µσj
= 0, does not play any role in our

results. In all other cases, the unique best-reply function of both players always induces them to choose a pure message
and, as a result, both players choose pure messages in all equilibria. This justifies the focus on pure strategies in the main
text.
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given, is a linear function of si and µσj
:

∂Ui(si, µσj
, c)

∂si
=

λi(c + λi)(c + λj)

[(c + λi)(c + λj) − 1]2

([
2 − c(c + λj) − 1

(c + λi)(c + λj)

]
si + λj · µσj

)
(12)

≡ Υi ·
(
−Θisi + λj · µσj

)
(13)

When λi > 0, we have Υi > 0. Given that λj and µσj
are constrained to be (weakly) positive,

the second term inside the brackets in Eq. (13) is also (weakly) positive. Therefore, when Θi > 0

(and hence the term multiplying si in Eq. (13) is strictly negative), the utility function is everywhere

strictly concave in si, and the following level of si, which is positive and satisfies the first-order condition
∂Ui(si,µσj

,c)

∂si
= 0, is a necessary and sufficient condition for a global maximum of the utility function:

si(µσj
, λi, λj , c) =

λj

Θi
· µσj

(14)

Further, the strict concavity of the utility function in si means that when
λj

Θi
· µσj

> 1, the optimal

choice of si is 1.

When Θi < 0 (and hence the term in si in Eq. (13) is strictly positive), the utility function is

everywhere strictly increasing and convex in si. In this case, the optimal choice of si is 1, for all µσj
∈ S.

When Θi = 0, if λj > 0 and µσj
> 0, then again the utility function is everywhere strictly increasing and

convex in si and the optimal choice of si is 1. If Θi = 0 and either λj = 0 or µσj
= 0, then the utility

function is flat in si and any message is a best reply to the opponent’s message.

D.2.2 Conditions for the Existence of Each Best-Reply “Type”

Lemma 2. Θi ≤ 0 (which implies that player i’s best reply is to send the maximum message) if and

only if

λi ≥ 1

(c + λj)(2 − c(c + λj))
− c and λj <

2

c
− c.

Proof. By the definition of Θi:

Θi ≤ 0 ⇐⇒ c(c + λj) +
1

(c + λi)(c + λj)
− 2 ≤ 0

⇐⇒ c(c + λj)(c + λi) +
1

(c + λj)
− 2(c + λi) ≤ 0

⇐⇒ λi(c(c + λj) − 2) ≤ 2c − 1

c + λj
− c2(c + λj)

⇐⇒ λi(c(c + λj) − 2) ≤ − 1

c + λj
− c(c(c + λj) − 2),

where the second ⇐⇒ is obtained by multiplying by (c + λi) and the third and fourth by gathering

terms in λi and rearranging. To solve for λi we then divide by (c(c + λj) − 2). There are two solutions:

8



one for when (c(c + λj) − 2) is positive and one for when it is negative:

λi ≤ −1

(c + λj)[c(c + λj) − 2]
− c < 0, and c(c + λj) − 2 > 0, (15)

λi ≥ 1

(c + λj)[2 − c(c + λj)]
− c > 0, and c(c + λj) − 2 < 0. (16)

We can see that the solution given by Eq. (15) implies that λi < 0, which is ruled out by assumption.

Therefore, we have that Θi ≤ 0 ⇐⇒ Eq. (16) holds. Rearranging the second inequality in Eq. (16) to

give a condition in terms of λj yields the lemma.

Lemma 3.
λj

Θi
> 1 (which implies that player i sends a message that is some multiple (greater than 1)

of player j’s message) if and only if

1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c < λi

AND

((
λi <

1

(c + λj)(2 − c(c + λj))
− c

)
or

(
2

c
− c ≤ λj <

2 − c2

c − 1

))
.

Proof. By the definition of Θi,

λj

Θi
> 1 ⇐⇒ λj

c(c + λ−i) + 1
(c+λi)(c+λj) − 2

> 1. (17)

Since λj ≥ 0, this holds if and only if

λj > c(c + λj) +
1

(c + λi)(c + λj)
− 2 > 0. (18)

The second of these inequalities is the requirement that Θi > 0, which is the converse of the condition

derived for Lemma 2, and this second inequality holds when

λi <
1

(c + λj)[2 − c(c + λj)]
− c or λj ≥ 2

c
− c. (19)

The first inequality in Eq. (18) holds if and only if

λj >c(c + λj) +
1

(c + λi)(c + λj)
− 2

⇐⇒λj + 2 − c(c + λj) >
1

(c + λi)(c + λj)
⇐⇒ (c + λi) (λj + 2 − c(c + λj)) >

1

(c + λj)

⇐⇒λi(λj + 2 − c(c + λj)) > −c(λj + 2 − c(c + λj)) +
1

c + λj
. (20)

The second ⇐⇒ is obtained by multiplying by (c + λi), and the first and third by rearranging. To solve

for λi, we divide by (λj + 2 − c(c + λj)). There are two solutions: one for when (λj + 2 − c(c + λj)) is

9



positive and one for when it is negative:

λi >
1

(λj + 2 − c(c + λj)) (c + λj)
− c > 0 and λj + 2 − c(c + λj) > 0, (21)

λi <
1

(λj + 2 − c(c + λj)) (c + λj)
− c < 0 and λj + 2 − c(c + λj) < 0. (22)

We can see that the solution given by Eq. (22) implies that λi < 0. This is ruled out by assumption,

and so we have that the first inequality in Eq. (18) ⇐⇒ Eq. (21) holds. Rearranging the inequalities

in Eq. (21) yields

λi >
1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c > 0 and λj <
2 − c2

c − 1
. (23)

Combining the inequalities in Eqs. (23) and (19) and observing that 2
c

− c = 2−c2

c
<2−c2

c−1 , and that

therefore 0 < λi <
1

(c + λj)(2 − c(c + λj))
− c ⇒ λj < 2−c2

c−1 , yields the lemma.

Lemma 4. 0 <
λj

Θi
< 1 (which implies that player i sends a message that is some fraction (less than 1)

of player j’s message) if and only if

λi <
1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c or λj ≥ 2 − c2

c − 1
.

Proof. The inequality 0 <
λj

Θi
< 1 implies that Θi > 0 and so Eq. (19) must hold. We also must have

that
λj

Θi
< 1. In the proof of Lemma 3 it was demonstrated that

λj

Θi
> 1 ⇐⇒ Eq. (23) holds. By taking

the converse of Eq. (23) we have that
λj

Θi
< 1 if and only if

λi <
1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c or λj ≥ 2 − c2

c − 1
. (24)

From the proof of Lemma 3, we have that Θi > 0 if and only if

λi <
1

(c + λj)[2 − c(c + λj)]
− c or λj ≥ 2

c
− c. (25)

To see that Eq. (24) implies that Θi > 0, first note that as 2
c

− c = 2−c2

c
<2−c2

c−1 , the second inequality

in Eq. (24) implies the second inequality in Eq. (25). Next, we see that if λj ≥ 2
c

− c then we clearly

have the second inequality in Eq. (25). If instead λj < 2
c

− c then, given 2
c

− c = 2−c2

c
<2−c2

c−1 , Eq. (24)

10



implies that the first inequality in Eq. (24) holds, which in turn implies the first inequality in Eq. (25):

1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c <
1

(c + λj)[2 − c(c + λj)]
− c

⇐⇒ 1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

<
1

(c + λj)[2 − c(c + λj)]

⇐⇒ (c + λj)[2 − c(c + λj)] <λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

⇐⇒ 2c − c2 − λjc2 + 2λj − λjc2 − λ2
jc <λ2

j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

⇐⇒ 0 <λ2
j + λ2

jc.

Therefore, Θi > 0 is implied by
λj

Θi
< 1 and so we obtain the lemma.

D.2.3 Proof of Proposition 1

Proof. Let

g (λj , c) =
1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c.

We prove each point in turn:

1. Overcutting: Assume that λj < 2−c2

c−1 and λi > g (λj , c). Lemma 2 and Lemma 3 imply that either

Θi ≤ 0 or
λj

Θi
> 1. In both of these cases, Lemma 1 implies that s∗

i (sj |λi, λj , c) > sj , given that

0 < sj < 1, and this proves part 1.

2. Undercutting: Lemma 4 shows that if λj ≥ 2−c2

c−1 or λi ∈ (0, g (λj , c)), then 0 <
λj

Θi
< 1. Lemma 1

implies that if λi > 0 and 0 <
λj

Θi
< 1 and sj > 0, then s∗

i (sj |λi, λj , c) < sj for each sj > 0 and

λi > 0, which proves part 2.

D.3 Proof of Theorem 1

Proof. Observe that each partnership game is identified by a pair (λi, λj) and, by the definition of Ri (in

Appendix D.1), each partnership game (and each pair (λi, λj)) corresponds to a unique pair (Ri, Rj).

Let

Λc
0ef ≡

{
(λi, λj) ⊆ (0, ∞)2 : Ri · Rj < 1

}
,

Λc
max ≡

{
(λi, λj) ⊆ (0, ∞)2 : min (Ri, Rj) > 1

}
, and

Λc
2ms ≡

{
(λi, λj) ⊆ (0, ∞)2 : min (Ri, Rj) < 1 < Ri · Rj

}
.

Recall that when Ri = ∞ and Rj = 0, we define Ri · Rj to be equal to ∞. Note that these sets are

pairwise disjoint and symmetric, and that

Cl
(
Λc

0−eff

)
∪ Cl (Λc

max) ∪ Cl
(
Λc

2−msg

)
= [0, ∞)2.

We now prove each point of the theorem in turn.
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1. Region of maximum-message equilibrium Λc
max:

(a) Let (λi, λj) ∈ Λc
max and let

(
s∗

i , s∗
j , x∗

i , x∗
j

)
∈ PE (λi, λj , c) be a trembling-hand perfect equili-

brium. We have to prove that s∗
i = s∗

j = 1. Observe that (λi, λj) ∈ Λc
max =⇒ min (Ri, Rj) > 1.

Then, by the definition of Ri and Rj , either (i) Θi, Θj > 0, and
λj

Θi
, λi

Θj
> 1 , or (ii) Θi > 0 = Θj

and
λj

Θi
> 1, or (iii) Θi > 0 > Θj and

λj

Θi
> 1 , or (iv) Θi = Θj = 0, or (v) Θi = 0 > Θj , or (vi)

Θi, Θj < 0. In case (i), by the best-reply correspondence derived in Lemma 1, equilibrium mes-

sages in this class of games satisfy s∗
i = min{ λj

Θi
sj , 1} and s∗

j = min{ λi

Θj
si, 1}. These equations

are simultaneously satisfied if and only if s∗
i = s∗

j = 0 or s∗
i = s∗

j = 1. In case (ii), Lemma

1 implies that equilibrium messages satisfy s∗
i = min{ λi

Θj
si, 1} and s∗

j = 1 if µσj
> 0 and

s∗
j ∈ ∆(S) if µσj

= 0. These equations are simultaneously satisfied if and only if s∗
i = s∗

j = 1.

In case (iii), Lemma 1 implies that equilibrium messages satisfy s∗
i = min{ λi

Θj
si, 1} and s∗

j = 1.

These equations are simultaneously satisfied if and only if s∗
i = s∗

j = 1. In case (iv), Lemma

1 implies that equilibrium messages satisfy s∗
i = 1 if µσj

> 0 and s∗
i ∈ [0, 1] if µσj

= 0 and

s∗
j = 1 if µσi

> 0 and s∗
j ∈ [0, 1] if µσi

= 0. These equations are simultaneously satisfied if and

only if s∗
i = s∗

j = 0 or s∗
i = s∗

j = 1. In case (v), Lemma 1 implies that equilibrium messages

satisfy s∗
i = 1 if µσj

> 0 and s∗
j = 1. These equations are simultaneously satisfied if and only

if s∗
i = s∗

j = 1. In case (vi), Lemma 1 implies that equilibrium messages satisfy s∗
i = 1 and

s∗
j = 1.

This implies that in all six cases (i, ii, iii, iv, v, and vi) the strategy profile (1, 1, xe
1, xe

2) is

a subgame-perfect equilibrium. It is unique (and thus satisfies trembling-hand perfection) in

cases (ii), (iii), (v), and (vi). In cases (i) and (iv), the strategy profile (0, 0, xe
1, xe

2) is the

only additional subgame-perfect equilibrium. Finally, we have to show that the additional

equilibrium (0, 0, xe
1, xe

2) fails to satisfy trembling-hand perfection in cases (i) and (iv).

Assume to the contrary that (0, 0, xe
1, xe

2) satisfies trembling-hand perfection. This implies

that (0, 0) is the weak limit as ǫn → 0 of a sequence of ǫn-perfect equilibria
(
σn

i , σn
j

)
of the

promise game (defined in Appendix A). This implies, in particular, that for each ǫ > 0, there

exists an ǫ-perfect equilibrium (σi, σj) ∈ ∆fs ([0, 1]) 2 such that σi (1) , σj (1) < ǫ. We begin

by considering case (iv). The fact that σj has full support implies that µσj
> 0 and that

BRc
i (σj) = {1}. The definition of an ǫ-perfect equilibrium implies that σi (1) , σj (1) > 1 − ǫ,

and we get a contradiction for each ǫ < 0.5. We are left with case (i), in which Θi, Θj > 0,

and
λj

Θi
, λi

Θj
> 1, in which, in particular, Ri · Rj > 1. The fact that (0, 0) is the weak limit of a

sequence of ǫn-perfect equilibria
(
σn

i , σn
j

)
when ǫn → 0 implies that for each ǫ > 0, there ex-

ists an ǫ-perfect equilibrium (σi, σj) ∈
(
∆fs ([0, 1])

)2
such that σi

([
1

Ri
, 1
])

, σj

([
1

Ri
, 1
])

< ǫ.

