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Abstract

In this paper, we extend Bai and Perron’s (1998, Econometrica, p.47-78) framework for multi-

ple break testing to linear models estimated via Two Stage Least Squares (2SLS). Within our

framework, the break points are estimated simultaneously with the regression parameters via

minimization of the residual sum of squares on the second step of the 2SLS estimation. We

establish the consistency of the resulting estimated break point fractions. We show that various

F-statistics for structural instability based on the 2SLS estimator have the same limiting distri-

bution as the analogous statistics for OLS considered by Bai and Perron (1998). This allows us

to extend Bai and Perron’s (1998) sequential procedure for selecting the number of break points

to the 2SLS setting. Our methods also allow for structural instability in the reduced form that

has been identified a priori using data-based methods. As an empirical illustration, our methods

are used to assess the stability of the New Keynesian Phillips curve.

JEL classification: C12, C13

Keywords: Structural Change, Multiple Break Points, Instrumental Variables Estimation.



1 Introduction

Linear models are widely applied in the analysis of macroeconomic time series. In many cases,

at least some of the explanatory variables are correlated with the error and so the model is

estimated via Instrumental Variables (IV). While it is routine to assume in estimation that the

parameters of these models are constant over time, there are reasons why this assumption may

be questionable. In particular, it can be argued that policy changes and/or exogenous shifts may

cause realignments in the relationship between economic variables which are reflected in changes

in the parameters. Therefore, it is important to develop methods for both detecting parameter

instability and also for building models that incorporate this behaviour.

Considerable attention has focused on developing tests for structural instability within the

IV or more generally the Generalized Method of Moments (GMM) framework.1 The majority of

this literature has focused on the design of tests against alternatives in which there is structural

instability at a single breakpoint in the sample. Although these tests are also shown to have

non-trivial power against other alternatives, it is clearly desirable to develop procedures that

can discriminate between various forms of instability.

An important step in this direction is taken by Bai and Perron (1998).2 They develop

methods that are designed to test for discrete shifts in the parameters at potentially multiple

and unknown break points in the sample. Their analysis is in the context of linear regression

models estimated via Ordinary Least Squares (OLS). Within their framework, the break points

are estimated simultaneously with the regression parameters via minimization of the residual

sum of squares. Bai and Perron (1998) establish the consistency and the limiting distribution of

the resulting break point fractions. They also propose a sequential procedure for selecting the

number of break points in the sample based on various F-statistics for parameter constancy.

While not the only possible form for structural instability, the model with the discrete shifts

at multiple unknown break points has some appeal in macroeconometric applications because

it captures the case where relationships change due to changes in policy regime or exogenous

shifts. However, since Bai and Perron’s (1998) analysis is predicated on the assumption that

1See inter alia Andrews and Fair (1988), Ghysels and Hall (1990), Andrews (1993), Sowell (1996) and Hall

and Sen (1999).
2Bai and Perron’s (1998) paper also contributes to the literature in statistics on change point estimation in

time series. See inter alia Picard (1985), Hawkins (1986), Bhattacharya (1987), Yao (1987) and Bai (1994).
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all explanatory variables are exogenous, their methods can not be applied to the types of linear

macroeconometric models mentioned above.

In this paper, we extend Bai and Perron’s (1998) framework to linear models estimated via

Two Stage Least Squares (2SLS) and thereby provide a methodology for estimating linear models

with endogenous regressors that exhibit discrete shifts in the parameters at multiple unknown

points in the sample. Within our framework, the break points are estimated simultaneously with

the regression parameters via minimization of the residual sum of squares on the second step of

the 2SLS estimation. We establish the consistency of the resulting break point fractions. We show

that the various F-statistics for testing parameter constancy based on the 2SLS estimator have

the same limiting distribution as the analogous statistics for OLS considered by Bai and Perron

(1998). This allows us to extend Bai and Perron’s (1998) sequential procedure for selecting the

number of break points to the 2SLS setting.

As can be seen from the above summary, our focus is on the stability of the parameters in

the second stage regression or, in other words, in the structural equation of interest. However

to implement 2SLS, it is necessary in the first stage regression to estimate the reduced form for

the endogenous regressors in the structural equation of interest and this, of course, requires an

assumption about the constancy or lack thereof of these reduced form parameters. In this

paper, we establish the aforementioned results under two scenarios of interest, namely: (i)

the parameters in the first stage regression are constant; (ii) the parameters in the first stage

regression are subject to discrete shifts within the sample period and the locations of these shifts

are estimated a priori via a data-based method that satisfies certain conditions. The latter

conditions allow the case in which the location of the instability is estimated via an application

of Bai and Perron’s (1998) methods to the appropriate reduced form equations on an equation

by equation basis.

To illustrate our methods, we consider the stability of the New Keynesian Phillips curve

(NKPC) estimated using quarterly data for the US over the period 1968.3-2001.4. The NKPC

is of considerable theoretical importance in monetary policy analysis and its estimation has

received considerable attention in the literature. Zhang, Osborn, and Kim (2007) observe that

empirical studies of the NKPC often reach conflicting conclusions about the importance of key

variables in the determination of inflation, and argue this may be due to neglected parameter

variation. Zhang, Osborn, and Kim (2007) argue that changes in monetary policy regimes may
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cause changes in the parameters of the NKPC; if true, this would mean that the parameters

of the NKPC would exhibit discrete shifts at potentially multiple points in the sample. Zhang,

Osborn, and Kim (2007) investigate this issue using a methodology based on uncovering break

points in the sample via the maximization of Wald statistics for parameter change associated

with 2SLS estimation. However, while their methodology has an intuitive appeal, there is no

theoretical justification for their methods as they note; it is, therefore, unclear exactly how to

interpret their results. In contrast, our methods can be applied to this model under plausible

assumptions about the data. Our analysis indicates that there are shifts in the parameters of

both the appropriate reduced forms and also in the NKPC itself.

It is useful to compare our results to two other recent extensions of Bai and Perron’s (1998)

framework. Qu and Perron (2007) extend Bai and Perron’s (1998) framework to systems of

regression equations and consider the case in which estimation and inference are based on quasi-

maximum likelihood techniques under normality. Perron and Qu (2006) consider the case of a

regression equation in which the least squares estimation imposes cross-regime restrictions, such

as the equality of parameters in two non-adjacent regimes. While both these papers expand

the set of available techniques in important ways, both sets of results are predicated on the

assumption that the explanatory variables are uncorrelated with the error(s). To our knowledge,

our paper is the first to consider estimation and inference about multiple structural changes in

a linear model with endogenous regressors.

An outline of the paper is as follows. Section 2 lays out the model, illustrates it via the NKPC

and also explains details of the estimation. Section 3 presents results on the limiting behaviour

of the break fraction estimators associated with the 2SLS estimation of the structural equation

of interest. It is shown that the break fraction estimators are consistent and deviate from the

true break fractions by a term of large order in probability T−1, where T is the sample size.

The import of this result is that inference regarding the parameters of the structural equation

can be conducted as if the the true break fractions are known a priori. In the remainder of

the paper, we consider the limiting behaviour of the 2SLS estimator and various associated

inference procedures. Section 4 presents the limiting distribution of the 2SLS estimator. Section

5 presents the limiting distributions of the various F-statistics. The simulation evidence is

reported in Section 6. Section 7 presents our empirical application and some concluding remarks

are offered in Section 8. All proofs are relegated to a mathematical appendix.
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2 The Model and The Estimation

2.1 The model

We consider the case in which the equation of interest is a multiple linear regression model with

m breaks (i.e. m + 1 regimes), that is

yt = x′
tβ

0
x,i + z′1,tβ

0
z1,i + ut, i = 1, ..., m + 1, t = T 0

i−1 + 1, ..., T 0
i (1)

where T 0
0 = 0 and T 0

m+1 = T . In this model, yt is the dependent variable, xt is a p1 × 1

vector of explanatory variables that are correlated with the error ut and z1,t is a p2 × 1 vector

of explanatory variables that are uncorrelated with ut and includes the intercept. We define

p = p1 + p2. The error term, ut, is assumed to have a mean of zero.

Following the convention in the literature, we index the break points {T 0
i } by break fractions

{λ0
i }. These break fractions must satisfy the following:3

Assumption 1 T 0
i = [Tλ0

i ], where 0 < λ0
1 < ... < λ0

m < 1.

Assumption 1 requires the break points to be asymptotically distinct.

In view of the correlation between xt and ut, OLS estimation of (1) would yield inconsistent

estimators of the regression parameters. We therefore consider the case in which (1) is estimated

via 2SLS. To implement 2SLS, it is necessary to specifiy the reduced form for x. As noted in

the introduction, we consider two scenarios: (i) the reduced form for xt is structurally stable;

(ii) the reduced form for xt exhibits parameter variation. We elaborate on these two scenarios

in turn.

Scenario (i): stable reduced form.

The reduced form for xt is assumed to be as follows:

x′
t = z′t∆0 + v′t (2)

where zt = (zt,1, zt,2, ..., zt,q)
′ is a q × 1 vector of instruments that is uncorrelated with both

ut and vt, ∆0 = (δ1,0, δ2,0, ..., δp1,0) with dimension q × p1 and each δj,0 for j = 1, ..., p1 has

dimension q × 1. We assume that zt contains z1,t. Under the assumption that E[ut
2|zt] = σ2,

the optimal IV estimator is the 2SLS estimator.4 Our analysis is confined to the 2SLS estimator,

3[ · ] denotes the integer part of the quantity in the brackets.
4See, for example, Hall (2005)[p.44].
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although we wish to emphasize that the aforementioned conditional homoscedasticity restriction

is only imposed in certain parts of the analysis. ⋄.

Scenario (ii): unstable reduced form.

The reduced form for xt is:

x
′

t = z
′

t∆
(i)
0 + v

′

t, i = 1, 2, . . . , h + 1, t = T ∗
i−1 + 1, . . . , T ∗

i (3)

where T ∗
0 = 0 and T ∗

h+1 = T . The points {T ∗
i } are assumed to be generated as follows.

Assumption 2 T ∗
i = [Tπ0

i ], where 0 < π0
1 < . . . < π0

h < 1.

Note that the break fractions {π0
i } may or may not coincide with {λ0

i}. Let π0 = [π0
1, π

0
2, . . . , π

0
h]′.

Within our analysis, it is assumed that the break points in the reduced form are estimated prior

to estimation of the structural equation in (1). For our analysis to go through, the estimated

break fractions in the reduced form must satisfy certain conditions that are detailed below; these

conditions would hold, for instance, if Bai and Perron’s (1998) methodology is applied equation

by equation to the reduced form.

Equation (3) can be re-written as follows

x
′

t = z̃t(π
0)

′

Θ0 + v
′

t, t = 1, 2, . . . , T (4)

where Θ0 = [∆
(1)′

0 , ∆
(2)′

0 , . . . , ∆
(h+1)′

0 ]
′

, z̃t(π
0) = ι(t, T ) ⊗ zt, ι(t, T ) is a (h + 1) × 1 vector with

first element I{t/T ∈ (0, π0
1]}, h+1th element I{t/T ∈ (π0

h, 1]}, kth element I{t/T ∈ (π0
k−1, π

0
k]}

for k = 1, 2, . . . , h and I{·} is an indicator variable that takes the value one if the event in the

curly brackets occurs. Notice that (4) fits the generic constant parameter form of (2). ⋄

To illustrate the potential interest in our framework, we consider the case of the NKPC. For ease

of exposition, it suffices here to consider the following stylized version of the NKPC,

inft = c0 + αf infe
t+1|t + αbinft−1 + αogogt + ut (5)

where inft is inflation in (time) period t, infe
t+1|t denotes expected inflation in period t + 1

given information available in period t, ogt is the output gap in period t, ut is an unobserved

error term and θ = (c0, αf , αb, αy)
′ are unknown parameters. The variables infe

t+1|t and ogt are

anticipated to be correlated with the error ut, and so (5) is commonly estimated via IV; e.g.
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see Zhang, Osborn, and Kim (2007) and the references therein. Suitable instruments must be

both uncorrelated with ut and correlated with infe
t+1|t and ogt. In this context, the instrument

vector zt commonly includes such variables as lagged values of expected inflation, the output

gap, the short-term interest rate, unemployment, money growth rate and inflation. This model

fits within our framework with (5) as the structural equation of interest provided the reduced

forms for infe
t+1|t and ogt are assumed to be given by either (2) or (3). We return to this example

in Section 7.

2.2 The estimation

To describe the estimation of the model, it is assumed that the number of break points m is

known but their location is not. Therefore the researcher must estimate both the break points

and regression parameters. This estimation proceeds as follows. On the first stage, the reduced

form for xt is estimated via OLS using - as appropriate - either (2) or a version of (4) with

estimated break fractions substituted for π0. Let x̂t denote the resulting predicted value for

xt. The second stage of the 2SLS estimation is itself divided into a number of steps because of

the need to estimate both the break points and the regression parameters. The first step of the

second stage is to estimate the model

yt = x̂
′

tβ
∗
x,i + z′1,tβ

∗
z1,i + ũt, i = 1, ..., m+ 1; t = Ti−1 + 1, ..., Ti (6)

via OLS for each possible m-partition of the sample, denoted by {Tj}
m
j=1, such that Ti−Ti−1 ≥ q.

Letting β∗
i
′ = (β∗

x,i
′, β∗

z1,i
′)′, the resulting estimates of β∗ = (β∗

1
′, β∗

2
′, ..., β∗

m+1
′)
′
are obtained by

minimizing the sum of squares of the residuals

ST (T1, ..., Tm) =
m+1
∑

i=1

Ti
∑

t=Ti−1+1

(yt − x̂′
tβx,i − z′1,tβz1,i)

2 (7)

with respect to β = (β1
′, β2

′, ..., βm+1
′)
′
. We denote these estimators by β̂({Ti}

m
i=1).

The second step of the second stage involves constructing the minimized sum of squares

associated with (6) for each partition, that is

ST (T1, ..., Tm; β̂({Ti}
m
i=1) =

m+1
∑

i=1

Ti
∑

t=Ti−1+1

(yt − x̂′
tβi − z′1,tβz1,i)

2
∣

∣

∣

β=β̂({Ti}m
i=1

)
(8)
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The estimates of the break points, (T̂1, ..., T̂m), are defined as

(T̂1, ..., T̂m) = arg min
T1,...,Tm

ST (T1, ..., Tm; β̂({Ti}
m
i=1)) (9)

where the minimization is taken over all partitions, (T1, ..., Tm) such that Ti − Ti−1 ≥ q. The

2SLS estimates of the regression parameters, β̂({T̂i}
m
i=1) = (β̂′

1, β̂
′
2, ..., β̂

′
m+1)

′, are the regression

parameter estimates associated with the estimated partition, {T̂i}
m
i=1.

3 Limiting behaviour of the break fraction estimators

In this section we analyze the limiting behaviour of the break point fraction estimators {λ̂i =

T̂i/T}. Two properties are established: consistency and that the estimated break fractions de-

viate from the true break fractions by an Op(T
−1) term. These results are established for both

the scenarios regarding the parameters of the reduced form for xt described in Section 2. We

take each of these scenarios in turn.

3.1 Stable reduced form

In this case, the predicted value for xt is given by

x̂′
t = zt

′∆̂T = zt
′(

T
∑

t=1

ztzt
′)−1

T
∑

t=1

ztxt
′ (10)

To facilitate the analysis of this version of the model, we impose the following conditions.

Assumption 3 Let bt = (ut, v
′
t)

′ and F = σ − field{. . . , zt−1, zt, . . . , bt−2, bt−1}. Assume bt is

a martingale difference relative to {Ft} and suptE[‖bt‖
4] < ∞.

Assumption 4 rank { [∆0, Π] } = p where Π′ = [Ip2
, 0p2×(q−p2)], Ia denotes the a × a identity

matrix and 0a×b is the a × b null matrix.

Assumption 5 There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

Ail = (1/l)
∑T0

i +l

t=T0
i +1

ztzt
′ and of A∗

il = (1/l)
∑T0

i

t=T0
i −l

ztzt
′ are bounded away from zero for all

i = 1, ..., m + 1.

Assumption 6 T−1
∑[Tr]

t=1 ztz
′
t

p
→ QZZ(r) uniformly in r ∈ [0, 1] where QZZ(r) is positive

definite for any r > 0 and strictly increasing in r.
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Assumption 7 The minimization in (9) is over all partitions (T1, ..., Tm) such that Ti−Ti−1 >

ǫT for some ǫ > 0 and ǫ < infi(λ
0
i+1 − λ0

i ).

A few comments on these assumptions are in order. Assumption 3 includes the restrictions

that bt is a serially uncorrelated process, and hence the errors in both the structural equation and

reduced form exhbit this property. This assumption also includes the restriction that E[ztb
′
t] =

0q×(p1+1) which implies both the implicit population moment condition in 2SLS is valid - that

is E[ztut] = 0 - and also that the conditional mean of the reduced form is correctly specified.

However, note that this assumption does allow zt to contain lagged values of yt. Assumption 4

implies the standard rank condition for identification in IV estimation in the linear regression

model5 because Assumptions 3, 4 and 6 together imply that

T−1

[Tr]
∑

t=1

zt[x
′
t, z

′
1,t] ⇒ QZZ(r)[∆0, Π] = QZ,[X,Z1 ](r) uniformly in r ∈ [0, 1]

where QZ,[X,Z1](r) has rank equal to p for any r > 0. Assumption 5 requires that there be

enough observations near the true break points so that they can be identified. This condition

is analagous to Bai and Perron’s (1998) Assumption A2 and the interested reader is refered to

this source for further discussion of this condition. Assumption 7 requires that each segment

considered in the minimization contains a positive fraction of the sample asymptotically; in

practice ǫ is chosen to be small in the hope that the last part of the assumption is valid.

The proof strategy for consistency is identical to that used by Bai and Perron (1998) in their

proof of the corresponding results for OLS estimators. The proof builds from the following two

properties of the error sum of squares on the second stage of the 2SLS esimation.

• Since the 2SLS estimators minimize the error sum of squares in (7), it follows that

(1/T )

T
∑

t=1

û2
t ≤ (1/T )

T
∑

t=1

ũ2
t (11)

where ût = yt− x̂
′

tβ̂x,j −z′1,tβ̂z1,j denotes the estimated residuals for t ∈ [T̂j−1+1, T̂j ] in the

second stage regression of 2SLS estimation procedure and ũt = yt−x̂
′

tβ
0
x,i−z′1,tβ

0
z1,i denotes

the corresponding residuals evaluated at the true parameter value for t ∈ [T 0
i−1 + 1, T 0

i ].

• Using dt = ũt− ût = x̂
′

t(β̂x,j −β0
x,i)−z

′

1,t(β̂z1,j−β0
z1,i) over t ∈ [T̂j−1+1, T̂j ]∩ [T 0

i−1+1, T 0
i ],

5See e.g. Hall (2005)[p.35].
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it follows that

T−1
T
∑

t=1

û2
t = T−1

T
∑

t=1

ũ2
t + T−1

T
∑

t=1

dt
2 − 2T−1

T
∑

t=1

ũtdt (12)

Consistency is established by proving that if at least one of the estimated break fractions does

not converge in probability to a true break fraction then the results in (11)-(12) contradict each

other. This conflict is established using the results in the following lemma.

Lemma 1 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (10) and

Assumptions 1, 3-7 hold.

