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Abstract. Substantial evidence has accumulated in recent empirical works on the limited ability of the 

Nash equilibrium to rationalize observed behavior in many classes of games played by experimental 

subjects. This realization has led to several attempts aimed at finding tractable equilibrium concepts 

which perform better empirically, often by introducing a reference point to which players compare the 

available payoff allocations, as in impulse balance equilibrium and in the inequity aversion model. The 

first part of this paper is concerned with reviewing the recent reference point literature and advancing a 

new, empirically sound, hybrid concept. In the second part, evolutionary game theoretic models are 

employed to investigate the role played by fairness motives as well as spatial structure in explaining the 

evolution of cooperative behavior. 
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Part I.  Incorporating fairness motives into the Impulse Balance Equilibrium  and  

Quantal Response Equilibrium concepts: an application to experimental 2X2 games 

 

From efficiency to equality: the “distributive” reference point  

 

In recent years experimental economists have accumulated considerable evidence that steadily 

contradicts the self-interest hypothesis embedded in equilibrium concepts traditionally studied in 

game theory, such as Nash’s. The evidence suggests that restricting the focus of analysis to the 

strategic interactions among perfectly rational players (exhibiting equilibrium behavior) can be 

limiting, and that 

considerations about fairness and reciprocity should be accounted for.  

In fact, while models based on the assumption that people are exclusively motivated by their 

material self-interest perform well for competitive markets with standardized goods, misleading 

predictions arise when applied to non-competitive environments, for example those characterized 

by a small number of players (cf. FEHR & SCHMIDT, 2000) or other frictions. For example 

KAHNEMAN, KNETSCH & THALER (1986) find empirical results indicating that customers are 

extremely sensitive to the fairness of firms’ short-run pricing decisions, which might explain the 

fact that some firms do not fully exploit their monopoly power. 

 

One prolific strand of literature on equity issues focuses on relative measures, in the sense that 

subjects are concerned not only with the absolute amount of money they receive but also about their 

relative standing compared to others. BOLTON (1991), formalized the relative income hypothesis 

in the context of an experimental bargaining game between two players. 

KIRCHSTEIGER (1994) followed a similar approach by postulating envious behavior. Both 

specify the utility function in such a way that agent i suffers if she gets less than player j, but she’s 

indifferent with respect to j’s payoff if she is better off herself. The downside of the latter 

specifications is that, while consistent with the behavior in bargaining games, they fall short of 

explaining observed behavior such as voluntary contributions in public good games.  

 

A more general approach has been followed by FEHR & SCHMIDT (1999), who instead of 

assuming that utility is either monotonically increasing or decreasing in the well being of other 

player, model fairness as self-centered inequality aversion. Based on this interpretation, subjects 

resist inequitable outcomes, that is they are willing to give up some payoff in order to move in the 

direction of more equitable outcomes. More specifically, a player is altruistic towards other players 
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if their material payoffs are below an equitable benchmark, but feels envy when the material 

payoffs of the other players exceed this level. To capture this idea, the authors consider a utility 

function which is linear in both inequality aversion and in the payoffs. Formally, for the two-player 

case ሺ݅  

 ൛࢞
        

Where  are player 1 and player 2’s payoffs respectively and ߚ  are player i’s inequality 

parameters satisfying the following conditions: ߚ  and  0 . 

The second term in the equation is the utility loss from disadvantageous inequality, while the third 

term is the utility loss from advantageous inequality. Due to the above restrictions imposed on the 

parameters, for a given payoff ݔ , player i’s utility function is maximized at ݔ , and the utility 

loss from disadvantageous inequality (ݔ ) is larger than the utility loss if player i is better off 

than player j (ݔ ). 

 

Fehr and Schmidt show that the interaction of the distribution of types with the strategic 

environment explains why in some situations very unequal outcomes are obtained while in other 

situations very egalitarian outcomes prevail. In referring to the social aspects introduced by this 

utility function, one could think of inequality aversion in terms of an interactive framing effect 

(reference point dependence).  

 

This payoff modification has proved successful in many applications, mainly in combination with 

the Nash equilibrium concept, and will therefore be employed in this study, although in conjunction 

with a different equilibrium type, as will be explained in the next section. 

 

The “psychological” reference point 

 

The predictive weakness of the Nash equilibrium is effectively pointed out by EREV & ROTH 

(1998), who study the robustness and predictive power of learning  models in experiments 

involving at least 100 periods of games with a unique equilibrium in mixed strategies. They 

conclude that “…in some of the games the [Nash] equilibrium prediction does very badly” and that 

a simple learning model can be used to predict, as well as explain, observed behavior on a broad 

range of games, without fitting parameters to each game. A similar approach, based ex-post and ex-
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ante comparisons of the mean square deviations, will also be employed in this paper to assess to 

what extent the proposed hybrid model improves the fit of several games. 

 

Based on the observation of the shortcomings of mixed Nash equilibrium in rationalizing observed 

behavior in many classes of games played by experimental subjects, an alternative tractable 

equilibrium has been suggested by SELTEN & CHMURA (forthcoming). IBE is based on learning 

direction theory (SELTEN & BUCHTA, 1999), which is applicable to the repeated choice of the 

same parameter in learning situations where the decision maker receives feedback not only about 

the payoff for the choice taken, but also for the payoffs connected to alternative actions. If a higher 

parameter would have brought a higher payoff, the player receives an upward impulse, while if a 

lower parameter would have yielded a higher payoff, a downward impulse is received. The decision 

maker is assumed to have a tendency to move in the direction of the impulse. IBE, a stationary 

concept which is based on transformed payoff matrices as explained in the next section, applies this 

mechanism to 2x2 games. The probability of choosing one of two strategies (for example Up) is 

treated as the parameter, which can be adjusted upward or downward. It is assumed that the second 

lowest payoff in the matrix is an aspiration level determining what is perceived as profit or loss. In 

impulse balance equilibrium expected upward and downward impulses are equal for each of both 

players simultaneously. 

 

The main result of the paper by Selten and Chmura is that, for the games they consider, impulse 

balance theory has a greater predictive success than the other three stationary concepts they 

compare it to: Nash equilibrium, sample-7 equilibrium and quantal response equilibrium. While 

having the desirable feature of being a parameter-free concept as the Nash equilibrium, and of 

outperforming the latter, the aspiration level framework (to be described) expose the theory to a 

critique regarding the use of transformed payoffs in place of the original ones for the computation 

of the equilibrium.  

