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Abstract 

In order to incorporate travel time variability in appraisal, methods are needed 
to predict effects on travel time variability of investments and polity measures. 
The present study is a first step towards developing such a method. Using 
data from Stockholm’s automatic camera system for travel time 
measurements, a relationship is estimated between the standard deviation, 
the congestion level and various link characteristics. The relationship has 
been used in a cost-benefit analysis of the planned Stockholm bypass, 
yielding added benefits of around 15% of the conventional travel time 
benefits. Moreover, it is shown that that the travel time distribution tends to be 
less skewed for higher congestion levels, and that the covariance between 
adjacent links seems to be relatively small. The latter results is important 
since it makes it possible to approximate route variances as the sum of link 
variances. 
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1 INTRODUCTION 

As congestion problems are growing more severe in urban regions, the 
problem of unpredictable travel times is receiving increasing attention. In 
many cases, this problem is seen as worse than the increased travel time in 
itself. Infrastructure investments and transport policy measures are often 
motivated by the need to reduce unexpected delays and unreliable travel 
times.  

Since travel time variability affect people’s utility and their travel behavior, it 
seems natural to try to include these phenomena in cost-benefit analyses 
(CBA). In fact, several countries consider doing this or have already. The 
Netherlands has introduced “reliable travel times” as a goal for transport 
policy, and is well under way to introduce travel time variability in their CBA 
methodology (Kouwenhoven, 2005; Hamer et al., 2005). In the UK, there is 
ongoing work to introduce travel time variability in the CBA part of the 
appraisal framework (Bates et al., 2004, Department for Transport, 2009).  

Travelers’ valuations of travel time variability have been investigated in 
several studies (see e.g. Hamer et al., 2005, or Eliasson, 2004, for surveys). 
However, studies that try to provide quantitative methods to forecast travel 
time variability (or rather, effects on variability of investments or policy 
measures) are still rather scarce. The present study is an attempt to develop 
such a method. The task at hand is analogous to developing volume-delay 
functions: just as volume-delay functions describe the relationship between 
the traffic volume, capacity and travel time on a link, the intention is to try to 
develop a function that describes the relationship between travel time, free-
flow travel time and the standard deviation of travel time.  

2 ABOUT TRAVEL TIME VARIABILITY  

Travel time variability is the random, day-to-day variation of the travel time 
that arises in congested situations even if no special events (such as 
accidents) occur. If congestion is severe, this variation may be significant. The 
variability means that many travelers must use safety margins in order not to 
be late. In some cases, the margin will turn out to be insufficient, and the 
traveler will be late nevertheless. In the former case, an additional disutility 
(beyond that measured by pure mean travel time) arises since effective travel 
time can be said to be greater than actual mean travel time. In the latter case, 
the lateness will cause some sort of additional disutility. The social loss 
caused by the travel time variability is the sum of those two disutilities.  

2.1 Valuing travel time variability 

Many valuation studies assume a (reduced-form) utility function on the form  

 u = t + c +  

where t is travel time, c travel cost and  is the standard deviation of travel 

time (,  and  are parameters to be estimated). This is usually called the 
“mean-variance” approach.  



 

There are also studies that estimate schedule delay costs directly, i.e. the 
additional costs travelers encounter when they start earlier to reduce the risk 
of being late and the occasional “lateness penalty” when the travel time turned 
our to be longer than expected. Such studies usually use (variants of) the 
framework proposed by Vickrey (1969), Small (1982) and Noland and Small 
(1995). Fosgerau and Karlström (2009), extending results by Noland and 
Small (1995) and Bates et al. (2001), show that if the lateness penalty (arrival 
after the preferred arrival time) is linear, the departure time can be chosen 
freely and the travel time distribution is independent of departure time 
(although they show that this condition is of less practical importance), the 
indirect utility function will be on the form above. An important caveat, though, 

is that the relative weight of the standard deviation () will depend on the 
standardized travel time distribution. Standard deviation valuations that have 
been obtained in one context can thus not be directly transferred to another 
context with a different standardized travel time distribution. 

The question of proper valuation of travel time variability is not the main focus 
of the current paper. The main motivation for it, however, is that it currently 
seems that the most tractable way of introducing travel time variability in cost-
benefit analyses is using the mean-variance approach (or a variant thereof) – 
and hence, a way to forecast travel time variability is needed.  