(i) T−1
∑T

t=1 ũtdt = op(1).

(ii) If λ̂j 6
p
→ λ0

j for some j, then

lim sup
T→∞

P

(

T−1
T
∑

t=1

dt
2 > C

{

‖∆0(β
0
x,j − β0

x,j+1)‖
2 + ‖β0

z1,j − β0
z1,j+1‖

2
}

+ ξT

)

> ǭ

for some C > 0 and ǭ > 0, where ξT = op(1).

Using (11)-(12) and Lemma 1, consistency is established along the lines anticipated above.

Theorem 1 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (10) and

Assumptions 1, 3-7 hold, then λ̂j
p
→ λ0

j for all j = 1, 2, ...,m.

For the development of inference procedures for determining the number of breaks, it is important

to know not only that the break fraction estimators are consistent but also the order of magnitude

of their deviation from the true break fraction. This is established in the following theorem.

Theorem 2 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (10) and

Assumptions 1, 3-7 hold then, for every η > 0, there exists C such that for all large T , P (T |λ̂j −

λ0
j | > C) < η, for j = 1, ..., m.

Therefore, the break fraction estimators deviate from the true break fractions by a term of order

in probability T−1.

9



3.2 Unstable reduced form

Recall that the reduced form exhibits discrete parameter changes at unknown points in the

sample and these points are indexed by the break fraction vector, π0. We suppose that π0 is

estimated by π̂ and that these estimated break fractions satisfy the following condition.

Assumption 8 π̂ = π0 + Op(T
−1)

Note that Assumption 8 implies π̂ is consistent for π0 and T (π̂ − π0) is bounded in probability.

Such an estimator might be obtained by applying Bai and Perron (1998)’s methodology equation

by equation and then pooling the resulting estimates of the break fractions. For our purposes,

it only matters that Assumption 8 holds and not how π̂ is obtained. The latter is, of course, a

matter of practical importance but we do not address it here.

These estimated breaks are imposed on the the reduced form for xt. Let Θ̂T be the OLS

estimator of Θ0 from the model

x′
t = z̃t(π̂)′Θ0 + error t = 1, 2, · · · , T (13)

where z̃t(π̂) is defined analogously to z̃t(π
0), and now define x̂t to be

x̂′
t = z̃t(π̂)′Θ̂T = z̃t(π̂)′{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1
T
∑

t=1

z̃t(π̂)x′
t (14)

For the analysis in the case, the regularity conditions need to be altered. Assumption 4 is

replaced by:

Assumption 9 rank
{[

∆
(i)
0 , Π

]}

= p for i = 1, 2, · · · , h + 1 and Π is defined in Assumption

4.

It is also necessary to modify Assumption 7.

Assumption 10 The minimization in (9) is over all partitions (T1, ..., Tm) such that Ti−Ti−1 >

ǫT for some ǫ > 0 and ǫ < infi(λ
0
i+1 − λ0

i ) and ǫ < infj(π
0
j+1 − π0

j ).

The following theorem establishes the consistency of the break fraction estimators.

Theorem 3 If Assumptions 1-3, 5-10 hold, yt is generated via (1), xt is generated via (4) and

x̂t is calculated via (14), then

λ̂j
p
→ λ0

j for all j = 1, 2, · · · , m.

10



In order to extend Theorem 2, we impose one final condition.

Assumption 11 There exists an l∗ > 0 such that for all l > l∗, the minimum eigenvalues of

Bil = (1/l)
∑T∗

i +l
t=T∗

i +1 ztzt
′ and of B∗

il = (1/l)
∑T∗

i

t=T∗

i −l ztzt
′ are bounded away from zero for all

i = 1, ..., h+ 1.

Assumption 11 is similar to Asssumption 5 above but refers to the break points in the reduced

form. The order in probability of the estimated break fractions is given in the following theorem.

Theorem 4 If Assumptions 1-3, 5-11 hold, yt is generated via (1), xt is generated via (4)

and x̂t is calculated via (14), then, for every η > 0, there exists C such that for all large T ,

P (T |λ̂j − λ0
j | > C) < η, for j = 1, ..., m.

3.3 Discussion

At this stage, it is useful to comment on the nature of the foregoing analysis. First consider the

case where the reduced form is structurally stable. In this case, Theorems 1-2 establish that

the break fraction estimators, {λ̂j}, are consistent and λ̂j − λ0
j = Op(T

−1). Now consider the

case where the reduced form exhibits parameter variation. If the location of the breaks in the

reduced form are known a priori then, as noted above, the reduced form can be re-written as a

structurally stable regression equation involving the augmented parameter vector.6 Therefore, in

this case, the limiting behaviour of the break fraction estimators associated with the structural

equation is covered by Theorems 1-2. However, in most cases, the locations of the breaks in

the reduced form are unknown and so must be estimated a priori. In this case, Theorems 3-4

provide conditions on the estimators of the reduced form break fractions, {π̂i}, under which

the break fraction estimators associated with the structural equation, {λ̂j}, are consistent and

λ̂j − λ0
j = Op(T

−1).

Of the scenarios described above, the most empirically relevant is likely to be the one in-

volving estimation of break fractions in both reduced form and structural equations. Under our

assumptions, the estimators of the break fractions in both reduced form and structural equations

converge at rate T to the true break fractions. It emerges below that this rate is sufficiently

fast that the estimation of the break fractions can be ignored in the asymptotic analysis of the

6See equation (4).
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2SLS estimators and its associated statistics.7 In other words, for the purposes of the asymp-

totic analysis of the 2SLS estimator and its associated statistics, we can essentially proceed as

if the break fractions in both equations are known. Since, as noted above, the reduced form

with known break points can be rewritten as a constant parameter regression model, we focus

exclusively for the remainder of the paper on the case in which the reduced form is structurally

stable. The analagous results for the model with parameter variation in the reduced form can

be deduced from the results presented with an appropriate redefinition of the regressor vector in

the reduced form.

4 The limiting distribution of the 2SLS estimators

Once the break fractions are estimated, it is clearly desirable to perform inference about the

structural parameters {β0
i }. If the break fractions are known a priori then standard arguments

can be employed to show the root T asymptotic normality of the 2SLS estimator. Since the

estimated break fractions converge at rate T , this standard asymptotic distribution theory can

be extended to the 2SLS estimates based on the estimated break fractions.

Theorem 5 Let yt be generated by (1), xt be generated by (2), x̂t be generated by (10) and

Assumptions 3-6 hold, then

T 1/2
(

β̂({T̂i}
m
i=1) − β0

)

=⇒ N
(

0p(m+1)×1, Vβ

)

where β0 = [β0
1
′
, β0

2
′
, . . . , β0

h+1
′
]′, β0

i = [β0
x,i

′
, β0

z1,i
′
]′,

Vβ =













V
(1,1)
β · · · V

(1,m+1)
β

...
. . .

...

V
(m+1,1)
β · · · V

(m+1,m+1)
β













V
(i,j)
β = RiS(i,j)R

′
j, for i, j = 1, 2, . . .m + 1

Ri =
(

A(1)QZZ(1)−1QiQZZ(1)−1A(1)′
)−1

A(1)QZZ(1)−1

and Qi = QZZ(λ0
i )−QZZ(λ0

i−1), A(r)′ = [QZX(r), QZ1Z(r)′], QZ1Z(r) is the probability limit of

T−1
∑[Tr]

t=1 z1,tz
′
t (defined in Assumption 6), S(i,j) = limT→∞Cov[T−1/2

∑

i0
ztũt, T

−1/2
∑

j0
ztũt],

∑

i0
denotes the summation over t = [Tλ0

i−1] + 1, . . . [Tλ0
i ], and we set λ0

0 = 0, λ0
m+1 = 1.

7A similar finding is reported by Bai and Perron (1998) in their analysis of OLS estimators.
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Note that S(i,j) is non-zero in general because the first stage regression pools observations across

regimes and this creates a connection between the aforementioned sums from different regimes.

However, if the reduced form is also unstable then the connection across regimes is broken in

one leading case. If the breaks in the structural equation also occur in the reduced form then

the predictions are only based on the observations in the sub-sample in question and so Vβ is

block diagonal. Specifically, if h ≥ m and λ0
i = π0

j for some j for each i then

Vβ = diag(Ṽ
(1,1)

β , Ṽ
(2,2)
β , . . . , Ṽ

(m+1,m+1)
β ) (15)

where Ṽ
(i,i)
β = R̃iS̃(i,i)R̃

′
i, R̃i =

(

AiQ
−1
i A′

i

)−1
AiQ

−1
i , Ai = A(λ0

i ) − A(λ0
i−1), and S̃(i,i) =

limT→∞T−1
∑

i0
V ar[ztut]. Notice that Ṽ

(i,i)
β is just the variance of the 2SLS estimator based

on the ith sub-sample allowing potentially for breaks in the reduced form within that sub-sample.

5 Test statistics for multiple breaks

The sup-F type test of no structural break (m = 0) versus the alternative hypothesis that there

is m = 1 break has been considered by Andrews (1993). Bai and Perron (1998) generalize

Andrew’s sup-F type test to the hypothesis m = k for linear models estimated via OLS. In this

section, we extend Bai and Perron’s results to linear models estimated via 2SLS.

For this part of the analysis, we impose the following restrictions.

Assumption 12 (i) T−1
∑[Tr]

t=1 ztz
′
t

p
→ rQZZ uniformly in r ∈ [0, 1] where QZZ is a positive

definite matrix of constants;

(ii) the conditional variance of the errors is independent of t, that is

V ar













ut

vt







∣

∣

∣ zt






= Ω =







σ2 γ
′

γ Σ







where Ω is a constant, positive definite matrix, σ2 is a scalar and Σ is a p1 × p1 matrix;

The restrictions in Assumption 12 are analogous to that imposed by Bai and Perron (1998) in

their Assumptions A8 and A9 which underpin their analysis of various F-statistics for testing

for multiple breaks within the OLS framework.8

8Although note that the conditional variance restriction in Assumption 12 involves both ut and vt whereas

Bai and Perron (1998) need only restrict the conditional variance of ut.
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Assumptions 3 and 12 together ensure that a uniform version of the multivariate functional

central limit theorem in de Jong and Davidson (2000) holds:

T−1/2

[Tr]
∑

t=1







ut

vt






⊗ zt =⇒ (Ω1/2 ⊗ Q

1/2
ZZ)Bn(r) (16)

where Bn(r) is a n×1 standard Brownian motion with n = q× (p1 +1) and “=⇒” denotes weak

convergence in the space D[0, 1] under the skorohod metric.

The sup-F type test statistic can be defined as follows. Let (T1, ..., Tk) be a partition such

that Ti = [Tλi] (i = 1, ..., k). Define

FT (λ1, ..., λk; p) =

{

T − (k + 1)p

kp

}{

SSR0 − SSRk

SSRk

}

(17)

where SSR0 and SSRk are the sum of squared residuals based on the fitted X under null and

alternative hypothesis, respectively. Recall from Assumption 7 that the minimization is per-

formed over partitions which are asymptotically large and the size of the partitions is controlled

by ǫ, a non-negative constant. Accordingly, we define Λǫ = {(λ1, ..., λk) : |λi+1 − λi| ≥ ǫ, λ1 ≥

ǫ, λk ≤ 1 − ǫ}. Finally, the sup-F type test statistic is defined as

Sup − FT (k; p) = Sup(λ1,...,λk)∈Λǫ
FT (λ1, .., λk; p) (18)

Theorem 6 If the data are generated by (1)-(2) with m = 0, x̂t is generated by (10) and As-

sumptions 1, 3-7 and 12 hold then Sup−FT (k; p) ⇒ Sup−Fk,p ≡ Sup(λ1,...,λk)∈Λǫ
F (λ1, .., λk; p)

where

F (λ1, ..., λk; p) ≡
1

kp

k
∑

i=1

||λi+1Wi − λiWi+1||
2

λiλi+1(λi+1 − λi)

where k is the number of break points under the alternative hypothesis, and Wi ≡ Bp(λi).

We note that the limiting distribution in Theorem 6 is exactly the same as the one in Bai and

Perron’s (1998) analogous result for the sup-F test based on OLS estimators when the regressors

are exogenous. Percentiles for this distribution can be found in Bai and Perron (1998)[Table I]

for ǫ = 0.05 and in Bai and Perron (2001) for other values of ǫ.

The Sup−FT (k; p) statistic is used to test the null hypothesis of structural stability against

the k-break model, and so is designed for the case in which a particular choice of k is of interest.

In many circumstances, a researcher is unlikely to know a priori the appropriate choice of k
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for the alternative hypothesis. To circumvent this problem, Bai and Perron (1998) propose so

called “Double Maximum tests” that combine information from the Sup−FT (k; p) statistics for

different values of k running from one to some ceiling K. We consider here only the following

example of Double Maximum test,9

UDmaxFT (K; p) = max
1≤k≤K

sup
(λ1,...,λk)∈Λǫ

FT (λ1, ..., λk; p) (19)

The limiting distribution of this statistic follows directly from Theorem 6.

Corollary 1 Under the conditions of Theorem 6, it follows that

UDmaxFT (K; p) =⇒ max
1≤k≤K

{Sup − Fk,p }

Critical values for the limiting distribution in Corollary 1 are presented in Bai and Perron

(1998)[Table 1] for ǫ = 0.05 and in Bai and Perron (2001) for other values of ǫ.

The Sup − FT (k; p) and UDmaxFT (K; p) statistics are used to test the null hypothesis of

no breaks. It is also of interest to develop statistics for testing the null hypothesis of l breaks

against the alternative of l + 1 breaks. Following Bai and Perron (1998), a suitable statistic can

be constructed as follows. For the model with l breaks, the estimated break points, denoted by

T̂1, ..., T̂l, are obtained by a global minimization of the sum of the squared residuals as in (9).

For the model with l+1 breaks, l of the breaks are fixed at T̂1, ..., T̂l and then the location of the

(l + 1)th break is chosen by minimizing the residual sum of squares. The test statistic is given

by

FT (l + 1|l) = max
1≤i≤l+1

{
SSRl(T̂1, ..., T̂l) − infτ∈Λi,η

SSRl+1(T̂1, ..., T̂i−1, τ, T̂i, ..., T̂l)}

σ̂2
i

} (20)

where

σ̂2
i =

T̂i
∑

t=T̂i−1+1

(yt − x̂
′

tβ̂x,i − z′1,tβ̂z1,i)
2/(T̂i − T̂i−1 − p)

Λi,η = {τ : T̂i−1 + (T̂i − T̂i−1)η ≤ τ ≤ T̂i − (T̂i − T̂i−1)η}

and β̂i is the 2SLS estimator calculated using the sample T̂i−1 + 1, . . . , T̂i on the second stage.

The following theorem gives the limiting distribution of this statistic under the null hypothesis

of l breaks.
9UDmax denotes Unweighted Double maximum. Bai and Perron (1998) also consider a WDmax statistic

in which the the maximum is taken over weighted values of the Sup − FT (k; p) statistics. Analogous WDmax

statistics can be developed within our framework, but for brevity we do not explore them here.
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Theorem 7 If the data are generated by (1)-(2) with m = l, x̂t is generated by (10) and As-

sumptions 1, 3-7 and 12 hold then then limT→∞ P (FT (l + 1|l) ≤ x) = Gp,η(x)l+1 where Gp,η(x)

is the distribution function of supη≤µ≤1−η ‖W (µ) − µW (1)‖2/µ(1 − µ) and W (µ) ≡ Bp(µ).

Once again, the limiting behaviour of the test statistic is the same as that of the analogous

statistic proposed by Bai and Perron (1998) for the OLS case. Critical values can be found in

Bai and Perron (1998)[Table II] for the case in which calculated with η = .05 and in Bai and

Perron (2001) for other values of η.

Following Bai and Perron (1998), the statistics described in this section can be used to

determine the estimated number of breakpoints, k̂T say, via the following sequential strategy.

On the first step, use either Sup − FT (1; p) or UDmaxFT (K, p) to test the null hypothesis that

there are no breaks. If this null is not rejected then k̂T = 0; else proceed to the next step. On

the second step FT (2|1) is used to test the null hypothesis that there is only one break against

the alternative hypothesis of two breaks. If FT (2|1) is insignificant then k̂T = 1; else proceed

to the next step. On the lth step FT (l + 1|l) is used to test the null hypothesis that there are

l breaks against the alternative hypothesis of l + 1 breaks. If FT (l + 1|l) is insignificant then

k̂T = l; else proceed to the next step. This sequence is continued until some preset ceiling for

the number of breaks, L say, is reached. If all statistics in the sequence are significant then the

conclusion is that there are at least L breaks. We evaluate the finite sample performance of this

strategy as part of the simulation study reported in the following section.

To conclude our discussion of these F-statistics, we return to the issue of the assumptions on

the errors. Assumption 12 requires the errors to be homoscedastic and serially uncorrelated. It

is, however, possible to relax this assumption to some extent as we now discuss. Suppose that it

is assumed that a regime is characterized by both a change in the regression parameter vector

and also a change in the conditional variance matrix of the errors, that is Ω in Assumption

12 is replaced by Ωi for t ∈
(

[Tλ0
i−1] + 1, [Tλ0

i ]
)

. Since the calculation of FT (l + 1|l) only

involves sub-sample covariance matrix estimators, it follows that the limiting distribution of the

test statistic is unaffected by heteroscedasticity of this type. It is therefore possible to use the

the test statistics described above to develop a sequential strategy to determine the number of

breaks for the case where the no break model is homoscedastic and the l break models involve

a conditional error variance that is constant within a regime but varies across regimes.
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6 Finite sample behaviour

In this section, we evaluate the finite sample behaviour of the various statistics discussed in

the previous sections via a small simulation study. The simulation design involves models with

zero, one or two breaks. Since our analysis of the break fractions is premised on the existence

of a break, we begin by discussing the one break and two break models. We then conclude the

sections by considering the behaviour of the test statistics in the no break model.

6.1 One break model

The data generating process for the structural equation is:

yt = [1, xt]
′β0

1 + ut, for t = 1, . . . , [T/2]

= [1, xt]
′β0

2 + ut, for t = [T/2] + 1, . . . , T
(21)

The reduced form equation for the scalar variable xt is:

xt = z′tδ + vt, for t = 1, . . . , T (22)

where δ is q×1. The errors are generated as follows: (ut, vt)
′

∼ IN (02×1, Ω) where the diagonal

elements of Ω are equal to one and the off-diagonal elements are equal to 0.5. The instrumental

variables, zt, are generated via: zt ∼ i.i.d N (0q×1, Iq). The specific parameter values are as

follows: (i) T = 60, 120, 240,480; (ii) (β0
1 , β0

2) = ([1, 0.1]′, [−1,−0.1]′ ); (iii) q = 2, 4, 8; (iv) δ is

chosen to yield the population R2 = 0.5 for the regression in (22).10 For each configuration,

1000 simulations are performed.