 

The aspiration level can be thought of as a psychological reference point, as opposed to the social 

one considered when modeling inequality aversion: the idea behind the present work is that of 

utilizing IBE but replacing the aspiration level with inequity aversion (social) parameters. The 

motivation follows from the realization that in non-constant sum games (considered here) subjects’ 

behavior also reflects considerations of equity. In fact, while finite repetition does little to enlarge 

the scope for cooperation or retaliation, non-constant sum games offer some cooperation 

opportunities, and it seems plausible that fairness motives will play an important role in repeated 
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play of this class of games. A suitable consequence of replacing the aspiration level framework with 

the inequality aversion one is that the original payoffs can be utilized (and should, in order to avoid 

mixing social and psychological reference points). 

 

Experimental setup: IBE 

 

The table in Appendix A shows the 12 games, 6 constant sum games and 6 non-constant sum games 

on which Selten and Chmura have run experiments, which have taken place with 12 independent 

subject groups for each constant sum game and with 6 independent subject groups for each non-

constant sum game. Each independent subject group consists of 4 players 1 and 4 players 2 

interacting anonymously in fixed roles over 200 periods with random matching. In summary: 

 

Players: I={1,2} 

Action space: {U,D}x{L,R} 

Probabilities in mixed strategy: {ܲ ,1-ܲ } and {ܳ ,1-ܳ } 

Sample size: (54 sessions) x (16 subjects) = 864 

Time periods: T=200   

 

 In Appendix A, a non-constant sum game next to a constant sum game has the same best reply 

structure (characterized by the Nash equilibrium choice probabilities ܲ ) and is derived from the 

paired constant sum game by adding the same constant to player 1’s payoff in the column for R and 

2’s payoff in the row for U. Games identified by a smaller number have more extreme parameter 

values than games identifies by a higher number; for example, Game 1 and its paired non-constant 

sum Game 7 are near the border of the parameter space (ܲ 0.1   and ܳ 0.9), while Game 6 and 

its paired non-constant sum Game 12 are near the middle of the parameter space (ܲ  and 

=0.6).  

 

As pointed out, IBE involves a transition from the original game to the transformed game, in which 

losses with respect to the natural aspiration level get twice the weight as gains above this level. The 

impulse balance equilibrium depends on the best reply structure of this modified game, which is 

generally different from that of the original game, resulting therefore in different predictions for the 

games in a pair. 

The present paper utilizes the data on the experiments involving 6 independent subject groups for 

each of the 6 non-constant sum games (games 7 through 12 in Appendix A). As anticipated above, 



this class of games is particularly conceptually suitable to the application of the inequality aversion 

framework. Further, in completely mixed 2x2 games, mixed equilibrium is the unambiguous game 

theoretic prediction when they are played as non-cooperative one-shot games. Since non-constant 

sum games provide incentives for cooperation, such attempts to cooperation may have influenced 

the observed relative frequencies in Selten’s experiment. Along these lines, it is particularly 

relevant to see whether inequality aversion payoff modifications can help improve the fit with 

respect to these frequencies.       

 

The application of inequality aversion parameters to Impulse balance equilibrium provides an 

opportunity for testing Fehr & Schmidt’s fairness model in conjunction with the IBE, which  is 

itself a simple yet fascinating concept which has proven to be empirically successful in fitting the 

data in many categories of games and is nevertheless parsimonious due to the straight-forward 

formulation and parameter-free nature. By including a fairness dimension to it, the hope is to supply 

favorable empirical evidence and provide further stimulus to expand the types of games empirically 

tested. 

 

Formally, this involves first modifying the payoff matrices of each game in order to account for the 

inequality parameters ( β ,α ), than creating the impulse matrix based on which the probabilities are 

computed. In order to clarify the difference between the reference point utilized in Selten and 

Chmura (the aspiration level) and that utilized in this paper it is useful to start by summarizing the 

mechanics behind the computation of the IBE.  

 

Let’s consider the normal form game depicted in Figure 1 below, 

 

 

Fig.1: structure of the 2x2 games (arrows point in the direction of best replies) 

 

      L (ܳ )  R (1-ܳ௅) ௅ܽ௅ ௅  ௎ ܽோ ௎ ௎ +  ܿ  ;  ܾ  

↑ 

  ;  ܾ + ݀      

                     ↓ ܽ௅ ஽  ஽ ܽோ ோ ஽  ;  ܾ + ݀    + ܿ   ;  ܾ  

 

 

6  

 

where ܽ௅ , ܽோ , ܾ௎, ܾ஽ ൒ 0 and  ܿ௅ , ܿோ , ݀௎ , ݀஽ ൐ 0  
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ܿோ are player 1’s payoffs in favor of U, e ݀௎ , ݀஽ are player 2’s payoffs in favour of 

L,R  one o , ܾ஽. 

the transforme player i’s payoff unchanged if it is less or 

 x ≤ ݏ௜ => x’= x 

½(x-ݏ௜) 
 after the play, player i could have obtained a higher payoff with the other strategy, she receives an 

ig.2:Impulses in T.G. in the direction of unselected strategy        

 

ܿ௅  and D whil

 respectively. Note that player 1 can secure the higher f ܽ௅ , ܽோ by choosing one of his pure 

strategies, and player 2 can similarly secure the higher one of ܾ௎ Therefore, the authors define 

the natural aspiration levels for the 2 players are given by: ݏ௜ =max(ܽ௅ , ܽோ)   for i=1   and  ݏ௜=max(ܾ௎ , ܾ஽ሻ for i=2 

d game (TG) is constructed by leaving 

equal to ݏ௜ and by reducing the difference of payoffs greater than si by the factor ½. Algebraically, 

calling x the payoffs, 

 

if

if x > ݏ௜ => x’= x-

 

If

impulse in the direction of the other strategy, of the size of the foregone payoff in the TG.  

