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ABSTRACT 

 

This paper uses annual time series data on CPI in Germany from 1960 to 2017, to model and 

forecast CPI using the Box – Jenkins ARIMA technique. Diagnostic tests indicate that the GC 

series is I (1). The study presents the ARIMA (1, 1, 1) model for predicting CPI in Germany. The 

diagnostic tests further show that the presented parsimonious model is stable and acceptable for 

predicting CPI in Germany. The results of the study apparently show that CPI in Germany is 

likely to continue on an upwards trajectory in the next decade. The study encourages policy 

makers to make use of tight monetary and fiscal policy measures in order to deal with inflation in 

Germany. 
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INTRODUCTION 

Inflation is one of the central terms in macroeconomics (Enke & Mehdiyev, 2014) as it harms the 

stability of the acquisition power of the national currency, affects economic growth because 

investment projects become riskier, distorts consuming and saving decisions, causes unequal 

income distribution and also results in difficulties in financial intervention (Hurtado et al, 2013). 

As the prediction of accurate inflation rates is a key component for setting the country’s 

monetary policy, it is especially important for central banks to obtain precise values (Mcnelis & 

Mcadam, 2004).   
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Consumer Price Index (CPI) may be regarded as a summary statistic for frequency distribution of 

relative prices (Kharimah et al, 2015). CPI number measures changes in the general level of 

prices of a group of commodities. It thus measures changes in the purchasing power of money 

(Monga, 1977; Subhani & Panjwani, 2009). As it is a prominent reflector of inflationary trends 

in the economy, it is often treated as a litmus test of the effectiveness of economic policies of the 

government of the day (Sarangi et al, 2018). The CPI program focuses on consumer expenditures 

on goods and services out of disposable income (Boskin et al, 1998). Hence, it excludes non-

market activity, broader quality of life issues, and the costs and benefits of most government 

programs (Kharimah et al, 2015). 

To avoid adjusting policy and models by not using an inflation rate prediction can result in 

imprecise investment and saving decisions, potentially leading to economic instability (Enke & 

Mehdiyev, 2014). Precisely forecasting the change of CPI is significant to many aspects of 

economics, some examples include fiscal policy, financial markets and productivity. Also, 

building a stable and accurate model to forecast the CPI will have great significance for the 

public, policy makers and research scholars (Du et al, 2014). In the case of Germany, the 

primary goal of the Deutsche Bundesbank is to ensure stability of the price level as outlined in 

the Bundesbank Law which is hinged on the classical school of economic thought that the main 

objective of monetary policy is to prevent inflation. The Deutsche Bundesbank is mandated to 

expand the supply of money and credit with special regard to the stabilization of the price level. 

This can successfully be achieved when precise CPI values could be obtained through accurate 

and reliable forecasts. In this study, CPI is used as an indicator of inflation in Germany as we 

seek to model and forecast CPI using ARIMA models.  

LITERATURE REVIEW 

In Ireland, Meyler et al (1998) forecasted inflation using ARIMA models with quarterly data 

ranging over the period 1976 to 1998 and illustrated some practical issues in ARIMA time series 

forecasting. In Finland, Kock & Terasvirta (2013) forecasted consumer price inflation using 

Artificial Neural Network (ANN) models with a data set ranging over the period March 1960 – 

December 2009 and established that direct forecasts are more accurate than their recursive 

counterparts. In case of Malaysia, Kharimah et al (2015) analyzed the CPI using ARIMA models 

with a data set ranging over the period January 2009 to December 2013 and revealed that the 

ARIMA (1, 1, 0) was the best model to forecast CPI in Malaysia. In an Zimbabwean study, 

Nyoni (2018) examined inflation using GARCH models with a data set ranging over the period 

July 2009 to July 2018 and established that there is evidence of volatility persistence for 

Zimbabwe’s monthly inflation data. In the case of Kenya, Nyoni (2018) modeled inflation using 

ARIMA and GARCH models and relied on annual time series data over the period 1960 – 2017 

and found out that the ARIMA (2, 2, 1) model, the ARIMA (1, 2, 0) model and the AR (1) – 

GARCH (1, 1) model are good models that can be used to forecast inflation in Kenya. In the case 

of India, Sarangi et al (2018) analyzed the consumer price index using Neural Network models 

with 159 data points and revealed that ANNs are better methods of forecasting CPI in India. 