The results are presented in Tables 1-4. We first consider the behaviour of the break fraction

estimator calculated under the assumption that there is only one break. Table 1 reports the

proportion of the simulations in which |λ̂1 − λ0
1| ≤ c for c = 0.01, 0.02,0.03,0.05, 0.1. It can be

seen that in the smallest sample size (T = 60) there is some dispersion but the proportions clearly

increase with T and exhibit behaviour in line with the consistency result in Theorem 1. Table 2

reports the relative rejection frequencies of Sup − FT (k; 1) (for k = 1, 2), UDmaxFT (5; 1) and

FT (l + 1|l) (for l = 1, 2) statistics where, in both cases the nominal size is 0.05. Notice that the

10For this model, δ =
√

R2/(q − q × R2); see Hahn and Inoue (2002).
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alternative hypothesis is true for the Sup−FT (k; 1) and UDmaxFT (5; 1) statistics and so these

relative frequencies are empirical powers for this statistic. Whereas, for l = 1, the null hypothesis

is correct for FT (l + 1|l) and so the relative frequencies are the empirical size, and for l = 2, the

null assumes more breaks than there actually are. Both Sup − FT (k; 1) and UDmaxFT (5; 1)

reject 100% of the time. The FT (2|1) statistic is close to its nominal size; FT (3|2) tends to

reject less frequently than the nominal size. Table 3 reports the results from using the sequential

strategy based on these statistics that is described in Section 5 with a maximum number of breaks

set equal to five. The results indicate that the strategy works well in each case. Table 4 reports

the empirical coverage of the large sample confidence intervals based on the limiting distribution

in Theorem 5, with all limiting covariances replaced by their empirical counterparts.11 As can

be seen, the empirical coverage is very close to the nominal level in all cases, and is within 3

simulation standard deviations of the nominal level for all confidence levels in all but the smallest

sample size.

6.2 Two break model

The data generation process for the structural equation is:

yt = [1, xt]
′β0

1 + ut, for t = 1, . . . , [T/3]

= [1, xt]
′β0

2 + ut, for t = [T/3] + 1, . . . , [2T/3]

= [1, xt]
′β0

3 + ut, for t = [2T/3] + 1, . . . , T

Two choices for β0 are considered: (β0
1 , β0

2, β
0
3) = ( [1, 0.1]′, [−1, −0.1]′, [1, 0.1]′ ). All other

aspects of the design are the same as the one break model.

The results are reported in Tables 5-9. Again, we begin by considering the performance of

the estimated break fractions. Table 5 reveals that, as in the one break model, there is some

dispersion in the estimates of the break fractions in the smallest sample size but nevertheless the

empirical distribution of the break fraction estimator is evidently collapsing on the true fraction

11Within this model, it can be shown that Si,i = (λ0
i−λ0

i−1)
{

V1,1 + (1 + λ0
i−1 − λ0

i ) [(β0′

i ⊗ Iq)V2,2(β
0
i ⊗ Iq) + 2V1,2(β

0
i ⊗ Iq) ]

}

and S(i,j) = −(λ0
i − λ0

i−1)(λ
0
j − λ0

j−1)[V1,2(β
0
j ⊗ Iq) + (β0′

i ⊗ Iq)V2,1 + (β0′

i ⊗ Iq) × V2,2(β
0
j ⊗ Iq)] where

V =







V1,1 V1,2

V ′

1,2 V2,2






is the long-run covariance of T−1/2

∑T
t=1(ut, v′t)

′ ⊗ zt, V1,1 is q × q and V2,2 is qp1 × qp1.

Consistent estimators of Si,j are constructed using these formulae in the obvious fashion.
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as T increases. Table 6 reports the relative rejection frequencies of Sup−FT (k; 1) (for k = 1, 2),

UDmaxFT (5; 1) and FT (l + 1|l) (for l = 1, 2) statistics where, in both cases the nominal size

is 0.05. As in the one break model, the statistics are applied with k, l = 1, 2. Notice that the

alternative hypothesis is true for the Sup−FT (k; 1), UDmaxFT (5; 1) and FT (2|1) statistics and

so these relative frequencies are empirical powers for this statistic. Whereas, the null hypothesis

is correct for FT (3|2) and so the relative frequencies are the empirical size. From Table 6 it

can be seen that, unlike the one break model, there is a difference in the power properties of

the tests. While Sup − FT (k; 2) and UDmaxFT (5; 1) reject 100% of the time, Sup − FT (k; 1)

only rejects 74% power in the smallest sample size although it does reject 100% of the time

in larger sample sizes. The test of one break against two (FT (2|1)) also rejects 100% in every

case. The test of two breaks against three (FT (3|2)) is slightly undersized; this contrasts with

the results for FT (2|1) in the one break model and likely reflects the smaller sub-sample sizes

in the two break model. Table 7 reports the results using the sequential strategy for estimating

the number of breaks. As would be expected given the power results, the sequential strategy

starting with Sup − FT (k; 1) has a marked tendency to under estimate the number of breaks

in the smallest sample size. In contrast, the sequential strategy starting with UDmaxFT (5; 1)

works well at all sample sizes as it never underfits and picks the true order never less than 94% of

the time. Tables 8-9 report the empirical coverage of the large sample confidence intervals based

on the limiting distribution in Theorem 5. In the smallest sample size (T = 60), the coverage

is lower than the nominal level and more than three simulation standard errors away from the

nominal level; this can be explained by small sizes of the sub-samples in this case. However,

the empirical coverage is within three simulation standard errors for all intervals at the other

samples (T = 120, 240, 480) and very close to the nominal level in the larger samples.

6.3 No break model

The previous two designs involve cases where there is a change in the regression parameters of

the structural equation. It is also of interest to explore how the test statistics perform in the

case where there is no break and so the model is structurally constant. To this end, data are

generated from (21) with β0
1 = β0

2 = [1, 1]. All other aspects of the design are the same as

the one break model. Table 10 contains the empirical rejection frequencies for Sup − FT (k; 1)
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(k = 1, 2), FT (l +1|l) (l = 1, 2) and UDmaxFT (5; 1) statistics. Note that within this design, the

null hypothesis is correct for the Sup−FT (1; 1), Sup−FT (2; 1), and UDmaxFT (5, 1) statistics,

and so the rejection frequency equals the empirical size. For FT (2|1) and FT (3|2) statistics, the

null hypothesis involves more breaks than are present in the data. From Table 11, it can be

seen that Sup−FT (1; 1), Sup−FT (2; 1), and UDmaxFT (5, 1) exhibit empirical size close to the

nominal level of 0.05; both FT (2|1) and FT (3|2) reject less frequently than the size. Table 10

presents the empirical distribution of k̂T based on the sequential strategies using Sup−FT (1; 1)

and UDmaxFT (5, 1). Both strategies indicate that no breaks are present in nearly every case.

7 Application

In this section we use our methods to explore the stability of the New Keynesian Phillips curve

(NKPC). Zhang, Osborn, and Kim (2007) report that the stylized version of the NKPC in (5)

does not have serially uncorrelated errors as required by our Assumption 3, and so we follow their

practice and include lagged values of ∆inft = inft − inft−1 to remove this dynamic structure

from the errors. Accordingly, our analysis is based on

inft = c0 + αf infe
t+1|t + αbinft−1 + αogogt +

3
∑

i=1

αi∆inft−i + ut (23)

The data is for the US and is quarterly spanning 1968.3-2001.4. The span of the data is slightly

longer than Zhang, Osborn, and Kim (2007) but the definitions of the variables are the same

and as follows: inft is the annualized quarterly growth rate of the GDP deflator, ogt is obtained

from the estimates of potential GDP published by the Congressional Budget Office, infe
t+1|t is

the Greenbook one quarter ahead forecast of inflation prepared within the Fed.12

Both expected inflation and the output gap are taken to be endogenous and we model their

reduced forms as

infe
t+1|t = z′tδ1 + v1,t (24)

ogt = z′tδ2 + v2,t (25)

where zt contains all other explanatory variables on the righthand side of (23) along with the

12One interesting aspect of Zhang, Osborn, and Kim’s (2007) study is that they employ various different

inflation forecasts in their estimation. We focus here on just one of their choices for brevity.
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first lagged value of each of the short term interest rate, the unemployment rate, and the growth

rate of the money aggregate M2.

We first consider the stability of the reduced forms in (24)-(25) using Bai and Perron’s (1998)

methodology. 13 We assume that the maximum number of breaks is 5 and set ǫ = 0.1. The

results are reported in Table 11. First consider the reduced form for infe
t+1|t. There is clear

evidence of parameter variation with all the sup-F statistics being significant at the 1% level.

Using the sequential testing strategy, we identify two breaks: one at 1975.2 and the other at

1981.1. As a robustness check, we also use BIC to choose the break points and obtain the

same estimates.14 Now consider the reduced form for ogt. Again, there is evidence of parameter

variation. The sequential strategy suggests a break at 1975.2. In contrast, BIC favours the model

with no breaks. Given our purposes, it seems better to impose this break in our estimation of

the reduced form.

We now consider the results for the NKPC. Given the evidence above, the predicted values

of expected inflation are constructed allowing for breaks at 1975.2 and 1981.1, and the predicted

value for the output gap is constructed allowing for a break at 1975.2. As with the reduced

forms, we assume that the maximum number of breaks is 5 and set ǫ = 0.1. The results from

the 2SLS estimations of the NKPC are given in Table 12. As with the reduced forms, there is

evidence of instability from the sup-F tests. Using the sequential strategy, we estimate there to

be only one break located at 1975.1.15 Parenthetically, we note that if the number of breaks is

chosen by minimizing the BIC,

BIC(m) = ln[ min
T1,...,Tm

ST (T1, ..., Tm; β̂({Ti}
m
i=1))/T ] + m(p + 1)ln(T )/T

then the estimated number is also one and the location is again 1975.1.

The estimated NKPC is as follows (omitting the error and with estimates to 2dp; standard

errors in parentheses):

13These calculations are made using the code available from http://people.bu.edu/perron/code.html. All hy-

potheses are tested with F-statistics which are the OLS analogs of those discussed in the text; further details can

be found in Bai and Perron (1998).
14For ease of presentation, we define the BIC criterion below for 2SLS; the appropriate modification for OLS

is then obvious.
15We note that it was not possible to calculate the test of the four break model against the five break model

because the location of the breaks in the four break model meant certain sub-samples in the five break model

were too small.
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for 1969.1-1975.1:

inft = −4.45
(0.09)

+ 0.52
(0.16)

infe
t+1|t + 1.48

(0.15)
inft−1 + 0.39

(0.03)
ogt − 1.39

(0.10)
∆inft−1 − 1.05

(0.08)
∆inft−2 − 0.37

(0.03)
∆inft−3

for 1975.2-2001.4:

inft = −0.27
(0.17)

+ 0.69
(0.24)

infe
t+1|t + 0.33

(0.21)
inft−1 + 0.11

(0.19)
ogt − 0.16

(0.12)
∆inft−1 − 0.13

(0.09)
∆inft−2 − 0.28

(0.29)
∆inft−3

Of particular interest are the coefficients on expected and lagged inflation as they reflect the

degree to which policy is forward or backward looking respectively. One most striking difference

between the two periods is in the coefficient on lagged inflation. Our results suggest that this

variable plays a far weaker role in the post-1975.1 sample. However, one important caveat is the

small size of the pre-1975.1 subsample.

It is interesting to note that our results closely match Zhang, Osborn, and Kim’s (2007)

findings with regard to both the number of breaks and the location of the break.16 However,

we cannot directly compare our estimates as Zhang, Osborn, and Kim (2007) do not report the

specific estimates associated with this sample break.

8 Concluding Remarks

In this paper, we extend Bai and Perron’s (1998) framework for multiple break testing to linear

models estimated via Two Stage Least Squares (2SLS). Within our framework, the break points

are estimated simultaneously with the regression parameters via minimization of the residual

sum of squares on the second step of the 2SLS estimation. We establish the consistency of

the resulting estimated break point fractions. We show that various F-statistics for structural

instability based on the 2SLS estimator have the same limiting distribution as the analogous

statistics for OLS considered by Bai and Perron (1998). This allows us to extend Bai and Perron’s

(1998) sequential procedure for selecting the number of break points to the 2SLS setting.

Our focus is on the stability of the parameters in the structural equation of interest. However

to implement 2SLS, it is necessary in the first stage regression to estimate the reduced form for

the endogenous regressors in the structural equation of interest and this, of course, requires an

assumption about the constancy or lack thereof of these reduced form parameters. In this

16We note that with other choices of inflation forecast series, Zhang, Osborn, and Kim (2007) find evidence of

breaks at other points in the sample.

22



paper, we establish the aforementioned results under two scenarios of interest, namely: (i)

the parameters in the first stage regression are constant; (ii) the parameters in the first stage

regression are subject to discrete shifts within the sample period and the locations of these shifts

are estimated a priori via a data-based method that satisfies certain conditions. The latter

conditions allow the case in which the location of the instability is estimated via an application

of Bai and Perron’s (1998) methods to the appropriate reduced form equations on an equation by

equation basis. We have illustrated the empirical relevance of our framework via an application

to the New Keynesian Phillips curve. Most empirical investigations of the NKPC assume the

parameters are constant. However, our results indicate that if estimated over 1968-2001 then

this relationship is not stable.

In practice, a researcher may also be interested in performing inference about the timing of

the structural changes. Hall, Han, and Boldea (2007) provide a distribution theory for the break

fraction estimators in the case where the reduced form regression parameters are structurally

stable. The extension of this theory to the case in which the reduced form exhibits parameter

variation is complicated by the potential dependence on the limiting distribution of the estimated

break fractions in the structural equations on that of the estimated break fractions from the

reduced form. This extension is work in progress.

In two recent papers, Perron and Qu extend Bai and Perron’s (1998) framework in a num-

ber of interesting ways. Qu and Perron (2007) consider estimation and inference of multiple

structural changes in systems of regression equations, and show that there are efficiency gains

from estimation of the system rather than on an equation by equation basis. Perron and Qu

(2006) show that there are also efficiency gains from imposing cross-regime restrictions, such

as the equality of parameters in two non-adjacent regimes. It would be interesting to explore

the potential for such efficiency gains within the context of our 2SLS framework; however, these

extensions are beyond the scope of the current paper and are left to future research.
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Mathematical Appendix

We begin with an item of terminology. We say that a matrix A, say, is a diagonal partition

at (T1, T2, . . .Tm) of the T × k matrix W whose tth row is x̂′
t if A = diag(WT1

, ..., WTm+1
) and

WTi
= (x̂Ti−1+1, ..., x̂Ti

)′.17

We write (6) for the true partition (so that β∗
i = β0

i ) as

Y = W̄ 0β0 + Ũ (26)

where Y = (y1, ..., yT)′, W̄ 0 is a diagonal partition of W at (T 0
1 , ..., T 0

m+1), Ũ = (ũ1, ..., ũT)′, and

β0 = β0({T 0
i }

m
i=1) = (β0

1
′
, β0

2
′
, ..., β0

m+1
′
)′ with β0

i = (β0
i,1, β

0
i,2, ..., β

0
i,p)

′. We also define: W̄ ∗ to

be a diagonal partition of W at (T̂1, ..., T̂m); Z = (z1, ..., zT)′; V = (v1, ..., vT)′.

We also need certain properties of matrix norms and so state these here for convenience. Cor-

responding to the vector (Euclidean) norm ‖x‖ = (
∑p

i=1 x2
i )

1/2 we define the matrix (Euclidean)

norm as

‖A‖ = sup
x6=0

‖Ax‖/‖x‖ (27)

for matrix A. Below we use the following properties of this norm:

• ‖A‖ is equal to the square root of the maximum eigenvalue of A′A and thus,

‖A‖ ≤ (trA′A)1/2 (28)

• For a projection matrix P , we have

‖PA‖ ≤ ‖A‖ (29)

• Let A : R1 → R2 and B : R2 → R3 be linear operators. Then we have18

‖BA‖ ≤ ‖B‖‖A‖ (30)

17Note that diag(.) stands for block diagonal here.
18See Ortega (1987)[p. 93-4].
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Finally, for a sequence of matrices, we write AT = op(1) if each of its element is op(1), and

likewise for Op(1).

To simplify the presentation, we prove all the desired results for the special case in

which β0
z1,i = 0p2

and z1,t is omitted from the structural equation during estimation.

It is easily verified that all the desired results extend to the model presented in the

main text.

Proof of Lemma 1

Part (i):

Using the definition of dt, it follows that, for t ∈ [T̂j−1 + 1, T̂j],

ũtdt = ũtx̂
′
t(β̂j − β0

i ) = ũtx̂
′
tβ̂j − ũtx̂

′
tβ

0
i

and hence that

T
∑

t=1

ũtdt =

T
∑

t=1

ũtx̂
′
tβ̂(t, T ) −

T
∑

t=1

ũtx̂
′
tβ

0(t, T )

= Ũ ′W̄ ∗β̂ − Ũ ′W̄ 0β0 (31)

where β̂(t, T ) =
∑m

i=1 β̂j I
{

t/T ∈ (λ̂j−1, λ̂j]
}

and β0(t, T ) =
∑m

i=1 β0
j I { t/T ∈ (λj−1, λj] }.

From (31), it follows that Lemma 1(i) is established if it can be shown that

T−1(Ũ ′W̄ ∗β̂ − Ũ ′W̄ 0β0) = op(1) (32)

Since the 2SLS estimator based on the partition (T̂1, ..., T̂m) is β̂ = (W̄ ∗′

W̄ ∗)−1W̄ ∗′

Y , it follows

that

Ũ ′W̄ ∗β̂ − Ũ ′W̄ 0β0 = Ũ ′W̄ ∗(W̄ ∗′

W̄ ∗)−1W̄ ∗′

Y − Ũ ′W̄ 0β0

= Ũ ′PW̄∗(W̄ 0β0 + Ũ ) − Ũ ′W̄ 0β0

= Ũ ′PW̄∗W̄ 0β0 + Ũ ′PW̄∗Ũ − Ũ ′W̄ 0β0 (33)

where PW̄∗ = W̄ ∗(W̄ ∗′

W̄ ∗)−1W̄ ∗′

.

