

Will the United States of America (USA) be a beneficiary of the Alburg (1998) and Becker et al (1999) prophecies? Recent insights from the Box-Jenkins ARIMA approach

NYONI, THABANI

University of Zimbabwe, Department of Economics

19 February 2019

Online at https://mpra.ub.uni-muenchen.de/92459/ MPRA Paper No. 92459, posted 03 Mar 2019 19:08 UTC

Will The United States Of America (USA) Be A Beneficiary Of The Ahlburg (1998) and Becker *et al* (1999) Prophecies? Recent Insights From The Box – Jenkins ARIMA Approach

Nyoni, Thabani

Department of Economics

University of Zimbabwe

Harare, Zimbabwe

Email: nyonithabani35@gmail.com

Abstract

Employing annual time series data on total population in the USA from 1960 to 2017, we model and forecast total population over the next 3 decades using the Box – Jenkins ARIMA approach. Diagnostic tests show that USA annual total population data is I (2). Based on the AIC, the study presents the ARIMA (0, 2, 3) model. The diagnostic tests indicate that the presented model is very stable and quite suitable. The results of the study reveal that total population in USA will continue to sharply rise in the next three decades. Considering a highly educated labor force, coupled with latest technological advancements, USA is likely to be one of the first beneficiaries of the Ahlburg (1998) and Becker *et al* (1999) prophecies. In order to stay in the realm of the aforementioned prophecies, USA should take note of the 3-fold policy recommendations put forward.

Key Words: Population, Forecasting, USA

JEL Codes: C53, Q56, R23

INTRODUCTION

As the 21st century began, the world's population was estimated to be almost 6.1 billion people (Tartiyus *et al*, 2015). Projections by the United Nations place the figure at more than 9.2 billion by the year 2050 before reaching a maximum of 11 billion by 2200. Over 90% of that population will inhabit the developing world (Todaro & Smith, 2006). The problem of population growth is basically not a problem of numbers but that of human welfare as it affects the provision of welfare and development. The consequences of rapidly growing population manifests heavily on species extinction, deforestation, desertification, climate change and the destruction of natural ecosystems on one hand; and unemployment, pressure on housing, transport traffic congestion, pollution and infrastructure security and stain on amenities (Dominic *et al*, 2016). The need for population forecasts is hardly disputed. In politics, in public administration, and in business, farreaching decisions are made which depend on the future development of the population (Pflaumer, 2012). Population modeling and forecasting in the US just like in ay other country; is important for policy dialogue. This study attempts to model and forecast population of the US using the Box-Jenkins ARIMA technique.

LITERATURE REVIEW

Theoretical Literature Review

The population theory propounded by Malthus (1798) posits that population growth is really bad for economic growth and development and Malthus (1798) attributes this to the argument that human population grows geometrically while the means of subsistance grows arithmetically being subject to the law of diminishing returns. The applicability of the Malthusian population prophecy is not universal, in the USA, this prophecy has arguably tumbled; primarily due to a highly educated labour force as well as technological advancements and innovation. In a slight disagreement with the basic propositions of the Malthus (1798) population theory, Solow (1956) averred that an increase in the "population growth rate" not in the "population level"; would reduce the capital per worker as well as the steady-state output per worker and concluded that higher population growth could harm productivity and economic growth. Ahlburg (1998) and Becker et al (1999) argued against Solow (1956) and Malthus (1798) and tried to show that population growth is not always bad for growth. Ahlburg (1998) pointed that an increase in population growth leads to an increase the need for goods and services through the "technologypushed" and the "demand-pulled" channels while Becker et al (1999), basically in the synonymous line of thought; stressed that high population growth rate apparently induces high labour force which is the source of real wealth.