The fact that σj has full support implies that µσj
> 0. Observe that BRc

i (σj) =
{

Ri · µσj

}
.

The fact that (σi, σj) is an ǫ-perfect equilibrium implies that σi

(
Ri · µσj

)
≥ 1 − ǫ, which

implies that µσi
≥ (1 − ǫ) · Ri · µσj

. The fact that (σi, σj) is an ǫ-perfect equilibrium implies

that σj (Rj · µσi
) ≥ 1 − ǫ, which implies that

µσj
≥ (1 − ǫ) · Rj · µσi

≥ (1 − ǫ)2 · Ri · Rj · µσj
,
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which yields the contradiction µσj
> µσj

for a sufficiently small ǫ that satisfies (1 − ǫ)2·Ri·Rj >

1.

(b) Next we prove that Λc
max is a convex set, which is nonempty iff c ∈ (1, 1.25). By the definition

of Ri, we recall that Ri > 1 if and only if (1) Θi ≤ 0 or (2) Θi > 0 and
λj

Θi
> 1. We can recall

from Lemma 2 that Θi ≤ 0 if and only if

λi ≥ 1

(c + λj)(2 − c(c + λj))
− c and λj <

2

c
− c.

We can recall from Lemma 3 that Θi > 0 and
λj

Θi
> 1 if and only if

1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c < λi

AND

((
λi <

1

(c + λj)(2 − c(c + λj))
− c

)
or

(
2

c
− c ≤ λj <

2 − c2

c − 1

))
.

Combining these conditions yields Ri > 1 if and only if

λi >
1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c and λj <
2 − c2

c − 1
. (26)

We will now show that the set of points that satisfy Eq. (26) is convex. First, observe that

the second derivative of the right-hand side of the first inequality of Eq. (26) (the lower bound

on λi) with respect to λj is

2[3c4 + (6λj − 3)c3 + (3λ2
j − 9λj − 5)c2 + 3λ2

j + 6λj + 4]

(λj + c)[2 − c2 − λj(c − 1)]
. (27)

The numerator of this expression is positive for all λj > 0 and16 c > 1 . This expression is

therefore positive if and only if the denominator is positive, which clearly holds if and only if

the expression in square brackets is positive:

2 − c2 − λj(c − 1) > 0 ⇐⇒ λj <
2 − c2

c − 1
.

This is the second inequality of Eq. (26). Therefore, the set of points that satisfy Eq. (26)

lies above a strictly convex function and is therefore a convex set. By the symmetry of the

conditions for player j, we have that the set of points such that Rj > 1 is also convex.

The intersection of two convex sets is a convex set. Therefore the set of points such that

min (Ri, Rj) > 1 (Λc
max) is convex.

Next, we show that Λc
max is nonempty iff c ∈ (1, 1.25). By the convexity and symmetry

of Λc
max, if this set is nonempty there must be a maximum and a minimum λ such that

(λ, λ) ∈ Cl (Λc
max). We now show that such maximum and minimum elements exist if and

16Eq. (27) and the conditions for the positive numerator are derived using Mathematica. The code is available in the
supplementary appendix of this paper.
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only if c < 1.25. Clearly, the maximum and minimum λ such that (λ, λ) ∈ Cl (Λc
max) are

the largest and smallest values of λ such that the weak counterpart of Eq. (26) holds when

λi = λj = λ. Given that Cl (Λc
max) is convex and closed, these maximum and minimum

values must obtain when at least one of the inequalities in Eq. (26) holds with equality. To

find the maximum and minimum values of λ that satisfy the first inequality in Eq. (26), we

solve the corresponding equation when λi = λj = λ. We then show that these are the largest

and smallest values satisfying both inequalities simultaneously. Imposing λi = λj = λ on the

first inequality in Eq. (26), we obtain

λ =
1

λ2(1 − c) + λ(2 − 2c2 + c) + c(2 − c2)
− c. (28)

Multiplying by λ2(1 − c) + λ(2 − 2c2 + c) + c(2 − c2) and rearranging yields

λ3
[
1 − c

]
+ λ2

[
2 + 2c − 3c2

]
+ λ

[
4c − 3c3 + c2

]
−
[
c2 − 1

]2

= 0. (29)

Eq. (29) has two solutions when λ is positive:

λ =
1 + 2c − 2c2

2(c − 1)
−

√
5 − 4c

2(c − 1)
≡ λ−

c (30)

λ =
1 + 2c − 2c2

2(c − 1)
+

√
5 − 4c

2(c − 1)
≡ λ+

c (31)

Clearly, these two solutions are defined if and only if c < 1.25 (and, thus, Λc
max = ∅ when

c ≥ 1.25). By inspection of Eq. (30) and Eq. (31), it is straightforward to see that for all

1 < c < 1.25, 0 < λ−
c < λ+

c < ∞ (and, in particular, that Λc
max 6= ∅ when c < 1.25).

(c) For each c ∈ (1, 1.25), there exists
(
λ+

c , λ+
c

) ∈ Cl (Λc
max) such that (λ, λ′) ∈ Λc

max ⇒ λ, λ′ <

λ+
c . Let λ−

c and λ+
c be defined as in Eq. (30) and Eq. (31) above. It is immediate from

the definition of λ+
c in (30) that

(
λ+

c , λ+
c

) ∈ Cl (Λc
max). The definition of λ−

c and λ+
c as the

minimum and maximum λ (respectively) such that (λ, λ) ∈ Cl(Λc
max) and the convexity of

Λc
max, further imply that (λ, λ) /∈ Cl(Λc

max) for each λ ∈ [0, λ−
c ) ∪ (λ+

c , ∞). Assume that

there exist λi, λj > λ+
c such that (λi, λj) ∈ Λc

max. By the symmetry of Λc
max, we have

that (λj , λi) ∈ Λc
max. Let λk =

λi+λj

2 > λ+
c . By the convexity of Λc

max, we have that

(λk, λk) ∈ Λc
max, which is a contradiction. Finally, we consider the case where λi ≤ λ+

c ≤ λj .

We have established in the proof of the previous part that the right-hand side of the first

inequality in Eq. (26) (which gives the condition for Ri > 1) is strictly convex and crosses

the 45 degree line for the second time at λi = λj = λ+
c , which implies that for all λj ≥ λ+

c

this function is increasing in λj and so Ri > 1 =⇒ λi > λ+
c , which is a contradiction. We

therefore have that λ+
c ≤ max (λi, λj) implies that (λi, λj) /∈ Λc

max and hence (λi, λj) ∈ Λc
max

implies that max (λi, λj) < λ+.

2. Region of two-message equilibrium Λc
2ms:
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(a) Let (λi, λj) ∈ Λc
2ms and

(
s∗

i , s∗
j , x∗

i , x∗
j

)
∈ PE (λi, λj , c). Assume that 0 < λj < λi. We have

to show that s∗
j < s∗

i = 1. We prove this claim in the following three steps:

i. We first show that Rj < ∞. Assume to the contrary that Rj = ∞. This implies that

Θj ≤ 0. The fact that λj < λi implies that Θi ≤ Θj ≤ 0, which, in turn, implies that

Ri = ∞, and we get a contradiction to min (Ri, Rj) < 1.

ii. Next, we show that Rj < 1 < Ri. Assume to the contrary that Ri < 1 < Rj < ∞.

Observe that

Ri − Rj =
λj

Θi
− λi

Θj
=

λjΘj − λiΘi

Θi · Θj
,

which implies that Ri < Rj iff

0 > λjΘj −λiΘi = λjc(c+λi)+
λj

(c + λi)(c + λj)
−2λj −λic(c+λj)− λi

(c + λi)(c + λj)
+2λi

= c (λj(c + λi) − λi(c + λj)) − λi − λj

(c + λi)(c + λj)
+ 2 (λi − λj)

= c ((λj − λi) c) − λi − λj

(c + λi)(c + λj)
+ 2 (λi − λj) = (λi − λj)

(
2 − c2 − 1

(c + λi)(c + λj)

)

= (λi − λj) (cλi − Θj) >= (λi − λj) (λi − Θj) > 0,

and we get a contradiction (where the last inequality is due to 1 < Rj < ∞ ⇒ λi > Θj).

iii. The previous step and the definition of Λc
2ms imply that Rj < 1 < Ri · Rj < Ri. By

the definition of Ri and Rj , either (I) Θi < 0, Θj > 0, and 0 < λi

Θj
< 1, or (II) Θi = 0,

Θj > 0, λj > 0, and λi

Θj
< 1, or (III) Θi > 0, Θj > 0, and

λj

Θi
· λi

Θj
> 1. In case (I)

Lemma 1 implies that equilibrium messages satisfy s∗
i = 1. Then by Lemma 1 s∗

j = λi

Θj
si,

and these equations are simultaneously satisfied if and only if 1 = s∗
i > s∗

j > 0. In case

(II), Lemma 1 implies that equilibrium messages satisfy s∗
i = 1 if µσj

> 0 and s∗
i ∈ [0, 1]

if µσj
= 0 and s∗

j = λi

Θj
si. These equations are simultaneously satisfied if and only if

1 = s∗
i > s∗

j > 0 or s∗
i = s∗

j = 0. In case (III), Lemma 1 implies that equilibrium messages

satisfy s∗
i = min{ λj

Θi
sj , 1} and s∗

j = λi

Θj
si. Given that

λj

Θi
· λi

Θj
> 1, these equations are

simultaneously satisfied if and only if 1 = s∗
i > s∗

j > 0 or s∗
i = s∗

j = 0. In all three cases

(I, II, and III), there exists a subgame-perfect equilibrium in which 1 = s∗
i > s∗

j > 0.

This is the unique subgame-perfect equilibrium in case (I) and therefore it must satisfy

trembling-hand perfection.

In cases (II) and (III) there exists also a subgame-perfect equilibrium in which s∗
i =

s∗
j = 0. The proof that this subgame-perfect equilibrium is not trembling-hand perfect

is essentially the same as in the analogous proof in the end of part (1-a) above (for the

region Λc
max) and is omitted for brevity.

(b) Λc
2ms is nonempty iff c ∈

(
1,

√
2
)
. Proposition 1 implies that if c ≥

√
2, then each agent

undercuts the partner’s promise whenever the partner’s promise is positive, which implies

that Λc
0ef = [0, ∞)2⇒Λc

2ms = ∅. The fact that Λc
2ms is nonempty if c ∈

(
1,

√
2
)

is implied by
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part (c) below (and the observation that c <
√

2 implies that 0 < 2
c

− c).

(c) Assume that c <
√

2 and 0 < λj < 2
c

− c. Let

g (λj , c) = max

{
1

(c + λj)(2 − c(c + λj))
− c,

2 − c2

c − 1

}
< ∞.

Assume that λi > g (λj , c). In what follows we show that (λi, λj) ∈ Λc
2ms. Recall that Lemma

2 says that if λj < 2
c

− c and λi >
1

(c + λj)(2 − c(c + λj))
− c, then Θi ≤ 0, and hence Ri = ∞

(using the first part of the maximum function defining g (λj , c)). Given that λi > 2−c2

c−1 > 0,

we have by Lemma 4 that 1 > Rj > 0 and so Ri · Rj > 1 > Rj and so (λi, λj) ∈ Λc
2−msg.

3. Region of no-effort equilibrium Λc
0ef :

(a) Let (λi, λj) ∈ Λc
0ef and

(
s∗

i , s∗
j , x∗

i , x∗
j

)
∈ PE (λi, λj , c). We have to show that s∗

i = s∗
j = 0

(which immediately implies that x∗
i (−→s ∗) = x∗

j (−→s ∗) = 0 because xe
i (0, 0) = xe

j (0, 0) = 0).

The fact that (λi, λj) ∈ Λc
0−eff implies that Ri · Rj < 1. By the definition of Ri and Rj , this

implies that Θi > 0 and Θj > 0 and
λj

Θi
· λi

Θj
< 1. By the best-reply correspondence derived

in Lemma 1, equilibrium messages in this class of games satisfy s∗
i =

λj

Θi
sj and s∗

j = λi

Θj
si.

Given that
λj

Θi
· λi

Θj
< 1, these equations are jointly satisfied if and only if s∗

i = s∗
j = 0, which is

therefore the unique subgame-perfect equilibrium pair of messages (and, thus, also the unique

trembling hand perfect equilibrium).

(b) We have to show that there exist 0 < λc < λc, such that (λi, λj) ∈ Λc
0ef if either 0 < λi, λj < λc

or λi, λj > λc. Let λc = 2−c2

c−1 and observe that Lemma 4 implies that if λi, λj > λc then

0 <
λj

Θi
< 1 and 0 < λi

Θj
< 1 and so Ri ·Rj < 1 and so (λi, λj) ∈ Λc

0ef . In particular, if c ≥
√

2,

then Λc
0ef = [0, ∞). We are left with showing that for each c ∈

(
1,

√
2
)
, there exists λc > 0,

such that (λi, λj) ∈ Λc
0ef for each λi, λj < λc. Recall, that Lemma 4 implies that if

λi <
1

λ2
j (1 − c) + λj(2 − 2c2 + c) + c(2 − c2)

− c (32)

and the expression holds also with i and j interchanged then Ri· Rj < 1 and (λi, λj) ∈ Λc
0−eff .