We now analyze the terms on the right hand side of (33). It is most convenient to begin by

analyzing ‖PW̄∗ Ũ‖. To this end, it is convenient to define
∑

i to denote the summation over
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observations t = T̂i + 1, T̂i + 2, . . . , T̂i+1. We first note ‖PW̄∗ Ũ‖2 = Ũ ′PW̄∗ Ũ is the sum of the

m + 1 terms

ni,T =

(

∑

i

x̂tũt

)′(
∑

i

x̂tx̂
′
t

)−1(
∑

i

x̂tũt

)

(34)

for i = 0, 1, ...,m. and so we can deduce the order of ‖PW̄∗Ũ‖2 by considering the behaviour of

∑

i x̂tũt and
∑

i x̂tx̂
′
t. From (2) and (10), it follows that

x̂
′

t = z′t∆0 + zt
′(Z′Z)−1Z′V (35)

From (1), it follows that

ũt = yt − x̂′
tβ

0(t, T )

= (xt
′β0(t, T ) + ut) − x̂′

tβ
0(t, T )

= ut + vt
′β0(t, T ) − zt

′[(Z′Z)−1Z′V ]β0(t, T ) (36)

It follows from (35)-(36) that

∑

i

x̂tũt =
∑

i

[∆0
′zt + V ′Z(Z′Z)−1zt][ut + vt

′β0(t, T ) − z′t(Z
′Z)−1Z′V β0(t, T )]

=
∑

i

[∆0
′ztut + V ′Z(Z′Z)−1ztut + ∆0

′ztvt
′β0(t, T ) + V ′Z(Z′Z)−1ztvt

′β0(t, T )

−∆0
′ztz

′
t(Z

′Z)−1Z′V β0(t, T ) − V ′Z(Z′Z)−1ztz
′
t(Z

′Z)−1Z′V β0(t, T )]

= ∆0
′
∑

i

ztut + V ′Z(Z′Z)−1
∑

i

ztut + ∆0
′
∑

i

ztvt
′β0(t, T )

+ V ′Z(Z′Z)−1
∑

i

ztvt
′β0(t, T ) − ∆0

′
∑

i

ztz
′
t · (Z

′Z)−1Z′V β0(t, T )

−V ′Z(Z′Z)−1
∑

i

ztz
′
t(Z

′Z)−1Z′V β0(t, T ) (37)

From (37) and Assumptions 3 and 6, it follows that

∑

i

x̂tũt = Op(T
1/2) (38)

Now consider
∑

i x̂tx̂
′

t. To this end, define
∑

t to denote the summation over observations

t = 1, 2, . . ., T . From (2) and (10), it follows that

x̂tx̂
′

t = ∆̂
′

Tztz
′

t∆̂T

= X ′Z(Z′Z)−1ztzt
′(Z′Z)−1Z′X

= (
∑

t

xtz
′
t)(
∑

t

ztz
′
t)

−1ztz
′
t(
∑

t

ztz
′
t)

−1(
∑

t

ztxt)
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and hence that

∑

i

x̂tx̂
′

t = (
∑

t

xtz
′
t)(
∑

t

ztz
′
t)

−1(
∑

i

ztz
′
t)(
∑

t

ztz
′
t)

−1(
∑

t

ztx
′
t)

= (T−1
∑

t

xtz
′
t)(T

−1
∑

t

ztz
′
t)

−1(
∑

i

ztz
′
t)(T

−1
∑

t

ztz
′
t)

−1(T−1
∑

t

ztx
′
t) (39)

From (39) and Assumptions 3 and 6, it follows that

∑

i

x̂tx̂
′

t = Op(T ) (40)

From (34), (38) and (40), it follows that ni,T = Op(1) and hence that

‖PW̄∗Ũ‖2 = Op(1) (41)

Therefore, the second term on the right hand side of (33) is Op(1). Now consider the first term

on the right hand side of (33). Using (30), it follows that

‖Ũ ′PW̄∗W̄ 0β0‖ ≤ ‖Ũ ′PW̄∗‖ · ‖W̄ 0β0‖ (42)

Since W = PzX, where X is the original design matrix and PZ = Z(Z′Z)−1Z′ is a projection

matrix, it follows from (28)-(29), (2) and Assumptions 3, 4 and 6 that

‖W̄ 0‖ = ‖W‖ = ‖PZX‖ ≤ ‖X‖ ≤ (trX ′X)1/2 = Op(T
1/2) (43)

and hence from (41)-(43) that

‖Ũ ′PW̄∗W̄ 0β0‖ = Op(T
1/2) (44)

Finally, consider the third term on the right hand side of (33), Ũ ′W̄ 0β0. Notice that Ũ ′W̄ 0

consists of m + 1 terms,
∑T0

i

t=T0
i−1

+1
x̂tũt. Using a similar argument to the derivation of (38), it

can be shown that
∑T0

i

t=T0
i−1

+1
x̂tũt = Op(T

1/2) and hence that

‖Ũ ′W̄ 0β0‖ = Op(T
1/2) (45)

Combining (33), (41), (44) and (45), it follows that

Ũ ′W̄ ∗β̂ − Ũ ′W̄ 0β0 = Op(T
1/2)

and hence that T−1(Ũ ′W̄ ∗β̂ − Ũ ′W̄ 0β0) = Op(T
−1/2) = op(1) which is the desired result.

Part (ii):
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Suppose λ̂j 6
p
→ λ0

j for some j. In this case, there exists η > 0 such that no estimated breaks fall

into [T (λ0
j − η), T (λ0

j + η)] with some positive probability ǫ. Suppose further that the interval

belongs to the kth estimated regime, then it follows that T̂k−1 < T (λ0
j − η) and T (λ0

j + η) < T̂k.

Thus it follows that: dt = x̂′
t(β̂k − β0

j ) for t ∈ [T (λ0
j − η), Tλ0

j ], and dt = x̂′
t(β̂k − β0

j+1) for

t ∈ [Tλ0
j + 1, T (λ0

j + η)]. Using these identities, it follows that

T
∑

t=1

d2
t ≥

∑

1

d2
t +

∑

2

d2
t (46)

where

∑

1

d2
t =

(

β̂k − β0
j

)′
(

∑

1

x̂tx̂
′
t

)

(

β̂k − β0
j

)

(47)

∑

2

d2
t =

(

β̂k − β0
j+1

)′
(

∑

2

x̂tx̂
′
t

)

(

β̂k − β0
j+1

)

(48)

and
∑

1 extends over the set {T (λ0
j − η) ≤ t ≤ Tλ0

j} and
∑

2 extends over the set {Tλ0
j + 1 ≤

t ≤ T (λ0
j + η)}.

At this stage, it is necessary to define γ1 and γ2 to be the smallest eigenvalue of
∑

1 ztz
′
t and

∑

2 ztz
′
t, respectively. Then, since

∑

i x̂tx̂
′
t = ∆̂′

T (
∑

i ztz
′
t) ∆̂T , it follows that19

∑

1

dt
2 +

∑

2

dt
2 = (β̂k − β0

j )′∆̂′
T

(

∑

1

ztz
′
t

)

∆̂T (β̂k − β0
j )

+ (β̂k − β0
j+1)

′∆̂′
T

(

∑

2

ztz
′
t

)

∆̂T (β̂k − β0
j+1)

=
(

∆̂T (β̂k − β0
j )
)′
(

∑

1

ztz
′
t

)

(

∆̂T (β̂k − β0
j )
)

+
(

∆̂T (β̂k − β0
j+1)

)′
(

∑

2

ztz
′
t

)

(

∆̂T (β̂k − β0
j+1)

)

≥ γ1‖∆̂T (β̂k − β0
j )‖2 + γ2‖∆̂T (β̂k − β0

j+1)‖
2

≥ min{γ1, γ2} ·
(

‖∆̂T (β̂k − β0
j )‖2 + ‖∆̂T (β̂k − β0

j+1)‖
2
)

≥ (1/2) · min{γ1, γ2} · ‖∆̂T (β0
j − β0

j+1)‖
2 (49)

19The last inequality exploits: (n − a)′A(n − a) + (n − b)′A(n − b) ≥ (1/2)(a − b)′A(a − b) for an arbitrary

positive definite matrix A and for all n; see Bai and Perron (1998)[p.69].
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Now consider the right hand side of (49). We have

∑

1

ztz
′
t = (Tη)(1/Tη)

Tλ0
j

∑

t=T (λ0
j−η)

ztz
′
t = (Tη)AT (50)

where AT = (1/Tη)
∑Tλ0

j

t=T (λ0
j−η)

ztz
′
t. From Assumption 5, the smallest eigenvalue of AT is

bounded away from zero. Thus, the smallest eigenvalue of (Tη)AT is of order Tη. Similarly,

the smallest eigenvalue of
∑

2 ztz
′
t is of order Tη. Using these two order statements in (49), it

follows that
T
∑

t=1

dt
2 ≥

∑

1

dt
2 +

∑

2

dt
2 ≥ TC · ‖∆̂T (β0

j − β0
j+1)‖

2

for some C > 0 and hence that

T−1
T
∑

t=1

d2
t ≥ C‖∆̂T (β0

j − β0
j+1)‖

2 (51)

Under Assumptions 3, 4 and 6 ∆̂T
p
→ ∆0 and hence it follows from (51) that

T−1
T
∑

t=1

d2
t ≥ C‖∆0(β

0
j − β0

j+1)‖
2 + ξT (52)

where

ξT = C
{

‖∆̂T (β0
j − β0

j+1)‖
2 − ‖∆0(β

0
j − β0

j+1)‖
2
}

Given the consistency of ∆̂T , we have ξT = op(1). The desired result then follows from (52)

upon recalling that the analysis is premised on an event that occurs with probability ǫ.

Proof of Theorem 1:

Suppose that λ̂j 6
p
→ λ0

j for some j in probability. In this case, it follows from (12) and Lemma 1

that

(1/T )

T
∑

t=1

û2
t = (1/T )

T
∑

t=1

ũ2
t + C · ‖∆0(β

0
j − β0

j+1)‖
2 + op(1) (53)

with probability at least as large as ǭ > 0. Assumptions 4 states that ∆0 is full rank and so

‖∆0(β
0
j − β0

j+1)‖
2 > 0. Therefore, (53) conflicts with (11) which must hold for all T with

probability one. Therefore, it must follow λ̂j
p
→ λ0

j for all j.

Proof of Theorem 2:

The general proof strategy is the same as the one employed in Bai and Perron’s (1998) proof
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of their Proposition 2 although the specific details are naturally different. Following Bai and

Perron (1998), we assume (without loss of generality) that there are only 3 break points, that

is m = 3. Here we present the proof for the middle break fraction, λ̂2. The proof for the end

break fractions, λ̂1 and λ̂3, follows along similar lines and is omitted for brevity.20

For each ǫ > 0 define Vǫ = {(T1, T2, T3) : |Ti − T 0
i | ≤ ǫT, i = 1, 2, 3}. Note that Theorem 1

implies P ({T̂1, T̂2, T̂3} ∈ Vǫ) −→ 1 as T → ∞. Therefore, it suffices to consider the behaviour

of ST (T1, T2, T3) over Vǫ for which |Ti − T 0
i | < ǫT for all i. Without loss of genarality, we can

restrict attention to the case in which T2 < T 0
2 .21 For C > 0, we define

Vǫ(C) = {(T1, T2, T3) : |Ti − T 0
i | ≤ ǫT, i = 1, 2, 3 but T2 − T 0

2 < −C} (54)

Note that by definition Vǫ(C) ⊂ Vǫ. Notice that the desired result would be established if it can

be shown that for large C, (T̂1, T̂2, T̂3) /∈ Vǫ(C) - and hence |T̂2−T 0
2 | < C - with high probability

for large T . Since ST (T̂1, T̂2, T̂3) ≤ ST (T̂1, T
0
2 , T̂3) with probability one as T → ∞, the desired

result can be established if it can be shown that for each η > 0, there exists C > 0 and ǫ > 0

such that for large T,

P (min{[ST (T1, T2, T3) − ST (T1, T
0
2 , T3)]/(T 0

2 − T2)} < 0) < η (55)

where the minimum is taken over the set Vǫ(C). Therefore, we now prove (55).

Define SSR1 = ST (T1, T2, T3), SSR2 = ST (T1, T
0
2 , T3) and SSR3 = ST (T1, T2, T

0
2 , T3). Using

these definition, we have

ST (T1, T2, T3) − ST (T1, T
0
2 , T3) = SSR1 − SSR2

= (SSR1 − SSR3) − (SSR2 − SSR3) (56)

Note that: SSR1 − SSR3 is the difference in the residual sum of squares between breaks at

(T1, T2, T3) and when there is a fourth break at time T 0
2 between T2 and T3 in addition to those

at (T1, T2, T3); SSR2 − SSR3 is the difference in the residual sum of squares between breaks at

(T1, T
0
2 , T3) and when there is a fourth break at time T2 between T1 and T 0

2 in addition to those

at (T1, T
0
2 , T3).

20The proof is presented in Han (2006).
21Bai and Perron (1998) note that the proof for this case is easily modified to cover the case of T2 > T 0

2 using

an argument of symmetry.
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To analyze the terms on the right hand side of (56), it is useful to define the 2SLS estimators

in the four break model and emphasize the sub-samples upon which certain of these estimators

are based. Let (β̂∗
1 , β̂∗

2 , β̂△, β̂∗
3 , β̂∗

4) denote the 2SLS estimators of the regression coefficients in

the five regimes of the four break model associated with the the partition (T1, T2, T
0
2 , T3). Note

that β̂∗
2 is based on observations T1 + 1, . . . , T2; β̂△ is based on observations T2 + 1, . . . , T 0

2 ; β̂∗
3

is based on observations T 0
2 + 1, . . . , T3.

Now define W̄ to be the diagonal partition of W at (T1, T2, T3), W̃ is the diagonal partition of

W at (T1, T
0
2 , T3), W△ = (0p×T2

, x̂T2+1, ..., x̂T0
2
, 0p×(T−T0

2
))

′ and MW̄ = IT − W̄ (W̄ ′W̄ )−1W̄ ′.

Now consider the right hand side of (56). It can be shown that22

SSR1 − SSR3 = (β̂∗
3 − β̂△)′W ′

△MW̄ W△(β̂∗
3 − β̂△) (57)

SSR2 − SSR3 = (β̂∗
2 − β̂△)′W ′

△MW̃ W△(β̂∗
2 − β̂△) (58)

From (57)-(58), it follows that (56) can be written as

SSR1 − SSR2 = (β̂∗
3 − β̂△)′W ′

△MW̄ W△(β̂∗
3 − β̂△) − (β̂∗

2 − β̂△)′W ′
△MW̃ W△(β̂∗

2 − β̂△) (59)

Using W ′
△MW̃ W△ ≤ W ′

△W△, it follows from (59) that

SSR1 − SSR2 ≥ (β̂∗
3 − β̂△)′W ′

△MW̄ W△(β̂∗
3 − β̂△) − (β̂∗

2 − β̂△)′W ′
△W△(β̂∗

2 − β̂△) (60)

Substituting for MW̄ in (60) and dividing both sides by T 0
2 − T2, we obtain

SSR1 − SSR2

T 0
2 − T2

≥ N1 − N2 − N3 (61)

where

N1 = (β̂∗
3 − β̂△)′[(T 0

2 − T2)
−1W ′

△W△](β̂∗
3 − β̂△) (62)

N2 = (β̂∗
3 − β̂△)′[(T 0

2 − T2)
−1W ′

△W̄ ][T−1W̄ ′W̄ ]−1[T−1W̄ ′W△](β̂∗
3 − β̂△) (63)

N3 = (β̂∗
2 − β̂△)′[(T 0

2 − T2)
−1W ′

△W△](β̂∗
2 − β̂△) (64)

We now consider the behaviour of N1, N2 and N3 in turn.

22See Amemiya (1985) equation (1.5.31) or Han (2006).
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Consider N1. First, note that by controlling ǫ to be small enough, we can control the

distance between Ti and T 0
i to be small over Vǫ(C). Thus, β̂∗

3 should be close to β0
3 over

Vǫ(C). Second, note that β̂△ is estimated using observations from (T2 + 1, ..., T 0
2 ), and that

if C is large then this estimation is based a large number of observations and hence β̂△ is

close to β0
2 with high probability. Therefore, for large C, large T , and small ǫ, we have N1 ≥

(1/2)(β0
3 − β0

2)′[W ′
△W△/(T 0

2 − T2)](β
0
3 − β0

2 ) with large probability.

Now consider N2. From the property of LS estimation, β̂∗
3 and β̂△ are Op(1) uniformly on Vǫ(C).

We also have that, on Vǫ(C), (W̄ ′W̄/T )−1 = Op(1) and W ′
△W̄/(T 0

2 −T2) = Op(1). Furthermore,

||W̄ ′W△/T || = ||[W̄ ′W△/(T 0
2 −T2)]·[(T

0
2 −T2)/T ]|| = ||W̄ ′W△/(T 0

2 −T2)||·(T
0
2 −T2)/T ≤ Op(1)ǫ

over Vǫ(C). therefore, we have that N2 ≤ Op(1) · Op(1) · Op(1) · Op(1)ǫ · Op(1) = Op(1)ǫ.

Finally, consider N3. Since both β̂∗
2 and β̂△ are estimating β0

2 , it follows that ||β̂∗
2 − β̂△|| < ρ

with large probability for every ρ > 0, for large T , large C, and small ǫ. Furthermore, we have

||W ′
△W△/(T 0

2 − T2)|| = Op(1) uniformly on Vǫ(C). Therefore, it follows that N3 ≤ ρOp(1).

Combining (61) with our analyses of N1, N2 and N3, it follows that

SSR1 − SSR2

T 0
2 − T2

≥ 2−1(β0
3 − β0

2)′ · [W ′
△W△/(T 0

2 − T2)] · (β
0
3 − β0

2) − ǫOp(1) − ρOp(1) (65)

with large probability. We now show that the first term on the right hand side of (65) dominates.

Noting that

(T 0
2 − T2)

−1W ′
△W△ = ∆̂′

T (T 0
2 − T2)

−1

T0
2
∑

t=T2+1

ztz
′
t∆̂T (66)

and ∆̂T
p
→ ∆0, a matrix of full column rank (from Assumption 4), it follows from Assumption

5 that, with large probability, the minimum eigenvalue of W ′
△W△/(T 0

2 − T2) is bounded away

from zero on Vǫ(C). Therefore, the first term on the right hand side of (65) dominates. This

term is also positive by Assumption 5. Therefore, [(SSR1 − SSR2)/(T 0
2 − T2)] > 0 over Vǫ(C)

with large probability which proves (55).

Proof of Theorem 3:

Before proving this result, it is useful to present the following lemma regarding the behaviour of

the 2SLS based on an arbitrary partition of the data. Accordingly, define β̂(s, r) to be the 2SLS
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based on the observations t = [Ts] + 1, · · · , [Tr], that is

β̂(s, r) = {

[Tr]
∑

t=[Ts]+1

x̂tx̂
′
t}

−1

[Tr]
∑

t=[Ts]+1

x̂tyt (67)

Lemma A.1: Under the conditions of Theorem 3, we have

sup(s,r)∈(0,1)2,r>+ǫs ‖β̂(s, r)‖ = Op(1)

where ǫ is defined in Assumption 10.