Empirical Literature Review

Pflaumer (1992) employed the Box-Jenkins technique for forecasting the US population and revealed that the US population can be satisfactorily described by an ARIMA (2, 2, 0) process and consequently confirmed that this model is equivalent to a Parabolic Trend model or Stevens model when making long-term population forecasts. Zakria & Muhammad (2009) analyzed population dynamics in Pakistan using Box-Jenkins ARIMA models, and relied on a data set ranging from 1951 to 2007; and concluded that the ARIMA (1, 2, 0) model was the best model. Haque et al (2012) studied Bangladesh population projections using the Logistic Population model with a data set ranging from 1991 to 2006 and established that the Logistic Population model has the best fit for population growth in Bangladesh. Pflaumer (2012), in another US study, forecasted population using the Gompertz Growth Curve employing data over the period 1890 - 2010 and basically established that the accuracy of some simple time series models is better than the accuracy of more complex models. Ayele & Zewdie (2017) investigated human population size and its pattern in Ethiopia using Box-Jenkins ARIMA models and employing annual data from 1961 to 2009 and revealed that the optimal model for modeling and forecasting population in Ethiopia was the ARIMA (2, 1, 2) model. In this piece of work, the Box-Jenkins ARIMA technique will be employed for the data set ranging from 1960 to 2017.

MATERIALS & METHODS

The Autoregressive Integrated Moving Average (ARIMA) model

ARIMA models are a set of models that describe the process (for example, POP_t) as a function of its own lags and white noise process (Box & Jenkins, 1974). Making predicting in time series using univariate approach is best done by employing the ARIMA models (Alnaa & Ahiakpor, 2011). A stochastic process POP_t is referred to as an Autoregressive Integrated Moving Average (ARIMA) [p, d, q] process if it is integrated of order "d" [I (d)] and the "d" times differenced

process has an ARMA (p, q) representation. If the sequence $\Delta^{d}POP_{t}$ satisfies and ARMA (p, q) process; then the sequence of POP_t also satisfies the ARIMA (p, d, q) process such that:

which we can also re – write using the lag operator (L) notation as follows:

 $\Delta^{d} POP_{t} = \sum_{i=1}^{p} \beta_{i} \Delta^{d} L^{i} POP_{t} + \sum_{i=1}^{q} \alpha_{i} L^{i} \mu_{t} + \mu_{t} \dots$ [2]

where Δ is the difference operator, vector $\beta \in \mathbb{R}^p$ and $\alpha \in \mathbb{R}^q$.

The Box – Jenkins Methodology

The first step towards model selection is to difference the series in order to achieve stationarity. Once this process is over, the researcher will then examine the correlogram in order to decide on the appropriate orders of the AR and MA components. It is important to highlight the fact that this procedure (of choosing the AR and MA components) is biased towards the use of personal judgement because there are no clear – cut rules on how to decide on the appropriate AR and MA components. Therefore, experience plays a pivotal role in this regard. The next step is the estimation of the tentative model, after which diagnostic testing shall follow. Diagnostic checking is usually done by generating the set of residuals and testing whether they satisfy the characteristics of a white noise process. If not, there would be need for model re – specification and repetition of the same process; this time from the second stage. The process may go on and on until an appropriate model is identified (Nyoni, 2018).

Data Collection

This paper is based on 58 observations of annual total population in the United States of America (USA), i.e. from 1960 - 2017. All the data was taken from the World Bank online database. The Word Bank online database is a reliable source of various macroeconomic data on literally all countries in the world; therefore the author chose this source on the basis of its credibility and integrity.

Diagnostic Tests & Model Evaluation

Stationarity Tests: Graphical Analysis

Figure 1

The POP variable, graphically shown above; is not stationary since it is trending upwards over the period 1960 - 2017 and this actually implies that the mean and varience of POP is changing over time.

The Correlogram in Levels

Figure 2

The ADF Test

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	0.749822	0.9922	-3.555023	@1%	Not stationary
			-2.915522	@5%	Not stationary
			-2.595565	@10%	Not stationary

Table 2: Levels-trend & intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-2.235023	0.4612	-4.133838	@1%	Not stationary
			-3.493692	@5%	Not stationary
			-3.175693	@10%	Not stationary

Table 3: without intercept and trend & intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	1.914356	0.9857	-2.607686	@1%	Not stationary
			-1.946878	@5%	Not stationary
			-1.612999	@10%	Not stationary

The Correlogram (at 1st Differences)

Figure 3

Table 4: 1st Difference-intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-2.434220	0.1373	-3.555023	@1%	Not stationary
			-2.915522	@5%	Not stationary
			-2.595565	@10%	Not stationary

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-2.589288	0.2866	-4.133838	@1%	Not stationary
			-3.493692	@5%	Not stationary
			-3.175693	@10%	Not stationary

Table 5: 1st Difference-trend & intercept

Table 6. 1 ^s	^t Difference-withou	t intercent and t	rend & intercent
	Difference-withou	i intercept and i	ienu & intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-0.604728	0.4509	-2.607686	@1%	Not stationary
			-1.946878	@5%	Not stationary
			-1.612999	@10%	Not stationary

As illustrated above in figures 2 and 3 as well as tables 1 - 6, the POP series is not stationary at both levels and in first differences.