Consider the right-hand side. of Eq. (32) when λj = 0: h (c) =
1

c(2 − c2)
− c. Observe that

h (1) = 0, and that h is increasing in c for each c ∈
(
1,

√
2
)

as

h′ (c) = −
(
c
(
2 − c2

))−2 (
2 − c2

)
c (−2c) − 1 =

(
2 − c2

)
2c2

(c (2 − c2))2 − 1 =
2

(2 − c2)
− 1 >∀c∈(1,

√
2) 0.

This implies that h (c) > 0 for each c ∈
(
1,

√
2
)
, which implies by continuity, that there exists

a sufficiently small λc > 0, such that the right-hand side of Eq. (32) is larger than λc for any

λj < λc. This, in turn, implies that (λi, λj) ∈ Λc
0ef for each λi, λj < λc.
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D.4 Corollary of Theorem 1

We formalise one corollary of Theorem 1, which says that if players’ levels of reneging aversion are

identical and positive, they send the same message in the unique perfect equilibrium of the partnership

game. This corollary is used in some subsequent proofs.

Corollary 1. Let λi = λj > 0. Then the equality si = sj holds in the unique perfect equilibrium of the

partnership game.

Proof. For λi, λj > 0, Theorem 1 shows that the only cases (those in the Λc
2−msg) where si 6= sj are

those where Ri · Rj > 1 > Rj . This implies that Ri 6= Rj . By the definition of Θi, we see that

λi = λj ⇒ Θi = Θj . By the definition of Ri, we see that λi = λj and Θi = Θj together imply that

Ri = Rj . Therefore λi = λj ⇒ Ri = Rj , which implies that si = sj .

D.5 Corollary of Theorem 1 and Lemma 1

Theorem 1 characterises unique equilibria in all but a “measure-zero” set of points of the reneging aversion

space that correspond to the boundaries of the three sets defined in the theorem. We demonstrate that

at the two points (λ−
c , λ−

c ) and (λ+
c , λ+

c ) (where λ−
c = min{λ : (λ, λ) ∈ Cl(Λc

max)} and λ+
c = max{λ :

(λ, λ) ∈ Cl(Λc
max)}), any pair of identical messages sent by the players can be supported as a perfect

equilibrium when c < 1.25. This result is used in the results of Section 4. The other boundary points

do not play a role in our analysis and we refrain from analysing them for the sake of brevity.

Corollary 2. Let c ∈ (1, 1.25) and let λi = λj = λ. (1) If λ = λ−
c or λ = λ+

c then
(
(s, s′) ,

(
x∗

i (−→s ) , x∗
j (−→s )

))

is a perfect equilibrium of the partnership game if and only if s = s′. (2) If
(
1, x∗

i , 1, x∗
j

)
is a perfect

equilibrium of the partnership game then (λ, λ) ∈ Cl(Λc
max).

Proof. Part 1: The proof of part 1 (b) of Theorem 1 demonstrates that by the definitions λ−
c = min{λ :

(λ, λ) ∈ Cl(Λc
max)} and λ+

c = max{λ : (λ, λ) ∈ Cl(Λc
max)}, we have that both λi = λj = λ+

c and

λi = λj = λ−
c imply that Ri = Rj = 1. The best-reply correspondence derived in Lemma 1 then

implies that s∗
i = µσj

and s∗
j = µσi

, which are jointly satisfied if and only if s∗
i = s∗

j . In order to see

that
(
s∗

i , s∗
j , x∗

i , x∗
j

)
is a trembling-hand perfect equilibrium, observe that for each ǫ > 0 there exists an

ǫ-perfect equilibrium (σǫ, σǫ) ∈
(
∆fs ([0, 1])

)2
satisfying σǫ (s∗) = 1 − ǫ and µσǫ = s∗, which implies that

(s∗, s∗) is a trembling-hand perfect equilibrium of the promise game.

Part 2: This follows from the definitions of λ−
c and λ+

c (λ−
c = min{λ : (λ, λ) ∈ Cl(Λc

max)} and λ+
c =

max{λ : (λ, λ) ∈ Cl(Λc
max)}) and from the fact that Λc

max is a convex set (part 1 (b) of Theorem 1) and

so its closure is too.

D.6 Proof of Theorem 2

This section consists of several lemmas used in the proof of Theorem 2, followed by the proof itself.
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D.6.1 Lemma: Positive Payoff Always Possible in the Population Game

Lemma 5. Fix c ∈ (1, 1.25). For all λj ≥ 0 there exists λi ≥ 0 such that in any perfect equilibrium of

the partnership game (λi, λj), player i achieves a strictly positive material payoff, i.e., π(λi, λj) > 0.

Proof. Theorem 1 and the definition of Λc
max and Λc

2ms imply that if Ri = ∞, or Rj = ∞, or Ri ·Rj > 1,

then either si = 1 or sj = 1 in the unique equilibrium of the partnership game when λi, λj > 0 and in

any equilibrium when λi > λj = 0. We show that for all λj ≥ 0 there exists λi ≥ 0 such that at least

one of these conditions holds.

We first show that if λj > 81
140 then setting λi = 0 yields Θj < 0, which, by definition, implies

Rj = ∞. To see this, first use the definition of Θj to write the condition Θj < 0 when λi = 0, and

rearrange it to yield a lower bound on λj :

c2 +
1

(c + λj)c
− 2 < 0 ⇐⇒ 1

c + λj
< c

(
2 − c2

)
⇐⇒ 1

c (2 − c2)
− c < λj . (33)

The first derivative of this lower bound with respect to c is

3c2 − 2

(2c − c3)2
− 1. (34)

Eq. (34) is positive for c < 1.25. The lower bound on λj given by Eq. (33) therefore attains its

highest value when c = 1.25. This value is 81
140 ≈ 0.578. We therefore have that for all λj > 81

140 , λi = 0

implies that Θj < 0 and hence Rj = ∞.

We next show that for λj ≤ 81
140 , then for λi sufficiently large, either Θi ≤ 0 or Ri · Rj > 1. We take

the limit of Θi as λi → ∞ and find the conditions under which this is negative:

lim
λi→∞

Θi ≤ 0 ⇐⇒ c(c + λj) − 2 ≤ 0 ⇐⇒ λj ≤ 2

c
− c. (35)

Next, we check the condition for satisfying
λi·λj

Θj ·Θi
> 1, which implies that Ri · Rj > 1. We take the

limit of
λi·λj

Θi·Θj
as λi → ∞:

lim
λi→∞

λi · λj

Θi · Θj
= lim

λi→∞


 λi

c(c + λj) + 1
(c+λi)(c+λj) − 2

· λj

c(c + λi) + 1
(c+λi)(c+λj) − 2




= lim
λi→∞

[
λi

c(c + λj) − 2
· λj

c(c + λi) − 2

]
= lim

λi→∞

[
λi

c(c + λj) − 2
· λj

c · λi

]

= lim
λi→∞

[
λi · λj

c · λi (c(c + λj) − 2)

]
= lim

λi→∞

[
λj

c [c(c + λj) − 2]

]
=

λj

c [c(c + λj) − 2]
,

where the second equality is derived from neglecting the term 1
(c+λi)(c+λj) , which converges to zero as

λi → ∞, in each denominator, and the third equality is derived by neglecting the term c2 − 2, which is

negligible with respect to c · λi when taking the limit λi → ∞, in the second denominator.
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We then determine the conditions under which this limit is greater than 1:

λj

c [c(c + λj) − 2]
> 1 ⇐⇒ c(c + λj) − 2 > 0 and λj < c [c(c + λj) − 2]

⇐⇒ 2

c
− c < λj <

c

c2 − 1
− c. (36)

Observe that the first inequality in Eq. (36) holds precisely when Eq. (35) does not hold. The first

derivative of the right-hand side of the second inequality in Eq. (36) is c2−c4−2
(c2−1)2 , which is clearly negative

for all c > 1. When evaluated at c = 1.25, the right-hand side of the second inequality in Eq. (36) is
35
36 > 81

140 . Therefore, for all c < 1.25 and λj ≤ 81
140 , this second inequality holds. We therefore have that

for all c < 1.25 and λj ≤ 81
140 , either Θi ≤ 0 or

λi·λj

Θj ·Θi
> 1, when λi is sufficiently high. Therefore, for

all c < 1.25 and for all λj ≥ 0, there exists a λi ≥ 0 such that either si = 1 or sj = 1 in the unique

equilibrium of the game (λi, λj) (or in any equilibrium of the game when either λi = 0 or λj = 0). To

demonstrate that player i achieves positive payoff in equilibrium, we first note that in each of the above

cases, there is at least one player who both sends a positive message and (due to part 3 of Theorem 1)

has strictly positive reneging aversion, which by Eq. (5) implies that both players exert strictly positive

effort in equilibrium. Observe that a player can always guarantee a utility level of zero by playing

si = xi = 0. Further, observe that if λi > 0 then, by Lemma 1, the uniqueness of the best reply implies

that either Θi > 0 or [Θi < 0 or (Θi = 0 and λj · µσj
> 0)], and therefore the utility function is either

strictly concave or strictly increasing (respectively) in si. This implies that if λi > 0 and the best reply

s∗
i is positive (i.e., s∗

i > 0) and unique, then it must yield strictly positive utility for player i. In the

case where λi = 0, given that x∗
i > 0 and the strict concavity of the utility function in xi and the fact

that playing xi = 0 guarantees a utility level of zero, the utility of player i must be strictly positive in

equilibrium.

D.6.2 Lemma: Additional Properties of Λc
max

Lemma 6. Fix c ∈ (1, 1.24). (1) For all λ ∈ [λ−
c , λ+

c ), there exists δλ > 0 such that for all λ
′ ∈ (λ, λ+δλ),

(λ
′
, λ) ∈ Λc

max (2) For all λ
′ 6= λ+

c , (λ
′
, λ+

c ) /∈ Cl(Λc
max).

Proof. The proof of Theorem 1 yields Eq. (26) and the corresponding condition for player j, which

together define Λc
max. The strict convexity of the first inequality of Eq. (26) defining the boundary of

Λc
max, implies that for all λ ∈ (λ−

c , λ+
c ), (λ, λ) is not on the boundary of Λc

max and is therefore in the

interior of Λc
max (i.e., it is in Λc

max but not in Cl(Λc
max)) . By the definition of an interior point of a

convex set, for all λ ∈ (λ−
c , λ+

c ), there exists δλ > 0 such that for all λ
′ ∈ [λ, λ + δλ), (λ

′
, λ) ∈ Λc

max. We

next show that there exists δλ > 0 such that for all λ
′ ∈ (λ−

c , λ−
c + δλ), (λ

′
, λc) ∈ Λc

max. This will be the

case if and only if there is δλ > 0 such that Eq. (26) holds whenever λi = λ−
c and λj ∈ [λ−

c , λ−
c + δλ).

This will be the case if and only if Eq. (26) does not become “tighter” as λj increases, i.e., if and only

if the derivative of the right-hand side of the first inequality of Eq. (26) is less than or equal to zero

when evaluated at λj = λ−
c . The derivative of the right-hand side of the first inequality of Eq. (26) with

respect to λj is
c(2c + 2λj − 1) − 2(1 + λj)

(λj + c)2[λj(c − 1) + c2 − 2]2
. (37)
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When evaluated at λj = λ−
c , Eq. (37) is nonpositive if17 c >

√
5 − 1 ≈ 1.24. Therefore, we have that

for all λ ∈ [λ−
c , λ+

c ), there exists δλ > 0 such that for all λ
′ ∈ (λ, λ + δλ), (λ

′
, λ) ∈ Λc

max.

Point (2) is established by noting first that the right-hand side of the first inequality of Eq. (26) must

be increasing in λj when evaluated at λ+
c (and at any λ > λ+

c ) as this is the second point at which this

strictly convex function crosses the 45 degree line (the first being λ−
c ). Therefore, given that λ+

c satisfies

Eq. (28), an increase in λj with λi fixed at λ+
c means that the weak counterpart of Eq. (26) does not

hold. By symmetry, an increase in λi with λj fixed at λ+
c means that the equivalent condition on λj is

violated. Secondly, it is straightforward to see that given that λ+
c satisfies Eq. (28), when λj is fixed at

λ+
c , any λi < λ+

c must violate the weak counterpart of the first inequality in Eq. (26). Therefore, for

any λ
′ 6= λ+

c , min(Ri, Rj) < 1 and so (λ
′
, λ+

c ) /∈ Cl(Λc
max).

D.6.3 Proof of Theorem 2

Proof. We prove each part of the theorem in turn.

1. By the definition of Ri, λi = λj =⇒ Ri = Rj , which in turn implies that either max {Ri, Rj} < 1

and hence Ri· Rj < 1 and (λi, λj) ∈ Λc
0ef or min {Ri. Rj} ≥ 1 and hence (λi, λj) ∈ Cl(Λc

max).