Proof of Lemma A.1:

Based on an arbitrary partition of the data, 2SLS coefficient estimator can be written as

β̂(s, r) = {

[Tr]
∑

t=[Ts]+1

x̂t(π̂)x̂t(π̂)′}−1

[Tr]
∑

t=[Ts]+1

x̂t(π̂)yt

= {

[Tr]
∑

t=[Ts]+1

x̂t(π̂)x̂t(π̂)′}−1

[Tr]
∑

t=[Ts]+1

x̂t(π̂)[x̂t(π̂)′β0(t, T ) + ũt(π̂)]

= {

[Tr]
∑

t=[Ts]+1

x̂t(π̂)x̂t(π̂)′}−1

[Tr]
∑

t=[Ts]+1

x̂t(π̂)x̂t(π̂)′β0(t, T ) + {

[Tr]
∑

t=[Ts]+1

x̂t(π̂)x̂t(π̂)′}−1

×

[Tr]
∑

t=[Ts]+1

x̂t(π̂)ũt(π̂) (68)

where

x̂t(π̂) =

T
∑

t=1

xtz̃t(π̂)′{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1z̃t(π̂) (69)

ũt(π̂) = yt − x̂t(π̂)′β0(t, T )

= ũt(π
0) + [z̃t(π

0)′{

T
∑

t=1

z̃t(π
0)z̃t(π

0)′}−1
T
∑

t=1

z̃t(π
0)x′

t − z̃t(π̂)′{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1

×

T
∑

t=1

z̃t(π̂)x′
t]β

0(t, T ) (70)

and

x̂t(π
0) =

T
∑

t=1

xtz̃t(π
0)′{

T
∑

t=1

z̃t(π
0)z̃t(π

0)′}−1z̃t(π
0) (71)

ũt(π
0) = yt − x̂t(π

0)
′

β0(t, T ) (72)
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From (69) and (70), it follows that

[Tr]
∑

t=[Ts]+1

x̂t(π̂)x̂t(π̂)′ =

T
∑

t=1

xtz̃t(π̂)′{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1

[Tr]
∑

t=[Ts]+1

z̃t(π̂)z̃t(π̂)′{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1

×

T
∑

t=1

z̃t(π̂)x′
t (73)

and

[Tr]
∑

t=[Ts]+1

x̂t(π̂)ũt(π̂) =

T
∑

t=1

xtz̃t(π̂)′{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1[

[Tr]
∑

t=[Ts]+1

z̃t(π̂)ũt(π
0) +

[Tr]
∑

t=[Ts]+1

z̃t(π̂)z̃t(π
0)′

×{

T
∑

t=1

z̃t(π
0)z̃t(π

0)′}−1
T
∑

t=1

z̃t(π
0)x′

tβ
0(t, T ) −

[Tr]
∑

t=[Ts]+1

z̃t(π̂t)z̃t(π̂)′

×{

T
∑

t=1

z̃t(π̂)z̃t(π̂)′}−1
T
∑

t=1

z̃t(π̂)x′
tβ

0(t, T )] (74)

Notice that
∑[Tr]

t=[Ts]+1 z̃t(π̂)ũt(π̂) depends on
∑[Tr]

t=[Ts]+1 z̃t(π̂)ũt(π
0). Using a similar argument

to the derivation of (36), we have

ũt(π
0) = ut + v′tβ

0(t, T ) − z̃t(π
0)′[{

T
∑

t=1

z̃t(π
0)z̃t(π

0)′}−1
T
∑

t=1

z̃t(π
0)v

′

t]β
0(t, T ) (75)

and hence

[Tr]
∑

t=[Ts]+1

z̃t(π̂)ũt(π
0) =

[Tr]
∑

t=[Ts]+1

z̃t(π̂)ut +

[Tr]
∑

t=[Ts]+1

z̃t(π̂)v′tβ
0(t, T ) −

[Tr]
∑

t=[Ts]+1

z̃t(π̂)z̃t(π
0)′

×{

T
∑

t=1

z̃t(π
0)z̃t(π

0)}−1
T
∑

t=1

z̃t(π
0)v′tβ

0(t, T ) (76)

We now consider the limiting behaviour of the sums in (73)-(76). From Assumptions 6 and 8, it

follows that

T−1
T
∑

t=1

z̃t(π̂)z̃t(π̂)′ = T−1
T
∑

t=1

z̃t(π
0)z̃t(π

0)′ + op(1)

p
→ Q (77)

where Q is the block diagonal matrix diag(Q1, Q2, . . .Qh+1) and Qi = QZZ(π0
i ) − QZZ(π0

i−1)

and we set π0
0 = 0, π0

h+1 = 1. From Assumptions 3, 6 and 8, and (3) it follows that

T−1
T
∑

t=1

z̃t(π̂)x′
t = T−1

T
∑

t=1

z̃t(π
0)x′

t + op(1)
p
→ QΘ0 (78)

From Assumptions 6 and 8, it follows that

T−1

[Tr]
∑

t=[Ts]+1

z̃t(π̂)z̃t(π
0)′

p
→ Q̃(s, r) uniformly in r, s, (r > s + ǫ) (79)
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where - assuming π0
i < s ≤ π0

i+1 and π0
i+ℓ < r ≤ π0

i+ℓ+1 without loss of generality -

Q̃(s, r) = [0(h+1)q×iq, A(s, r), 0(h+1)q×(h−i−ℓ−1)q and A(s, r) is the block diagonal matrix diag(QZZ(π0
i+1)−

QZZ(s), Q(i + 2), . . . , Q(i + ℓ), QZZ(r) − QZZ(π0
i+ℓ).

Finally, it follows from Assumption 3, 6 and 8 that T−1/2
∑[Tr]

t=1 z̃t(π̂) ⊗ {(ut, vt
′)′} and

T−1/2
∑[Tr]

t=1 z̃t(π
0) ⊗ {(ut, vt

′)′} satisfy a functional central limit theorem. The latter distri-

butional result combined with (68)-(79) yields the desired result.

Proof of Theorem 3:

The proof follows similar lines to Theorem 1. We first establish the analogs to Lemma 1 (a)-(b)

and then use them to deduce the desired result.

Lemma A.2 Under the conditions of Theorem 3, we have

(a) T−1
∑T

t=1 ũtdt = op(1).

(b1) If λ̂j 6
p
→ λ0

j for some j, and λ0
j ∈ (π0

i , π0
i+1), then

lim sup
T→∞

P

(

T−1
T
∑

t=1

dt
2 > C‖∆

(i+1)
0 (β0

j − β0
j+1) + ξ′T‖

2

)

> ǭ

for some C > 0 and ǭ > 0, where ξ′T = op(1).

(b2) If λ̂j 6
p
→ λ0

j for some j, and λ0
j = π0

i for some i, then

lim sup
T→∞

P

(

T−1
T
∑

t=1

dt
2 > C{‖∆

(i)
0 (β̂k − β0

j )‖2 + ‖∆
(i+1)
0 (β̂k − β0

j+1)‖
2 + ξT

′′}

)

> ǭ

for some C > 0 and ǭ > 0, where ξT
′′ = op(1).

Proof of Lemma A.2:

Part (a):

We first consider the case in which π0 is known and so x̂t is calculated via

x̂t(π
0)′ = z̃t(π

0)′{

T
∑

t=1

z̃t(π
0)z̃t(π

0)′}−1
T
∑

t=1

z̃t(π
0)x′

t (80)

and define dt(π
0) = x̂t(π

0)′
{

β̂(t, T ) − β0(t, T )
}

. In this case, we have from (75)

ũt = ũt(π
0) = yt − x̂t(π

0)′β0(t, T )

= ut + v′tβ
0(t, T ) − z̃t(π

0)′[{Z̃(π0)′Z̃(π0)}−1Z̃(π0)′V ]β0(t, T )
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and from (71),

x̂t(π
0) = zt(π

0)′Θ0 + z̃t(π
0)′
(

Z̃(π0)′Z̃(π0)
)−1

Z̃(π0)′V (81)

where Z̃(π0) is the T × q(n + 1) matrix with the tth row z̃t(π
0)′.

Note that Assumptions 3 and 6 imply

T−1/2

[Tr]
∑

t=1

z̃t(π
0) ⊗ {(ut, v

′
t)

′} = Op(1) (82)

and Assumption 6 implies

T−1

[Tr]
∑

t=1

z̃t(π
0)z̃t(π

0)′ = Op(1) (83)

Using (82)-(83) and similar arguments to the proof of Lemma 1(a), it is straightforward to show

that T−1
∑T

t=1 ũt(π
0)dt(π

0) = op(1).

Now consider the case where x̂′
t is calculated via (14), which we now denote by x̂t(π̂)′ for

emphasis, and dt(π̂) = x̂t(π̂)′
{

β̂(t, T ) − β0(t, T )
}

. In this case, we have from (69)-(70),

ũt(π̂) = yt − x̂t(π̂)′β0(t, T )

= ũt(π
0) − z̃t(π

0)′{[Z̃(π̂)′Z̃(π̂)]−1Z̃(π̂)′V − [Z̃(π0)′Z̃(π0)]−1Z̃(π0)′V }β0(t, T )

+ [z̃t(π
0) − z̃t(π̂)]′[Z̃(π̂)′Z̃(π̂)]−1Z̃(π̂)′V β0(t, T ) + z̃t(π

0)′{I − [Z̃(π̂)′Z̃(π̂)]−1

× Z̃(π̂)′Z̃(π0)}Θ0β
0(t, T ) + [z̃t(π

0) − z̃t(π̂)]′[Z̃(π̂)′Z̃(π̂)]−1Z̃(π̂)′Z̃(π0)Θ0β
0(t, T )

and

x̂t(π̂) = x̂t(π
0) − z̃t(π

0)′{I − [Z̃(π̂)′Z̃(π̂)]−1Z̃(π̂)′Z̃(π0)}Θ0 + [z̃t(π̂) − z̃t(π
0)]′[Z̃(π̂)′Z̃(π̂)]−1

× Z̃(π̂)′Z̃(π0)Θ0 + [z̃t(π̂) − z̃t(π
0)]′[Z̃(π0)′Z̃(π0)]−1Z̃(π0)′V + z̃t(π̂)′{[Z̃(π̂)′Z̃(π̂)]−1

× Z̃(π̂)′V − [Z̃(π0)′Z̃(π0)]−1Z̃(π0)′V }

It follows from Assumptions 3, 6 and 8 that: T−1Z̃(π̂)′Z̃(π0) = T−1Z̃(π̂)′Z̃(π̂) + op(1) =

T−1Z̃(π0)′Z̃(π0) + op(1), T−1/2Z̃(π̂)′V = T−1/2Z̃(π0)′V + op(1) = Op(1) and T−1/2Z̃(π̂)′U =

T−1/2Z̃(π0)′U + op(1) = Op(1). Hence, it follows that T−1
∑T

t=1 ũt(π̂)dt(π̂) = T−1
∑T

t=1 ũt(π
0)dt(π

0)+

op(1) = op(1) which gives the desired result.

Part (b1):

Again we begin by considering the case in which π0 is known and so x̂t(π
0) - defined in (80) - is

used to predict xt.
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Since λ0
j ∈ (π0

i , π0
i+1), we can choose η > 0 such that there is no estimated break in [T (λ0

j −

η), T (λ0
j + η)] with some positive probability ǫ and π0

i < λ0
j − η < λ0

j + η < π0
i+1. As in the

proof of Lemma 1(ii) assume T̂k−1 < T (λ0
j − η) and T (λ0

j + η) < T̂k.

Define

dt(π
0) = x̂t(π

0)′(β̂k − β0
j ) for t ∈ [T (λ0

j − η), Tλ0
j ]

= x̂t(π
0)′(β̂k − β0

j+1) for t ∈ [Tλ0
j + 1, T (λ0

j + η)] (84)

We have

T
∑

t=1

{dt(π
0)}2 ≥

∑

1

{dt(π
0)}2 +

∑

2

{dt(π
0)}2 (85)

where

∑

1

{dt(π
0)}2 = (β̂k − β0

j )′
∑

1

x̂t(π
0)x̂t(π

0)′(β̂k − β0
j )

∑

2

{dt(π
0)}2 = (β̂k − β0

j+1)
′
∑

2

x̂t(π
0)x̂t(π

0)′(β̂k − β0
j+1)

and (as before)
∑

1 extends over {T (λ0
j − η) ≤ t ≤ Tλ0

j} and
∑

2 extends over {Tλ0
j + 1 ≤ t ≤

T (λ0
j + η)}.

Now, since π0
i < λ0

j − η < λ0
j + η < π0

i+1,

∑

i

x̂t(π
0)x̂t(π

0)′ = ∆̂T,i+1

∑

i

ztz
′
t∆̂

′
T,i+1

We can therefore follow the same argument as in the proof of Lemma 1(ii) to deduce that, for

some C > 0

T−1
∑

1

{dt(π
0)}2 + T−1

∑

2

{dt(π
0)}2 ≥ C‖∆

(i+1)
0 (β0

j − β0
j+1)‖

2 + ξ∗T

where ξ∗T = C{‖∆̂T,i+1(β
0
j − β0

j+1)‖ − ‖∆
(i+1)
0 (β0

j − β0
j+1)‖}. From Assumptions 3 and 6, and

(3) it follows that ∆̂T,i+1
p
→ ∆

(i+1)
0 and hence that ξT = op(1).

Now consider the case in which π0 is unknown and estimated via π̂. Define

dt(π̂) = x̂t(π̂)(β̂k − β0
j ) for t ∈ [T (λ0

j − η), Tλ0
j ] (86)

= x̂t(π̂)(β̂k − β0
j+1) for t ∈ [Tλ0

j + 1, T (λ0
j + η)] (87)

Since x̂t(π̂) = zt∆̂(t, T ) where ∆̂(t, T ) =
∑n+1

i=1 ∆̂
(i)
T I{t/T ∈ (π̂i−1, π̂i]}, we have

T−1
T
∑

t=1

{dt(π̂)}2 ≥ T−1
∑

1

{dt(π̂)}2 + T−1
∑

2

{dt(π̂)}2 (88)
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where

T−1
∑

1

{dt(π̂)}2 = (β̂k − β0
j )′{T−1

∑

1

∆̂(t, T )′ztz
′
t∆̂(t, T )}(β̂k − β0

j ) (89)

T−1
∑

2

{dt(π̂)}2 = (β̂k − β0
j+1)

′{T−1
∑

2

∆̂(t, T )′ztz
′
t∆̂(t, T )}

× (β̂k − β0
j+1) (90)

From Assumptions 3, 6 and 8, and (3) ∆̂T,i
p
→ ∆

(i)
0 and π̂

p
→ π0 and so using π0

i < λ0
j − η <

λ0
j + η < π0

i+1 we have

(1/T )
∑

1

{dt(π̂)}2 = T−1
∑

1

{dt(π
0)}2 + ξ′1,T (91)

where

ξ′1,T = (β̂k − β0
j )′{T−1

∑

1

∆̂(t, T )′ztz
′
t∆̂(t, T ) − ∆

(i+1)
0

′
T−1

∑

1

ztz
′
t

×∆
(i+1)
0 }(β̂k − β0

j )

and

T−1
∑

2

{dt(π̂)}2 = T−1
∑

2

{dt(π
0)}2 + ξ′2,T (92)

where

ξ′2,T = (β̂k − β0
j+1)

′{T−1
∑

2

∆̂(t, T )′ztz
′
t∆̂(t, T ) − ∆

(i+1)
0

′
T−1

∑

2

ztz
′
t

×∆
(i+1)
0 }(β̂k − β0

j+1)

Under our assumptions, ξ′i,T = op(1) - note that using Lemma A.1 we have ‖β̂k‖ ≤ sup(s,r) ‖β̂(s, r)‖ =

Op(1) . Combining (88), (91) and (92), we have

(1/T )

T
∑

t=1

{dt(π̂)}2 ≥ (1/T )
∑

1

{dt(π̂)}2 + (1/T )
∑

2

{dt(π̂)}2

= (1/T )
∑

1

{dt(π
0)}2 + (1/T )

∑

2

{dt(π
0)}2 + ξ′1,T + ξ′2,T

≥ C‖∆
(i+1)
0 (β0

j − β0
j+1)‖

2 + ξ∗T + ξ′1,T + ξ′2,T

Recalling that this analysis is premised on an event that occurs with probability ǭ, it follows

that

lim sup
T→∞

P

(

T−1
T
∑

t=1

{dt(π̂)}2 > C‖∆
(i+1)
0 (β0

j − β0
j+1)‖

2 + ξ′T

)

> ǭ
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where ξ′T = ξ∗T + ξ′1,T + ξ′2,T = op(1).

Part (b2):

As for part (b1), we assume that λ0
j lies in the kth estimated regime, and we choose η so that

there is no estimated break in [T (λ0
j −η), T (λ0

j +η)] with some positive probability ǫ. This time

λ0
j = π0

i but we can choose η such that π0
i−1 < λ0

j − η, λ0
j + η < π0

i+1.

Again we begin by considering the case in which π0 is known and so the predicted value of

xt is x̂t(π
0) in (71). Define dt(π

0) as in (84). By definition, (85) holds but this time as λ0
j = π0

i .

∑

1

{dt(π
0)}2 = (β̂k − β0

j )′∆̂T,i

∑

1

ztz
′
t∆̂T,i(β̂k − β0

j ) (93)

∑

2

{dt(π
0)}2 = (β̂k − β0

j+1)
′∆̂T,i+1

∑

2

ztz
′
t∆̂T,i+1(β̂k − β0

j+1) (94)

By repeating the steps in the proof of Lemma 1(ii), we have

∑

1

{dt(π
0)}2 +

∑

2

{dt(π
0)}2 ≥ min{γ1, γ2}{‖∆̂T,i(β̂k − β0

j )‖2 + ‖∆̂T,i+1(β̂k − β0
j+1)‖

2}

By similar arguments to Lemma 1(ii), we can then deduce that

T−1
∑

1

{dt(π
0)}2 + T−1

∑

2

{dt(π
0)}2 ≥ {‖∆̂T,i(β̂k − β0

j )‖2 + ‖∆̂T,i+1(β̂k − β0
j+1)‖

2}

= C{‖∆
(i)
0 (β̂k − β0

j )‖2 + ‖∆
(i+1)
0 (β̂k − β0

j+1)‖
2}

+ ξ∗∗T (95)

where

ξ∗∗T = C{‖∆̂T,i(β̂k − β0
j )‖2 − ‖∆

(i)
0 (β̂k − β0

j )‖2

+ ‖∆̂T,i+1(β̂k − β0
j )‖2 − ‖∆

(i+1)
0 (β̂k − β0

j+1)‖
2}

Note that under our assumptions ξ∗∗T = op(1).

Now consider the case in which π0 is unknown and estimated via π̂. Define dt(π̂) as in

(86)-(87). Following similar steps to the proof of part (b1), we have that (88)-(90) hold. From

Assumptions 3, 6 and 8, and (3) ∆̂T (i)
p
→ ∆

(i)
0 , ∀i and π̂

p
→ π0 and so

T−1
∑

1

{dt(π̂)}2 = T−1
∑

1

{dt(π
0)}2 + ξ

′′

1,T (96)

where T−1
∑

1{dt(π
0)}2 is defined in (93) and ξ

′′

1,T = (β̂k − β0
j )′{T−1

∑

1 ∆̂(t, T )′ztz
′
t∆̂(t, T ) −

∆
(i+1)
0

′
T−1

∑

1 ztz
′
t∆

(i+1)
0 }(β̂k − β0

j ) and ξ
′′

1,T = op(1).
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Similarly,

T−1
∑

2

{dt(π̂)}2 = T−1
∑

2

{dt(π
0)}2 + ξ

′′

2,T (97)

where T−1
∑

2{dt(π
0)}2 is defined in (94) and ξ

′′

2,T = (β̂k−β0
j+1)

′{T−1
∑

2 ∆̂(t, T )′ztz
′
t∆̂(t, T ) −

∆
(i+1)
0

′
T−1

∑

2 ztz
′
t∆

(i+1)
0 }(β̂k − β0

j+1) and under our assumptions ξ
′′

2,T = op(1).

Combining (85), (93), (94), (95), (96) and (97), we have

T−1
∑

{dt(π̂)}2 ≥ C{‖∆
(i+1)
0 (β̂k − β0

j )‖2 + ‖∆
(i+1)
0 (β̂k − β0

j+1)‖
2 + ξ

′′

T }

where ξT
′′ = ξ∗T + ξ

′′

1,T + ξ
′′

2,T which because the analysis is premised on an event with probability

ǭ yields the desired result.