2.2 Measures of travel time variability 

There are several ways to quantify travel time variability. We will use two 

similar measures: the standard deviation of travel time (denoted ) and the 
difference between the 90- and 10-percentile, scaled by the factor 2.56 
(denoted s). The factor 2.56 is chosen so that if the travel time is normally 
distributed, the measures will coincide. If the travel time is symmetrically 

distributed, s and  will only differ by a scale factor. (As will be shown later, 
the distribution of the travel time will tend to be relatively symmetric for high 
congestion levels.) The main advantage with using s during estimation is that 
the estimated relationship between congestion and travel time variability will 

be more precisely estimated, since s, unlike , is not sensitive to occasional, 
“rare” incidents, beyond the 90th percentile. Obviously, an estimated 
relationship of the kind we are after here cannot predict random incidents or 
disturbances such as road works. Moreover, some of these high travel times 
may also be measurement errors, considerable data cleaning efforts. 



 

 

Figure 1. Standard deviation compared to s. 

The figure above shows that s and  lie close in the majority of cases, 
especially for higher standard deviations. As expected, when the two 
measures differ, it is the standard deviation that is higher: this depends on 
“rare” events causing high travel times, increasing the tail beyond the 90th 

percentile and hence increasing  but not s.  

As it turns out, estimations work better (in terms of R2 and parameter 
significance) when using s as a dependent variable than when using the 

standard deviation . This seems to depend on the fact that  is sensitive to 
outliers in the far right tail of the distribution – which may be due to rare, 
occasional incidents, or due to measurement errors; it is virtually impossible to 

tell. Since s and  “should” coincide for high congestion and variability (and 
mostly do), it is an attractive option to use s as a measure of the variability 
rather than the standard deviation. s can also be viewed as a “proxy” for the 
standard deviation, that is less sensitive to measurement errors and 
“irrelevant” incidents (road work, say). Estimation results are presented both 

for s and .  

When choosing between s and  as dependent variable, one should also take 
into account how the valuation of travel time variability has been measured. 
Almost all studies are stated preference studies. Few, if any, of these studies 
present something about the “far right tail of the distribution” to the 
respondents. For example, Eliasson (2004), Börjesson (2006) and van 
Amelsfort (2005) present a “travel time interval” (a 95% confidence interval in 
the two former studies) to the respondents. Other studies (e.g. Bates, 2001; 
Hollander, 2005) show a number of “sampled”, equiprobable travel times, 
assumed to represent an underlying distribution. Generally speaking, such a 
sample will not describe how rare or how long the travel times at the “far right 
tail” are, since it will be impractical to make the “sample” sufficiently large. 
Hence, from a valuation perspective based on stated preference studies, it is 

not really possible to distinguish between s and .     



 

3 DATA 

The data used comes from the automatic travel time measurement system in 
Stockholm. Travel times are measured continuously through a camera 
system, where pictures of number plates are taken when vehicles enter and 
leave each link. The number plates are then matched together, and the travel 
time for each vehicle is calculated. Each period of 15 minutes, the median 
travel time on the link is calculated (after a filtering process to weed out 
various sorts of errors). The median is used rather than the average in order 
not to let vehicles stopping along the link (buses, shoppers) affect travel time 
measurements.  

Travel times are measured on 92 streets and roads in and around central 
Stockholm. During the period we studied, measurements worked properly on 
41 of these links. All the links can be characterized as “urban” roads, i.e. they 
are neither highways nor small, “local” streets. Typically, they have two lanes 
in each direction (sometimes only one) – remember that Stockholm is a 
European city, and, compared to e.g. typical US conditions, even fairly large 
urban roads are narrow and seldom have more than two lanes. Around two 
thirds of the links have a speed limit of 50 km/h, and the rest have 70 km/h. 
Traffic volumes vary between 15 000 and 50 000 vehicles per day (summing 
both directions). Lengths vary from 300 meters to 5 km, so most links also 
contain a few intersections, mostly signaled. 

We used data from Monday-Thursday1 during three time periods: the spring of 
2005 (week 15-20), the fall of 2005 (September 1 – November 29) and the 
spring of 2006 (week 14, 16-202). For each link and time period, we calculated 
average travel time and the standard deviation of the travel time for each 15 
minutes period between 6.30 and 18.30 – hence, each link produced 3*48 
“observations” of mean travel time and standard deviation (there are 48 
quarters between 6.30 and 18.30). Calculating the standard deviation across 
each time period means implicitly assuming that each of three time periods is 
“homogeneous” in the sense that variability during that time period is random 
from the traveler’s point of view – in particular, that there are no foreseeable 
season effects during the course of the time period. This assumption is 
verified by checking that there are no discernible trends in traffic volumes or 
travel times during the time periods (as opposed to if we had, for example, 
extended the spring time period into the summer, when traffic first increases 
and then drops sharply after Midsummer). In the estimations, we will present 
both estimations on the three time periods separately and on the whole 
pooled data set.  