 

 

F

 

      L (ܳ௅)  R (1-ܳ௅) 

0 ; ݀௎* ܿோ* ; 0 

ܿ௅* ; 0 0 ; ݀஽* 

 

 

he concept of impulse balance equilibrium requires that player 1’s expected impulse from U to D 

௎ܳோܿோ* = ஽ܲܳ௅ܿ௅* ௎ܲܳ௅݀௎ ஽ܳோ݀஽              

 

hich, after some manipulation, can be shown to lead to the following formulae for probabilities: 

T

is equal to the expected impulse from D to U; likewise, pl.2’s expected impulse from L to R must 

equal the impulse from R to L. Formally, 

 ܲ
*=ܲ * 

W



8  

 

௎ܲ=
*/**/*

*/*

ddducrcl

crcl

+
  ;  ܳ = ௅

*

*

*

*
1

1

dd

du

cr

cl
+

  

 

Experimental setup: equity-driven Impulse Balance Equilibrium 

 

Replacing the aspiration level framework with the inequality aversion one doesn’t require the 

computation of the TG based on aspiration level framing, as the original payoffs are now modified 

by including the inequality parameters ( β ,α ). Formally, recalling that: ࣯௜ ൌ ௜ݔ െ ௝ݔ൛ݔ௜݉ܽߙ െ0,݅ݔെ݅ݔݔܽ݉݅ߚെ0,݆ݔ 

௅ܽ௅  ௅   െ ሼܾ௎ݔ௜݉ܽߙ െ ܽ௅ െ ܿ௅ , 0ሽ െ ሼܽ௅ݔ௜݉ܽߚ  ൅ ܿ௅ െ ܾ௎ , 0ሽܾ௎ െ ሼܽ௅ݔ௝݉ܽߙ  ൅    ܿ௅   െ ܾ௎ , 0ሽ െ ሼܾ௎ݔ௝݉ܽߚ െ ܽ௅ െ ܿ௅  , 0 ܽோ െ ሼܾ௎ݔ௜݉ܽߙ ൅ ݀௎ െ ܽோ, 0ሽ െ ൛ܽோݔ௜݉ܽߚ െ ܾ௎ െ ݀௎ , 0ܾ௎ ௎ െ ሼܽோݔ௝݉ܽߙ െ ܾ௎ െ ݀௎, 0ሽ െ ሼܾ௎ݔ௝݉ܽߚ ൅ ݀௎ െ ܽோ, 0ሽ
 

Table 1: structure of the 2x2 games accounting for inequality aversion 

      L (ܳ )       R (1-ܳ௅) 

+  ܿ ;ሽ ൟ ;  

+ ݀        

                      ܽ௅ െ ሼܾ஽ݔ௜݉ܽߙ  ൅  ݀஽   െ ܽ௅, 0ሽ െ ሼെܾ஽ݔ௜݉ܽߚ െ ݀஽ ൅ ܽ௅, 0ሽܾ஽ ൅ ݀஽ െ ൛ܽ௅ݔ௝݉ܽߙ െ ܾ஽ െ ݀஽௅, 0ൟ െ ሼെܾ஽ݔ௝݉ܽߚ െ ݀஽ ൅ ܽ௅, 0ሽ ோ ோ െ ሼܾ஽ݔ௜݉ܽߙ െ ܽோ െ ܿோ  , 0ሽ െ ሼܽோݔ௜݉ܽߚ ൅ ܿோ െ ܾ஽ , 0ܾ஽ െ ሼܽோݔ௝݉ܽߙ ൅ ܿோ   െ ܾ஽ , 0ሽ െ ൛ܾ஽ݔ௝݉ܽߚ െ ܽோ െ ܿோ,   , 0  ;  

 

ܽ + ܿ ሽ; ൟ 
 

Based on these payoffs, the previous section’s computations can be conducted in order to find the 

impulse balance mixed strategy equilibria corresponding to specific values of β  andα . 

 

Two measures of the relative performance of the I.A.-adjusted Impulse Balance concept:   

best fit and predictive power 

 

Results in terms of Best fit 

 

The preceding analysis served as an introduction to the more systemic method utilized in the next 

paragraphs to assess the descriptive and predictive success of the “pure” impulse balance 

equilibrium in comparison to the proposed Inequality Aversion hybrid.  

Following a methodology which has been broadly utilized in the literature to measure the adaptive 

and predictive success of a point in a Euclidean space, the squared distance of observed and 

theoretical values is employed (cf. Erev & Roth, 1998 and Selten & Chmura). More precisely, the 

first part of the analysis consists, for each of the 6 non constant sum games, of a grid search with an 

MSD criterion on the ( β ,α ) parameter space to estimate the best fitting parameters, i.e. those that 

minimize the distance between the model and the data.  

Algebraically, the mean over the 6 games in the best fit row will be given by:  
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The inequality aversion parameters used in the hybrid model must satisfy the constraints ii αβ ≤

and 0 1≤i≤ β . The r evant parameter space under investigation is then given, for each el β ,by values 

α ∈[ β ,0.5]. Graphically the parameter space can be represented as follows are as follows:  

 

and α  β
 

Figure 3: The correspondence between 

 

 

 Table 1, a summary of the results of the explanatory power of the two models is presented for 

he reason of the two-fold comparison is that not only it is meaningful to assess whether the hybrid 

׊ β א ሾ0,0.35ሿ , α א ሾ β , 0.5ሿ  

   

 

In

each non constant sum game, starting from the transformed or the original payoffs, respectively. 

The comparisons are made both within game class in column 5 (e.g. within transformed game i, 

i=7,...,12), and across game class in the last column (e.g. between original game i and transformed 

game i).  

 

T

model can better approximate the observed frequencies than the I.B. concept, but it is especially 

important to answer the question: does the hybrid concept applied to the original payoffs of game i 
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able 2: Ex-post (best fit) descriptive power of hybrid model vs I.B. equilibrium  

outperform the ‘pure’ I.B. applied to the transformed payoffs? In other words, since the inequality 

aversion concept overlaps to a certain extent to that of having impulses in the direction of the 

strategy not chosen, applying the inequality aversion adjustment to payoffs that have already been 

transformed to account for the aspiration level will result in “double counting”. It is therefore more 

relevant to compare the best fit of  hybrid equilibrium on O.G. (see rows highlighted in blue)  to 

that obtained by applying impulse balance equilibrium to T.G.  

 
T

 

 

FREQUENCY 

 [fu; fl] 

N.E. 

[Pu;Ql]   

BEST FIT  I.B.+I.A. 

 [Pu;Ql]  

 ( β ,α ) 

IBE 

[Pu;Ql]   

 (0;0) 

I.B.+I.A 

ê  

IBE? 

O.G.+I.B.+I.A.

ê 

T.G.+IBE? 

TG7 [.141;.564]    (0;0)  634][.104;.634] [.104;. NO 

 

n.a. 

OG7 [.141;.564] [.091;.909]  [.099;.568] (.054;.055) 

  

[.091;.500] YES YES 

TG8 [.250;.586]   (.043;.065) [.258;.561] YES n.a. [.270;.586]

  

OG8 [.250;.586] [.182;.727]  [.257;.585] (.006;.468) 

 

[.224;.435] YES YES 

TG9 [.254;.827]  180;.827] (.07;.10) [.188;.764] YES n.a. [.