Therefore, λi = λj =⇒ (λi, λj) ∈ Cl (Λc
max) ∪ Λc

0ef . For any λ such that (λ, λ) ∈ Λc
0ef , xi = xj = 0

and so π(λ, λ) = 0. To find the material payoff and subjective utility of each player when (λ, λ) ∈
Cl(Λc

max), we impose si = sj = 1 and λi = λj = λ on the equation for equilibrium effort (Eq. 5):

(c + λ)λ + λ

(c + λ)(c + λ) − 1
=

λ

c + λ − 1
, (38)

and then we substitute xi = xj =
λ

c + λ − 1
and si = sj = 1 on Eq. (1) and Eq. (2) to get the

equilibrium material payoff and subjective utility, respectively:

πc(λ, λ) =

(
λ

c + λ − 1

)2 (
1 − c

2

)
, Uc(λ, λ) =

(
λ

c + λ − 1

)2 (
1 − c

2

)
− λ

2

(
c − 1

c + λ − 1

)2

. (39)

It is immediate that the material payoff is increasing in λ, and, therefore, that the maximal

material payoff is obtained at
(
λ+

c , λ+
c

)
, which is the maximal symmetric point in Cl(Λc

max) (i.e.,

π
(
λ+

c , λ+
c

)
> π

(
λ

′
, λ′
)

for any λ′ 6= λ+
c ). We are left to show that the maximal subjective utility

is obtained at
(
λ+

c , λ+
c

)
. Taking the derivative of the subjective utility yields18:

∂Uc(λ, λ)

∂λ
=

(c − 1)[(3 − c)λ − (c − 1)2]

2(c + λ − 1)3
. (40)

Observe that the denominator is always positive and that the numerator is positive for each c ∈
(1, 3) and λ > (c−1)2

3−c
. Recall that the minimal value of λ in Λc

max is λ−
c ≡ 1+2c−2c2

2(c−1) −
√

5−4c
2(c−1) . Thus,

17This final result is obtained using Mathematica. The code is available in the supplementary appendix of this paper.
18This derivative is obtained using Mathematica. The code is available in the supplementary appendix of this paper.
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we are left with showing that

λ−
c ≡ 1 + 2c − 2c2

2(c − 1)
−

√
5 − 4c

2(c − 1)
>

(c − 1)2

3 − c
.

We use Mathematica to show that this inequality is satisfied for each c ∈ (1, 1.25), which completes

the proof.19

2. Recall that

λ+
c =

1 + 2c − 2c2

2(c − 1)
+

√
5 − 4c

2(c − 1)
=

1 + 2c(1 − c) +
√

5 − 4c

2(c − 1)
. (41)

Note that as c → 1, the numerator of Eq. (41) is increasing and the denominator of Eq. (41)

converges to zero. Hence limc→1 λ+
c = ∞. To find the limit of the players’ material payoff in the

game (λ+
c , λ+

c ) as c → 1, we substitute the expression for effort in a maximum-message equilibrium

(Eq. 38) into that for the payoffs in a symmetric equilibrium (Eq. (39) and Eq. (2)) when λ = λ+
c :

πc(λ
+
c , λ+

c ) =

(
λ+

c

c + λ+
c − 1

)2 (
1 − c

2

)
, Uc(λ

+
c , λ+

c ) =

(
λ+

c

c + λ+
c − 1

)2 (
1 − c

2

)
− λ

2

(
c − 1

c + λ − 1

)2

(42)

As c → 1, λ+
c → ∞ and therefore the limits of Eq. (42) are given by

lim
c→1

πc(λ
+
c , λ+

c ) = lim
c→1

(
λ+

c

c + λ+
c − 1

)2 (
1 − c

2

)
= (1 − 1

2
) =

1

2
. (43)

lim
c→1

Uc(λ
+
c , λ+

c ) = lim
c→1

((
λ+

c

c + λ+
c − 1

)
2
(

1 − c

2

)
− λ

2

(
c − 1

c + λ − 1

)2
)

=
1

2
− 0 =

1

2
. (44)

3. We first show that any unilateral deviation from the candidate equilibrium to a lower level of

reneging aversion yields a strictly lower payoff, i.e., πc

(
λ

′
, λ+

c

)
< πc(λ

+
c , λ+

c ) for λ
′ ∈ [0, λ+

c ) .

Point (2) of Lemma 6 implies that for all λ
′ ∈ [0, λ+

c ),
(
λ

′
, λ+

c

)
/∈ Cl(Λc

max). Therefore for all such

deviations,
(
λ

′
, λ+

c

)
∈ Cl

(
Λc

2−msg

)
or
(
λ

′
, λ+

c

)
∈ Cl

(
Λc

0ef

)
. Suppose first that

(
λ

′
, λ+

c

)
∈ Λc

0ef .

Then the effort levels of both players are zero and so we have πc

(
λ+

c , λ+
c

)
> πc(λ

′
, λ+

c ) = 0. Suppose

instead that
(
λ

′
, λ+

c

)
∈ Λc

2ms; the payoff to the deviating player is obtained by substituting the

expression for equilibrium effort (Eq. 5) into the expression for material payoff (Eq. 1) and

imposing the conditions si =
λj

Θi
and sj = 1 and λj = λ+

c (player i is therefore the deviating player

):

πc(λi, λ+
c ) =

[(c + λ+
c )λi

λj

Θi
+ λ+

c ][(c + λi)λ
+
c + λi

λj

Θi
]

[(c + λi)(c + λ+
c ) − 1]2

−
c[(c + λ+

c )λi
λj

Θi
+ λ+

c ]2

2[(c + λi)(c + λ+
c ) − 1]2

. (45)

The derivative of this expression with respect to λi is20

[λ+
c ]2(c(λ+

c + c) − 1)2

[1 + (c + λ+
c )(c + λi)(c(λ+

c + c) − 2)]3
. (46)

19The Mathematica code is available in the supplementary appendix of this paper.
20This derivative was calculated using Mathematica. The code is available in the supplementary appendix of this paper.
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Clearly, the numerator of Eq. (46) is always positive. A sufficient condition for the denominator,

and hence for the whole expression, to be strictly positive is that

c(λ+
c + c) − 2 > 0 ⇐⇒ λ+

c >
2

c
− c. (47)

This always holds as

λ+
c =

1 + 2c − 2c2

2(c − 1)
+

√
5 − 4c

2(c − 1)
>

2

c
− c

⇐⇒ 1 + 2c − 2c2 +
√

5 − 4c >
4(c − 1)

c
− 2c(c − 1)

⇐⇒ − 3 +
√

5 − 4c +
4

c
> 0

⇐⇒ c < 1.25,

where the final ⇐⇒ follows from the fact that
√

5 − 4c is positive and defined if and only

if c < 1.25 and 4
c

− 3 is positive for all c < 1.33. Therefore, π
(
λ+

c , λ+
c

)
> π(λ

′
, λ+

c ) for any

λ
′ ∈ [0, λ+

c ) such that
(
λ

′
, λ+

c

)
∈ Λc

2−msg. Finally, suppose that
(
λ

′
, λ+

c

)
∈ {Cl(Λ2ms) \ Λ2ms} =

{(
λi, λ+

c

) ⊆ [0, ∞)2 : Ri · Rj = 1 > Ri

}
. By Lemma 1 we have that any equilibrium will satisfy

si =
λj

Θi
sj and sj = min

{
λj

Θi
si, 1

}
. Substituting the expression for equilibrium effort (Eq. 5) into

the expression for material payoff (Eq. 1) and imposing this form of best reply yields utility to

player i (the deviating player):

πc(λi, λ+
c ) =


 [(c + λ+

c )λi
λj

Θi
+ λ+

c ][(c + λi)λ
+
c + λi

λj

Θi
]

[(c + λi)(c + λ+
c ) − 1]2

−
c[(c + λ+

c )λi
λj

Θi
+ λ+

c ]2

2[(c + λi)(c + λ+
c ) − 1]2


 s2

j . (48)

Clearly, the highest possible payoff to player i in any possible equilibrium is that where sj = 1.

In this case, the equilibrium payoff is of the same form as Eq. (45) and, by the above arguments,

it cannot represent a profitable deviation. We therefore have that π
(
λ

′
, λ+

c

)
< π(λ+

c , λ+
c ) for

λ
′ ∈ [0, λ+

c ). We now show that a unilateral deviation from the candidate equilibrium to a higher

reneging aversion yields a strictly lower payoff, i.e., π
(
λ

′
, λ+

c

)
< π(λ+

c , λ+
c ) for λ

′
> λ+

c . By Lemma

6, λ
′

> λ+
c implies that

(
λ

′
, λ+

c

)
/∈ Cl (Λc

max) . Suppose first that
(
λ

′
, λ+

c

)
∈ Λc

0ef . In this case,

the effort levels of both players are zero and so we have πc

(
λ+

c , λ+
c

)
> πc(λ

′
, λ+

c ) = 0. Suppose

instead that
(
λ

′
, λ+

c

)
∈ Λc

2−msg. In this case, the payoff to the deviating player is obtained by

substituting the expression for equilibrium effort (Eq. 5) into the expression for material payoff

(Eq. 1) and imposing the conditions si = 1 and sj = λi

Θj
and λj = λ+

c (player i is therefore the

deviating player):

πc(λi, λ+
c ) =

[(c + λ+
c )λi + λ+

c
λi

Θj
][(c + λi)λ

+
c

λi

Θj
+ λi]

[(c + λi)(c + λ+
c ) − 1]2

−
c[(c + λ+

c )λi + λ+
c

λi

Θj
]2

2[(c + λi)(c + λ+
c ) − 1]2

. (49)

In the supplementary appendix of this paper, we present the explicit formula for the deriva-

tive of Eq. (49) with respect to λi and the Mathematica code proving that this derivative is
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strictly negative for all λi > λ+
c . Hence, for any λi > λ+

c such that (λi, λ+
c ) ∈ Λc

2ms, we

have that πc

(
λi, λ+

c

)
< πc(λ

+
c , λ+

c ). Finally, suppose that
(
λ

′
, λ+

c

)
∈ {Cl(Λ2ms) \ Λ2ms} =

{(
λi, λ+

c

) ⊆ [0, ∞)2 : Ri · Rj = 1 > Rj

}
. By arguments analogous to the case where λi < λ+

c , we

have that the maximum possible payoff from deviating in this case is of the form given by Eq. (49)

and therefore not profitable. Hence for any λi > λ+
c , πc

(
λi, λ+

c

)
< πc(λ

+
c , λ+

c ).

Therefore, we have shown that any possible deviation from the pure strategy equilibrium (λ+
c , λ+

c )

yields the deviating player a strictly lower payoff and hence this equilibrium is strict.

4. In the sequential game (with no reneging costs) let player i make his effort choice first with

player j best-replying to this. Then, in equilibrium, xj = argmax
xj

{
xixj − c·x2

j

2

}
=

xj

c
and hence

xi = argmax
xi

{
x2

i

c
− c·x2

i

2

}
= argmax

xi

{
(2−c2)xi

2c

}
= 1, where the last equality follows from the fact

that c < 1.25. Therefore, in an equilibrium with sequential effort choices, xi = 1, xj = 1
c
, and the

mean payoff is 1
c

− c
4(1 + 1

c2 ) = 3−c2

4c
. The payoff to either player in the equilibrium induced by

(λ+
c , λ+

c ) is given by Eq. (42). We then have that

πc(λ
+
c , λ+

c ) >
1

2
·
(
πs

i + πs
j

)

⇐⇒[
λ+

c

c + λ+
c − 1

]2[1 − c

2
] >

3 − c2

4c

⇐⇒c < 1.22.

The final step is proven using Mathematica.21

5. Recall from part 1 that λi = λj =⇒ (λi, λj) ∈ Cl(Λc
max) ∪ Λc

0ef . We consider these two sets of

symmetric strategy profiles in turn and show that no candidate equilibria of the population game

survive other than (λ+
c , λ+

c ) when c ∈ (1, 1.24). For any λ such that the unique equilibrium in

the corresponding partnership game (λ, λ) ∈ Λ0ef , we have that π (λ, λ) = 0. Lemma 5 shows

that for c < 1.25 and for λ ≥ 0, there exists λ
′ ≥ 0 such that π

(
λ

′
, λ
)

> 0. Therefore, for all

λ such that π (λ, λ) = 0, (λ, λ) cannot be a Nash equilibrium of the population game. For any λ

such that (λ, λ) ∈ Cl(Λc
max), we say that such an equilibrium “admits an upward deviation within

Λc
max” if there exists δλ > 0 such that for all λ

′ ∈ (λ, λ + δλ), (λ
′
, λ) ∈ Λc

max . For all λ such that

(λ, λ) ∈ Cl(Λc
max), the equilibrium payoff to both players is obtained by substituting si = sj = 1

into Eq. (11):

πc(λi, λj) =
[(c + λj)λi + λj ][(c + λi)λj + λi]

[(c + λi)(c + λj) − 1]2
− c[(c + λj)λi + λj ]2

2[(c + λi)(c + λj) − 1]2
. (50)

The first derivative of this function with respect to λi is

(c − 1)(1 + c + λj)[λic
3 + 2c2λiλj + cλi(λ

2
j − λj − 2) − λj(1 + λi(2 + λj))]

[c2 − 1 + λiλj + c(λi + λj)]3
. (51)

21The code available in the supplementary appendix of this paper.
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Imposing the condition λi = λj = λ, we can simplify this expression to22

(c − 1)[c(c + λ − 1) − 1 − λ]λ

[c + 1 + λ][c − 1 + λ]3
. (52)

This expression is strictly positive if and only if

c(c + λ − 1) − 1 − λ > 0 ⇐⇒ λ <
1 + c − c2

c − 1
. (53)

Recall from Theorem 1 and Corollary 2 that a maximum-message equilibrium exists only if

min(Ri, Rj) ≥ 1 and that this requires that either Θi ≤ 0 or
λj

Θi
≥ 1 (and that the analogous

conditions hold for j). By Lemma 2 and Lemma 3 each of these conditions implies that

λj <
2 − c2

c − 1
. (54)

Therefore, when λi = λj = λ, we have that

λ <
2 − c2

c − 1
<

1 + c − c2

c − 1
, (55)

where the second inequality clearly follows when c > 1. We can see that this yields the second

inequality in Eq. (53) and hence Eq. (52) is always positive in a maximum-message equilibrium.