That we split the day into 15-minute periods is an implicit assumption that this 
is the relevant “time resolution” that travelers base their decisions on. In 
general, the more coarse this “time resolution” is chosen, the larger will the 
calculated variability be (and vice versa), since the variability of travel times 
across the day will affect the standard deviation. Our choice is essentially only 
motivated by intuition: it seems reasonable that most travelers will “know” the 

                                            
1 Fridays were taken out of the sample since the travel time distribution across the day is different 

2 Week 15 2006 was the Easter holiday.  



 

variations in (expected) travel conditions on a 15-minutes basis. Investigating 
this further would certainly be worthwhile.  

4 INVESTIGATING TRAVEL TIME VARIABILITY 

Before we present estimation results, it is useful to get some qualitative feel 
for the standard deviation. The diagrams below show mean travel time (red) 
and 10- and 90-percentiles for a few links. A striking feature is the large 
variation of travel time – during the 10% “best” days, travel times are close to 
free flow even during rush hours, while the 10% “worst” days, travel times may 
be twice as long than average travel times (or more), and at least four times 
as long as the 10% “best” days. 

   

Figure 2. An example of travel times: Valhallavägen (two directions). Red is average travel 
time, black dotted lines are 10- and 90-percentiles of the travel time. Green is the standard 

deviation (). 

The example below (showing the same link in two directions) shows that 
travel time variability does not have to be high even if congestion is. During 
afternoon rush hours on the right pane, the variability is very high, while it is 
fairly low during morning rush hours on the left pane.  

   



 

Figure 3. Another example of travel times: the Central bridge (two directions). Red is average 
travel time, black dotted lines are 10- and 90-percentiles of the travel time. The green, jagged 

line is the standard deviation () and the blue, less jagged line is s, the (scaled) distance 
between the 90- and 10-percentile (see text).  

This particular link was also chosen to show the difference between  and s. 

In particular on the left pane,  is apparently disturbed by various large 
outliers – due to e.g. measurement errors or incidents. Although the data has 
been checked as far as possible to correct it, it is hard to weed out all outliers 
– especially in a study of this type, where it is the variation itself that we want 

to study. But from the figure, it is apparent that s is more “stable” than , and it 
should come as no surprise that the estimated relationships for s show higher 

significance than those for . 

From the figures above, it seems apparent that there is a relationship between 
congestion (i.e., travel time longer than the free-flow travel time) and travel 

time variability. The diagrams below show relative standard deviation ( 
divided by free-flow travel time) on the y-axis vs. relative increase in travel 
time (actual travel time divided by free-flow travel time) for 26 links. Each “dot” 
is one 15-minute period between 6.30 and 18.30. 

 

Figure 4. Relative standard deviation vs. relative increase in travel time for 26 links. 

Apparently, the variability increases when congestion increases. Moreover, 
the standard deviation seems to be roughly proportional to the relative 
increase in travel time. But the proportional factors (the slope of the “line” in 
each pane) seem to differ between links – quite naturally. Estimating that 



 

slope and trying to explain why it differs is one of the main tasks of this study, 
but before we show estimation results, we need to digress a little and 
investigate the distribution of travel times, and how variability is affected by 
queue build-up and dissipation. 

5 THE DISTRIBUTION OF TRAVEL TIMES 

An interesting question is how travel times are distributed over multiple days. 
That is, if you measure the travel time on a certain link at a certain time of day 
several days3 - what will the distribution of these measurements look like? In 
particular: is it skewed or symmetric? The answer to this has implications for 
how stated choice experiments are formulated, and as noted in the 
introduction, the shape of the travel time distribution will affect the valuation of 

the standard deviation ( in the introduction).  

An initial guess might be that the distribution of travel times might be “skewed 
to the right”, i.e. deviations “upwards” – longer travel times than the median – 
is larger than deviations “downwards”. It turns out that this is only partially 
correct. First, there is a large variation in terms of skewness, especially for low 
congestion levels. For higher congestion levels, skewness decreases to the 
point where the travel time is distribution is almost symmetric. The rest of this 
section is devoted to show this. 