 

OG9 [.254;.827] [.273;.909] [.232;.840] (.325;.327)  [.162;.659] YES 

 

YES 

TG10 [.366;.699]  [.355;.759] (.089;.134)  [.304;.724] ES n.a. 

 

Y

OG10 [.366;.699] [.364;.818]  [.348;.717] (.250;.254)  

 

[.263;.616] YES YES 

TG11 [.311;.652]  357;.652] (.012;.018)  [.354;.646] YES n.a. [.

 

OG11 [.311;.652] [.364;.727]  [.344;.644] (.001;.425)  

 

[.316;.552] YES YES 

TG12 [.439;.604]  496;0.575]  (0;0) [.496;.575] NO n.a. [.

  

OG12 [.439;.604] [.455;.636]  [.439;.604] (.022;.393) 

 

[.408;.547] YES YES 

 

spection of Table 1 suggests a strong positive answer to the following two relevant questions In

regarding the ability of the proposed concept to fit the observed frequencies of play: within the 

same class of payoffs (TG or OG), is the descriptive power of the hybrid concept superior to that of 



the IBE? And, perhaps more importantly, is this still true when the two concepts are applied to their 

natural payoffs, namely the original and the transformed respectively? 

The last two columns of Table 1 contain the answers to the two questions, based on a comparison of 

the mean squared deviations of the predicted probabilities from the observed frequencies under the 

two methods.    

 

Results in terms of Predictive power 

 

The next step in evaluating the performance of the inequality aversion-adjusted impulse balance 

equilibrium concept is studying its ex ante predictive power. This is done by partitioning the data 

into subsets, and simulating each experiment using parameters estimated from the other 

experiments. By generating the MSD statistic repeatedly on the data set leaving one data value out 

each time, a mean estimate is found making it possible to evaluate the predictive power of the 

model. In other words, the behavior in each of the 6 non-constant sum games is predicted without 

using that game’s data, but using the data of the other 5 games to estimate the probabilities of 

playing up and down. By this cross-prediction technique (known as jackknifing), one can evaluate 

the stability of the parameter estimates, which shouldn’t be substantially affected by the removal of 

any one game from the sample. Erev & Roth (1998) based their conclusions on the predictive 

success and stability of their learning models by means of this procedure, and it has therefore been 

employed in this work.  

 

Table 2, above, shows summary MSD scores (100*Mean-squared Deviation) organized as follows: 

each of the first 6 columns represents one non-constant sum game, while the last column gives the 

average MSD over all games, which is a summary statistic by which the models can be roughly 

compared. The first three rows present the MSDs of the Nash equilibrium and of the I.B. 

equilibrium predictions (for β =0=α ) on the transformed and original payoffs respectively. The 

remaining three rows display MSDs of the I.A.+I.B. model on the original payoffs: in the fourth 

row, the parameters are separately estimated for each game (12 parameters in total);  in the fifth 

row, the estimated 2 parameters that best fit the data over all 6 games (and over all but Game 7) are 

employed (the same two β ,α  that minimize the average score over all games are used to compute 

the MSDs for each game); in the last row the accuracy of the prediction of the hybrid model is 

showed when behavior in each of the 6 games is predicted based on the 2 parameters that best fit 

the other 5 games (and excluding Game 7).   
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Table 3: MSD scores of the IBE and of the proposed equilibrium concept 

Model  G 7  G 8  G 9  G 10  G 11  G 12  Mean 

Nash equilibrium, O.G. 0 parameters (0;0) All games G8‐12     

6.076 

 

1.225 

 

.354 

 

.708 

 

.422 

 

.064 

 

1.475 

.555 

I.B. equ0 paramilibrium, T.G.           eters  (0;0)All games G8‐12     

.315 

 

.035 

 

.416 

 

.224 

 

.094 

 

.205 

 

.215 

.195 

I.B. equilibrium, O.G.           0 parameters(0;0)  All games G8‐12     

.330 

 

1.174 

 

1.825 

 

.878 

 

.497 

 

.209 

 

.819 

.917 

Hybrid by game, O.G 12 parameters      AlG8‐12                              . l games   

.090 

 

.003 

 

.031 

 

.033 

 

.056 

 

.000 

 

.035 

.025 

Hybrid best fit,   O.G.  2 parameters             All games  (.157,.160)  G8‐12  (.252,.257)  
 

 

.746 

- 

 

 

.178 

.042 

 

 

.428 

.098 

 

 

.152 

.033 

 

 

.140 

.173 

 

 

.030 

.034 

 

 

.279 

.076 

Hybrid predict,  O.G. 2 parameters         All game                           Without G 7 s        

2.220 

- 

 

.238 

.044 

 

.585 

.149 

 

.186 

.033 

 

.141 

.189 

 

.031 

.035 

 

.567  

.09 

 

Table 3 summarizes further evidence in favor of the newly developed equity-driven impulse 

balance equilibrium. One can see from the third row that if the parameters of inequality aversion are 

allowed to be fit separately in each game, the improvements in terms of reduction of MSD are 

significant, both with respect to the Nash and impulse balance equilibrium. 

Moreover, even when restricting the number of parameters to 2 (common to all games, cf. row 5 

“best fit”), the mean MSD is still more than five times smaller than Nash’s. If one doesn’t include 

the extremely high MSD reported in both cases for Game 7 (for reasons discussed below), the gap 

actually increases, as the hybrid concept’s MSD becomes more than seven times smaller than 

Nash’s. With respect to the overall MSD mean of the IBE, when considering all games the hybrid 

has a higher MSD, although the same order of magnitude (.279 and .215 respectively). If one 

focuses only on games 8-12, again we have a marked superiority of the hybrid model over the IBE, 

as the MSD of the latter is more than twice that of the new concept.  

A similar pattern is appears in the last row of the table, concerning the predictive capability: if 

Game 7 is excluded, the values are in line with the ones obtained in the fifth row, indicating 

stability of the parameters who survive the cross-validation test. One comforting consideration 
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regarding the appropriateness of the exclusion of Game 7 comes from the widespread anomalous 

high level of its MSD score in all rows of the table, which for both Nash and Hybrid predict is about 

four times the corresponding mean level obtained over the six games. It is plausible that this 

evidence is related to the location of Game 7 in the parameter space. It is in fact located at near the 

border, as previously pointed out, and therefore may be subject to the overvaluation of extreme 

probabilities by the subjects due to overweighting of small probabilities. An addition to the present 

work, which is currently in progress, considers incorporating fairness motives in the quantal 

response equilibrium notion, one that has recently attracted considerable attention thanks to its 

ability to rationalize behavior observed in experimental games. In addition to providing an 

interesting case for comparison, it should also allow to shed light on the suspected anomalous 

nature of Game 7. 