Therefore, for any λ such that (λ, λ) “admits an upward deviation within Λc
max,” there exists some

λ
′

> λ such that πc

(
λ

′
, λ
)

> πc(λ, λ) and hence no such strategy profile is a Nash equilibrium of

the population game. We have shown that the only potential symmetric pure Nash equilibria of

the population game are those that admit a maximum-message equilibrium and do not “admit an

upward deviation within Λc
max.” Lemma 6 implies that there is a unique pair (λ+

c , λ+
c ) that fulfills

these conditions when c ∈ (1, 1.24).

D.7 Proof of Proposition 2

Proof. We solve for the subgame-perfect equilibria of this game using backwards induction. Best replies

and equilibrium choices of effort in the last stage are the same function of prior-stage messages as in the

games with simultaneous communication and are given by Eq. (4) and Eq. (5). Utility as a function

of messages is therefore given by Eq. (6). We first note that Section 3.3 demonstrated that if Θi ≤ 0

then (other than in the “knife edge” case where Θk = 0 and λl · sl = 0 for k = i and l = j or for k = j

and l = i), regardless of player j’s choice of message, player i’s level of utility is always increasing in his

message, and his optimal choice is si = 1 for any message sent by j. In the “knife edge” cases where

Θi = 0 (i.e., where player i is the first player to make a promise) and Rj 6= 0 and λj 6= 0, then player j

will respond to any positive promise with sj = min{Rjsi, 1} > 0, meaning that i’s utility is convex and

22The derivative given by Eq. (51) and its simplification when λi = λj is obtained using Mathematica. The code available
in the supplementary appendix of this paper.

24



increasing in his message and he chooses si = 1. In the “knife edge” cases where Θj = 0 and Ri 6= 0,

player i knows that playing si > 0 will induce sj = 1. Given that playing si = min{Risj , 1} is a best

reply when taking sj = 1 as given in the simultaneous game, it must also be a best reply in the sequential

game. Therefore, if either Θi ≤ 0 or Θj ≤ 0 or both of these conditions hold, equilibrium messages and

effort levels will be the same under sequential communication as under simultaneous communication.23

In the case where Θi, Θj > 0, the second-stage best reply of player j (the second player to make

a promise) is derived in the same way as the first-stage best reply under simultaneous communication,

except that instead of the expectation of player i’s promise, we derive the best reply as a function

of his actual promise. From the analysis in Section 3.3 we therefore know that player j will choose

sj = min{Rjsi, 1}.

Next, we analyse the choice of player i taking j’s second-stage best reply function as given. First, we

show that when Θi, Θj > 0, there exists no equilibrium in which si ∈ (0, min{ 1
Rj

, 1}). Note that when

Θi, Θj > 0, then Rj < ∞ and so, for si ∈ (0, min{ 1
Rj

, 1}), inserting the best reply sj = min{Rjsi, 1} =

Rjsi into Eq. (5) and substituting this into player i’s utility function yields

Ui(si, c) =
[(c + λj)λisi + λjRjsi][(c + λi)λjRjsi + λisi]

[(c + λi)(c + λj) − 1]2

− c[(c + λj)λisi + λjRjsi]
2

2[(c + λi)(c + λj) − 1]2
− λi

2

[
si − (c + λj)λisi + λjRjsi

(c + λi)(c + λj) − 1

]2

=Ψ (λi, λj , c) s2
i .

(56)

Here, Ψ (λi, λj , c) is a function of the parameters λi, λj , c only. Therefore, if there exists s
′

i ∈
(0, min{ 1

Rj
, 1}) such that Ui(s

′

i, c) > 0, then Ui(si, c) < Ui(min{ 1
Rj

, 1}, c) for all si ∈ (0, min{ 1
Rj

, 1}).

Conversely, if there exists s
′

i ∈ (0, min{ 1
Rj

, 1}) such that Ui(s
′

i, c) < 0, then Ui(s
′

i, c) < Ui(0, c) for all

si ∈ (0, min{ 1
Rj

, 1}).

Consider first the case where Rj ≤ 1. The fact that there exists no equilibrium in which si ∈
(0, min{ 1

Rj
, 1}) implies that if Rj ≤ 1, then player i’s optimal choice is si = 1 if his utility following the

subsequent equilibrium play is positive (i.e., if Ψ > 0) and the optimal choice is si = 0 otherwise (as this

message guarantees a utility level of zero). We know from the analysis of simultaneous communication

that if RiRj ≥ 1 ≥ Rj , then there exists an equilibrium in which si = 1 and sj = Rj and hence

the utility of player i is positive in this case and in the corresponding candidate equilibrium under

sequential communication (as subsequent effort levels are identical following simultaneous or sequential

communication of the same pair of messages). Therefore if RiRj ≥ 1 ≥ Rj , then si = 1 is a unique best

reply and there is a unique equilibrium in which si = 1 and sj = Rj . This equilibrium under sequential

communication yields the same utility levels and payoffs to both players as that under simultaneous

communication. If RiRj < 1 then there exists either a unique equilibrium in which si = 1 and sj = Rj

or a unique equilibrium in which si = 0 and sj = 0. In the latter case, the utility levels and payoffs are

the same as under simultaneous communication. In the former case, they are strictly greater for both

23In the case where Θk = 0 and [λl = 0 or Rl = 0] for k = i or k = j, multiple equilibria are possible. Our results are
invariant to what is assumed about equilibrium selection in this case. For ease of exposition, we assume that players in this
case play si = 1 and sj = 0.
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players.

Consider next the case in which Rj > 1. We have thus far shown that i’s best reply is either 0 or

in [ 1
Rj

, 1]. We first consider the optimal choice of message from the interval [ 1
Rj

, 1]. For all si ∈ [ 1
Rj

, 1],

j’s best reply is fixed, sj = 1. Player i chooses his message taking j’s choice as given, which is the

same optimisation problem as under simultaneous communication. From Section 3.3 we know that i’s

best reply from this interval is therefore si = min
{

max{Ri,
1

Rj
}, 1
}

. From Section 3.3 we know that if

min (Ri, Rj) ≥ 1, then there exists an equilibrium under simultaneous communication in which si = sj =

1 and both players achieve positive utility. This implies that if Ri ≥ 1 (and hence min (Ri, Rj) ≥ 1) then

there is a unique subgame-perfect equilibrium under sequential communication in which si = sj = 1.

If Ri < 1 and RiRj ≥ 1 > Ri then i’s optimal choice is Ri so long as this yields positive utility. We

know from Section 3.3 that if RiRj ≥ 1 > Ri then there exists an equilibrium under simultaneous

communication in which si = Ri and sj = 1 and hence the same messages form part of the unique

subgame-perfect equilibrium with sequential communication. This equilibrium yields the same utility

levels and payoffs to both players as under simultaneous communication. If RiRj < 1 then Ri < 1
Rj

and

there exists either a unique equilibrium in which si = 1
Rj

and sj = 1 or a unique equilibrium in which

si = 0 and sj = 0. In the latter case, the utility levels and payoffs are the same as under simultaneous

communication. In the former case, they are strictly greater for both players.

We have therefore seen that if either (Θi ≤ 0 or Θj ≤ 0 [or both]) or (Θi > 0 and Θj > 0 and

RiRj ≥ 1), then there is a unique equilibrium in which (1) players’ payoffs are invariant to whether they

send their message first or second and hence to the method by which nature selects the first mover, and

(2) both players’ messages, efforts, and payoffs are the same as under simultaneous communication. If

Θi > 0 and Θj > 0 and RiRj < 1 and Rj < 1, then in equilibrium either (si = 1 and sj = Rj) or

(si = 0 and sj = 0). If Θi > 0 and Θj > 0 and Rj ≥ 1 > RiRj , then in equilibrium either (si = 1
Rj

and sj = 1) or (si = 0 and sj = 0); i.e., when Θi > 0 and Θj > 0 and RiRj < 1 we have that (1)

equilibrium messages, efforts and payoffs may depend on which player is selected to send their message

first, and (2) payoffs may be strictly greater under sequential communication than under simultaneous

communication.

We can now see that under sequential communication,
(
λ+

c , λ+
c

)
induces the same messages, effort

levels, and payoffs as under simultaneous communication (point 1 of the proposition) by noting that

in the partnership game induced by the pair
(
λ+

c , λ+
c

)
, by the definition of λ+

c we have min (Ri, Rj) ≥
1 =⇒ RiRj ≥ 1. We next establish that

(
λ+

c , λ+
c

)
remains a strict Nash equilibrium of the population

game (point 4 of the proposition). Consider a deviation to λ
′ 6= λ+

c . Recall from Lemma 6 that

λ
′ 6= λ+

c =⇒
(
λ

′
, λ+

c

)
/∈ Cl(Λmax) and hence min{Ri, Rj} < 1. First, consider a deviation to λ

′
< λ+

c .

We show that this implies that for player k, with λk = λ+
c , we have that Rk > 1 (with k = i or k = j,

depending on which player is selected to send his message first). To see this, observe that as established

in the proof of Theorem 2 (specifically in Eq. (27)), the set of points satisfying Eq. (26) is convex. If

we can establish that in the game induced by
(
0, λ+

c

)
we have Rk > 1, then for λ

′ ∈ [0, λ+
c ] we have

that in the game induced by
(
λ

′
, λ+

c

)
, Rk > 1. Reproducing Eq. (26) but imposing λi = λk = λ+

c and
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λj = λ
′

= 0, we have that Rk > 1 if

λ+
c >

1

(λ′)2(1 − c) + λ′(2 − 2c2 + c) + c(2 − c2)
− c and λ

′

<
2 − c2

c − 1

⇐⇒ λ+
c >

1

c(2 − c2)
− c and 0 <

2 − c2

c − 1

⇐⇒ 1 + 2c − 2c2

2(c − 1)
+

√
5 − 4c

2(c − 1)
>

1

c(2 − c2)
− c,

which holds for all c ∈ [1, 1.25] . Hence we have that Rk > 1. Given that min{Ri, Rj} < 1, we have

that either Ri > 1 > Rj or Rj > 1 > Ri. If Ri > 1 > Rj then as shown above either (1) the payoff in

equilibrium is the same as under simultaneous communication, or (2) there is an equilibrium in which

si = 1 and sj = Rj . If Rj > 1 > Ri then as shown above either (3) the payoff in equilibrium is zero

to both players, or (4) there is an equilibrium in which si = 1
Rj

and sj = 1. The proof of part 3 of

Theorem 2 shows that for any
(
λ

′
, λ+

c

)
such that λ

′
< λ+

c , πc

(
λ

′
, λ+

c

)
< πc

(
λ+

c , λ+
c

)
in the simultaneous

communication setup and therefore, in cases (1) and (3) any deviation yields a strictly lower payoff also

in the sequential setup. The proof of part 3 of Theorem 2 also shows that for any
(
λi, λ+

c

)
such that

λi ≤ λ+
c , if sj = 1 and si = Ri, then πc

(
λi, λ+

c

)
< πc

(
λ+

c , λ+
c

)
. Given that play following any given pair

of messages is the same in both the sequential and simultaneous setups, it is therefore the case that in

case (2) deviation also yields a strictly lower payoff. In case (4), the equilibrium payoff to player i is

given by substituting sj = 1, si = 1
Rj

, λi = λ
′
, and λj = λ+

c into the expressions for the second-stage

effort choices given by Eq. (5) and substituting the resulting expression into Eq. (1). Simplifying the

resulting expression yields 24

[(c(c + λ
′
) − 1][c − 3c

√
5 − 4c + c3(1 +

√
5 − 4c) + c2λ

′
(1 +

√
5 − 4c) − 2(2 + λ

′
+

√
5 − 4cλ

′
)]

2(1 +
√

5 − 4c)(c + λ′)2
. (57)

The payoff π
(
λ+

c , λ+
c

)
is obtained by substituting λi = λj = λ+

c and si = sj = 1 into Eq. (5) and

substituting the resulting expression into Eq. (1). Simplifying the resulting expression yields25

(c − 2)(1 +
√

5 − 4c − 2(c − 1)c)2

2(3 +
√

5 − 4c − 2c)2
. (58)

The value of Eq. (58) is strictly greater than that of Eq. (57) for all λ
′

< λ+
c for all26 c < 1.25. Therefore,

in all possible cases (1), (2), (3) and (4), if λk = λ+
c then a deviation by player l from λ+

c to λ
′

< λ+
c

yields a strictly lower payoff and hence for λ
′

< λ+
c , we have that π

(
λ

′
, λ+

c

)
< π

(
λ+

c , λ+
c

)
.

Next, consider a deviation to λl = λ
′

> λ+
c = λk. This implies that Rl > 1 as, given that the

pair
(
λ+

c , λ+
c

)
satisfies Eq. (26), if λl > λ+

c then the pair
(
λ

′

c, λ+
c

)
must also satisfy Eq. (26) with

l = i and k = j, as λi is increased while λj stays constant. Hence we have that Ri > 1 > Rj or

Rj > 1 > Ri (depending on whether player k or l is selected to play first), and again either (1) the

payoffs in equilibrium are the same as under simultaneous communication, or (2) there is an equilibrium

24This simplification was obtained using Mathematica. The code is available in the supplementary appendix of this paper.
25This simplification was obtained using Mathematica. The code is available in the supplementary appendix of this paper.
26This result is obtained using Mathematica. The code is available in the supplementary appendix of this paper.
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in which si = 1 and sj = Rj , or (3) the payoff in equilibrium is zero to both players, or (4) there is an

equilibrium in which si = 1
Rj

and sj = 1. Part 3 of Theorem 2 shows that for any
(
λ

′
, λ+

c

)
such that

λ
′

> λ+
c , it is the case that πc

(
λ

′
, λ+

c

)
< πc

(
λ+

c , λ+
c

)
in the simultaneous communication setup, and that

for λi > λ+
c and following messages of si = 1 and sj = Rj , the payoff to player i is strictly lower than

πc

(
λ+

c , λ+
c

)
. Therefore, in cases (1), (2), and (3), deviation to λ

′
> λ+

c leads to a strictly lower payoff.