The pictures below show a few examples of cumulative distributions of travel 
times. Every “dot” shows a certain 15-minute period a certain day. The red 
line shows a cumulative normal distribution with the same mean and standard 
deviation. “fm” means AM peak (8.00-9.00 AM) and “em” means PM peak 
(5.00-6.00 PM). 

                                            
3 Throughout, we are only talking about “similar” days – say, Mondays through Thursdays (the 
distribution of traffic across the day on Fridays is actually quite different from other weekdays). 



 

 

Figure 5. Examples of skewed travel time distributions (travel time in minutes on the x-axis, 
cumulative frequency during 1 rush hour on the y-axis). 

These links are typical examples of links with low congestion. Most days, 
travel times are just a little above free-flow travel time, only getting longer in a 
few cases. Then, on the other hand, the travel time may be considerably 
longer – in some cases three or five times as long as the free-flow travel time. 
One may hypothesize that these cases are due to accidents, road work or bad 
weather (snow, heavy rain etc.). From the travelers’ viewpoint, travel time is 
“almost deterministic” – the travel time will be the same 90-95% of the trips. 
Only for the remaining 5-10%, the travel time will be longer.  

Below, the same type diagram is shown for a few links with high congestion. 
That congestion is high is immediately visible from the cumulative distributions 
– the free-flow travel times are the left-most tail of the distribution. Just as 
before, the red line shows a cumulative normal distribution with the same 
mean and standard deviation. 



 

 

Figure 6. Examples of normally distributed travel times. 

These travel time distributions are clearly almost exactly normally distributed. 
From a travelers’ viewpoint, the main difference is that travel times are clearly 
random – very different from day to day. (Interestingly, traffic volumes do not 
vary much – typically a few percent from day to day.) 

The decrease in traffic volumes (and hence congestion levels) when the 
congestion charges were introduced in the spring of 2006 gives the 
opportunity to compare travel time distributions on the same links between 
April 2005 (no charges) and April 2006 (with charges). Two examples are 
shown below. Clearly, both the mean and standard deviations decrease in the 
spring of 2006, when charges were introduced. Moreover, the distributions in 
the less congested conditions in 2006 are more skewed than the more 
congested 2005 distributions. 

  



 

Figure 7. Cumulative travel time distributions, spring 2005 and spring 2006.  

The figures above give anecdotic support for the statement that travel time 
distributions are skewed for moderate levels of congestion (and variability), 
while it tends to be symmetrically distributed (normally, to be precise) for high 
levels of congestion (and variability).  

To show this more formally, we use the standard definition of skewness: 

S = E([X-m]3)/3 (m is the mean and  the standard deviation).  If S is 0, then 
the distribution is symmetric. If S is negative, it is skewed to the left, and vice 
versa for positive S. 

The diagram below to the right shows (on the y-axis) the skewness for the 
travel times during 1 hour periods between 5 AM and 9 PM for 41 links. The 
skewnesses are plotted against the relative increase in travel time (actual 
travel time divided by free-flow travel time) – a measure of congestion. To the 
left, skewness for 15-min distributions during rush hours are shown.  

 

 

Figure 8. Skewness of travel time distribution (y-axis) vs. relative increase in travel time (x-
axis). Left: one-hour distributions 5:00-21:30, different for the three measuring periods (spring 
05, fall 05, spring 06). Right: 15-min distributions during rush hours (7-9, 16-18), aggregated 
over measuring periods. Below: corresponding histograms.   

From the figures, it is evident that the skewness varies considerably. For low 
congestion levels, skewnesses vary from zero or even below zero to very 
high. But when congestion gets high, the skewness decreases, and the travel 
time distributions are nearly symmetric. 



 

Since we are primarily interested in congested conditions, this is a convenient 
result in stated choice contexts: it is much harder to present highly skewed 
travel time distributions to travelers in a comprehensible way than it is to 
present symmetric distributions with moderately long tails.  

6 VARIABILITY DURING QUEUE BUILD-UP AND 
DISSIPATION 

Bates et al. (2002) studied how the variability on highways changed during the 
day. From a simple random-capacity bottleneck model, they show that the 
variability can be expected to be higher during queue build-up than during 
queue dissipation. They also report that this phenomenon can be found in 
measurement data. The same result is reported, and a general proof is 
provided, in Fosgerau (2008). This phenomenon is often visible in our material 
as well – though not always. In the diagram below, relative increase in travel 
time is plotted (x-axis) versus relative s (s divided by free-flow travel time) (y-
axis). Colors show time of day: black circles are observations through 8.45, 
red circles through 9.45, and then green circles.  