Most recently, in a Nigerian study; Nyoni & Nathaniel (2019), based on ARMA, ARIMA and 

GARCH models; examined inflation in Nigeria using time series data on inflation rates from 

1960 to 2016 and found out that the ARMA (1, 0, 2) model is the best model for forecasting 

inflation rates in Nigeria. 
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MATERIALS & METHODS 

Box – Jenkins ARIMA Models 

One of the methods that are commonly used for forecasting time series data is the Autoregressive 

Integrated Moving Average (ARIMA) (Box & Jenkins, 1976; Brocwell & Davis, 2002; 

Chatfield, 2004; Wei, 2006; Cryer & Chan, 2008). For the purpose of forecasting inflation rate in 

Germany, ARIMA models were specified and estimated. If the sequence  ∆d
GCt satisfies an 

ARMA (p, q) process; then the sequence of GCt also satisfies the ARIMA (p, d, q) process such 

that: 

∆𝑑𝐺𝐶𝑡 =∑𝛽𝑖∆𝑑𝐺𝐶𝑡−𝑖 +𝑝
𝑖=1 ∑𝛼𝑖𝜇𝑡−𝑖𝑞

𝑖=1 + 𝜇𝑡 ………………………………………… .……… .…… . [1] 
which we can also re – write as: 

∆𝑑𝐺𝐶𝑡 =∑𝛽𝑖∆𝑑𝐿𝑖𝐺𝐶𝑡𝑝
𝑖=1 +∑𝛼𝑖𝐿𝑖𝜇𝑡𝑞

𝑖=1 + 𝜇𝑡 ………………………… . . ……………… .…………… [2] 
where ∆ is the difference operator, vector β ϵ Ɽp

 and ɑ ϵ Ɽq
.  

The Box – Jenkins Methodology 

The first step towards model selection is to difference the series in order to achieve stationarity. 

Once this process is over, the researcher will then examine the correlogram in order to decide on 

the appropriate orders of the AR and MA components. It is important to highlight the fact that 

this procedure (of choosing the AR and MA components) is biased towards the use of personal 

judgement because there are no clear – cut rules on how to decide on the appropriate AR and 

MA components. Therefore, experience plays a pivotal role in this regard. The next step is the 

estimation of the tentative model, after which diagnostic testing shall follow. Diagnostic 

checking is usually done by generating the set of residuals and testing whether they satisfy the 

characteristics of a white noise process. If not, there would be need for model re – specification 

and repetition of the same process; this time from the second stage. The process may go on and 

on until an appropriate model is identified (Nyoni, 2018). 

Data Collection 

This study is based on a data set of annual CPI (GC) in Germany ranging over the period 1960 – 

2017. All the data was taken from the World Bank. 

Diagnostic Tests & Model Evaluation 

Stationarity Tests: Graphical Analysis 

Figure 1 
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The Correlogram in Levels 

Autocorrelation function for CPI ***, **, * indicate significance at the 1%, 5%, 10% levels. 

Table 1 

  LAG      ACF          PACF         Q-stat. [p-value] 

    1   0.9558  ***   0.9558 ***     55.7726  [0.000] 

    2   0.9101  ***  -0.0392        107.2477  [0.000] 

    3   0.8623  ***  -0.0484        154.2996  [0.000] 

    4   0.8127  ***  -0.0467        196.8623  [0.000] 

    5   0.7623  ***  -0.0346        235.0184  [0.000] 

    6   0.7124  ***  -0.0215        268.9872  [0.000] 

    7   0.6630  ***  -0.0242        298.9771  [0.000] 
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    8   0.6129  ***  -0.0362        325.1233  [0.000] 

    9   0.5621  ***  -0.0402        347.5635  [0.000] 

   10   0.5093  ***  -0.0559        366.3683  [0.000] 

   11   0.4575  ***  -0.0219        381.8656  [0.000] 

The ADF Test in Levels 

Table 2: Levels-intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

GC -0.363006 0.9079 -3.552666 @1% Non-stationary  

  -2.914517 @5% Non-stationary 

  -2.595033 @10% Non-stationary 

Table 3: Levels-trend & intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

GC -3.017324 0.1368 -4.130526 @1% Non-stationary  

  -3.492149 @5% Non-stationary 

  -3.174802 @10% Non-stationary 

Table 4: without intercept and trend & intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

GC 3.000828 0.9992 -2.606911 @1% Non-stationary  

  -1.946764 @5% Non-stationary 

  -1.613062 @10% Non-stationary 

Figure 1 shows that GC is upwards trending and this is a characteristic of non-stationary series. 

Tables  1 – 4 confirm that GC is indeed non-stationary in levels.  