The Correlogram in (2nd Differences)

Figure 4

Table 7: 2nd Difference-intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-5.031552	0.0001	-3.555023	@1%	Stationary
			-2.915522	@5%	Stationary
			-2.595565	@10%	Stationary

Table 8: 2^{nd}	Difference-trend	& intercept
-------------------	------------------	-------------

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-4.821125	0.0014	-4.140858	@1%	Stationary
			-3.496960	@5%	Stationary
			-3.177579	@10%	Stationary

Table 9: 2nd Difference-without intercept and trend & intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
POP	-5.071680	0.0000	-2.607686	@1%	Stationary
			-1.946878	@5%	Stationary
			-1.612999	@10%	Stationary

Figure 4 above indicates that most of the autocorrelation coefficients are now closer to zero, with the exception of the first lag. This is generally a feature of a stationary series. Tables 7 - 9, confirm that the POP series became stationary after taking second differences and hence it is I (2).

Table 10

Evaluation of ARIMA models (without a constant)

Model AIC U ME MAE **RMSE** MAPE -8399.3 0.052965 ARIMA (1, 2, 0) 1511.588 0.069573 0.0000129 0.000017 ARIMA (2, 2, 0) 1512.644 0.068464 -9385.5 0.000013 0.0000168 0.053349 ARIMA (3, 2, 0) 1511.639 0.067863 -11412 0.0000123 0.0000164 0.050821 1512.115 -9824.8 ARIMA (0, 2, 1) 0.069426 0.0000134 0.000017 0.054783 ARIMA (0, 2, 2) 1511.106 0.068451 -7407.9 0.0000124 0.0000166 0.05091 ARIMA (0, 2, 3) 1507.380 0.064673 -10430 0.0000117 0.0000158 0.048479 ARIMA (1, 2, 1) 1513.197 0.06908 -8682.6 0.000013 0.000017 0.053048 $\overline{ARIM}A(1, 2, 2)$ 1508.335 0.065266 -7614.4 0.0000119 0.0000159 0.048909 -9834.6 0.0000117 ARIMA (1, 2, 3) 1509.23 0.064573 0.0000157 0.048497 ARIMA (2, 2, 1) 1513.37 0.068016 -11702 0.0000128 0.0000166 0.052567 -8999.6 ARIMA (3, 2, 2) 1511.389 0.064602 0.0000119 0.0000158 0.048889

A model with a lower AIC value is better than the one with a higher AIC value (Nyoni, 2018). Theil's U must lie between 0 and 1, of which the closer it is to 0, the better the forecast method (Nyoni, 2018). The paper will consider only the AIC in selecting the optimal model. Therefore, the ARIMA (0, 2, 3) model is chosen.

Residual & Stability Tests

ADF Tests of the Residuals of the ARIMA (0, 2, 3) Model

Table 11: Levels-intercept

Variable	ADF Statistic	Probability	Critical Values	5	Conclusion
Wt	-7.507096	0.0000	-3.555023	@1%	Stationary
			-2.915522	@5%	Stationary
			-2.595565	@10%	Stationary

Table 12: Levels	s-trend & ir	ntercept
------------------	--------------	----------

Variable	ADF Statistic	Probability	Critical Values		Conclusion
W _t	-7.437924	0.0000	-4.133838	@1%	Stationary
			-3.493692	@5%	Stationary
			-3.175693	@10%	Stationary

Table 13: without intercept and trend & intercept

Variable	ADF Statistic	Probability	Critical Values		Conclusion
W _t	-7.562630	0.0000	-2.607686	@1%	Stationary
			-1.946878	@5%	Stationary
			-1.612999	@10%	Stationary

Tables 11, 12 and 13 show that the residuals of the ARIMA (0, 2, 3) model are stationary.

Stability Test of the ARIMA (0, 2, 3) Model

Figure 5

Figure 5 above indicates that the ARIMA (0, 2, 3) model, is quite stable as expected, as the corresponding inverse roots of the characteristic polynomial lie in the unit circle.