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0
.1

0
.2

0
.3

0
.4

 

Figure 9. Relative travel time variability (y-axis) vs. relative increase in travel time (x-axis) for 
different 15-minute timer periods. 

Relative variability is roughly proportional to relative increase in travel time 
(which can be interpreted as “congestion”). But during queue dissipation – 
from 9.00, when the red circles start – the variability is higher than during 
queue build-up, although the congestion is the same. During mid-day (from 
10.00 onwards), both congestion and variability are negligible. 

In the diagram below, we have also shown the afternoon peak. Dark blue 
circles denote queue build-up (15.30-17), light blue circles queue dissipation 
(17-18.30). The same phenomenon can be seen: the variability increases with 



 

increasing congestion, and then decreases again with decreasing congestion, 
but at a higher level. Mid-day (green) and evenings (purple) , both congestion 
and variability are negligible. 
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Figure 10. Relative travel time variability (y-axis) vs. relative increase in travel time (x-axis) for 
successive 15-minute time periods. 

The diagrams below show more examples (all from the morning peak). The 
phenomenon is not always as apparent, but enough important to be 
accounted for during estimation.  
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Figure 11. Relative travel time variability (y-axis) vs. relative increase in travel time (x-axis) for 
successive 15-minute time periods. 

7 ESTIMATION RESULTS 

As was illustrated above, there is a positive correspondence between 
variability and “congestion” (measured as relative increase in travel time 
throughout). It turns out that modeling this correspondence with a log-log 
function works best (in terms of R2) – we also tried linear and log-linear 
functions. A log-log function also has the desirable property that the standard 
deviation is guaranteed to be positive when we use the estimated relationship 
for forecasting.  

Two types of models are presented: one with the standard deviation  as the 
dependent variable, and one with s (the difference between the 90th percentile 
and the 10th percentile, scaled to coincide with the standard deviation if the 

distribution is normal) as the dependent variable. As noted above,  is more 

sensitive to outliers (rare incidents or possibly measurement errors), so the  
models have somewhat less explanatory power (in terms of R2 and parameter 
significance). Obviously, “rare” incidents are still relevant for the travel time 
distribution we are studying – but there is little hope that we will be able to 
model the frequency and impact of such random incidents in the type of model 
and data at hand here. The parameters of the model types are remarkably 
similar, however.  

The variables included in the model are  

- mean travel time (t) 

- relative increase in travel time over free-flow travel time t0 (t/t0-1) 

- length of the link in kilometers (L) 

- dummy variable for “time of day” (ToD). The parameter for mid-day is 
normalized to zero, while dummy parameters are estimated for “before 
AM peak” (6.45-8.30), “after AM peak” (8.45-9.45), “before PM peak” 
(15.45-16.45) and “after PM peak” (17.00-18.30). This is introduced to 
control for the “looping” behavior of the standard deviation, i.e. that the 
standard deviation is different during queue build-up and dissipation. 



 

- dummy variable for the speed limit (speed). The parameter for speed limit 
50 km/h is normalized to zero.  

The estimated formula is: 


 








 1****

0
t

t
tLspeedToD  

where  is a constant. Further, a set of models where  was replaced with s 
(the 90-10-percentile distance) was estimated. Separate models were 
estimated for the three time periods – spring 2005, fall 2005, spring 2006 – 
and then one model for the pooled data. The results are shown in the table 
below.  

  
all 
years

std. 
error 

t-
stat. 

spring 
2005 

std. 
error 

t-
stat.

fall 
2005  

std. 
error 

t-
stat. 

spring 
2006 

std 
error 

t-
stat.