 

Quantal Response Equilibrium and Inequity Aversion 

 

The former analysis has also been conducted utilizing the quantal response equilibrium concept 

(henceforth QRE) in conjunction with preferences that are again allowed to be affected by the 

counterparty’s fate, via the inequity aversion parameters. Before showing the results, which are 

given in Table 4 and Table 5 and show an even better overall performance of this concept compared 

to the one examined in the previous sections, let’s briefly describe the QRE. The concept, 

introduced by (Mckelvey, Palfrey and Thomas, 1995), models games with noisy players: these 

probabilistic choice models are based on quantal best responses to the behavior of the other parties, 

so that deviations from optimal decisions are negatively correlated with the associated costs. That is 

to say, individuals are more likely to select better choices than worse choices, but do not necessarily 

succeed in selecting the very best choice. In the exponential form of quantal response equilibrium, 

considered here, the probabilities are proportional to an exponential with the expected payoff 

multiplied by the logit precision parameter (ߣሻ in the exponent: as λ increases, the response 

functions become more responsive to payoff differences. Formally, 

ሻ       (2) 

Where i,j=1,2 are the players (݇ ് ), ܲ  is the probability of player i choosing strategy j and ߨ  is 

player i’s expected payoff when choosing strategy j given the other player is playing according to 

the probability distribution ܲ . 

݆ ௜௝ ௜௝
ି௜

 



Two measures of the relative performance of the I.A.-adjusted Quantal Response 

Equilibrium: best fit and predictive power. Results in terms of Best fit 

 

The following is a companion table to Table 2, as it reports the results of comparisons between the 

new hybrid model and the IBE concept, the former always outperforming the one employing the 

‘pure’ IBE on the transformed games. Note that the penultimate column now compares the 

performance of the two proposed concepts, showing that the one employing QRE outperforms the 

in five of the six games
1
.  

 

 Table 4: Ex-post (best fit) descriptive power of QRE with inequity aversion 

 

 

FREQUENCY 

 [fu; fl] 

N.E. 

[Pu;Ql]   

BEST FIT  QRE+I.A. 

 [Pu;Ql] ( β ,α )   

 λ 

IBE 

[Pu;Ql]   

 (0;0) 

QRE+I.A 

ê  

IBE+I.A? 

O.G.+QRE+IA

ê 

T.G.+IBE? 

TG7 [.141;.564]  [.]  (;)  [.104;.634]  

 

n.a. 

OG7 [.141;.564] [.091;.909]  [.141;.564] (.105;.209) 

 λ=0.335 

[.091;.500] YES YES 

TG8 [.250;.586]  [.] (.) 

  

[.258;.561]  n.a. 

OG8 [.250;.586] [.182;.727]  [.250;.586] (.097;.386) 

λ=0.335 

[.224;.435] YES YES 

TG9 [.254;.827]  [] (.) [.188;.764]  

 

n.a. 

OG9 [.254;.827] [.273;.909] [.254;.827] (.083;.316)  

λ=0.6 

[.162;.659] YES 

 

YES 

TG10 [.366;.699]  [.] (.)  

 

[.304;.724]  n.a. 

OG10 [.366;.699] [.364;.818]  [.366;.699] (.250;.254) 

λ=0.31 

[.263;.616] YES YES 

TG11 [.311;.652]  [] ()  

 

[.354;.646]  n.a. 

OG11 [.311;.652] [.364;.727]  [.311;.652] (.003;.02)  

λ=0.91 

[.316;.552] YES YES 

TG12 [.439;.604]  []  () 

  

[.496;.575]  n.a. 

OG12 [.439;.604] [.455;.636]  [.439;.604](.042;.137) 

λ=0.55 

[.408;.547] same YES 

 

                                                 
1 in game 12 they achieve a substantially equal equilibrium prediction. 
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As before, in order to assess the performance of the concepts over multiple games, the parameters 

are restricted to be the same over all the games, as shown in the penultimate row in Table 5: the 

QRE+IA concept displays a better fit than the IBE+IA (smaller mean square deviation) in all but 

game 11, achieving a mean MSD of .147 as opposed to .279 for the latter. As for the predictive 

power, measured through jackknifing (cross-predicting), when all games are considered the mean 

MSD is substantially lower for the QRE-based concept incorporating fairness motives, averaging 

.219 vs. a score of .567 for the IBE-based one. 

      

Table 5: MSD scores of the proposed equilibrium concepts 

Model  G 7  G 8  G 9  G 10  G 11  G 12  Mean 

Nash equilibrium, O.G. 0 parameters (0;0) All games   

6.076 

 

1.225 

 

.354 

 

.708 

 

.422 

 

.064 

 

1.475 

 

I.B. equilibrium, O.G.           0 parameters(0;0)  All games   

.330 

 

1.174 

 

1.825 

 

.878 

 

.497 

 

.209 

 

.819 

 

I.B. equilibrium, T.G.           0 parameters  (0;0)All games   

.315 

 

.035 

 

.416 

 

.224 

 

.094 

 

.205 

 

.215 

 

Hybrid QRE by ga 18 parameters       me, O.G.   

5.5* 

10^-6 

 

2.4* 

10^-7 

 

7.5* 

10^-6 

 

6.4* 

10^-7 

 

7.4* 

10^-8 

 

5.7* 

10^-6 

 

3.3*10^-6 

Hybrid  best fit O.G.,          parameters  ( β ,α , λ) 2 par.  IBE+IA  (.157,.160)  3 par.QRE+IA  (.147,.243,.43)  
 

 

.746 

.251 

 

 

.178 

.012 

 

 

.428 

.397 

 

 

.152 

.036 

 

 

.140 

.163 

 

 

.030 

.027 

 

 

.279 

.147 

Hybrid predict,  O.G. 2 par.  IBE+IA                           3 par. QRE+IA                                  

2.220 

.415 

 

.238 

.016 

 

.585 

.640 

 

.186 

.038 

 

.141 

.177 

 

.031 

.029 

 

.567 

.219 

 

Two important considerations should be remarked at this point. Firstly, for what concerns the 

overall fit, even without excluding the potentially problematic game 7, the QRE+IA concept 

outperforms the traditional impulse balance equilibrium applied to the transformed games (MSD 

scores are .147 and .215, respectively); this is noteworthy, since it wasn’t the case for the other 

hybrid concept
2
. Secondly, the above considerations are confirmed by the predictions obtained with 

                                                 
2 In fact, the ‘pure’ impulse balance equilibrium obtains dramatically higher MSD scores when the original games are 
employed in place of the transformed ones, with an almost four‐fold increase. The intuition behind this is, loosely 
speaking, that the IBE is not as parameter‐free as it looks: that is, by utilizing transformed payoffs for each game 
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the jackknifing technique: for the QRE+IA specification the mean MSD score based on cross-

predictions is not substantially higher than the one calculated when the parameters that best fit all 

games are employed (.219 and .147, respectively). This doesn’t hold for the IBE+IA concept, 

whose score roughly doubles from .279 to .567
3
.   