In case (4), the equilibrium payoff to player j (the deviator) is given by substituting si = 1
Rj

and sj = 1

and λi = λ+
c into the expressions for the second-stage effort choices given by Eq. (5) and substituting

the resulting expression into Eq. (1). Simplifying the resulting expression yields27

√
5 − 4c + c − 2

2
+

(3 −
√

5 − 4c)(2λ
′
+ c) + 2(λ

′
)2

4(c + λ′)2
. (59)

The value of Eq. (58) is strictly greater than that of Eq. (59) for all λ
′

< λ+
c for all28 c < 1.25. Therefore

in all possible cases (1), (2), (3) and (4), if λk = λ+
c then deviation by player l from λ+

c to λ
′

< λ+
c yields

a strictly lower payoff and hence for λ
′ 6= λ+

c we have that πc

(
λ

′
, λ+

c

)
< πc

(
λ+

c , λ+
c

)
and

(
λ+

c , λ+
c

)
is a

strict equilibrium of the game with sequential communication.

That points 3 and 5 of Theorem 2 also hold in the sequential setup follows from the fact that

πc

(
λ+

c , λ+
c

)
is the same under both forms of communication (these results are points 3 and 5 of the

proposition).

Finally, we prove that if c < 1.18, then πc

(
λ+

c , λ+
c

)
> πc

(
λ

′
, λ

′
)

and Uc

(
λ+

c , λ+
c

)
> Uc

(
λ

′
, λ

′
)

for

any λ′ 6= λ+
c (point 2 of the theorem). If λi = λj = λ

′
, this implies min{Ri, Rj} ≥ 1 or Ri · Rj < 1. In

the former case, material payoffs and subjective utilities are the same as in the game with simultaneous

communication, which by point 1 of Theorem 2 are less than π
(
λ+

c , λ+
c

)
. In the latter case, either the

effort choices are the same as in the game with simultaneous communication (and both players’ material

payoffs and subjective utilities are zero and therefore less than πc

(
λ+

c , λ+
c

)
and Uc

(
λ+

c , λ+
c

)
, respectively)

or there is an equilibrium in which si = 1 and sj = Rj . In the latter of these two cases, material payoffs

to players i and j can be obtained by substituting λi = λj = λ
′

and si = 1 and sj = Rj into Eq. (5) and

substituting the resulting expression into Eq. (1) and the corresponding equation for player j. Letting

πi

(
λ

′
, λ

′
)

denote the payoff to the player selected to send his message first, we have that

πi

(
λ

′

, λ
′
)

=
(λ

′
)2(c + λ

′
)[1 − c(c + λ

′
)][2 + (c + λ

′
)[−2λ

′
+ c(c2 + cλ

′ − 3)]]

2[1 + (c + λ′)2(−2 + c(c + λ′))]2
.

Player j’s payoff is

πj

(
λ

′

, λ
′
)

=
(λ

′
)2(c + λ

′ − 1)(1 + c + λ
′
)[c(c + λ

′ − 1)(1 + c + λ
′
) − 2λ

′
]

2[1 + (c + λ′)2(−2 + c(c + λ′))]2
.

By using Mathematica29 we have verified that for all c < 1.18,
πi

(
λ

′
,λ

′
)

+πj

(
λ

′
,λ

′
)

2 = π
(
λ

′
, λ

′
)

<

27This simplification was obtained using Mathematica. The code is available in the supplementary appendix of this paper.
28This result is obtained using Mathematica. The code is available in the supplementary appendix of this paper.
29The code is available in the supplementary appendix of this paper.
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π
(
λ+

c , λ+
c

)
; i.e., the average payoff to the two players in any candidate equilibrium in which λi = λj = λ

′

and Ri · Rj < 1 and si = 1 and sj = Rj is strictly less than π
(
λ+

c , λ+
c

)
. We derive the analogous ex-

pressions for Ui

(
λ

′
, λ

′
)

and Uj

(
λ

′
, λ

′
)

in the supplementary Mathematica appendix and we show there

that for all c < 1.18,
Ui

(
λ

′
,λ

′
)

+Uj

(
λ

′
,λ

′
)

2 = Uc

(
λ

′
, λ

′
)

< πc

(
λ+

c , λ+
c

)
, which completes the proof.

D.8 Proof of Proposition 3

Proof. In the exposition of this proof, let π1
c (λi, λj) denote the payoff to player i in the unique equilibrium

of the partnership game with one-sided reneging costs (in cases where there are multiple equilibria

that may be selected with positive probability by the equilibrium selection function, π1
c (λi, λj) denotes

the expected payoff) and use πc(λi, λj) to denote the payoff in the corresponding two-sided case. We

first derive the second-stage best-reply function under one-sided reneging costs. Individuals have an

expectation of their partner’s effort choice, denoted by µχj
. Their expected utility function is

Ui(xi, µχj
, si, c) = xiµχj

− cx2
i

2
− 1si>xi

λi

2
(si − xi)

2. (60)

Suppose first that si ≤ µχj

c
. As the sum of the first two terms of the expected utility function, xiµχj

− cx2
i

2 ,

is maximised when xi =
µχj

c
and the intrinsic cost term, 1si>xi

λi

2 (si − xi)
2, is minimised for any xi > si,

we have that the best reply is xi =
µχj

c
. Suppose instead that si >

µχj

c
. There is no intrinsic cost from

playing xi > si but, due to the concavity of utility in xi, there is a loss induced to the material payoff

and so xi = si dominates all xi > si. When a player optimises over xi ∈ [0, si], his optimal choice is

characterised by the same first-order condition and so we have the same best-reply function as in the

case of two-sided reneging costs (given by Eq. (4)). Players therefore always choose pure strategies. The

second-stage best-reply function is therefore:

x∗
i (xj , si, sj , λi, λj , c) =





xj

c
if si ≤ xj

c

xj + λisi

c + λi
if si >

xj

c

. (61)

For expositional convenience and without loss of generality, in writing this best-reply function we have

imposed that players choose pure strategies. We can deduce from the best-reply function the following

facts. (1) In any equilibrium either si > xi or sj > xj i.e., at most one player reneges upwards in

equilibrium. To see why (1) is true, suppose that si ≤ xi and sj ≤ xj . If, for some i, si >
xj

c
, then

x∗
i =

xj + λisi

c + λi
<

c· si + λisi

c + λi
= si which is a contradiction. If instead si ≤ xj

c
and sj ≤ xi

c
, then

xi =
xj

c
> xj and xj = xi

c
> xi, which is also a contradiction. (2) By comparing the best-reply function

to Eq. (4), we see that in any equilibrium in which both players renege downwards, effort choices are the

same function of the player’s message and the opponent’s effort choice as in the model with two-sided

reneging costs and hence equilibrium effort choices when both players renege downwards are the same

function of first-stage messages as in the two-sided model. (3) In any equilibrium in which a player, i,

reneges upwards, we have that si < xi =
xj

c
< xj =

xi + λjsj

c + λj
< sj , which implies the following effort
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choices in equilibrium:

xe
i (xj , si, sj , λi, λj , c) =

λj

c2 + cλj − 1
sj ≡ αisj (62)

xe
j(xi, si, sj , λi, λj , c) =

λj

c + λj − 1
c

sj ≡ cαisj . (63)

Note that αi < 1. Therefore, a pair of first-stage messages (si, sj) induce a second-stage equilibrium in

which one player, i, reneges upward only if si ≤ αisj . In what follows we show that for any (λi, λj),

αi < Ri. Either Θi ≤ 0, and so by definition Ri = ∞ > 1 > αi, or Θi > 0, in which case

αi < Ri

⇐⇒αi <
λj

Θi

⇐⇒ λj

c2 + cλj − 1
<

λj

c(c + λj) + 1
(c+λi)(c+λj) − 2

⇐⇒c(c + λj) +
1

(c + λi)(c + λj)
− 2 < c2 + cλj − 1

⇐⇒c2 + cλj +
1

(c + λi)(c + λj)
− 2 < c2 + cλj − 1

⇐⇒ 1

(c + λi)(c + λj)
< 1, (64)

which always holds as c > 1.

We can now show that for any (λi, λj) the only candidate equilibrium in which both players renege

downward induces the same effort levels as in the unique equilibrium with two-sided reneging costs.

Consider a candidate equilibrium in which both players renege downward, i.e., αisj < si and αjsi < sj .

This implies that si ∈ (αisj , min{ sj

αj
, 1}] and sj ∈ (αjsi, min{ si

αi
, 1}]. Lemma 1 implies that in the

two-sided game, conditional on reneging downward, each player i’s best reply is si = min{Risj , 1}.

Given that for both players, i, Risj > αisj and αjsi < 1, their optimal choice of message in the game

with one-sided reneging costs, conditional on reneging downward, must satisfy s∗
i = min{Risj ,

sj

αj
, 1}. If

min{Ri, Rj} > 1 then this implies s∗
i > sj or s∗

i = 1 for both players i, and this is jointly satisfied only

if s∗
i = s∗

j = 1, which is the same choice of messages as in the corresponding game with two-sided costs.

If Ri · Rj > 1 > Rj , then we have that s∗
j = Rjsi. Rearranging s∗

j = Rjsi we obtain

si =
sj

Rj
<

sj

αj
(65)

and

si =
sj

Rj
<

sj

Rj
Ri · Rj = Risj , (66)

where the inequality in Eq. (66) follows given that Ri ·Rj > 1. Eq. (65) and Eq. (66) are consistent with

i’s optimal choice only if s∗
i = 1. We therefore have that if Ri · Rj > 1 > Rj then s∗

i = 1 > Rjsi = s∗
j ,

which implies the same messages and effort choices as in the game with two-sided reneging costs. If
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Ri · Rj = 1, a continuum of candidate equilibria survive in which messages satisfy s∗
i = s∗

j and effort

levels correspond to those in the equilibria of the game with two-sided reneging costs. In the case where

Ri = Rj = 1 we make the assumption, made also in the model with two-sided costs, that the equilibrium

selected is that in which si = sj = 1. Finally, consider the case where Ri · Rj < 1. Assume without

loss of generality that Ri < 1. Given that Ri > αi for both players i, we have that s∗
i = Risj and

s∗
j = min{Rjsi, 1}. Suppose that s∗

j = 1; then s∗
i = Ri and s∗

j = Ri · Rj < 1, which is a contradiction.

Suppose instead that s∗
j = Rjsi < 1; then s∗

i = Risj = Ri · Rj · si < si, which is a contradiction.

Therefore, the only equilibrium candidate in which players renege (weakly) downward is that where

si = sj = xi = xj = 0; i.e., the messages and effort levels are the same as in the unique equilibrium of

the game with two-sided costs. We have therefore seen that in all possible cases, the messages and effort

choices in the unique candidate equilibrium where both players renege downwards are the same as those

in the unique equilibrium of the corresponding game with two-sided reneging costs.

We next show that for any (λi, λj) there are two candidate continua of equilibria (one for each

player), where the effort choices are the same within each continuum, and one player reneges upwards.

Suppose that there is an equilibrium in which player i reneges upward and sj < 1. Player j must

achieve positive utility in equilibrium (otherwise he could do better by playing sj = xj = 0). Since both

players’ effort choices are linear functions of sj , for choices of message that satisfy si ≤ αisj , substituting

these linear functions into the utility function implies that j’s utility is a linear function of s2
j whenever

si ≤ αisj . This implies that deviating to sj = 1 yields higher utility for player j. Thus, we are left

with two candidate continua of equilibria in which one player reneges upward. These are strategies that

satisfy (for each player i) si ≤ αisj = αi, with second-stage best replies as given in Eq. (62) and Eq.

(63). Note that the effort levels of the player in any of these candidate equilibria are independent of si

(conditional on its being less than αi) and, therefore, they are the same in all candidate equilibria in the

same continuum. Note by comparing to Eq. (5) that the effort levels of both players are the same as in

all equilibria of the partnership game with two-sided reneging costs where λi = 0.

We now analyse the game with levels of reneging aversion (λ+
c , λ+

c ) and show that there is a unique

equilibrium in which the messages and effort levels are the same as in the two-sided reneging cost game.

We know that the only candidate equilibrium in which both players renege downward must involve the

same choice of messages and effort levels as in the two-sided game. This candidate equilibrium is the

one where si = sj = 1. We now show that this candidate equilibrium is a subgame-perfect equilibrium

by showing that neither player would wish to deviate to any message that would induce them to renege

upwards in the second stage (i.e., a player, i, would not want to deviate to si ≤ αisj). We obtain the

utility of player i as a function of c, in the candidate equilibrium by substituting λi = λj = λ+
c and

si = sj = 1 and the equation for second-stage effort levels as a function of first-stage messages (Eq. (5))

into the utility function. Simplifying the resulting expression yields30

Ui(c) =
c(

√
5 − 4c − 1) + 2

4
. (67)

We obtain the utility of player i as a function of c in the case where he deviates to si < αi by substituting

30This simplification was obtained using Mathematica. Code available in the supplementary appendix accompanying this
paper.
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sj = 1 and the equations for second-stage effort levels as a function of sj (Eq. (62) and Eq. (63)) into

the utility function. Simplifying the resulting expression yields31

Ui(c) =
c(

√
5 − 4c − 2c + 3)

4
. (68)

Therefore, the deviation is not profitable if

c(
√

5 − 4c − 1) + 2

4
>

c(
√

5 − 4c − 2c + 3)

4

⇐⇒2 − c > 3c − 2c2

⇐⇒2 + 2c2 > 4c (69)

⇐⇒1 + c2 > 2c. (70)

This holds for all c ∈ (1, 1.25), and thus with reneging aversion (λ+
c , λ+

c ) there exists a subgame-perfect

equilibrium with one-sided reneging costs in which si = sj = 1 and si > xi and sj > xj ; i.e., there exists

an equilibrium with messages and effort levels that are the same as those in the standard game with

two-sided costs. The foregoing reasoning also implies that none of the candidate equilibria in which one

player reneges upward are subgame-perfect equilibria. To see this, note first that, for any candidate

equilibrium with (si, sj) such that si < αisj < sj ∈ (0, 1], the utility is equal to the expression in Eq.