(Intercept)  -1.50 0.03 
-

57.8 -1.27 0.05
-

26.7 -1.69 0.04
-

44.4 -1.46 0.05 
-

30.0
log(travel 

time)  1.09 0.02 48.3 1.04 0.04 26.5 1.09 0.03 31.8 1.02 0.04 23.6
log(congestion 

index)  0.52 0.01 48.8 0.56 0.02 27.6 0.52 0.02 32.1 0.48 0.02 26.0

log(length)  -0.28 0.02 
-

14.4 -0.23 0.03 -6.7 -0.29 0.03
-

10.2 -0.26 0.04 -6.7
after PM peak 

ToD 0.14 0.02 5.5 0.02 0.04 0.5 0.23 0.04 5.8 0.17 0.05 3.7

after AM peak 0.18 0.03 7.0 0.02 0.04 0.5 0.31 0.04 7.5 0.22 0.05 4.7
before PM 

peak ToD 0.00 0.02 0.1 -0.13 0.04 -3.2 0.06 0.04 1.5 0.10 0.05 2.2
before AM 

peak ToD 0.02 0.02 0.8 -0.05 0.04 -1.4 0.06 0.03 1.9 0.04 0.04 1.1
speed limit 70 

km/h speed 0.27 0.02 13.3 0.27 0.03 7.9 0.34 0.03 10.3 0.21 0.04 5.6

Multiple R-
Squared 0.61   0.68   0.73   0.61   

             

  
all 
years

std. 
error 

t-
stat. 

spring 
2005 

std. 
error 

t-
stat.

fall 
2005  

std. 
error 

t-
stat. 

spring 
2006 

std 
error 

t-
stat.

(Intercept)  -1.97 0.02 
-

92.3 -1.60 0.04
-

41.5 -2.10 0.03
-

65.8 -2.15 0.04 
-

55.1
log(travel 

time)  1.23 0.02 66.5 1.04 0.03 32.7 1.20 0.03 41.9 1.37 0.03 39.1
log(congestion 

index)  0.46 0.01 53.4 0.58 0.02 34.7 0.51 0.01 37.2 0.35 0.01 23.4

log(length)  -0.32 0.02 
-

20.1 -0.15 0.03 -5.3 -0.31 0.02
-

13.1 -0.47 0.03 
-

15.2
after PM peak 

ToD 0.18 0.02 8.7 0.03 0.03 0.9 0.24 0.03 7.3 0.26 0.04 7.1

after AM peak 0.18 0.02 8.4 0.09 0.04 2.6 0.26 0.03 7.6 0.18 0.04 4.6
before PM 

peak ToD 0.06 0.02 3.1 -0.07 0.03 -2.1 0.11 0.03 3.4 0.16 0.04 4.4
before AM 

peak ToD 0.10 0.02 5.8 0.05 0.03 1.7 0.18 0.03 6.2 0.09 0.03 2.8
speed limit 70 

km/h speed 0.12 0.02 7.4 0.08 0.03 2.9 0.24 0.03 8.9 0.09 0.03 2.9

Multiple R-
Squared 0.76   0.77   0.81   0.72   

 

From the table, several interesting observations can be made.  



 

- The parameters do not change much across time periods, despite very 
different traffic conditions in terms of traffic and congestion levels due to 
seasonal variations and, above all, the congestion charges in the spring of 
2006. Although a formal test rejects the hypothesis that the data can be 
combined into a pooled model, that finding should be interpreted with 
caution, since the data sets are so large. In particular, the parameters for 

the  models seem very stable. The parameters for the  models seem to 
be somewhat more stable than those for the s models, despite the fact 
that the latter models have better explanatory power in terms of R2.  

- The standard deviation is almost proportional to the mean travel time (the 
exponent is just above 1), proportional to the square root of the 
congestion index and proportional to the length raised to the power of 
-0.3. These results seem to be stable across time periods. 

- The s model parameters are a little less stable across time periods. A 

recurrent finding is that all models have + = 1.7, i.e. for high congestion 
levels (t>>t0), s increases as (travel time)1.7 in all s models.  

- The time-of-day parameters for “after AM peak” and “after PM peak” pick 
up the “looping” behavior that causes the standard deviation to be higher 
during the queue dissipation phase. 

- A higher speed limit increases the standard deviation. It is unclear 
whether this is because of the speed limit itself or whether this is a proxy 
for various other characteristics of the road. Considering the fact that no 
other road characteristics were significant (see the list below), it seems 
likely that it is in fact the speed limit in itself that causes the increase in 
standard deviation. 

Variables that were tried in the estimation but eventually were excluded 
because they were insignificant were.  

- number of intersections on the link 

- free-flow travel time (although it is included in the “congestion measure”) 

- number of lanes 

- “Emme/2-classification” – a classification of all links describing its size and 

function  

- the “degree of distortion” of the link, as coded in the emme/2. This is used 

in the volume/delay functions, and describes factors as curvature, parked 

cars, intersection types etc.  