 

Based on the above comparisons, the inequity aversion generalization of the quantal response 

equilibrium concept appears to emerge as the best performing in terms of goodness of fit among the 

considered stationary concepts. Based on this realization and following the behavioral stationary 

concept interpretation of mixed equilibrium
4
, one may conclude that the proposed other-regarding 

generalization of the QRE is the behavioral stationary concept that best models the probability of 

choosing one of two strategies in various non constant-sum games spanning a wide parameter 

space. More specifically, even when restricting the degrees of freedom of the parametric models 

and comparing the goodness of fit utilizing the same parameters (β ,α , λ if any)  for all six games, 

the other-regarding QRE outperforms all of the other stationary concepts considered here. The 

order, starting with the most successful with the goodness of fit decreasing progressively, is the 

following (see the grey highlighted rows in Table 5): QRE+IA, IBE on the transformed games, 

IBE+IA and Nash equilibrium. 

 

Of course, the previous comparison is biased against the more parsimonious concepts, in particular 

the parameter-free Nash equilibrium and IBE concepts (see footnote 1 regarding the latter). In order 

to trade off the predictive parsimony of a theory against its descriptive power, one can employ 

Selten’s Measure of Predictive Success (Selten, 1991). This is currently ongoing work. 

 

 

 

 

 

 

 

 

                                                                                                                                                                  
(although based on common definition of aspiration level), it effectively allows for game‐specific adjustments similar 
to those obtained by adding a parameter which can take different values in each game.         
3 Note also that the QRE+IA mean of the MSD when cross‐predicting is approximately equal to the mean score for the 
‘pure’ IBE on all transformed games, further confirming the stability of the parameters in the other‐regarding version 
of QRE.  
4 that sees it as the result of evolutionary (or learning) processes in a situation of frequently repeated play with two 
populations of randomly matched opponents. 
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Part II. Evolutionary lessons from the Prisoner’s dilemma 
  

The previous analysis has illustrated the importance of pro-social in explaining departures from the 

predictions originating from the Nash equilibrium concept. Such predictions, although often 

diverging from observed behavior, are still to be considered a fundamental benchmark to compare 

alternative ones with, and indeed perform quite well in competitive contexts [citations here]. In 

highly competitive environments, especially in those characterized by a large pool of actors 

interacting in anonymous and/or single-shot contexts (for instance in financial markets), individual 

and aggregate behavior is likely to reflect a high degree of focus on the merely materialistic payoff. 

However, in many real life situations, the drivers of human behavior seem to be far more than the 

absolute return to an interaction. It has been pointed out by many scholars […], that while it may be 

perfectly acceptable for agents to play the payoff-maximizing strategy and disregard other agents’ 

payoffs, it is not necessarily the case for environments in which social preferences play an 

important role, and payoff-maximizing behavior would lead to social stigma and  guilt. An often 

quoted example suggesting that people’s decisions are driven by equity concerns (usually opposing  

individualistic motives), is that of charity donations, which reflect a tendency towards redistribution 

of wealth towards the worse-off.    

 

Moreover, experiments [cite] have also shown that humans are willing to sacrifice part of their 

endowments in an effort to reduce disparities between individuals who earn substantially more than 

the average and those with an income which is substantially below the average. This in a context of 

random endowment distribution, which does away with punishment originating from behaviors 

perceived as unjust. That is, most subjects of the experiment invested substantial fractions of their 

endowment  to make the richest less rich and the poorest less poor, even though the opponents just 

happened to be endowed with those amounts of money, independently of their strategies. Many 

other studies document departures from the self-interest hypothesis, see for example Gintis et al. 

(2003) for a review of recent experimental evidence in different classes of games.  

 

In a forthcoming paper
5
, Hoff et al. also show an impressive amount of observed spiteful behavior 

in a version of the 3-players ultimatum game experiment run in several remote Indian villages (so 

that the inhabitants of different villages wouldn’t recognize the names of their opponents from 

different villages. They carefully selected the sample so that individuals would either belong to a 

 
5 HOFF, K., KSHETRAMADE,M., FEHR, E. (2008): Spite and Development, World Bank Policy Research Working Paper 
4619 
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very high caste or a very low one, and the matching technology was devised in such a way that 

anonymity would be guaranteed, yet players would indirectly extrapolate the caste to which the 

counterparty belonged.
6
 One neat conclusion the authors draw is that high caste individuals exhibit 

a substantial amount of anti-social behavior, in particular against low-caste subjects, often 

punishing the cooperating opponent to prove their strengths. 

 

These results suggest that in many situations there is more to human behavior than just selfish 

behavior as implied by the best reply notion. While own payoff is an important component of one’s 

strategy, realistic “games of life” are played along other dimensions as well. One such dimension is 

captured by the Inequity Aversion parameters, which allow for altruistic considerations (ߙ 

parameter of advantageous IA) as well as more traditional envy considerations by means of the ߚ 

parameter. In the previous section, we have seen how already powerful stationary concepts such as 

IBE and QRE can be substantially improved in their ability to fit and predict frequencies of plays 

for six non-constant sum games spanning a wide parameter space, even when adjusting for the 

increased number of parameters with Selten’s technique
7
. 

 

In what follows, we will further explore the same question, namely whether social preferences play 

a tangible role in affecting individuals’ strategies of play, but from a different angle. Firstly, based 

on the above considerations, we will expand the preference space with respect to the standard IA 

specification given in (1), by relaxing the constraints on the parameters ߙ and ߚ. Secondly, we will 

focus on timing and spatial considerations, and in particular on whether cooperative behavior can be 

evolutionarily robust in relation to the structure of the population and to the level of information 

agents have on their counterparties. A recurring question that will come out throughout the analysis 

will be whether altruism has evolved in human beings by means of a process of cultural (or natural) 

selection. Before proceeding with the details of the modeling specification, a simple analytical 

result will be shown in order to bridge the previous stationary IA investigation with the current 

evolutionary approach. 