(68) multiplied by s2
j . Note also that utility from deviating to si = sj is equal to the expression in Eq.

(67) multiplied by s2
j . Therefore, player i will deviate from such an equilibrium. Therefore the subgame-

perfect equilibrium with levels of reneging aversion (λ+
c , λ+

c ) is unique and is such that si = sj = 1 and

si > xi and sj > xj and the material payoffs are the same as in the standard game with two-sided

reneging costs and hence π1
c (λ+

c , λ+
c ) = πc(λ

+
c , λ+

c ). This completes the proof of parts 1, 3, and 5 of the

proposition.

We now demonstrate that (λ+
c , λ+

c ) remains a strict Nash equilibrium of the population game under

one-sided reneging costs (part 4 of the proposition). We established that for any (λ
′
, λ+

c ) with λ
′ 6=

λ+
c the only possible equilibria of the one-sided partnership game involve either both players reneging

downward, or exactly one player reneging upward. In the former case, the effort levels are the same as

in the corresponding equilibria of the two-sided game; thus, since π(λ+
c , λ+

c ) > π(λ
′
, λ+

c ), we have that

π1
c (λ+

c , λ+
c ) > π1

c (λ
′
, λ+

c ). In the case where one player, i, reneges upward, the equilibrium effort levels

are of the form given by Eq. (62) and Eq. (63). Note that if any candidate equilibrium yields positive

payoff to a player then the highest possible payoff for that player is obtained in the candidate equilibrium

where sj = 1. By inspection of Eq. (62) and Eq. (63) we see that the equilibrium efforts when sj = 1

are the same as those in the equilibrium of the two-sided game where λi = 0; i.e., if (λi, λj) induces an

equilibrium in which player i reneges upward, then π1
c (λi, λj) = πc(0, λj). We know from Theorem 2

that πc(λ
+
c , λ+

c ) > πc(0, λ+
c ). Therefore, for any (λi, λ+

c ) that induces an equilibrium in which player i

reneges upward in the one-sided game, we have that π1
c (λi, λ+

c ) = πc(0, λ+
c ) < πc(λ

+
c , λ+

c ) = π1
c (λ+

c , λ+
c ).

Finally, consider any (λi, λ+
c ) that induces player j to renege upward. In this case, i’s payoff in the most

profitable possible equilibrium is obtained by imposing sj = 1 on Eq. (62) and Eq. (63) and substituting

31This simplification was obtained using Mathematica. The code is available in the supplementary appendix of this paper.
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the resulting expressions into the expression for the material payoff (Eq. (1) yields

[
λi

c + λi − 1
c

]2

(
1

c
− c

2
) =

(c2 − 2)cλ2
i

2 (c(c + λi) − 1)2 . (71)

A deviation from (λ+
c , λ+

c ) that induces such an equilibrium gains a weakly greater payoff only if

(c2 − 2)cλ2
i

2 (c(c + λi) − 1)2 ≥ c(
√

5 − 4c − 1) + 2

4
,

which never holds for c ∈ (1, 1.25) and32 λi ≥ 0. Therefore, π1(λ+
c , λ+

c ) > π1(λ
′
, λ+

c ) for all λ
′ 6= λ+

c

such that (λ
′
, λ+

c ) induces an equilibrium in which one player reneges upward. We have therefore seen

that for all (λ
′
, λ+

c ), in all possible equilibria of the induced partnership game with one-sided reneging

costs, the payoff achieved by a player with reneging aversion λ
′

is strictly lower than the payoff in the

unique equilibrium under (λ+
c , λ+

c ). Therefore, regardless of the equilibrium selection function underlying

π1
c (λ

′
, λ+

c ), we have that π1
c (λ+

c , λ+
c ) > π1

c (λ
′
, λ+

c ) for all λ
′ 6= λ+

c .

Finally, we show that if c < 1.22, then π1
c

(
λ+

c , λ+
c

)
> π1

c

(
λ

′
, λ

′
)

for all λ
′ 6= λ+

c (point 2 of the

proposition). If λi = λj = λ
′

then min{Ri, Rj} ≥ 1 or Ri · Rj < 1. In the former case, the payoffs are

the same as in the game with two-sided reneging costs, which by point 1 of Theorem 2 are less than

πc

(
λ+

c , λ+
c

)
. In the latter case, there are three possibilities: (1) the payoffs are the same as in the game

with two-sided reneging costs (and both players’ payoffs are zero and therefore less than πc

(
λ+

c , λ+
c

)
);

(2) there is a symmetric pair of continua of equilibria in which one player reneges upward. In one

si = 1 > αj ≥ sj and in the other sj = 1 > αi ≥ si; (3) there exist two continua of equilibria of the

same form as in (2), plus a third equilibrium in which effort levels are zero. If equilibria in which one

player reneges upward exist, these must yield positive payoffs to both players. We show that, whatever

equilibrium selection function is assumed, π1
c

(
λ+

c , λ+
c

)
> π1

c

(
λ

′
, λ

′
)
. We do this by considering the

equilibrium selection functions that yield the highest possible expected payoff. This is any function

putting full weight on the two equilibria where one player reneges upward (as the payoffs in the third

possible equilibrium are zero for both players). In Section 7 we make the assumption that in cases with

symmetric levels of reneging aversion, if an asymmetric equilibrium is selected, π1
c

(
λ

′
, λ

′
)

is the average

of the equilibrium payoffs of players in the two roles (denoted by i and j). To obtain the payoff function

π1
c

(
λ

′
, λ

′
)

we therefore impose sj = 1 on Eq. (62) and Eq. (63) and substitute the resulting expressions

into Eq. (1), and its equivalent for player j, to give the payoffs for the two roles. We then take the

average to yield the payoff:

π1
c

(
λ

′

, λ
′
)

=
cα2

i

2
+

cα2
i

2
− cα2

i

4
− c3α2

i

4
= cα2

i − (c + c3)α2
i

4
=

(3c − c3)α2
i

4
.

We next note that αi is an increasing function of λ
′

and hence the payoff function is increasing in λ
′
.

32This result was obtained using Mathematica. The code is available in the supplementary appendix of this paper.
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We therefore consider the limit of the payoff as λ
′ → ∞. This is given by

lim
λ

′ →∞

(3c − c3)α2
i

4
=

(3c − c3)

4
lim

λ
′ →∞

[
λ

′

c2 + cλ′ − 1

]2

=
(3c − c3)

4
[
1

c
]2 =

3 − c2

4c
.

This is the same payoff that obtained under sequential effort choices (with no reneging costs), as derived

in point 4 of Theorem 2. As shown in Theorem 2, this is strictly less than the payoff πc

(
λ+

c , λ+
c

)
if

c < 1.22, yielding the result.

D.9 Proof of Proposition 4

Fix c ∈ (1, 2). Let 0 < β+
c ≡ 1

2·c + c
2 − 1 = 1

2 ·
(

1
c

+ c
)

− 1. Consider the partnership game with fixed

reneging costs βi = βj = β+
c . For each player i, let x∗

i : [0, 1]2 → [0, 1] be a (pure) second-stage strategy

that satisfies: (1) x∗
i (1, 1) = 1 (i.e., a player exerts maximal effort if both players promise maximal

effort), and (2) for each (si, sj) 6= (1, 1), define x∗ in an arbitrary way such that for each pair of messages

(si, sj), the effort x∗
i (si, sj) is a best reply to the effort x∗

i (sj , si).

In what follows we show that
(
1, 1, x∗

i , x∗
j

)
is a trembling-hand perfect equilibrium. We begin by

showing that both players exerting maximal effort constitutes a second-stage Nash equilibrium of the

subgame following the promises si = sj = 1. Assume that the opponent exerts maximal effort in this

subgame. If the player exerts maximal effort his payoff is equal to Ui (1, 1, 1, c) = 1−0.5·c. Conditional on

exerting a nonmaximal effort (and reneging on the agent’s promise), the payoff of the agent is maximised

when exerting an effort of 1
c

(by analogous arguments to those presented in Section 3.2), and it is equal

to

Ui

(
1

c
, 1, 1, c

)
=

1

c
− 1

2 · c
− β+

c =
1

2 · c
−
(

1

2 · c
+

c

2
− 1

)
= 1 − c

2
= Ui (1, 1, 1, c) .

Thus, the agent obtains his maximal payoff by exerting maximal effort in this subgame.

Next, we show that in any subgame in which the agent (player i) has promised maximal effort, while

the opponent (player j) has promised less than maximal effort, sj < 1, the agent’s exerted effort is non-

maximal and equal to 1
c

times the opponent’s effort in any second-stage Nash equilibrium of the induced

subgame. In order to see this, observe first that the opponent (player j) will never exert effort xj strictly

higher than max
(
sj , 1

c

)
< 1 in any Nash equilibrium of this subgame because a strictly higher effort

xj > max
(
sj , 1

c

)
< 1 yields the agent a suboptimal subjective payoff which is equal to a non-optimal

material payoff minus the reneging cost. Thus, xj < 1 in any Nash equilibrium of the subgame following

messages (1, sj < 1). If the agent keeps his promise and exerts a maximal effort his payoff is equal to

Ui (1, xj , 1, c) = xj − 0.5 · c. Conditional on reneging on his promise, the agent’s best reply is to exert an

effort of 1
c

· xj , which yields a payoff of

Ui

(
1

c
· xj , xj , 1, c

)
=

1

c
· x2

j −
x2

j

2 · c
− β+

c =
x2

j

2 · c
−
(

1

2 · c
+

c

2
− 1

)
= 1 − c

2
−

1 − x2
j

2 · c
.
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Observe that the difference in the payoffs, Ui

(
1
c

· xj , xj , 1, c
)

− Ui (1, xj , 1, c), is equal to

Ui

(
1

c
· xj , xj , 1, c

)
− Ui (1, xj , 1, c) = 1 − c

2
−

1 − x2
j

2 · c
− (xj − 0.5 · c)

= 1 − xj − (1 − xj) (1 + xj)

2 · c
= (1 − xj) ·

(
1 − 1 + xj

2 · c

)
> 0,

where the latter inequality is due to 1 + xj < 1 + 1 < 2 < 2 · c. This implies that the agent exerts

an effort of 1
c

· xj < xj in any Nash equilibrium an induced subgame following a promise of less than

maximal effort by the opponent.

Next, observe that the opponent’s (player j’s) payoff in any Nash equilibrium of the induced subgame

following a promise of less than maximal effort by the opponent and a promise of maximal effort by the

player (player i) is equal to

Uj

(
xj ,

1

c
· xj , sj , c

)
≤ πi

(
xj ,

1

c
· xj , c

)
=

1

c
· x2

j −
c · x2

j

2
< 1 − 0.5 · c = Uj (1, 1, 1, c) , (72)

which implies that the first-stage best reply of the opponent to the agent’s promise of maximal effort is

to promise maximal effort as well. This shows that
(
(1, 1) ,

(
x∗

i , x∗
j

))
is a subgame-perfect equilibrium of

the partnership game with fixed reneging costs βi = βj = β+
c . Moreover, observe that Eq. (72) implies

that promising maximal effort is the unique best reply to an agent who promises maximal effort with

a sufficiently high probability (yet, strictly below one), which implies that promising maximal effort

remains the unique best reply also to an agent who plays a slightly perturbed strategy by playing a

full-support strategy that assigns a high probability to the maximal message in the first stage, which

implies that
(
1, x∗

i , 1, x∗
j

)
is a subgame-perfect equilibrium of the partnership game with fixed reneging

costs βi = βj = β+
c .

D.10 Proof of Proposition 5

Proof. Parts (1), (2), and (4) of Proposition 5 are immediate from the fact that equilibrium material

payoffs and subjective utilities remain the same as in the baseline model of full observability. We have

to prove that for each c ∈ (1, 1.25), there exists q̄ < 1 such that (λ+
c , λ+

c ) is a strict Nash equilibrium

of the population game with observability q for each q ∈ [q̄, 1), i.e., πq
c

(
λ′, λ+

c |λ+
c

)
< πc

(
λ+

c , λ+
c

)
for

all λ′ 6= λ+
c . We first note that by Lemma 6, for any λ′ 6= λ+

c , we have that (λ′, λ+
c ) /∈ Cl(Λmax). If

(λ′, λ+
c ) ∈ Λ0ef , the material payoff to both players is zero and hence any mutant λ′ such that G(λ′, λ+

c )

induces a no-effort equilibrium achieves a strictly lower material payoff than the incumbent type λ+
c in

encounters where levels of reneging aversion are observed. In the proof of Theorem 2 it was shown that

when λ
′ ≤ λ+

c , the derivative is equal to (the left derivative when λ
′

= λ+
c ):

∂π
(
λ

′
, λ+

c

)

∂λ′ =
[λ+

c ]2(c(λ+
c + c) − 1)2

[1 + (c + λ+
c )(c + λ′)(c(λ+

c + c) − 2)]3
(73)
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and that this expression is always strictly positive for c ∈ (1, 1.25). In particular, this implies that

lim
λ

′ րλ+
c

∂π
(
λ

′
, λ+

c

)

∂λ′ > 0. (74)

The fact that the derivative of the material payoff function with respect to λ
′

is strictly positive for

all λ
′

< λ+
c and that the left derivative at λ+

c is bounded away from zero implies that when levels of

reneging aversion are observed and (λ′, λ+
c ) ∈ Λ2−msg, there is a first-order material payoff loss for a

mutant with λ
′

< λ+
c , compared to the incumbent type λ+

c . Now, considering the case where λ
′

> λ+
c and

(λ′, λ+
c ) ∈ Λ2−msg, we note that, analogously, in the proof of Theorem 2 it was shown that when λ

′ ≥ λ+
c ,

the derivative of the payoff function with respect to λ
′

is strictly negative and the right derivative of the

payoff function, evaluated at λ+
c , is strictly negative; i.e., the payoff increases as λ

′
decreases toward λ+

c

(Mathematica code demonstrating this is available in the online appendix). Therefore, there is also a

first-order loss for a mutant with λ
′

> λ+
c when reneging costs are observed.