Proof of Theorem 3:

Suppose that λ̂j 6
p
→ λ0

j for some j. In this case it follows from (12) and Lemma A.2 that with

probability ǭ > 0:

• Case 1: If for some i, π0
i < λ0

j < π0
i+1

T−1
T
∑

t=1

û2
t > T−1

T
∑

t=1

ũ2
t + C‖∆

(i+1)
0 (β0

j − β0
j+1)‖

2 + op(1)

• Case 2: If π0
i = λ0

j for some i

T−1
T
∑

t=1

û2
t > T−1

T
∑

t=1

ũ2
t + C{‖∆

(i)
0 (β̂k − β0

j )‖2 + ‖∆
(i+1)
0 (β̂k − β0

j+1)‖
2} + op(1)

Thus, we have

• Case 1: Assumption 9 and β0
j 6= β0

j+1 implies ‖∆
(i+1)
0 (β0

j − β0
j+1)‖

2 > 0, which gives the

result as in the proof of Theorem 1.

• Case 2: Now as β0
j 6= β0

j+1 and ∆
(i)
0 , ∆

(i+1)
0 are rank p from Assumption 9, it must follow

that ‖∆
(i)
0 (β̂k − β0

j )‖2 + ‖∆
(i+1)
0 (β̂k − β0

j+1)‖
2 > 0 with probability one, which gives the

result via the same argument as in Theorem 1.

Proof of Theorem 4:

The general proof strategy is the same as that for Theorem 2. Again, we assume (without loss

of generality) that there are only 3 break points, that is m = 3, and present the proof for the

middle break fraction, λ̂2.
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Define Vǫ and Vǫ(C) as in the proof of theorem 2. Using the same logic as the proof of Theorem

2, it suffices to consider the behaviour of ST (T1, T2, T3) over Vǫ for which |Ti − T 0
i | < ǫT for

all i. As before, we restrict attention to the case in which T2 < T 0
2 . The desired result can be

established if it can be shown that for each η > 0, there exists C > 0 and ǫ > 0 such that for

large T,

P (min{[ST (T1, T2, T3) − ST (T1, T
0
2 , T3)]/(T 0

2 − T2)} < 0) < η (98)

where the minimum is taken over the set Vǫ(C).

It is possible to follow the same steps as in the proof of Theorem 2 to show that

SSR1 − SSR2

T 0
2 − T2

≥ 2−1(β0
3 − β0

2)′ [W ′
△W△/(T 0

2 − T2)] (β
0
3 − β0

2) − ǫOp(1) − ρOp(1) (99)

with large probability. We now show that the first term on the right hand side of (65) dominates.

Using ∆̂(t, T ) =
∑m+1

i=1 ∆̂
(i)
T I{t/T ∈ (π̂i−1, π̂i]}, we have

(T 0
2 − T2)

−1W ′
△W△ = (T 0

2 − T2)
−1

T0
2
∑

t=T2+1

∆̂(t, T )′ztz
′
t∆̂(t, T ) (100)

To facilitate the proof, we assume that Tπ0
i ∈ (T2, T 0

2 ) but Tπ0
k /∈ (T2, T 0

2 ) for all k 6= i.23 From

Assumptions 3, 6, 8 and 9, it follows that

(T 0
2 − T2)

−1

T0
2
∑

t=T2+1

∆̂(t, T )′ztz
′
t∆̂(t, T ) = (T 0

2 − T2)
−1∆

(i)′

0

∑

1

ztz
′
t∆

(i)
0

+ (T 0
2 − T2)

−1∆
(i+1)′

0

∑

2

ztz
′
t∆

(i+1)
0

+ op(1) (101)

where
∑

1 extends over {T2 + 1 ≤ t ≤ T ∗
i } and

∑

2 extends over {T ∗
i + 1 ≤ t ≤ T 0

2 }.

Now, it follows from Assumptions 9 and 11 that the first and second terms on the right hand

side of (101) are bounded away from zero as follows:

(T 0
2 − T2)

−1∆
(i)′

0

∑

1

ztz
′
t∆

(i)
0 ≥ α1γ1‖∆

(i)
0 ‖2 > 0 (102)

∆
(i+1)′

0

∑

2

ztz
′
t∆

(i+1)
0 ≥ α2γ2‖∆

(i+1)
0 ‖2 > 0 (103)

where γ1 and γ2 are the smallest eigenvalues of (T ∗
i − T2)

−1
∑

1 ztz
′
t and (T 0

2 − T ∗
i )−1

∑

2 ztz
′
t,

respectively, and α1 = (T ∗
i − T2)/(T 0

2 − T2), α2 = (T 0
2 − T ∗

i )/(T 0
2 − T2). Therefore, combining

23The proof is easily modified to handle other scenarios regarding the location of the break points.
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(101)-(103), we obtain

(T 0
2 − T2)

−1

T0
2
∑

t=T2+1

∆̂(t, T )′ztz
′
t∆̂(t, T ) ≥ α1γ1‖∆

i
0‖

2 + α2γ2‖∆
(i+1)
0 ‖2 + op(1)

≥ min{α1γ1, α2γ2}
(

‖∆
(i)
0 ‖2 + ‖∆

(i+1)
0 ‖2

)

+ op(1) (104)

From Assumptions 9 and 11, it follows that the first term on the right hand side of (104) is

bounded away from zero on Vǫ(C) with large probability. Therefore, the first term on the right

hand side of (99) dominates and is positive for large C, small ǫ and large T which in turn proves

(98).

Proof of Theorem 5:

For notational brevity, set β̂ = β̂({T̂i}
m
i=1). By definition, the 2SLS estimator is

β̂ =
(

W̄ ∗′

W̄ ∗
)−1

W̄ ∗′

Y (105)

From (26), it follows that

Y = W̄ ∗β0 + U∗ (106)

where U∗ = (W̄ 0 − W̄ ∗)β0 + Ũ . Substituting in (105) for Y from (106), we obtain

β̂ = β0 + (W̄ ∗′

W̄ ∗)−1W̄ ∗′

U∗

and hence that

β̂ − β0 = (W̄ ∗′

W̄ ∗)−1W̄ ∗′

[(W̄ 0 − W̄ ∗)β0 + Ũ ] (107)

From (107) it follows that

T 1/2(β̂ − β0) =
(

T−1W̄ ∗′

W̄ ∗
)−1

T−1/2W̄ ∗′

[Ũ + (W̄ 0 − W̄ ∗)β0] (108)

Theorem 2 implies that T̂i − T 0
i = Op(1) for all i. Therefore, the summation W̄ ∗′

W̄ 0 − W̄ ∗′

W̄ ∗

involves a bounded number of terms with probability one, and so

W̄ ∗′

W̄ 0 − W̄ ∗′

W̄ ∗ = Op(1) (109)

Hence, it follows that

T−1/2‖W̄ ∗′

W̄ 0 − W̄ ∗′

W̄ ∗‖ = op(1) (110)
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and taken together (108)-(110) imply that

T 1/2(β̂ − β0) =
(

T−1W̄ ∗′

W̄ ∗
)−1

T−1/2W̄ ∗′

Ũ + op(1) (111)

The addition and subtraction of
(

T−1W̄ 0′

W̄ 0
)−1

T−1/2W̄ 0′

Ũ to the right hand side of (111)

and some rearrangement yields

T 1/2(β̂ − β0) =
(

T−1W̄ 0′

W̄ 0
)−1

T−1/2W̄ 0′

Ũ

+
(

T−1W̄ 0′

W̄ 0
)−1 (

T−1W̄ 0′

W̄ 0 − T−1W̄ ∗′

W̄ ∗
)(

T−1W̄ ∗′

W̄ ∗
)−1

T−1/2W̄ 0′

Ũ

+
(

T−1W̄ ∗′

W̄ ∗
)−1

T−1/2(W̄ ∗′

− W̄ 0′

)Ũ + op(1) (112)

Using a similar argument to (109), it follows that

‖T−1W̄ 0′

W̄ 0 − T−1W̄ ∗′

W̄ ∗‖ = op(1) (113)

‖T−1/2(W̄ ∗′

− W̄ 0′

)Ũ‖ = op(1) (114)

Using the Triangle inequality, equations (113)-(114), Assumptions 4 and 6, and the property of

the matrix norm given in (30), it follows from (112) that

T 1/2(β̂ − β0) =
(

T−1W̄ 0′

W̄ 0
)−1

T−1/2W̄ 0′

Ũ + op(1) (115)

Given the block diagonal structure of W̄ 0′

W̄ 0, the coefficient vector of the i − th regime can be

written as

T 1/2
(

β̂i − β0
i

)

=

(

1

T

∑

i0

x̂tx̂
′
t

)−1

T−1/2
∑

i0

x̂tũt + op(1) (116)

The result then follows directly from (116), x̂t = X ′Z(Z′Z)−1zt and Assumptions 3 and 6.

Proof of Theorem 6:

The F-statistic can then be written as

FT (λ1, ..., λk; p) = F ∗
T /[kp(T − (k + 1)p)−1SSRk] (117)

where F ∗
T = SSR0 − SSRk . We first consider the limiting behaviour of F ∗

T . To this end, we

define: DR(i, j) to be the sum of the squared residuals from the restricted model using data from

segments i to j, that is the observations from Ti−1 + 1 to Tj ; DU (i, j) to be the corresponding
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for the unrestricted model. Using this notation, we can write F ∗
T as follows:24

F ∗
T = DR(1, k + 1) −

k+1
∑

i=1

DU (i, i)

=

k
∑

i=1

[DR(1, i + 1) − DR(1, i) − DU (i + 1, i + 1)] + DR(1, 1) − DU (1, 1)

=

k
∑

i=1

[DR(1, i + 1) − DR(1, i) − DU (i + 1, i + 1)] (118)

=

k
∑

i=1

FT,i, say. (119)

To analyze the behaviour of the terms on the right hand side of (118), it is necessary to introduce

the following leasts squares estimators in addition to (what can now be termed) the unrestricted

estimator given in (105):

• The restricted estimator based on the full sample is

β̂R = (W ′W )−1W ′Y (120)

• The least squares estimator of the common regression parameter under H0 based on seg-

ments 1 through j of the partition,

β̂R
1,j = (W ′

1,jW1,j)
−1W ′

1,jY1,j (121)

where Y1,j, Ũ1,j, W1,j denote the matrices (vectors) consisting of the rows 1 through Tj of

Y , Ũ , W , respectively.

• The least squares estimator based on the observations in the jth segment of the partition,

β̂U
j = (W ′

jWj)
−1W ′

jYj (122)

where Yj , Uj , Wj be the matrices (vectors) containing rows Tj−1 + 1 through Tj of Y , Ũ ,

W , respectively.

Note that under the null hypothesis that β0
i = β̄0 in (1) for i = 1, 2, . . . , k + 1, we have

Y = Wβ̄0 + Ũ (123)

= W̄ 0(ιk+1 ⊗ β̄0) + Ũ (124)

Yj = Wj β̄0 + Ũj (125)

24Note that the unrestricted and restricted models are the same on segment (i, i) for any i.
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where ιk+1 is a (k + 1) × 1 vector of ones. Using (120)-(125), it can be shown that

DR(1, j) = ||(I − PW1,j
)Ũ1,j ||

2 (126)

DU (j, j) = ||(I − PWj
)Ũj ||

2 (127)

where PW1,j
= W1,j(W

′

1,jW1,j)
−1W

′

1,j and PWj
= Wj(W

′

jWj)
−1W

′

j . Now consider FT,i in (119).

From (118), (126) and (127), it follows that

FT,i = ||(I − PW1,i+1
)Ũ1,i+1||

2 − ||(I − PW1,i
)Ũ1,i||

2 − ||(I − PWi+1
)Ũi+1||

2

= −S′
i+1H

−1
i+1Si+1 + S′

iH
−1
i Si + (Si+1 − Si)

′(Hi+1 − Hi)
−1(Si+1 − Si) (128)

where Sj = W ′
1,jŨ1,j and Hj = W ′

1,jW1,j.

The limiting behaviour of FT,i is deduced from the limiting behaviour of Sj and Hj. To pro-

ceed further, it is useful to explore further the implications of (16). Let B(r) = [B1(r)
′

, B2(r)
′

, . . . , Bp+1(r)
′

]
′

where Bi(r)
′

is q × 1, and

Ω1/2 =







N
′

1

N
′

2






(129)

where N
′

1 is a 1× (p+1) vector whose ith element is N1,i, and N
′

2 is p× (p+1). Note that, since

Ω1/2 is symmetric,

Ω =







N
′

1N1 N
′

1N2

N
′

2N1 N
′

2N2






=







σ2 γ
′

γ Σ






(130)

where the second and third matrices are partitioned conformably. It follows from (16) and (129)

that

T−1/2

[Tr]
∑

t=1

ztut =⇒ (N
′

1 ⊗ Q
1/2
ZZ)B(r) (131)

=

p+1
∑

i=1

N1,iQ
1/2
ZZBi(r)

= Q
1/2
ZZ

p+1
∑

i=1

N1,iBi(r) (132)

= Q
1/2
ZZD̃∗(r), say (133)

and

T−1/2

[Tr]
∑

t=1

vt ⊗ zt = T−1/2

[Tr]
∑

t=1

vec(ztv
′

t)

=⇒ (N
′

2 ⊗ Q
1/2
ZZ)B(r) (134)
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Note that (134) implies

T−1/2

[Tr]
∑

t=1

ztv
′

t =⇒ Q
1/2
ZZBmat(r)N2 (135)

= Q1′2
ZZD∗(r), say (136)

where vec(Bmat(r)) = B(r).

To deduce the limiting behaviour of Sj , we note that (37) (with β0
i = β̄0) implies:

T−1/2Sj = ∆0
′T−1/2

[Tλj ]
∑

t=1

ztut + V ′Z(Z′Z)−1T−1/2

[Tλj ]
∑

t=1

ztut + ∆0
′T−1/2

[Tλj ]
∑

t=1

ztvt
′β̄0

+ V ′Z(Z′Z)−1T−1/2

[Tλj ]
∑

t=1

ztvt
′β̄0 − ∆0

′

[Tλj ]
∑

t=1

ztz
′
t(Z

′Z)−1T−1/2Z′V β̄0

−T−1/2V ′Z(Z′Z)−1

[Tλj ]
∑

t=1

ztz
′
t(Z

′Z)−1Z′V β̄0 (137)

Under Assumptions 3-6 and 12, it follows from (133), (136) and (137) that25

T−1/2Sj =⇒ ∆0
′Q

1/2
ZZD̃∗(λj) + ∆′

0Q
1/2
ZZD∗(λj)β̄0 − ∆0

′λjQ
1/2
ZZD∗(1)β̄0 (138)

Similarly, we have

T−1Hj = T−1W ′
1,jW1,j = T−1

[Tλj ]
∑

t=1

x̂tx̂
′
t

= T−1

[Tλj ]
∑

t=1

∆̂′
Tzt(∆̂

′
T zt)

′ (139)

Under Assumptions 3-6, it follows from (139) that

T−1Hj
p
→ ∆0

′(λjQZZ)∆0 (140)

We now use (138)-(140) to deduce the limiting behaviour of the terms on the right hand side

25See Han (2006).
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of (128). First consider S′
i+1H

−1
i+1Si+1. From (138)-(140), we have

S′
i+1H

−1
i+1Si+1 =⇒ (∆0

′Q
1/2
ZZD̃∗(λi+1) + ∆0

′Q
1/2
ZZD∗(λi+1)β̄0 − ∆0

′λi+1Q
1/2
ZZD∗(1)β̄0)

′ ×

(∆0
′λi+1QZZ∆0)

−1 ×

(∆0
′Q

1/2
ZZD̃∗(λi+1) + ∆0

′Q
1/2
ZZD∗(λi+1)β̄0 − ∆0

′λi+1Q
1/2
ZZD∗(1)β̄0)

= (∆0
′Q

1/2
ZZ [D̃∗(λi+1) + D∗(λi+1)β̄0 − λi+1D

∗(1)β̄0])
′(∆0

′λi+1QZZ∆0)
−1

×(∆0
′Q

1/2
ZZ [D̃∗(λi+1) + D∗(λi+1)β̄0 − λi+1D

∗(1)β̄0])

= λ−1
i+1[D̃

∗(λi+1) + D∗(λi+1)β̄0 − λi+1D
∗(1)β̄0]

′(∆0
′Q

1/2
ZZ)′(∆0

′QZZ∆0)
−1

×(∆0
′Q

1/2
ZZ)[D̃∗(λi+1) + D∗(λi+1)β̄0 − λi+1D

∗(1)β̄0] (141)

To simplify (141) note that (∆0
′Q

1/2
ZZ)′(∆0

′QZZ∆0)
−1(∆0

′Q
1/2
ZZ) is a projection matrix which,

from Assumptions 4 and 6 is of rank p. It follows

(∆0
′Q

1/2
ZZ)′(∆0

′QZZ∆0)
−1(∆0

′Q
1/2
ZZ) = C′ΛC = C′Λ′ΛC (142)

= (ΛC)′ΛC (143)

where C is an orthogonal matrix and Λ is a diagonal matrix, p of whose diagonal elements are

one with the remaining q − p equal to zero. Substituting (142) in (141) and using (143), we

obtain

S′
i+1H

−1
i+1Si+1 =⇒ λ−1

i+1(D̃
∗(λi+1) + [D∗(λi+1) − λi+1D

∗(1)]β̄0)
′C′ΛC

×(D̃∗(λi+1) + [D∗(λi+1) − λi+1D
∗(1)]β̄0)

= λ−1
i+1(D̃

∗(λi+1) + [D∗(λi+1) − λi+1D
∗(1)]β̄0)

′(ΛC)′ΛC

×(D̃∗(λi+1) + [D∗(λi+1) − λi+1D
∗(1)]β̄0)

= λ−1
i+1(ΛCD̃∗(λi+1) + ΛC[D∗(λi+1) − λi+1D

∗(1)]β̄0)
′

×(ΛCD̃∗(λi+1) + ΛC[D∗(λi+1) − λi+1D
∗(1)]β̄0) (144)

Similar logic yields

S′
iH

−1
i Si =⇒ λ−1

i (ΛCD̃∗(λi) + ΛC[D∗(λi) − λiD
∗(1)]β̄0)

′

×(ΛCD̃∗(λi) + ΛC[D∗(λi) − λiD
∗(1)]β̄0) (145)
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Now consider Ai = (Si+1 − Si)
′(Hi+1 − Hi)

−1(Si+1 − Si). Using (138)-(140), it follows that

Ai =⇒ [∆0
′Q

1/2
ZZ(D̃∗(λi+1) − D̃∗(λi)) + ∆0

′Q
1/2
ZZ(D∗(λi+1) − D∗(λi))β̄0

−∆0
′(λi+1 − λi)Q

1/2
ZZD∗(1)β̄0]

′[∆0
′(λi+1 − λi)QZZ∆0]

−1[∆0
′Q

1/2
ZZ(D̃∗(λi+1) − D̃∗(λi))

+∆0
′Q

1/2
ZZ(D∗(λi+1) − D∗(λi))β̄0 − ∆0

′(λi+1 − λi)Q
1/2
ZZD∗(1)β̄0]

= (∆0
′Q

1/2
ZZ [D̃∗(λi+1) − D̃∗(λi) + (D∗(λi+1) − D∗(λi))β̄0 − (λi+1 − λi)D

∗(1)β̄0])
′

×[∆0
′(λi+1 − λi)QZZ∆0]

−1(∆0
′Q

1/2
ZZ [D̃∗(λi+1) − D̃∗(λi) + (D∗(λi+1) − D∗(λi))β̄0

−(λi+1 − λi)D
∗(1)β̄0])

= [D̃∗(λi+1) − D̃∗(λi) + (D∗(λi+1) − D∗(λi))β̄0 − (λi+1 − λi)D
∗(1)β̄0]

′(∆0
′Q

1/2
ZZ)′

×(λi+1 − λi)
−1[∆0

′QZZ∆0]
−1(∆0

′Q
1/2
ZZ)[D̃∗(λi+1) − D̃∗(λi) + (D∗(λi+1) − D∗(λi))β̄0

−(λi+1 − λi)D
∗(1)β̄0]

= (λi+1 − λi)
−1[D̃∗(λi+1) − D̃∗(λi) + (D∗(λi+1) − D∗(λi))β̄0 − (λi+1 − λi)D

∗(1)β̄0]
′

×C′ΛC[D̃∗(λi+1) − D̃∗(λi) + (D∗(λi+1) − D∗(λi))β̄0 − (λi+1 − λi)D
∗(1)β̄0]

= (λi+1 − λi)
−1[ΛC(D̃∗(λi+1) − D̃∗(λi)) + ΛC(D∗(λi+1) − D∗(λi))β̄0

−(λi+1 − λi)ΛCD∗(1)β̄0]
′[ΛC(D̃∗(λi+1) − D̃∗(λi)) + ΛC(D∗(λi+1) − D∗(λi))β̄0

−(λi+1 − λi)ΛCD∗(1)β̄0]

= (λi+1 − λi)
−1[ΛC(D̃∗(λi+1) − D̃∗(λi)) + ΛC(D∗(λi+1) − D∗(λi) − λi+1D

∗(1)

+λiD
∗(1))β̄0]

′[ΛC(D̃∗(λi+1) − D̃∗(λi)) + ΛC(D∗(λi+1) − D∗(λi) − λi+1D
∗(1)

+ λiD
∗(1))β̄0] (146)

We now use (144)-(146) to deduce the limiting behaviour of FT,i. To this end, we now write

Di = ΛCD∗(λi), D̃i = ΛCD̃∗(λi) and D1 = ΛCD∗(1).