RESULTS & DISCUSSION

Descriptive Statistics

Table	14
-------	----

Description	Statistic
Mean	251270000
Median	245660000
Minimum	180670000
Maximum	325720000
Standard deviation	43555000
Skewness	0.13392
Excess kurtosis	-1.2451

The mean, as shown in the table above; is positive, i.e. 251 270 000. The wide gap between the minimum, i.e., 180 670 000 and the maximum, i.e., 325 720 000 is consistent with the reality that the POP series is on an upwards trajectory. The skewness is 0.13392 and it is positive, revealing that the POP series is positively skewed and non-symmetric. Excess kurtosis is -1.2451 showing that the POP series is not normally distributed.

Table 15

Results Presentation¹

		ARIMA (0, 2	, 3) Model:		
$\Delta^2 POP_{t-1} =$	$\Delta^2 POP_{t-1} = 0.487\mu_{t-1} + 0.1\mu_{t-2} - 0.349\mu_{t-3}\dots$				
P: (0	0.0001) (0.48	328) (0.0067)			
S. E: (0	0.128159) (0.14	2164) (0.128796)			
Variable	Coefficient	Standard Error	Z	p-value	
MA (1)	0.487078	0.128159	3.801	0.0001***	
MA (2)	0.099770	0.142164	0.7018	0.4828	
MA (3)	-0.349127	0.128796	-2.711	0.0067***	

Interpretation of Results

The coefficients of the MA (1) and MA (3) terms are statistically significant at 1% level of significance, the MA (1) coefficient is positive (i.e. 0.487078) while the MA (3) coefficient is negative (i.e. -0.349127). It is quite clear that the MA (1) and MA (3) coefficients are more relevant in explaining population dynamics in the US. The MA (2) coefficient is positive (i.e. 0.099770) but statistically insignificant and thus less important in explaining US population dynamics over the period under study.

¹ The *, ** and *** means significant at 10%, 5% and 1% levels of significance; respectively.