We have therefore demonstrated that any mutant achieves a strictly lower payoff in the partners-

hip games played after reneging costs are observed as compared to an incumbent, i.e., πc

(
λ′, λ+

c

)
<

πc

(
λ+

c , λ+
c

)
for all λ′ 6= λ+

c , and, further, that the first-order loss of a mutant is bounded away from zero

when λ
′ → λ+

c .

Next, we note that in the case where reneging costs are not observed, πq
c

(
λ′, λ+

c |λ+
c

)− πq
c

(
λ+

c , λ+
c

)
is

bounded from above by a uniform bound. To see this, note that the maximum material payoff achievable

in a partnership game is

1

c
− c(1

c
)2

2
=

1

2c
.

The payoff differential between a mutant of type λ′ and an incumbent of type λ+
c when reneging

costs are observed can therefore be given by q· [π
(
λ′, λ+

c

)− π
(
λ+

c , λ+
c

)
] . The maximum positive payoff

differential between a mutant of type λ′, relative to λ+
c when reneging costs are not observed, is (1−q)· 1

2c
.

Therefore, the maximum payoff differential between a mutant type and an incumbent type under partial

observability is

q· [πc

(
λ′, λ+

c

)
− πc

(
λ+

c , λ+
c

)
] + (1 − q)

1

2c
. (75)

We therefore have that a mutant of type λ′ is strictly outperformed by an incumbent of type λ+
c when

Eq. (75) is strictly negative. Imposing this strict negativity and rearranging for q yields

q >
1

1 + 2c[πc

(
λ+

c , λ+
c

)
− πc

(
λ′, λ+

c

)
]

≡ q̃λ
′ (76)

From the fact that the term in square brackets in the denominator of Eq. (76) is strictly positive, it is

immediate that q̃λ
′ ∈ (0, 1). We then define q̄ ≡ sup

{
q̃λ

′ : λ′ ∈ R
+
}
. It follows that for all c ∈ (1, 1.25),

there exists q̄ such that for all q ∈ [q̄, 1],
(
λ+

c , λ+
c

)
is a strict Nash equilibrium of the population game

with partial observability.
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D.11 Proof of Proposition 6

Proof. If the incumbents have λ = 0, then they exert no effort by Fact 1. If the incumbents have

λ > 0, then assume to the contrary that agents exert a positive level of effort on the equilibrium

path. By Theorem 1, this implies that all agents make the maximal promise 1 and, due to the payoff

function being strictly convex, that they exert the same positive level of effort xe
i (1, 1, λ, λ, c) > 0 on

the equilibrium path in the second stage (see Eq. (5)). Consider a mutant with zero reneging cost who

sends message 1 and then exerts effort 1
c
· xe

i (1, 1, λ, λ, c). It is immediate that such a mutant achieves a

strictly higher payoff than the incumbents because the mutant exerts the unique amount of effort that

maximises the payoff, given that the partner exerts effort xe
i (1, 1, λ, λ, c).

D.12 Proof of Proposition 7

Proof. We show that there can be no symmetric pure Nash equilibrium of the population game in which

players exert no effort on the equilibrium path. Consider any symmetric population in which players

have a level of reneging aversion λ and in which, in game G(λ, λ), the unique equilibrium is a no-effort

equilibrium and hence all players achieve a material payoff of zero, i.e., πc(λ, λ) = 0. Lemma 5 implies

that for any such λ, there exists λ
′

such that in G(λ, λ
′
) - the partnership game played where players of

type λ and type λ
′

meet and observe each other’s level of reneging aversion - both players exert positive

effort in equilibrium and achieve strictly positive material payoffs. As any player can always guarantee

a level of utility of at least zero in any interaction, a player of type λ
′

achieves a weakly positive payoff

from the partnership game played after players of types λ and λ
′

meet but do not observe each other’s

level of reneging aversion. Therefore, when q > 0 (i.e., players in a population observe each other’s level

of reneging aversion at least some of the time), any mutant of type λ
′

achieves a strictly positive payoff

in the population game with partial observability, i.e., πq
c

(
λ

′
, λ|λ

)
> 0 = πc(λ, λ).

D.13 Proof of Proposition 8

We first present two lemmas used in the proof of Proposition 8 before presenting the main proof itself.

Lemma 7. Define max (BRπ (xj)) ≡ max
(
argmaxxi∈[a,b] (π(xi, xj))

)
. Then (1) max (BRπ (xj)) < xj

for each xj > x̄ and (2) max (BRπ (xj)) ≤ x̄ for each xj ≤ x̄.

Proof. Let xj ∈ [0, 1]. We have to show that (1) max (BRπ (xj)) < xj if xj > x̄, and (2) max (BRπ (xj)) ≤
x̄ if xj ≤ x̄. Assume first that xj ∈ [0, x̄]. The fact that x̄ ∈ BRπ (x̄) and the strategic complementa-

rity imply that max (BRπ (xj)) ≤ x̄. We are left with the case xj > x̄. Assume to the contrary that

max (BRπ (xj)) ≥ xj . Consider the restricted game in which each agent is restricted to choose a strategy

in [xj , 1]. This restricted game admits a symmetric Nash equilibrium (x′, x′). The strategic complemen-

tarity and max (BRπ (xj)) ≥ xj imply that (x′, x′) is also a Nash equilibrium of the unrestricted game,

and we get a contradiction to x̄ being the highest equilibrium strategy

Lemma 8. For each x̂ > x̄, there exists ǫ > 0 such that for each xi ≥ x̂ and for each xj ≤ xi, there

exists x′
i ≤ xi such that π (x′

i, xj) > π (xi, xj) + ǫ.
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Proof. Fix x̂ > x̄. For each xi ≥ x̂ and each xj ≤ xi define

f (xi, xj) = max
x′

i
∈[0,xi]

(
πi

(
x′

i, xj

)− πi (xi, xj)
)

.

The fact that π(xi, xj) is continuously differentiable implies that f (xi, xj) is continuous in both para-

meters. Lemma 7 implies that max (BRπ (xj)) ≤ x̄ if xj ≤ c, and max (BRπ (xj)) < xj if xj > x̄. These

inequalities, in turn, imply that f (xi, xj) > 0 for each xi ≥ x̂ and each xj ≤ xi. Define

ǫ̃ = min
xi∈[x̂,1], xj∈[0,xi]

f (xi, xj) .

The compactness of the set
{

(xi, xj) ∈ [0, 1]2 |xi ∈ [x̂, 1] , xj ∈ [a, xi]
}

and the continuity of f (xi, xj)

imply that ǫ̃ > 0. Fix xi ∈ [x̂, 1] and xj ∈ [0, xi]. Let x′
i ∈ BRπ (xj). Let ǫ = ǫ̃

2 . Then the definition of ǫ̃

implies that

π
(
x′

i, xj

)− π (xi, xj) ≥ ǫ̃ > ǫ,

which proves the lemma.

D.13.1 Proof of Proposition 8

Proof. We first prove point (1) (namely, that the equilibrium efforts are at most x̄ + ǫ if λi, λj < λǫ for

some λǫ > 0). Fix ǫ > 0. Lemma 8 implies that there exists δ > 0 such that for each xi ≥ x̄ + ǫ and

each xj ≤ xi there exists x′
i ≤ xi such that π (x′

i, xj) > π (xi, xj) + δ. Let λǫ be sufficiently small such

that λǫ · D < δ
2 . Assume that there is a pure subgame-perfect equilibrium (−→s ∗, −→x ∗) of the partnership

game with levels of reneging aversion λi, λj ≤ λǫ in which agent i exerts effort of at least x̄ + ǫ, i.e.,

x∗
i (−→s ∗) ≥ x̄+ ǫ. Assume without loss of generality that x∗

i (−→s ∗) ≥ x∗
j (−→s ∗) . Lemma 8 implies that there

exists x′
i satisfying

π(x′
i, x∗

j (−→s ∗)) > π(x∗
i (−→s ∗) , x∗

j (−→s ∗)) + δ,

which implies that

U(x′
i, x∗

j (−→s ∗) , s∗
i , λi) > π(x∗

i (−→s ∗) , x∗
j (−→s ∗)) + δ − δ

2
> U(x∗

i (−→s ∗) , x∗
j (−→s ∗) , s∗

i , λi),

where the first inequality is due to λǫ · D < δ
2 . Thus, we get a contradiction to x∗

i (−→s ∗) being a second-

stage best-reply against x∗
j (−→s ∗).

We now prove point (2) (namely, that the equilibrium efforts are at most x̄ + ǫ if λi, λj > λǫ). The

fact that π is twice continuously differentiable implies that it is Lipschitz continues, i.e., that there exists

M > 0 such that for each (xi, xj) ,
(
x′

i, x′
j

)
∈ [0, 1]2,

∣∣∣π (xi, xj) − π
(
x′

i, x′
j

)∣∣∣ < M ·
(∣∣xi − x′

i

∣∣+
∣∣∣xj − x′

j

∣∣∣
)

.

Let ǫ′ > 0 be sufficiently small such that M · ǫ′ < δ
4 and ǫ′ < ǫ

8 . Let λǫ > 0 be sufficiently large such

that λǫ · D · ǫ′ > 2 · M . Assume that there is a pure subgame-perfect equilibrium (−→s ∗, −→x ∗ (−→s )) of the
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partnership game with levels of reneging aversion λi, λj ≥ λǫ in which agent i exerts effort of at least

x̄ + ǫ, i.e., x∗
i (−→s ∗) ≥ x̄ + ǫ. Assume without loss of generality that x∗

i (−→s ∗) ≥ x∗
j (−→s ∗). Lemma 8 c

implies that there exists δ > 0 such that for each x∗
i ≥ x̄ + ǫ and each x∗

j ≤ x∗
i there exists x′

i ≤ x∗
i such

that π
(
x′

i, x∗
j

)
> π

(
x∗

i , x∗
j

)
+ δ. The fact that λǫ · D · ǫ′ > 2 · M implies that x∗

j

(
s′

i, s∗
j

)
≥ s∗

j − ǫ′ for

each s′
i ∈ [0, 1]. This, in turn, implies that

∣∣∣x∗
j

(
s′

i, s∗
j

)
− x∗

j (s∗)
∣∣∣ ≤ 2 · ǫ′ for each s′

i ∈ [0, 1] .

Consider the deviation of player i to promising x′
i in the first round and exerting effort x′

i in the

second round. We complete the proof by showing that this deviation induces a higher payoff to the

deviator relative to the equilibrium behaviour (which contradicts (−→s ∗, −→x ∗ (−→s )) being a subgame-perfect

equilibrium):

U
(
(x′

i, x∗
j

(
si = x′

i, s∗
j

)
, s∗

i , λi)
)

= π(x′
i, x∗

j

(
si = x′

i, s∗
j

)
) ≥ π(x′

i, x∗
j (s∗)) − M · 2 · ǫ′ ≥ π(x′

i, x∗
j (s∗)) − δ

2

≥ π(x∗
i , x∗

j (s∗)) − δ

2
+ δ ≥ U

(
(x∗

i , x∗
j (s∗) , s∗

i , λi)
)

+
δ

2
.

39


	Introduction
	Related Literature and Contribution
	The Partnership Game
	Model
	Unique Second-Stage Equilibrium
	First-Stage Best-Reply Functions
	Unique Perfect Equilibrium

	Appealing Properties of Intermediate Reneging Aversion, c+
	Induced Population Game 
	Appealing Properties of c+

	Evolutionary Interpretation of Our Results 
	Variants and Extensions
	Sequential Communication
	One-Sided Reneging Costs
	Fixed Reneging Costs
	Partial Observability of Reneging Aversion
	General Utility Functions

	Conclusion
	Trembling-Hand Perfection
	Further Discussion of Our Evolutionary Model
	Mixed and Asymmetric Equilibria in the Population Game
	Refinements of Continuous Stability

	Additional Figures 
	Intermediate Reneging Aversion c+ and Equilibrium Values as a Function of c
	Best-Reply Types and the Unique Perfect Equilibrium Types

	Proofs
	Definitions of Notation Used in the Proofs
	Proof of Proposition 1
	Lemma Characterising the Best-Reply Correspondence
	Conditions for the Existence of Each Best-Reply ``Type''
	Proof of Proposition 1

	Proof of Theorem 1
	Corollary of Theorem 1
	Corollary of Theorem 1 and Lemma 1
	Proof of Theorem 2
	Lemma: Positive Payoff Always Possible in the Population Game
	Lemma: Additional Properties of maxc
	Proof of Theorem 2

	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 8