From (144)-(146) it follows that

FT,i =⇒ λ−1
i [D̃i + (Di − λiD1)β̄0]

′[D̃i + (Di − λiD1)β̄0]

−λ−1
i+1[D̃i+1 + (Di+1 − λi+1D1)β̄0]

′[D̃i+1 + (Di+1 − λi+1D1)β̄0]

+(λi+1 − λi)
−1[(D̃i+1 − D̃i) + (Di+1 − λi+1D1 − Di + λiD1)β̄0]

′

×[(D̃i+1 − D̃i) + (Di+1 − λi+1D1 − Di + λiD1)β̄0] (147)
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Multiplying out (147) and rearranging terms, we obtain26

FT,i =⇒ {λiλi+1(λi+1 − λi)}
−1||[λi+1D̃i − λiD̃i+1] + [λi+1Di − λiDi+1]β̄0||

2 (148)

It follows from (148) that the limiting behaviour of the numerator of FT (λ1, ..., λk; p) is given

by:

F ∗
T =⇒

k
∑

i=1

{λiλi+1(λi+1 − λi)}
−1||[λi+1D̃i − λiD̃i+1] + [λi+1Di − λiDi+1]β̄0||

2 (149)

Now, consider the denominator of FT (λ1, ..., λk; p). Using (124)-(127), it can be shown that

SSRk =

k
∑

i=1

DU (i, i)

=

k
∑

i=1

||(I − PWi
)Ũi||

2

=

k
∑

i=1

Ũ ′
i Ũi −

k
∑

i=1

Ũ ′
iPWi

Ũi (150)

From (150) it follows that

(T − (k + 1)p)−1SSRk = (T − (k + 1)p)−1
k
∑

i=1

Ũ ′
i Ũi − (T − (k + 1)p)−1

k
∑

i=1

Ũ ′
iPWi

Ũi (151)

We now consider the limiting behaviour of the terms on the right hand side of (151) in turn.

Since

Ũ ′
iPWi

Ũi = (Si − Si−1)
′(Hi − Hi−1)

−1(Si − Si−1) (152)

it follows from (146) that

Ũ ′
iPWi

Ũi =⇒ (λi − λi−1)
−1[D̃i − D̃i−1 + (Di − Di−1 − λiD1 + λi−1D1)β̄0]

′

×[D̃i − D̃i−1 + (Di − Di−1 − λiD1 + λi−1D1)β̄0] (153)

and hence that (T − (k + 1)p)−1
∑k

i=1 Ũ ′
iPWi

Ũi = op(1).

Now consider (T −(k+1)p)−1
∑k

i=1 Ũ ′
iŨi. From (36), it follows that under the null hypothesis

of no breaks,

Ũ ′
i Ũi =

[Tλi]
∑

t=[Tλi−1 ]+1

ũ2
t

=
∑

i

[(ut + vt
′β̄0) − z′t(Z

′Z)−1Z′V β̄0]
2

=
∑

i

{(ut + vt
′β̄0)

2 + (z′t(Z
′Z)−1Z′V β̄0)

2 − 2(ut + vt
′β̄0)z

′
t(Z

′Z)−1Z′V β̄0}(154)

26See Han (2006).
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Since

∑

i

(z′t(Z
′Z)−1Z′V β̄0)

2 = β̄
′

0T
−1/2V ′Z(T−1Z′Z)−1T−1

∑

i

ztz
′
t(T

−1Z′Z)−1T−1/2Z′V β̄0

= Op(1) (155)

and

∑

i

(ut + vt
′β̄0)z

′
t(Z

′Z)−1Z′V β̄0 = T−1/2
∑

i

utz
′
t(T

−1Z′Z)−1T−1/2Z′V β̄0

+T−1/2
∑

i

vt
′β̄0z

′
t(T

−1Z′Z)−1T−1/2Z′V β̄0

= Op(1) (156)

it follows that

(T − (k + 1)p)−1
k
∑

i=1

Ũ ′
iŨi = (T − (k + 1)p)−1

k
∑

i=1

[Tλi]
∑

[Tλi−1]+1

(ut + vt
′β̄0)

2 + op(1)

= σ2 + 2γ
′

β̄0 + β̄
′

0Σβ̄0 + op(1) (157)

From (151)-(153) and (157), it follows that

(T − (k + 1)p)−1SSRk
p
→ σ2 + 2γ

′

β̄0 + β̄
′

0Σβ̄0 (158)

Combining (117), (149) and (158), we obtain

FT (λ1, ..., λk; p) =⇒
1

kp

k
∑

i=1

||[λi+1D̃i − λiD̃i+1] + [λi+1Di − λiDi+1]β̄0||
2

λiλi+1(λi+1 − λi)[σ2 + 2γ′ β̄0 + β̄
′

0Σβ̄0]
(159)

We now show that this limiting distribution has the alternative representation given in Theorem

6. First notice that the limit distribution on the right hand side of (159), ai say, can be written

as

ai =
1

kp

k
∑

i=1

||λi+1b(λi) − λib(λi+1)||
2

λiλi+1(λi+1 − λi)[σ2 + 2γ′ β̄0 + β̄
′

0Σβ̄0]
(160)

where b(λi) = [D̃i + Diβ̄0].

Therefore the desired result will be established if it can be shown that

b(λi)
d
= [σ2 + 2γ

′

β̄0 + β̄
′

0Σβ̄0]
1/2







Wi

0(q−p)×1






(161)

where Wi is a p × 1 vector of standard Brownian motion process and 0(q−p)×1 is a (q − p) × 1

null vector and
d
= denotes “distributed as”. We now show that (161) holds. Without loss of
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generality, we assume the rows of (∆0
′Q

1/2
ZZ)′(∆0

′QZZ∆0)
−1(∆0

′Q
1/2
ZZ) are arranged such that

Λ = diag(ι′p, 0
′
(q−p)×1) in (142) where ιp is p × 1 vector of ones. It therefore follows that

D̃i = ΛCD̃∗(λi) = ΛC

p+1
∑

j=1

N1,jBj(λi) =

p+1
∑

j=1

N1,jΛCBj(λi)

d
=

p+1
∑

j=1

N1,jΛBj(λi)

=







∑p+1
j=1 N1,jBj,1:p(λi)

0(q−p)×1







=







(N
′

1 ⊗ Ip)B1:p(λi)

0(q−p)×1






(162)

where Bj,1:p(.) is a p × 1 vector containing the first p rows of Bj(.) and

B1:p(.) = [B1,1:p(.)
′

, B2,1:p(.)
′

, . . . , Bp+1,1:p(.)
′

]
′

. It also follows using similar arguments that

Diβ̄0 = ΛCBmat(λi)N2β̄0

= (β̄
′

0N
′

2 ⊗ ΛC)B(λi)

d
= (β̄

′

0N
′

2 ⊗ Iq)









































B1,1:p(λi)

0(q−p)×1

B2,1:p(λi)

0(q−p)×1

...

Bp+1,1:p(λi)

0(q−p)×1









































=







(β̄
′

0N
′

2 ⊗ Ip)B1:p(λi)

0(q−p)×1






(163)

It follows from (162) and (163) that

b(λi) =







{

(N
′

1 + β̄
′

0N
′

2) ⊗ Ip

}

B1:p(λi)

0(q−p)×1






(164)

=







b1(λi)

0(q−p)×1






, say, (165)

51



Equation (164) proves (161) for the lower q − p elements. For the remining elements, note that

it follows from (164)-(165) that:

• b1(0) = 0p×1;

• For any dates 0 ≤ λ1 < λ2 < . . . , < λn ≤ 1, the changes b1(λ2)−b1(λ1), b1(λ3)−b1(λ2),. . . ,

b1(λn) − b1(λn−1) are independent multivariate Gaussian with

b1(λi) − b1(λi−1) ∼ N
(

0p×1,
(

σ2 + 2γ′β̄0 + β̄
′

0Σβ̄0

)

(λi − λi−1)Ip

)

• For any given realization, b1(λ) is continuous in λ with probability one.

It follows from these three properties that27

b1(λi)
d
= [σ2 + 2γ′β̄0 + β̄

′

0Σβ̄0]
1/2Wi (166)

which completes the proof.

Proof of Theorem 7:

Consider first

F̃T (i; l) =
SSRl(T̂1, ..., T̂l) − infτ∈Λi,η

SSRl+1(T̂1, ..., T̂i−1, τ, T̂i, ..., T̂l)}

σ̂2
i

(167)

for a given i. Defining ST (i, j) to be the minimized sum of squared residuals for the segment

containing observations from i to j, we can write

F̃T (i; l) = sup
τ∈Λi,η

{ST (T̂i−1 + 1, T̂i) − ST (T̂i−1 + 1, τ )− ST (τ + 1, T̂i)}

σ̂2
i

(168)

By similar arguments to (158), it follows that

σ̂2
i

p
→ σ2 + 2γ′β0

i + β0′

i Σβ0
i (169)

Furthermore, from Theorem 2, we have that T̂i = T 0
i + Op(1), and so using (169) it follows that

F̃T (i; l) = sup
τ∈Λ0

i,η

{

ST (T 0
i−1 + 1, T 0

i ) − ST (T 0
i−1 + 1, τ ) − ST (τ + 1, T 0

i )

σ2 + 2γ′β0
i + β0′

i Σβ0
i

}

+ op(1) (170)

where Λ0
i,η = {τ : T 0

i−1 + (T 0
i − T 0

i−1)η ≤ τ ≤ T 0
i − (T 0

i − T 0
i−1)η}.

27See, inter alia, Hamilton (1994)[p.544] for a definition of Brownian motion.
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Therefore, we investigate the limiting behaviour of the expression inside the curly bracket in

(170). Define

GT,i ≡ ST (T 0
i−1 + 1, T 0

i ) − ST (T 0
i−1 + 1, τ )− ST (τ + 1, T 0

i ) (171)

Let PWi−1,i
denote the projection matrix onto the column space of [x̂T0

i−1
+1, . . . , x̂T0

i
]
′

and Ũi−1,i

denote [ũT0
i−1

+1, . . . , ũT0
i
]
′

; let PWi−1,τ
denote the projection matrix onto the column space of

[x̂T0
i−1

+1, . . . , x̂τ ]
′

and Ũi−1,τ = [ũT0
i−1

+1, . . . , ũτ ]
′

; PWτ,i
denote the projection matrix onto the

column space of [x̂τ+1, . . . , x̂T0
i
]
′

and Ũτ,i = [ũτ+1, . . . , ũT0
i
]
′

. Using these definitions, (171) can

be rewritten as

GT,i = ‖(I − PWi−1,i
)Ũi−1,i‖

2 − ‖(I − PWi−1,τ
)Ũi−1,τ‖

2 − ‖(I − PWτ,i
)Ũτ,i‖

2

= Ũ ′
i−1,i(I − PWi−1,i

)Ũi−1,i − Ũ ′
i−1,τ (I − PWi−1,τ

)Ũi−1,τ − Ũ ′
τ,i(I − PWτ,i

)Ũτ,i

= Ũ ′
i−1,iŨi−1,i − Ũ ′

i−1,iPWi−1,i
Ũi−1,i − Ũ ′

i−1,τ Ũi−1,τ + Ũ ′
i−1,τPWi−1,τ

Ũi−1,τ

−Ũ ′
τ,iŨτ,i + Ũ ′

τ,iPWτ,i
Ũτ,i

= −Ũ ′
i−1,iPWi−1,i

Ũi−1,i + Ũ ′
i−1,τ PWi−1,τ

Ũi−1,τ + Ũ ′
τ,iPWτ,i

Ũτ,i

= −S′
i−1,iH

−1
i−1,iSi−1,i + S′

i−1,τH−1
i−1,τSi−1,τ + (Si−1,i − Si−1,τ )′

× (Hi−1,i − Hi−1,τ)
−1(Si−1,i − Si−1,τ ) (172)

where Si−1,τ = W ′
i−1,τ Ũi−1,τ , Si−1,i = W ′

i−1,iŨi−1,i, Hi−1,τ = W ′
i−1,τWi−1,τ , and Hi−1,i =

W ′
i−1,iWi−1,i. The limiting behavior of GT,i is deduced from the limitingbehavior of Si−1,i, Si−1,τ , Hi−1,τ

and Hi−1,i. To this end, let ∆T 0
i = T 0

i − T 0
i−1 and note that under our assumptions we have

(∆T 0
i )−1/2

T0
i−1+∆T0

i µ
∑

t=T0
i−1

+1

ztut ⇒ (N
′

1 ⊗ Q
1/2
ZZ)B(i)(µ) (173)

= Q
1/2
ZZG̃∗(i)(µ), say (174)

where B(i)(µ) = B(λ0
i−1 + µ) − B(λ0

i−1) and B(.) is defined in (131); and

(∆T 0
i )−1/2

T0
i−1+∆T0

i µ
∑

t=T0
i−1

+1

ztv
′
t ⇒ Q

1/2
ZZBmat(i)(µ)N2 (175)

= Q
1/2
ZZG∗(i)(µ) (176)

where Bmat(i)(µ) = Bmat(λ0
i−1 + µ) − Bmat(λ0

i−1) and Bmat(.) is defined in (135).
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First consider (∆T 0
i )−1/2Si−1,τ . Letting

∑T0
i−1+∆T0

i µ

t=T0
i−1

+1
≡
∑

1, we have

(∆T 0
i )−1/2Si−1,τ = (∆T 0

i )−1/2W ′
i−1,τ Ũi−1,τ

= (∆T 0
i )−1/2

∑

1

x̂tũt (177)

= (∆T 0
i )−1/2[∆0

′
∑

1

ztut + V ′Z(Z′Z)−1
∑

1

ztut

+ ∆0
′
∑

1

ztvt
′β0

i + V ′Z(Z′Z)−1
∑

1

ztvt
′β0

i

− ∆0
′
∑

1

ztz
′
t(Z

′Z)−1Z′V β0
i − V ′Z(Z′Z)−1

∑

1

ztz
′
t

× (Z′Z)−1Z′V β0
i ]

= ∆0
′(∆T 0

i )−1/2
∑

1

ztut + V ′Z(Z′Z)−1(∆T 0
i )−1/2

∑

1

ztut

+ ∆0
′(∆T 0

i )−1/2
∑

1

ztvt
′β0

i + V ′Z(Z′Z)−1(∆T 0
i )−1/2

×
∑

1

ztvt
′β0

i − ∆0
′
∑

1

ztz
′
t(Z

′Z)−1(∆T 0
i )−1/2Z′V β0

i

− (∆T 0
i )−1/2V ′Z(Z′Z)−1

∑

1

ztz
′
t(Z

′Z)−1Z′V β0
i (178)

Using Assumptions 3 and 6, (174) and (176), it follows that

(∆T 0
i )−1/2Si−1,τ = ∆0

′(∆T 0
i )−1/2

∑

1

ztut + ∆0
′(∆T 0

i )−1/2
∑

1

ztvt
′β0

i

− ∆′
0

∑

1

ztz
′
t(Z

′Z)−1(∆T 0
i )−1/2Z′V β0

i + op(1)

⇒ ∆′
0Q

1/2
ZZG̃∗(i)(µ) + ∆′

0Q
1/2
ZZG∗(i)(µ)β0

i − ∆′
0(λ

0
i+1 − λ0

i )
1/2

× µQ
1/2
ZZ

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i

= ∆′
0Q

1/2
ZZG̃∗(i)(µ) + ∆′

0Q
1/2
ZZG∗(i)(µ)β0

i − µ(λ0
i+1 − λ0

i )
1/2∆′

0Q
1/2
ZZ

×

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i

(179)

Now, consider (∆T 0
i )−1Hi−1,τ . Using Assumption 6 and the consistency of ∆̂T , it follows that

(∆T 0
i )−1Hi−1,τ = (∆T 0

i )−1W ′
i−1,τWi−1,τ

= (∆T 0
i )−1

∑

1

x̂tx̂
′
t

= µ∆̂′
T (∆T 0

i µ)−1
∑

1

ztz
′
t∆̂T

⇒ µ∆′
0QZZ∆0 (180)
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It follows from (179) and (180) that28

S′
i−1,iH

−1
i−1,iSi−1,i ⇒ (∆′

0Q
1/2
ZZG̃∗(i)(1) + ∆′

0Q
1/2
ZZG∗(i)(1)β0

i − (λ0
i+1 − λ0

i )
1/2

× ∆′
0Q

1/2
ZZ

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i )′(∆′
0QZZ∆0)

−1

× (∆′
0Q

1/2
ZZG̃∗(i)(1) + ∆′

0Q
1/2
ZZG∗(i)(1)β0

i − (λ0
i+1 − λ0

i )
1/2

× ∆′
0Q

1/2
ZZ

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i )

= (∆′
0Q

1/2
ZZ [G̃∗(i)(1) + G∗(i)(1)β0

i − (λ0
i+1 − λ0

i )
1/2

×

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i ])′(∆′
0QZZ∆0)

−1(∆′
0Q

1/2
ZZ [G̃∗(i)(1)

+ G∗(i)(1)β0
i − (λ0

i+1 − λ0
i )

1/2
l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i ])

= (ΛCG̃∗(i)(1) + ΛC[G∗(i)(1) − (λ0
i+1 − λ0

i )
1/2

×

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)]β0

i )′(ΛCG̃∗(i)(1) + ΛC[G∗(i)(1)