Forecast Graph

Figure 6

Predicted Total Population

Figure 7

2050 403257000 2049 400907000 2048 398557000 2047 396207000 2046 393857000 2045 391507000 2044 391507000 2044 386807000 2043 386807000 2044 38457000 2043 38457000 2044 382107000 2042 384457000 2043 382107000 2044 382107000 2040 379757000 2039 377470700 2038 375057000 2037 37257000 2038 370357000 2037 370357000 2038 370357000 2039 35056000 2031 368060000 2032 360956000 2033 363360000 2034 351556000 2035 344506000 2036 351556000 2037 349206000 2038 335106000 2039 334026000		Predicted Total Population
2049 400907000 2048 398557000 2047 396207000 2046 393857000 2045 391507000 2044 389157000 2045 391507000 2044 389157000 2045 391507000 2044 38457000 2042 384457000 2041 382107000 2040 377557000 2039 377407000 2038 375057000 2037 377007000 2038 3575000 2039 357000 2031 36806000 2032 360956000 2033 363506000 2031 35806600 2032 350956000 2033 351556000 2034 351556000 2035 344506000 2036 344506000 2037 342156000 2038 337456000 2039 3351556000	2050	403257000
2048 398557000 2047 396207000 2046 393857000 2045 391507000 2044 388157000 2043 38807000 2044 388157000 2043 386807000 2044 388157000 2043 38607000 2044 382157000 2041 382107000 2042 384457000 2044 379757000 2039 377407000 2038 375057000 2037 372707000 2038 375057000 2039 375057000 2036 370357000 2037 372707000 2038 35656000 2039 366056000 2031 356256000 2032 360956000 2033 351556000 2034 351556000 2035 344506000 2026 337456000 2021 337456000 <tr< td=""><td>2049</td><td>400907000</td></tr<>	2049	400907000
2047 396207000 2046 393857000 2045 391507000 2044 389157000 2043 386807000 2044 389157000 2043 385807000 2044 382107000 2041 382107000 2042 377407000 2039 377407000 2039 377407000 2037 372707000 2038 375057000 2037 37207000 2038 375057000 2039 368006000 2034 365656000 2035 368006000 2034 3556256000 2033 360956000 2034 355256000 2030 356256000 2031 35806000 2032 344506000 2034 344506000 2025 344506000 2026 337456000 2027 33745000 2028 337456000 2029 337456000 2021 337456000 <td>2048</td> <td>398557000</td>	2048	398557000
2046 393857000 2045 391507000 2044 389157000 2043 386807000 2044 389157000 2042 384457000 2041 382107000 2040 379757000 2039 377407000 2038 375057000 2037 372707000 2036 370357000 2037 372707000 2038 370357000 2039 35606000 2031 36806000 2032 360956000 2033 35806000 2034 35806000 2035 35806000 2036 351556000 2037 349206000 2038 351556000 2029 3446856000 2026 3444506000 2027 349206000 2028 351556000 2029 337456000 2021 335106000 2022 337456000 2023 3321506000 2024 332156000 <td>2047</td> <td>396207000</td>	2047	396207000
2045 391507000 2044 389157000 2043 386807000 2042 384457000 2041 382107000 2040 379757000 2039 377407000 2038 375057000 2039 377407000 2038 375057000 2039 377407000 2038 370357000 2037 370357000 2038 370357000 2039 360956000 2031 360956000 2032 360956000 2033 35806000 2034 35806000 2035 35490600 2036 351556000 2037 349206000 2038 351556000 2029 3349206000 2026 344850000 2027 349206000 2028 337456000 2029 3339806000 2022 337456000 2023 332756000 2024 3321506000 2025 332406000 </td <td>2046</td> <td>393857000</td>	2046	393857000
2044 389157000 2043 386807000 2042 384457000 2041 382107000 2040 379757000 2039 377407000 2038 375057000 2037 372707000 2036 370357000 2037 37207000 2038 370357000 2039 37650500 2031 36806000 2032 360956000 2031 358606000 2032 360956000 2033 353906000 2034 351556000 2035 34450600 2026 34450600 2027 3374000 2028 35106000 2029 353906000 2026 34450600 2027 337456000 2028 337456000 2029 337456000 2021 337456000 2022 337456000 2023 32803800	2045	391507000
2043 386807000 2042 384457000 2040 379757000 2039 377407000 2038 375057000 2037 372707000 2036 370357000 2037 370357000 2038 370357000 2039 370357000 2036 370357000 2037 368006000 2038 365656000 2039 368056000 2031 365656000 2032 360956000 2033 353906000 2030 3556000 2021 3549206000 2022 337456000 2023 339806000 2024 335106000 2025 337456000 2026 337456000 2027 337456000 2028 337456000 2029 337456000 2021 337456000 2022 337456000 2023 328038000	2044	389157000
2042 384457000 2041 382107000 2039 379757000 2038 377407000 2037 372707000 2036 370357000 2037 37207000 2038 370357000 2039 370357000 2036 370357000 2037 37207000 2038 36806000 2039 36806000 2031 36806000 2032 360956000 2033 363306000 2034 355256000 2039 353906000 2030 351556000 2021 34450600 2022 34450600 2023 33980600 2024 34215600 2025 34450600 2024 34215600 2025 337456000 2021 335106000 2022 337456000 2023 332756000 2024 342156000 2025 344506000 2026 332756000 <td>2043</td> <td>386807000</td>	2043	386807000