 

 
6 Individuals were told the family name of the opponent, who would be from a very distant village. This piece of 
information allows individuals to know what caste does the opponent belong with a high degree of confidence, while 
preserving anonymity due to the distance between and small size of the villages. 
7
 See SELTEN, R. (1991): Properties of a Measure of Predictive Success”, Mathematical Social Sciences, 21, pages 153‐
167 
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ߙ
                                                

The establishment of cooperation in well-mixed populations: a generalization of IA to other-

regarding preferences allowing for pro-social as well as anti-social behavior  

 

Based on the experimental evidence cited above, it seems reasonable to extend the standard 

inequality aversion model in (1) to more general domains accounting for strong altruism as well as 

spiteful behavior: in particular, we will consider in turn the implications of dropping the 

assumptions that Fehr and Schmidt impose on the parameters accounting for inequity aversion in 

their specification of agent’s utility functions, ࣯ . 

 

       (IA 1) 

 

Let’s first focus on the last term of (1), representing the positive deviations from the reference 

outcome (ݔ . Restricting the parameter space to values of ߚ laying between zero and one means, on 

one hand (0 ൑ ߚ , ruling out the existence of spiteful individuals who enjoy being better off than 

the opponent, and on the other hand (ߚ  ruling out the existence of strongly altruistic subjects 

who care enough about the well being of the other player to incur in a decrease in utility which is 

greater than the payoff difference (ݔ . Both possibilities are coherent and some degree of 

similar pro- and anti-social behavior has been observed in the cited literature
8
, so excluding them ex 

ante may bias the analysis against well documented behaviors that appear to have survived the 

evolutionary pressures shaping the evolution of human preferences.      

 

       (IA 2) 

 

The second assumption that Fehr and Schmidt make on the parameters concerns the presumed loss 

aversion in social comparisons. When considered in conjunction with the ‘moderate aversion’ to 

advantageous inequality embodied in (IA 1), it seems in fact plausible to postulate that negative 

deviations from the reference outcome count more than positive ones (disadvantageous inequity 

induce higher disutility than advantageous inequity). However, when (IA 1) is dropped and agents 

are free to exhibit strongly altruistic and spiteful behavior, the assumption that ߚ is at most as big as 

 is no longer justified in all domains. To illustrate this point, let’s consider individual i whose 

preferences satisfy a slight modification of the above parameter restrictions that maintains the 

 
8 See the references at the end for more literature on the subject. 
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࢏ࢻ ൏ 0 ൏ ࢏ࢼ

asymmetric other regarding preferences of the familiar form
9
. That is, let the parameters modeling 

other-regarding (henceforth OR) behavior satisfy the following inequalities: 

 

 1      (OR 1) 

 

Note that the above inequalities violate (IA 2) while satisfying (IA 2), still entailing that an agent 

responds with a utility loss to both negative and positive deviations from the reference outcome. 

The difference lies in ߚ no longer being bounded upwards (allowing for strong altruism), and its 

magnitude (representing the altruistic disutility from advantageous inequality) now being greater 

than the disutility from disadvantageous inequality. I don’t see any particular reason why this case 

should be ruled out a priori, instead of letting the evolutionary forces decide. 

 

Another example of reasonable preferences that are ruled out in the standard IA model is given by 

 

       (OR 2) 

 

Loosely speaking, the intuition is that an agent whose preference parameters satisfy the inequalities 

in (OR 2) simply cares more about the counterparty than about herself
10

, a possibility which may 

well apply to the truly altruistic agents.    

 

Consider  a game which sets the harshest conditions for the emergence and survival of cooperation, 

the Prisoner Dilemma (PD). The following formulation (subset of all PDs) will be employed, 

 

Table 6: row player’s reproductive (material) success in the PD game 

 C D 

C ܾ െ  ܿ ܿ െ
D ܾ 0 

 

Where b and c are, respectively, the benefits and costs to the cooperative effort (e.g. the gains and 

losses occurring when undertaking contribution to a public good). In a population of size N and 

                                                 
9 The ‘conditional altruism’ inherent in the inequity aversion framework is preserved so long as ߙ and ߚ are non‐
negative, implying that both positive and negative deviations from the opponent’s outcome induce a utility loss. 
10 as for a given absolute deviation between the two payoffs, she will incur a bigger utility reduction when being the 
one with the higher payoff.      
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टࢉሺ࢈, ,ࢉ ,࢏ ሻࡺ ൌ ૚ିࡺ૚ି࢏
consisting of i cooperators (and N-i defectors), the payoff to the cooperators and defectors is given, 

respectively, by: ࢈ टࢊሺ࢈, ,࢏ ሻࡺ ൌ ૚ିࡺ࢏
െ ࢈ ሺ3ሻ     ࢉ

,࢈ഥሺࢁ ,ࢉ ,࢏ ሻࡺ ൌ ࡺ࢏

                ሺ4ሻ 
 

In terms of the average payoff in the population, 

 ሺ࢈ െ  ሻ        ሺ5ሻࢉ
 

It is well known that, without any mechanism for the evolution of cooperation, natural selection will 

favor defectors, since (in a mixed population) they have a higher payoff than cooperators. 

Interpreting payoffs as fitness, the selection process will eventually drive the frequency of  the 

cooperators (and the average fitness of the population) to zero, implying the extinction of 

cooperators, and the socially undesirable all-defect 0-outcome reminiscent of the one-shot PD game 

with self-interested agents. 

Now consider modifying the payoff matrix to allow for other-regarding behavior, one gets:  

 

Table 7: row player’s reproductive success in the PD game with OR 

 C D 

C ܾ െ ܿ െܿ െ ሺܾߙ ൅ ܿሻ
D ܾ െ ሺܾߚ  ൅ ܿሻ 0  

 

Note that there is no ambiguity with respect to the direction of the IA, as off the main diagonal the 

cooperator is exploited and will have no advantageous inequity aversion (0=ߚ), while the defector 

free rides the benefit b without paying the cost c, and will have no disadvantageous inequity 

aversion (0=ߙ)
11

. Along the main diagonal, the payoffs aren’t affected by the IA adjustment, as the 

players get the same materialistic payoff due to the symmetry of the game.    