8 ARE TRAVEL TIMES ON ADJACENT LINKS CORRELATED? 

An interesting question is whether the travel times on adjacent links are 
correlated. More precisely: if the travel time on a certain link at a certain time 
of day is higher than usual – will the travel time on another, adjacent link tend 
to be higher or lower than usual, or is it unaffected? 

The question is interesting in its own right, but becomes particularly important 
when we want to compute the (forecasted) travel time variability for a whole 
route, and not just on a single link. Let tij and tjk be the (random) travel times 
on the adjacent links (i,j) and (j,k), and let the corresponding standard 



 

deviations be ij and jk. The standard deviation for the whole (two-link) route 
(i,k) is  

  
jkijjkijik ttCov ,2
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Hence, if travel times are uncorrelated, then – and only then – we can just add 
the variances to get the variance for the whole route.   

There are several arguments that suggest that travel times on adjacent links 
should be positively correlated. If the variability of the travel times stems from 
variations in the traffic volume, then the same underlying variability source will 
affect both links similarly. The same is true for incident-related variability. A 
third reason is that a queue that builds up on one link will tend to “spill over” 
onto previous links.  

But there are also arguments that suggest that travel times on adjacent links 
might be negatively correlated. A link that lies “downstream” from a bottleneck 
(an overloaded intersection, typically) will get lower traffic flow those days 
when the bottleneck is more than usually overloaded. This will lead to higher 
travel times upstream from the bottleneck but lower travel times downstream 
from the bottleneck – and hence, negatively correlated travel times.  

In our material, there are five pairs of adjacent links. The diagrams below 
show two examples of how the covariance of two of the five pairs varies 
across the day. As it turns out, three of the five pairs have positively correlated 
travel times (one of which is shown to the left), one pair has negatively 
correlated travel times (shown to the right), and one pair has positively 
correlated travel times during the morning peak, but negatively correlated 
travel times during the afternoon peak. 

 

 

Figure 12. Relative covariance (y-axis) across the day (hours are shown on x-axis). 

The pair with negatively correlated travel times fits the hypothesis above: the 
second link in the pair lies downstream from a bottleneck where several highly 
congested links meet in a roundabout.  

So how large is the covariance? Most importantly: if we skip the covariance 
term when computing the variance for entire routes, and only sum link 
variances, how large might the error be? The question is important since it 



 

would be virtually intractable to compute covariances for each pair of links in 
the whole network, especially since data is limited.  

The diagrams below show the correct standard deviation for a pair of adjacent 
links on the x-axis, and the square root of the summed link variances on the y-
axis – that is, what we get if we assume uncorrelated link travel times, and 
omit the covariance term from the formula above. Dots on the straight line are 
a perfect fit; dots below the line mean that the total standard deviation for the 
link pair is underestimated if the covariance term is omitted. 

 

 

Figure 13. True standard deviations for link pairs (x-axis) vs. the approximated standard 
deviation when covariance is ignored (y-axis).  

In most cases, the standard deviation is moderately underestimated when the 
covariance term is omitted. The table below show the percentage error during 
morning and afternoon peak hours for the five link pairs.  

Link pair Time period Mean error 
Mean absolute 

error 

Roslagstull-Odengatan and  
Odengatan-Lidingövägen 

7:00-9:30 -5% 6% 

16:00-18:30 7% 8% 

Same, other direction 

7:00-9:30 -6% 8% 

16:00-18:30 -19% 20% 

Islandstorget-Brommaplan and 
Brommaplan-Stora Mossen 

7:00-9:30 8% 8% 

16:00-18:30 8% 9% 

Same, other direction 

7:00-9:30 -12% 12% 

16:00-18:30 0% 4% 

Sveaplan-Odengatan and  
Odengatan-Sergels torg  

7:00-9:30 0% 7% 

16:00-18:30 -13% 13% 

 

The errors lie in the range 0-20%. Since the error is sometimes positive, 
sometimes negative, the error should tend to be smaller than that when 
several link variances are summed. This should mean that the error that 



 

occurs when link variances are summed without the covariance term should 
be tolerable. 

9 CASE STUDY: THE VALUE OF VARIABILITY REDUCTION 

The western bypass is a planned major road investment in Stockholm. During 
the spring of 2006, we conducted the cost-benefit analysis of the bypass. It 
was decided by the National Road Administration that travel time variability 
should be included into the CBA, as a test before a decision to include it in 
standard CBA.  

The formula above was implemented as an Emme/2 macro, using travel times 
and free-flow travel times from the Emme/2 network as input.  