2041 382107000 2039 379757000 2038 377407000 2037 377207000 2036 370357000 2037 37207000 2038 370357000 2039 368006000 2034 365556000 2033 363306000 2034 365556000 2033 363306000 2034 35560600 2035 360956000 2036 351556000 2037 349206000 2028 351556000 2029 344506000 2024 3442156000 2025 344506000 2024 342156000 2025 337456000 2026 337456000 2021 335106000 2022 337456000 2023 339806000 2024 342156000 2025 344506000 2026 337456000 2021 332756000 2022 332436000	2042	384457000
2040 379757000 2039 377407000 2038 375057000 2037 372707000 2036 370357000 2035 368006000 2034 365656000 2033 363306000 2034 365565000 2035 368006000 2034 36556000 2035 36806000 2030 358606000 2030 356256000 2029 353906000 2026 344856000 2027 344506000 2028 351556000 2029 337456000 2021 337456000 2022 337456000 2023 335106000 2024 332756000 2021 335106000 2022 337456000 2023 328038000	2041	382107000
2039 377407000 2038 375057000 2037 372707000 2036 370357000 2035 368006000 2033 365656000 2032 360956000 2031 35806000 2032 360956000 2033 35806000 2034 35806000 2035 360956000 2030 35806000 2029 353906000 2028 351556000 2029 3344506000 2022 337456000 2023 339806000 2024 335106000 2022 337456000 2023 339806000 2024 332756000 2029 330406000	2040	379757000
2038 375057000 2037 372707000 2036 370357000 2035 368006000 2034 365556000 2033 363306000 2034 360956000 2031 358606000 2032 360956000 2033 356256000 2030 356256000 2029 353906000 2028 351556000 2029 353906000 2026 344506000 2023 339806000 2024 342156000 2022 337456000 2021 335106000 2022 332756000 2019 330406000 2018 328038000	2039	377407000
2037 372707000 2036 370357000 2035 368006000 2034 365656000 2033 363306000 2034 365656000 2032 360956000 2031 35806000 2032 35806000 2033 351556000 2029 353906000 2028 351556000 2027 349206000 2026 344506000 2023 339806000 2024 342156000 2022 337456000 2021 332756000 2021 330406000 2023 328038000	2038	375057000
2036 370357000 2035 368006000 2034 365556000 2033 363306000 2032 360956000 2031 358606000 2030 358006000 2031 358606000 2030 356256000 2029 353906000 2028 351556000 2027 349206000 2026 344506000 2025 344506000 2024 342156000 2023 337456000 2024 335106000 2025 337456000 2021 335106000 2022 337456000 2023 328038000	2037	372707000
2035 368006000 2034 365656000 2032 360956000 2031 35860600 2030 35906000 2031 35800600 2032 35906000 2033 351556000 2029 351556000 2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2024 342156000 2025 337456000 2021 332756000 2029 330406000 2021 328038000	2036	370357000
2034 365656000 2032 360956000 2031 358606000 2030 356256000 2029 353906000 2028 351556000 2027 349206000 2026 346856000 2025 344506000 2023 337456000 2022 337456000 2021 332756000 2020 330406000 2018 328038000	2035	368006000
2033 363306000 2032 360956000 2031 358606000 2030 356256000 2029 353906000 2028 351556000 2027 349206000 2026 346856000 2025 344506000 2023 339806000 2024 342156000 2023 337456000 2021 332756000 2020 330406000 2019 328038000	2034	365656000
2032 360956000 2031 358606000 2030 356256000 2029 353906000 2028 351556000 2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2024 342156000 2023 337456000 2021 335106000 2020 332756000 2019 328038000	2033	363306000
2031 358606000 2030 356256000 2029 353906000 2028 351556000 2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2024 337456000 2021 335106000 2022 332756000 2019 328038000	2032	360956000
2030 356256000 2029 353906000 2028 351556000 2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2031	358606000
2029 353906000 2028 351556000 2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 328038000	2030	356256000
2028 351556000 2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 30406000 2018 328038000	2029	353906000
2027 349206000 2026 346856000 2025 344506000 2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2028	1 351556000
2026 346856000 2025 344506000 2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2027	349206000
2025 344506000 2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2026	1 346856000
2024 342156000 2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2025	344506000
2023 339806000 2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2024	342156000
2022 337456000 2021 335106000 2020 332756000 2019 330406000 2018 328038000	2023	1 339806000
2021 335106000 2020 332756000 2019 330406000 2018 328038000	2022	337456000
2020 332756000 2019 330406000 2018 328038000	2021	335106000
2019 330406000 2018 328038000	2020	332756000
2018 328038000	2019	330406000
	2018	1 328038000