The Correlogram (at 1
st
 Differences) 

Autocorrelation function for d_CPI ***, **, * indicate significance at the 1%, 5%, 10% levels. 

Table 5 

  LAG      ACF          PACF         Q-stat. [p-value] 

    1   0.4056  ***   0.4056 ***      9.8780  [0.002] 

    2   0.1344       -0.0360         10.9832  [0.004] 

    3  -0.0813       -0.1477         11.3953  [0.010] 

    4  -0.1777       -0.1073         13.3995  [0.009] 

    5  -0.3022  **   -0.2127         19.3076  [0.002] 

    6  -0.1501        0.0600         20.7928  [0.002] 
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    7  -0.1911       -0.1837         23.2493  [0.002] 

    8  -0.0292        0.0592         23.3079  [0.003] 

    9   0.1424        0.1311         24.7279  [0.003] 

   10   0.2110        0.0289         27.9146  [0.002] 

   11   0.2059        0.0929         31.0149  [0.001] 

ADF Test in 1
st
 Differences 

Table 6: 1
st
 Difference-intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

GC -4.870860 0.0002 -3.552666 @1% Stationary  

  -2.914517 @5% Stationary 

  -2.595033 @10% Stationary 

Table 7: 1
st
 Difference-trend & intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

GC -4.823311 0.0013 -4.130526 @1% Stationary  

  -3.492149 @5% Stationary 

  -3.174802 @10% Stationary 

Table 8: 1
st
 Difference-without intercept and trend & intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

GC -2.156420 0.0310 -2.606911 @1% Non-stationary  

  -1.946764 @5% Stationary 

  -1.613062 @10% Stationary 

Tables 5 – 8 show that GC became stationary after taking first differences and is thus an I (1) 

variable.  

Evaluation of ARIMA models (without a constant) 

Table 9 

Model AIC U ME MAE RMSE MAPE 

ARIMA (1, 1, 1) 166.5431 0.53527 0.2281 0.78552 0.97981 1.3158 

ARIMA (1, 1, 0) 167.072 0.54344 0.29549 0.80702 1.0018 1.3467 

ARIMA (0, 1, 1) 198.9972 0.73758 0.94507 1.0719 1.3343 1.8151 

ARIMA (2, 1, 0) 167.1199 0.53618 0.25329 0.78975 0.98471 1.3228 

ARIMA (0, 1, 2) 185.3459 0.65439 0.68828 0.90858 1.16 1.5438 

A model with a lower AIC value is better than the one with a higher AIC value (Nyoni, 2018). 

Theil’s U must lie between 0 and 1, of which the closer it is to 0, the better the forecast method 

(Nyoni, 2018). The study will only consider the AIC as the criteria for choosing the best model 

for forecasting inflation in Germany and therefore, the ARIMA (1, 1, 1) model is carefully 

selected. 



7 

 

95% Confidence Ellipse & 95% 95% Marginal Intervals 

Figure 2 [AR (1) & MA (1) components] 

 

Figure 2 indicates that the accuracy of our forecast, as given the most parsimonious model, the 

ARIMA (1, 1, 1) model, is satisfactory since it falls within the 95% confidence interval. 

Residual & Stability Tests 

ADF Tests of the Residuals of the ARIMA (1, 1, 1) Model 

Table 10: Levels-intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

Rt -6.939305 0.0000 -3.555023 @1% Stationary  

  -2.915522 @5% Stationary 

  -2.595565 @10% Stationary 

Table 11: Levels-trend & intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

Rt -6.863081 0.0000 -4.133838 @1% Stationary  

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.7  0.75  0.8  0.85  0.9  0.95  1  1.05  1.1

0.908, -0.313

phi_1

95% confidence ellipse and 95% marginal intervals



8 

 

  -3.493692 @5% Stationary 

  -3.175693 @10% Stationary 

Table 12: without intercept and trend & intercept 

Variable ADF Statistic Probability Critical Values Conclusion 

Rt -6.765636 0.0000 -2.607686 @1% Stationary  

  -1.946878 @5% Stationary 

  -1.612999 @10% Stationary 

Tables 10, 11 and 12 show that the residuals of the ARIMA (1, 1, 1) model are stationary and 

hence the ARIMA (1, 1, 1) model is suitable for forecasting CPI in Germany.  

Stability Test of the ARIMA (1, 1, 1) Model 

Figure 3 

 

Since the corresponding inverse roots of the characteristic polynomial lie in the unit circle, it 

illustrates that the chosen ARIMA (1, 1, 1) model is stable and suitable for predicting CPI in 

Germany over the period under study.  