Since this was only a test, and there was a pressing time limit, a few 
simplifications were made. First, all vehicles were assumed to have the same 
value of time. Second, only conditions during morning peak were considered, 
and this was then scaled to a value for the entire day. This consumer surplus 
of reduced variability W was then calculated using rule-of-a-half:  

  



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where Tij is flow between the OD pair (i,j), 0 and 1 refer to the situations 

with/without the investment,  is the value of time and  is the scale factor 

from morning peak hour to the entire day. Calculating ij for OD pair (i,j), we 
assumed that standard deviations were independent across links.  

In the study, a valuation of variability was used where one minute of standard 
deviation was worth 0.9 minutes of travel time, and a value of time that was 66 
SEK/h. Two alternatives for the western bypass was considered, one a bit 
further to the west, and one closer to the city centre. 

 



 

Net present values Alt. 1 
(west) 

Alt. 2 (east) 

Producer surplus 333 243

Budget effects 1764 1773

Travel time 20 973 21 677

Travel cost 1971 2480

Freight costs 1148 1257

Emissions 643 1612

Traffic safety 1018 1561

Investment costs (incl. marg. cost of public funds etc.) -19570 -19570

Maintenance -3232 -3031

Reduced travel time variability 2912 3420

Total benefits excl. reduced variability 24 632 27 583

Total benefits incl. reduced variability 27 544 30 177

Net present value ratio incl. reduced variability 0,26 0,41

Net present value ratio incl. reduced variability 0,41 0,54

Table 1. Costs and benefits of a western bypass, net present values.  

What is interesting about this table in the present context is that the value of 
reduced travel time variability is quite significant – about 15% of the total value 
of travel time savings. Thus, it seems that it would be worthwhile to continue 
the work of including travel time variability into CBAs, at least in urban 
contexts.  

This figure can be compared with a rough rule-of-thumb: The average ratio 
between standard deviation and mean travel time for the links in our data set 
is approximately 0.2. With a valuation of standard deviation of 0.9*(value of 
time), this would mean that adding reliability benefits would mean an increase 
of time benefits of 18%. However, this does not take into account that more of 
the traffic occurs during the most congested hours. On the other hand, the 
links in the data set is more congested than the average link in Stockholm. 
Correcting for the former approximation would increase the rough rule-of-
thumb, while taking the second fact onto account would decrease it. As a rule-
of-thumb, it is obviously far too simplified; but as a check of the magnitude, it 
has some value.  

10 CONCLUSIONS 

There is now a substantial body of evidence that travel time variability may 
constitute a significant part of the generalized travel cost, and hence this 
should be reflected in cost-benefit analysis. Whereas there seems to be some 
degree of consensus in the research literature regarding how travel time 
variability should be valued, theoretically and empirically, good ways to predict 



 

the effects on variability of investments or policy measures. The work 
presented here is meant to be a step towards filling that gap.  

The central contribution of the paper is the estimation of a relatively stable 
relationship between the travel time variability on a link, its travel time, its 
congestion index and a number of other parameters. The estimated 
relationship gains more credibility from the fact that the parameters appear 
stable when compared across three distinct time periods with different traffic 
and congestion conditions.  

Other findings from the data analyzed in the paper are 

- The travel time variability does not only depend on the congestion level, 
but also on whether the queue is in its build-up or dissipation phase. For a 
given congestion level (in terms of increased travel time),variability will be 
higher. 

- The skewness of the travel time distribution appears to decrease when 
congestion increases. For high congestion levels, skewness appears to 
be almost negligible. 

- In order to calculate the standard deviation of the origin-destination travel 
times, it is for practical reasons virtually necessary to assume link travel 
times are independent. Based on a limited number of adjacent link pairs, it 
seems as though this simplification does not introduce a serious error in 
the calculation.  

- Travel time variability benefits may be substantial. In a case study of a 
bypass around Stockholm, travel time variability benefits amounted to 
around 15% of conventional travel time benefits.  

From a policy point of view, a seemingly trivial conclusion is that attacking 
congestion is more important than is apparent from just the increase on 
average travel times caused by the congestion. In other words, investments 
and policy measures that decrease congestion levels are worth more than the 
face value of travel time savings valued in the conventional way. Even if the 
CBA methodology may yet not be developed to the point where travel time 
variability benefits can safely be included in a routine manner, the message to 
policy makers is clear: that congestion creates costs for the society well above 
the mere time losses it creates, if that time loss is valued in the conventional 
way.  
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