Figures 6 (with a forecast range of 32 years, i.e.; 2018 - 2050) and 7, clearly indicate that USA population is indeed set to continue rising sharply, at least for the next 3 decades, ceteris paribus. With a 95% confidence interval of 360 199 000 to 446 315 000 and a projected total population of 403 257 000 by 2050, the ARIMA (0, 2, 3) model is consistent with the population projections by the UN (2015) which forecasted that US total population projections by the US Census Bureau (2018) which forecasted that the US will grow by 78 million people in the next 4 decades, from about 326 million to 404 million between 2017 and 2060. The optimal model, our ARIMA (0, 2, 3) model is also line with US population projections done by Colby & Ortman (2014) who forecasted that between 2014 and 2060, the US population will increase from 319 million to 417 million, reaching 400 million in 2051. A growing population, in the US, is arguably an opportunity for growth given US's educated labor force and the technological advancements prevalent in the US. This study argues that the US is and is likely to continue fulfilling the Ahlburg (1998) and Becker *et al* (1999) population prophecy.

Policy Implications

- i. For the US to continue wondering the in the realms of the Ahlburg (1998) and Becker *et al* (1999) population prophecies, there is need to maintain a highly educated and trained workforce. Technological advancements and innovation should continue in order to continuously improve production processes and national output.
- ii. The US policy makers ought to encourage a culture of entrepreneurship and creativity in order to circumvent the likely challenge of unemployment due to a large population.
- iii. Since a large population basically translates into an increased demand for goods and services, the US business community should expand their business operations in order to cater for the expected increase in demand for commodities.

CONCLUSION

The ARIMA (0, 2, 3) model is a suitable and most parsimonious model to forecast the population of the USA for the next 3 decades. The model predicts that by 2050, USA's population would be nearly, 403 million. The results of this endeavor are important for the US government, especially in terms of planning for the future.

REFERENCES

- [1] Ahlburg, D. A (1998). Julian Simon and the population growth debate, *Population and Development Review*, 24: 317 327.
- [2] Ayele, A. W & Zewdie, M. A (2017). Modeling and forecasting Ethiopian human population size and its pattern, *International Journal of Social Sciences, Arts and Humanities*, 4 (3): 71 82.
- [3] Becker, G., Glaeser, E., & Murphy, K (1999). Population and economic growth, *American Economic Review*, 89 (2): 145 149.
- [4] Colby, S. L & Ortman, J. M (2014). Projections of the size and composition of the US population: 2014 to 2060, Current Population Report, *US Census Bureau*, pp: 25 1143.

- [5] Dominic, A., Oluwatoyin, M. A., & Fagbeminiyi, F. F (2016). The determinants of population growth in Nigeria: a co-integration approach, *The International Journal of Humanities and Social Studies*, 4 (11): 38 – 44.
- [6] Haque, M., Ahmed, F., Anam, S., & Kabir, R (2012). Future population projection of Bangladesh by growth rate modeling using logistic population model, *Annals of Pure and Applied Mathematics*, 1 (2): 192 – 202.
- [7] Malthus, T (1798). An essay of the principle of population, *Pickering*, London.
- [8] Nyoni, T (2018). Modeling and Forecasting Naira / USD Exchange Rate in Nigeria: a Box – Jenkins ARIMA approach, University of Munich Library – Munich Personal RePEc Archive (MPRA), Paper No. 88622.
- [9] Nyoni, T (2018). Modeling and Forecasting Inflation in Kenya: Recent Insights from ARIMA and GARCH analysis, *Dimorian Review*, 5 (6): 16 40.
- [10] Nyoni, T. (2018). Box Jenkins ARIMA Approach to Predicting net FDI inflows in Zimbabwe, *Munich University Library – Munich Personal RePEc Archive (MPRA)*, Paper No. 87737.
- [11] Pflaumer, P (1992). Forecasting US population totals with the Box-Jenkins approach, *International Journal of Forecasting*, 8: 329 338.
- [12] Pflaumer, P (2012). Forecasting the US population with the Gompertz Growth curve, *Social Statistics Section JSM*, pp: 4967 4981.
- [13] Solow, R (1956). Technical change and the aggregate population function, *Review* of *Economics and Statistics*, 39: 312 320.
- [14] Tartiyus, E. H., Dauda, T. M., & Peter, A (2015). Impact of population growth on economic growth in Nigeria, *IOSR Journal of Humanities and Social Science (IOSR-JHSS)*, 20 (4): 115 – 123.
- [15] Todaro, M & Smith, S (2006). Economic Development, 9th Edition, *Vrinda* Publications, New Delhi.
- [16] United Nations (2015). World Population Prospects: The 2015 Revision, Key Findings and Advance Tables, *Department of Economic and Social Affairs*, Population Division, Working Paper No. ESA/P/WP/241.
- [17] United States Census Bureau (2018). Demographic turning points for the United States: population projections for 2020 to 2060, *USCB*, March Issue.

[18] Zakria, M & Muhammad, F (2009). Forecasting the population of Pakistan using ARIMA models, *Pakistan Journal of Agricultural Sciences*, 46 (3): 214 – 223.