− (λ0
i+1 − λ0

i )
1/2

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)]β0

i )

(181)

Now, define Dµ = ΛCG∗(i)(µ), D̃µ = ΛCG̃∗(i)(µ), D1 = ΛCG∗(i)(1), D̃1 = ΛCG̃∗(i)(1) and

Di = (λ0
i+1 − λ0

i )
1/2ΛC

∑l+1
j=1(λj − λj−1)

1/2G∗(j)(1), we have

S′
i−1,iH

−1
i−1,iSi−1,i ⇒ (D̃1 + [D1 − Di]β

0
i )′(D̃1 + [D1 − Di]β

0
i ) (182)

Similarly, using the results in (179) and (180) we have

S′
i−1,τH−1

i−1,τSi−1,τ ⇒ µ−1(D̃µ + [Dµ − µDi]β
0
i )′(D̃µ + [Dµ − µDi]β

0
i ) (183)

28Note that we use the spectral decomposition of (∆0
′Q

1/2
ZZ)′(∆0

′QZZ∆0)−1(∆0
′Q

1/2
ZZ) as in the proof of

Theorem 6.
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Finally, using the results in (179) and (180), we have

(Si−1,i − Si−1,τ )′(Hi−1,i − Hi−1,τ)
−1(Si−1,i − Si−1,τ )

⇒ [∆′
0Q

1/2
ZZ(G̃∗(i)(1) − G̃∗(i)(µ)) + ∆′

0Q
1/2
ZZ(G∗(i)(1) − G∗(i)(µ))β0

i − ∆′
0Q

1/2
ZZ

× (1 − µ)(λ0
i+1 − λ0

i )
1/2

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i ]′(∆′
0QZZ∆0(1 − µ))−1

× [∆′
0Q

1/2
ZZ(G̃∗(i)(1) − G̃∗(i)(µ)) + ∆′

0Q
1/2
ZZ(G∗(i)(1) − G∗(i)(µ))β0

i − ∆′
0Q

1/2
ZZ

× (1 − µ)(λ0
i+1 − λ0

i )
1/2

l+1
∑

j=1

(λj − λj−1)
1/2G∗(j)(1)β0

i ]

= (1 − µ)−1[(D̃1 − D̃µ) + (D1 − Dµ)β0
i − (1 − µ)Diβ

0
i ]′[(D̃1 − D̃µ) + (D1 − Dµ)β0

i

− (1 − µ)Diβ
0
i ] (184)

Thus, combining results in (182), (183) and (184), it follows that

GT,i ⇒ −(D̃1 + [D1 − Di]β
0
i )′(D̃1 + [D1 − Di]β

0
i ) + µ−1(D̃µ + [Dµ − µDi]β

0
i )′

× (D̃µ + [Dµ − µDi]β
0
i ) + (1 − µ)−1[(D̃1 − D̃µ) + (D1 − Dµ)β0

i

− (1 − µ)Diβ
0
i ]′[(D̃1 − D̃µ) + (D1 − Dµ)β0

i − (1 − µ)Diβ
0
i ]

= −(D̃1 + [D1 − Di]β
0
i )′(D̃1 + [D1 − Di]β

0
i ) + µ−1(D̃µ + [Dµ − µDi]β

0
i )′

× (D̃µ + [Dµ − µDi]β
0
i ) + (1 − µ)−1[(D̃1 − D̃µ) + (D1 − Dµ

− (1 − µ)Di)β
0
i ]′[(D̃1 − D̃µ) + (D1 − Dµ − (1 − µ)Di)β

0
i ] (185)

After some tedious algebra, it can be shown that

GT,i ⇒
1

µ(1 − µ)
‖b(µ) − µb(1)‖2 (186)

where b(µ) = D̃µ + Dµβ0
i and b(1) = D̃1 + D1β

0
i . By similar arguments to the proof of Theorem

629, it can be shown that

b(µ)
d
= [σ2 + 2γ′β0

i + β0′

i Σβ0
i ]1/2







W (µ)

0(q−p)×1






(187)

It follows from (170), (171), (186) and (187) that

F̃T (i; l) =⇒ sup
η≤µ<1−η

‖W (µ) − µW (1)‖2

µ(1 − µ)
(188)

Therefore, the limiting distribution of FT (l + 1|l) is that of the maximum of l + 1 independent

random variables of the form in (188) which is the desired result.

29See (161) and subsequent argument.
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Table 1: Finite sample behavior of break fraction estimator

one break model with (β0
1 , β0

2) = ( [1, 0.1]′, [−1,−0.1]′ )

Deviation from the True Break Fraction

q T
1 % 2 % 3 % 5 % 10 %

60 .66 .89 .89 .98 .99

120 .88 .95 .97 .99 1.00

2
240 .96 .99 1.00 1.00 1.00

480 .99 1.00 1.00 1.00 1.00

60 .67 .87 .87 .97 .99

120 .89 .96 .98 1.00 1.00

4
240 .93 .98 1.00 1.00 1.00

480 .99 1.00 1.00 1.00 1.00

60 .66 .85 .85 .95 .99

120 .87 .95 .97 1.00 1.00

8
240 .95 .99 1.00 1.00 1.00

480 .99 1.00 1.00 1.00 1.00

Notes: The column headed 100a% gives the proportion of the simulations in which |λ̂1−λ0
1| ≤ a; q

is the number of instruments; T is the sample size.

59



Table 2: Relative rejection frequencies of F-statistics

one break model: (β0
1 , β0

2) = ( [1, 0.1]′, [−1,−0.1]′ )

supF(k) supF(l+1:l) UDmax

q T
1 2 2:1 3:2

60 1.00 1.00 .07 .01 1.00

120 1.00 1.00 .06 0 1.00

2
240 1.00 1.00 .06 0 1.00

480 1.00 1.00 .06 0 1.00

60 1.00 1.00 .08 .02 1.00

120 1.00 1.00 .08 0 1.00

4
240 1.00 1.00 .07 0 1.00

480 1.00 1.00 .05 0 1.00

60 1.00 1.00 .05 .01 1.00

120 1.00 1.00 .05 0 1.00

8
240 1.00 1.00 .05 .01 1.00

480 1.00 1.00 .06 0 1.00

Notes: supF(k) denotes the statistic Sup − FT (k; 1) and the second tier column heading under

it denotes k; F(l+1:l) denotes the statistic FT (l + 1|l) and the second tier column beneath it

denotes l + 1 : l; UDmax denotes the statistic UDmaxFT (5, 1); q is the number of instruments;

T is the sample size.
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Table 3: Empirical distribution of the estimated number of breaks

one break model: (β0
1 , β0

2) = ( [1, 0.1]′, [−1,−0.1]′ )

supF(1) UDmax

q T
0 1 2 3,4,5 0 1 2 3,4,5

60 0 .96 .04 0 0 .96 .04 0

120 0 .97 .03 0 0 .97 .03 0

2
240 0 .97 .03 0 0 .97 .03 0

480 0 .96 .04 0 0 .96 .04 0

60 0 .95 .05 0 0 .95 .05 0

120 0 .96 .04 0 0 .96 .04 0

4
240 0 .97 .03 0 0 .97 .03 0

480 0 .97 .03 0 0 .97 .03 0

60 0 .95 .05 0 0 .95 .05 0

120 0 .97 .03 0 0 .97 .03 0

8
240 0 .97 .03 0 0 .97 .03 0

480 0 .98 .02 0 0 .98 .02 0

Notes: The figures in the block headed supF(1) give the empirical distribution of the estimated

number of breaks, k̂T , obtained via the sequential strategy using Sup−FT (1; 1) on the first step

with the maximum number of breaks set equal to five. The figures in the block UDmax give

the empirical distribution of the estimated number of breaks, k̂T , obtained via the sequential

strategy using UDmaxFT (5, 1) on the first step with the maximum number of breaks set equal

to five.
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Table 4: Empirical coverage of parameter confidence intervals

one break model with (β0
1 , β0

2) = ( [1, 0.1]′, [−1,−0.1]′ )

Confidence Intervals

intercept slope
q T

99% 95 % 90 % 99% 95 % 90 %

60 1st regime .99 .93 .88 .98 .92 .88

2nd regime .98 .93 .88 .98 .93 .88

120 1st regime .99 .95 .90 .99 .96 .90

2nd regime .99 .95 .90 .99 .95 .90

2
240 1st regime .99 .93 .88 .99 .94 .88

2nd regime .99 .94 .89 .99 .93 .88

480 1st regime .99 .94 .89 .99 .94 .88

2nd regime .99 .95 .89 .99 .95 .90

60 1st regime .98 .94 .88 .99 .93 .88

2nd regime .98 .93 .88 .99 .93 .88

120 1st regime .99 .96 .90 .99 .95 .89

2nd regime .99 .94 .89 .99 .94 .89

4
240 1st regime .99 .94 .89 .99 .95 .90

2nd regime .98 .94 .89 .99 .95 .91

480 1st regime .98 .94 .89 .99 .96 .92

2nd regime .99 .95 .88 .99 .95 .89

60 1st regime .98 .93 .87 .98 .92 .85

2nd regime .98 .92 .86 .98 .92 .84

120 1st regime .99 .94 .90 .99 .94 .88

2nd regime .99 .94 .89 .98 .93 .88

8
240 1st regime .99 .95 .91 .99 .95 .89

2nd regime .99 .96 .91 .98 .93 .88

480 1st regime .99 .95 .90 .99 .94 .88

2nd regime .99 .95 .89 .99 .95 .88

Notes: The column headed 100a% gives the percentage of times the confidence intervals contain

the corresponding true parameter values.
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Table 5: Finite sample behavior of break fraction estimator

two break model: (β0
1 , β0

2 , β0
3) = ( [1, 0.1]′, [−1, −0.1]′, [1, 0.1]′ )

i-th Deviation from the True Break Fraction

q T
Break 1 % 2 % 3 % 5 % 10 %

1st .65 .86 .86 .96 .99

60
2nd .66 .86 .86 .96 .98

1st .89 .94 .98 1.00 1.00

120
2nd .90 .96 .98 1.00 1.00

2
1st .96 .99 1.00 1.00 1.00

240
2nd .96 .99 1.00 1.00 1.00

1st .99 1.00 1.00 1.00 1.00

480
2nd .99 1.00 1.00 1.00 1.00

1st .65 .84 .84 .94 .99

60
2nd .65 .85 .85 .96 .99

1st .86 .94 .97 1.00 1.00

120
2nd .88 .95 .97 1.00 1.00

4
1st .95 .98 1.00 1.00 1.00

240
2nd .95 .99 1.00 1.00 1.00

1st .99 1.00 1.00 1.00 1.00

480
2nd .98 1.00 1.00 1.00 1.00

1st .62 .86 .86 .95 .99

60
2nd .64 .82 .82 .95 .98

1st .86 .94 .98 1.00 1.00

120
2nd .87 .93 .96 .99 1.00

8
1st .94 .99 1.00 1.00 1.00

240
2nd .94 .99 1.00 1.00 1.00

1st .99 1.00 1.00 1.00 1.00

480
2nd .98 1.00 1.00 1.00 1.00

Notes: See Table 1 for definitions.
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Table 6: Relative rejection frequencies of F-statistics

two break model: (β0
1 , β0

2 , β0
3) = ( [1, 0.1]′, [−1, −0.1]′, [1, 0.1]′ )

supF(k) supF(l+1:l) UDmax

q T
1 2 2:1 3:2

60 .74 1.00 1.00 .03 1.00

120 1.00 1.00 1.00 .03 1.00

2
240 1.00 1.00 1.00 .02 1.00

480 1.00 1.00 1.00 .02 1.00

60 .71 1.00 1.00 .04 1.00

120 1.00 1.00 1.00 .02 1.00

4
240 1.00 1.00 1.00 .02 1.00

480 1.00 1.00 1.00 .01 1.00

60 .70 1.00 1.00 .05 1.00

120 1.00 1.00 1.00 .02 1.00

8
240 1.00 1.00 1.00 .02 1.00

480 1.00 1.00 1.00 .02 1.00

Notes: See Table 2 for definitions.
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Table 7: Empirical distribution of the estimated number of breaks

two break model: (β0
1 , β0

2 , β0
3) = ( [1, 0.1]′, [−1, −0.1]′, [1, 0.1]′ )

supF(1) UDmax

q T
0 1 2 3 0 1 2 3

60 .26 0 .71 .03 0 0 .94 .06

120 0 0 .96 .04 0 0 .96 .04

2
240 0 0 .98 .02 0 0 .98 .02

480 0 0 .98 .02 0 0 .98 .02

60 .29 0 .67 .04 0 0 .94 .06

120 0 0 .96 .04 0 0 .96 .04

4
240 0 0 .98 .02 0 0 .98 .02

480 0 0 .98 .02 0 0 .98 .02

60 .30 0 .65 .05 0 0 .94 .06

120 0 0 .96 .04 0 0 .96 .04

8
240 0 0 .98 .02 0 0 .98 .02

480 0 0 .98 .02 0 0 .98 .02

Notes: See Table 3 for definitions.
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Table 8: Empirical coverage of parameter confidence intervals

two break model: (β0
1 , β0

2 , β0
3) = ( [1, 0.1]′, [−1, −0.1]′, [1, 0.1]′ )

Confidence Intervals

intercept slope
q T

99% 95 % 90 % 99% 95 % 90 %

60 1st regime .97 .92 .86 .98 .91 .85

2nd regime .98 .92 .86 .98 .93 .86

3rd regime .97 .92 .85 .98 .93 .86

120 1st regime .98 .92 .87 .98 .93 .89

2nd regime .98 .93 .87 .99 .95 .90

3rd regime .98 .94 .89 .99 .94 .89

2
240 1st regime .99 .96 .91 .99 .95 .91

2nd regime .99 .93 .88 .99 .95 .90

3rd regime .99 .94 .90 .98 .94 .89

480 1st regime .99 .96 .90 1.00 .96 .91

2nd regime .99 .94 .89 .99 .95 .90

3rd regime .99 .93 .88 .99 .95 .91

60 1st regime .98 .93 .86 .98 .92 .87

2nd regime .97 .91 .84 .98 .92 .86

3rd regime .98 .92 .86 .98 .92 .86

120 1st regime .99 .92 .87 .98 .94 .88

2nd regime .98 .93 .86 .99 .95 .88

3rd regime .99 .94 .89 .99 .95 .88

4
240 1st regime .99 .94 .90 .99 .94 .88

2nd regime .99 .93 .88 .99 .95 .88

3rd regime .98 .93 .90 .98 .94 .87

480 1st regime .99 .94 .89 .99 .95 .90

2nd regime .99 .94 .88 .98 .94 .89

3rd regime .99 .95 .89 .99 .95 .91

Notes: See Table 4 for definitions.
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Table 9: Empirical coverage of parameter confidence intervals ctd.

two break model: (β0
1 , β0

2 , β0
3) = ( [1, 0.1]′, [−1, −0.1]′, [1, 0.1]′ )

Confidence Intervals

intercept slope
q T

99% 95 % 90 % 99% 95 % 90 %

60 1st regime .98 .93 .86 .98 .92 .85

2nd regime .97 .91 .85 .96 .90 .84

3rd regime .98 .92 .86 .98 .92 .85

120 1st regime .99 .95 .88 .99 .94 .88

2nd regime .98 .92 .87 .98 .92 .87

3rd regime .99 .94 .89 .99 .94 .88

8
240 1st regime .99 .96 .90 .99 .94 .88

2nd regime .99 .93 .89 .99 .93 .88

3rd regime .98 .95 .90 .99 .95 .89

480 1st regime .99 .95 .90 .99 .94 .88

2nd regime .99 .95 .90 .99 .95 .90

3rd regime .99 .95 .91 .99 .94 .89

Notes: See Table 4 for definitions.
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Table 10: Relative rejection frequencies of F-statistics

no break model: β0=(1,1)

supF(k) supF(l+1:l) UDmax

q T
1 2 2:1 3:2

60 .05 .07 .03 .01 .06

120 .05 .06 .03 0 .05

2
240 .05 .05 .02 0 .05

480 .05 .05 .02 0 .05

60 .06 .07 .04 .01 .07

120 .05 .04 .02 0 .05

4
240 .05 .04 .02 0 .04

480 .05 .06 .03 0 .06

60 .06 .06 .03 0 .06

120 .04 .05 .02 0 .04

8
240 .05 .05 .02 0 .04

480 .05 .04 .02 0 .05

Notes: See Table 2 for definitions.
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Table 11: Empirical distribution of the estimated number of breaks

no break model: β0=(1,1)

supF(1) UDmax

q T
0 1 2 3,4,5 0 1 2 3,4,5

60 .95 .5 0 0 .94 .06 0 0

120 .95 .05 0 0 .95 .05 0 0

2
240 .95 .05 0 0 .95 .05 0 0

480 .95 .05 0 0 .95 .05 0 0

60 .94 .06 0 0 .93 .06 .01 0

120 .95 .05 0 0 .95 .05 0 0

4
240 .95 .05 0 0 .96 .04 0 0

480 .95 .05 0 0 .94 .05 .01 0

60 .94 .06 0 0 .94 .06 0 0

120 .96 .04 0 0 .96 .03 .01 0

8
240 .95 .05 0 0 .96 .04 0 0

480 .95 .05 0 0 .96 .04 0 0

Notes: See Table 3 for definitions.
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Table 12: Application to NKPC - stability statistics for the reduced forms

Dep.var k sup-F F(k+1:k) BIC

0 -0.615

1 43.6 41.7 -0.623

2 67.0 10.4 -0.680

infe
t+1|t 3 176.5 34.3 -0.649

4 80.5 46.8 -0.452

5 70.2 -0.369

0 -0.663

1 50.0 30.53 -0.552

2 40.1 23.1 -0.497

ogt
3 40. 11.3 -0.276

4 34.91 11.3 -0.046

5 31.9 0.255

Notes: Dep. Var. denotes the dependent variable in the reduced form; sup-F denotes the statistic

for testing H0 : m = 0 vs. H1 : m = k; F(k+1:k) is the statistic for testing H0 : m = k vs.

H1 : m = k + 1; BIC is the BIC criterion. The percentiles for the statistics are for k = 1, 2, . . .

respectively: (i) sup-F: (10%, 1%) significance level = (25.29, 32.8), (23.33, 28.24), (21.89,

25.63), (20.71, 23.83), (19.63,22.32); (ii) F(k+1:k): (10%, 1%) significance level =(25.29, 32.8),

(27.59,34.81), (28.75, 36.32), (29.71,36.65).
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Table 13: Application to NKPC - stability statistics for structural equation

k sup-F F(k+1:k) BIC

0 0.021

1 41.3 9.55 0.017

2 25.0 7.83 0.240

3 21.4 12.8 0.427

4 17.4 0.664

5 13.4 0.942

Notes: Sup-F denotes the statistic for testing H0 : m = 0 vs. H1 : m = k; F(k+1:k) is the

statistic for testing H0 : m = k vs. H1 : m = k + 1; BIC is the BIC criterion. The percentiles

for the statistics are for k = 1, 2, . . . respectively: (i) sup-F: (10%, 1%) significance level = (19.7,

26.71), (17.67, 21.87), (16.04, 19.42), (14.55, 17.44), (12.59,15.02); (ii) F(k+1:k): (10%, 1%)

significance level =(19.7, 26.71), (21.79, 28.36), (22.87, 29.30).
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