FINDINGS 

Descriptive Statistics 

Table 13 

Description Statistic 

Mean 66.483 

Median 65 
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Minimum 25 

Maximum 109 

Standard deviation 27.116 

Skewness -0.041385 

Excess kurtosis -1.3298 

As shown above, the mean is positive, i.e. 66.48. The minimum is 25 and the maximum is 109. 

The skewness is -0.041385 and the most striking characteristic is that it is positive, indicating 

that the inflation series is positively skewed and non-symmetric. Excess kurtosis was found to be 

-1.3298; implying that the inflation series is not normally distributed. 

Results Presentation
1
 

Table 14 

ARIMA (1, 1, 1) Model: ∆𝐺𝐶𝑡−1 = 0.907993∆𝐺𝐶𝑡−1 − 0.312904𝜇𝑡−1……………………………………………… . . … . [3] 
P:              (0.0000)                  (0.0433) 

S. E:          (0.0646)                  (0.1549) 

Variable Coefficient Standard Error z p-value 

AR (1) 0.907993 0.0645902 14.06 0.0000*** 

MA (1) -0.312904 0.154867 -2.02 0.0433** 

The coefficient of the AR (1) component is positive and statistically significant at 1% level of 

significance. This indicates that previous period CPI indices are important in determining the 

current and future levels of CPI in Germany. For example, when previous period CPI was 

relatively high; it arguably causes economic agents (firms, households, workers etc.) to 

anticipate even higher inflationary pressures in the next period thereby inducing policy 

ineffectiveness: in the long-run inflation goes up. The results of the study indicate that a 1% 

increase in the previous period CPI will lead to approximately 0.9% increase in the current 

period CPI.  The coefficient of the MA (1) component is negative and statistically significant at 

5% level of significance. This implies that unobserved shocks to CPI have a negative effect on 

current CPI in Germany. Such shocks may involve but are not limited to monetary policy shocks 

and desirable political outcomes. The results actually show that a 1% increase in such shocks 

will lead to approximately 0.31% decrease in CPI, thus a reduced level of inflation. For example, 

if a new government is elected into power in Germany, through a democratic process; it could 

lower inflationary expectations and thus enabling policy makers to smoothly engineer 

disinflation and hence lower CPI levels. The overall striking characteristic of these results is that 

the coefficient of the AR (1) component is positive while the coefficient of the MA (1) 

component is negative as conventionally expected and this shows that our model is reasonable 

and acceptable for forecasting CPI in Germany over the period under study. 

Forecast Graph 

                                                           
1
 The *, ** and *** means significant at 10%, 5% and 1% levels of significance; respectively.  
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Figure 4 

 

Predicted Annual CPI in Germany 

Table 15 

                               Year                 Prediction       Std. Error   95% Confidence Interval 

2018                    110.22        0.979       108.31 -   112.14 

2019                    111.34        1.844       107.72 -   114.95 

2020                    112.35        2.788       106.88 -   117.81 

2021                    113.26        3.793       105.83 -   120.70 

2022                    114.10        4.841       104.61 -   123.58 

2023                    114.85        5.918       103.25 -   126.45 

2024                    115.54        7.013       101.79 -   129.28 
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2025                    116.16        8.119       100.25 -   132.07 

2026                    116.73        9.228        98.64 -   134.81 

2027                    117.24       10.336        96.98 -   137.50 

Figure 4 (with a forecast range from 2018 – 2027) and table 15, clearly show that CPI in 

Germany is indeed set to continue rising sharply, in the next ten years. 

POLICY IMPLICATION & CONCLUSION 

After applying the Box-Jenkins analysis, the ARIMA was engaged to investigate annual CPI of 

Germany from 1960 to 2017. The study mostly planned to forecast the annual CPI in Germany 

for the upcoming period from 2018 to 2027 and the best fitting model was selected based on how 

well the model captures the stochastic variation in the data. The ARIMA (1, 1, 1) model is stable 

and most suitable model to forecast the CPI of Germany for the next ten years. In general, CPI in 

Germany; showed an upwards trend over the forecasted period. Based on the results, policy 

makers in Germany should engage more proper economic policies in order to fight such increase 

in inflation as reflected in the forecasts. In this regard, monetary and fiscal authorities are 

encouraged to engage in tight monetary and fiscal policy measures in order to address the threat 

of inflation in Germany.  
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