 

 

 

 

                                                 
11 See Table 1 for the general payoff matrix under inequity aversion. 
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Evolutionary escape from the prisoner’s dilemma: theoretical findings 

 

In the PD the only dominant strategy is to Defect, so cooperation in Table 6 will be never achieved, 

and is by no means evolutionarily stable. If one considers the modified matrix in Table 7, though, 

one can easily see show that the Cooperate strategy will be ESS provided that the advantageous IA 

parameter ߚ is greater than the ratio of the cost to the sum of the benefit and cost. This follows from 

the condition for the cooperative strategy to be ESS, which is simply that the sum of a player’s 

payoffs when cooperating must be  greater than the sum of her payoffs when defecting: in the 

setting described in table (2), this yields precisely the condition 

      ሺ૟ሻ 

ࢉ࢈

 

Note that (6) doesn’t require a value of ߚ greater than 1, i.e. it’s consistent with both the standard 

IA and the augmented parameter space OR specifications (although allowing for strong altruism 

reduces the dependency of the result on the small magnitude of the relative cost). 

   

Proposition 1 (sufficient condition for ESS cooperation) 

 

So long as the parameter capturing aversion to inequality in one’s own favor is greater than the 

relative cost of the altruistic act (cooperating), an infinitely large population of cooperators cannot 

be invaded under deterministic selection dynamics.  

 

By rearranging terms in (6), the condition can be expressed in terms of the benefit-to-cost ratio, as: 

    ൐ ૚ࢼ െ ૚    ሺૠሻ 

0
1

 

This formulation better allows to see the dependency of the evolutionary stability result for 

cooperation on the magnitude of ߚ: on one side of the spectrum, we have the complete self-interest 

case (ߚ ൌ ) where no matter how big the rewards to cooperation are, the cooperative strategy will 

never be ESS; on the opposite side of the spectrum, we have the case of maximal advantageous 

inequity aversion (ߚ ൌ ) where, so long as the benefits are greater than the costs to cooperation, 
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ࢉ

cooperation will always be an evolutionarily stable strategy and will be immune from defectors 

invasions. 

 

Such results fits in well with (Nowak, 2006), where rules for the success of cooperation in the 

standard PD game are derived in terms of the payoffs and of other characteristics which can 

compensate for the payoff reduction arising from cooperating in a competitive environment (under 

sole natural selection forces), and  establish cooperation. These mechanisms, namely kin selection, 

direct reciprocity, indirect reciprocity, network reciprocity and group selection, are shown to suffice 

for the evolution of cooperation whenever the benefit-to-cost ratio exceeds a certain mechanism-

specific threshold. Modified payoff matrices qualitatively similar to the one in Table 2 are derived 

(more on it will follow in the next section) and conditions are given for the cooperative strategy to 

be ESS (as well as risk dominant
12

, in what follows RD). For example, in the group selection case, 

the threshold is  
࢈ ൐ ൅࢓࢔ 1

                                                

 ,and the characteristics added to the basic environment to find an 

evolutionary escape from the prisoner’s dilemma are the maximum group size n and the number of 

groups m. That is to say, the smaller and the more groups there are, the better the chances for 

cooperation to strive.  

 

Our previous finding also poses conditions for the survival of cooperation, only in terms of how 

agents’ preferences rather than in terms of the surrounding environmental characteristics, such as 

groups structure (or genetic relatedness, or probability of encountering the same player in a 

subsequent round). As we will see from the analysis below, however, inequity averse preferences 

alone cannot render cooperation a risk dominant strategy, unless one is willing to drop the 

assumption that ߚ cannot exceed ߙ. This can arise in many meaningful preference specifications 

that generalize the IA framework to allow for a greater variety of responses to positive and negative 

deviation from the reference outcome. 

 

 

12 In standard game theory a Nash equilibrium is considered risk dominant if it has the largest basin of attraction, 

meaning the more uncertainty a player has about the actions of the other player, the more likely the risk dominant 

strategy will be chosen. Evolutionary models such as Mailath & Rob (1993) and Young (1993)  support the idea that the 

risk dominant equilibrium is favored by evolution, by showing that if the rule to update one's strategy allows for 

mutations that asymptotically reach zero over time, the likelihood that the risk dominant equilibrium is reached goes to 

one (even if it is payoff dominated). 
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࢏ࢂ ൌ ,࢞ሺ࢏ࢁ ሻ࢟ ൅ ,࢞ሺ࢐ࢁࢻ ሻ࢟ ് ࢐
௜ሺݔ, ሻݕ and ߚ a

ߙ ൑ 1 ߚ ൑ 1

Recent contributions, such as Bolle (2000) and Possajennikov (2000), have drawn the attention on 

the parameter space concerning the degree of altruism and spite one should allow for when 

modeling the evolutionary stability of other-regarding preferences. In particular, they have 

independently criticized and relaxed restrictions that Bester and Guth (1998) had imposed on the 

parameters. Given the resonance with IA preferences employed here, it is worth briefly introduce 

some notation from Bester and Guth (BG henceforth). Two agents play a symmetric game and are 

assumed to maximize a weighted sum of the own payoff and of the counterparty’s payoff, in order 

to allow for the possibility that individuals have other-regarding preferences that go beyond their 

material payoffs. Formally, 

 

࢏    ,      (8) 

 

where ܷ is the material payoff to player i, while ߙ  re preference parameters (subject to 

evolutionary selection), which are positive under altruism, zero under own profit maximization and 

negative under spite. As Bolle and Possajennikov show (respectively in the domains of spiteful and 

altruistic preferences), the preference restrictions imposed by BG, namely of ruling out spite and 

what I will call ‘strong altruism’, aren’t theoretically justified and should be relaxed. More 

specifically, BG assume 0 ൑  and 0 ൑  and Bolle and Possajennikov separately show 

that arbitrarily large negative and positive values of the two parameters should be allowed, in order 

to let the evolutionary pressures ultimately decide whether spite and strong altruism should be ruled 

out. We will evaluate the importance of these parameter restrictions throughout the remainder of 

Part II; but first, let’s reconsider the sufficient for cooperation to be ESS:  

 

Lemma 1 

 

Even in the absence of structural mechanisms favoring the evolution of cooperation, such as 

reciprocity (of direct, indirect or network type), non-individual selection (of kin and group kind) or 

cognitive limits (leading to heuristics such as “imitate the successful behavior” in structured 

populations), Proposition (1) continues to hold. Therefore, if favorable historical conditions (such as 

repeated interactions in small groups) have allowed the establishment of cooperation, when other-

regarding preferences are allowed and the benefit-to-cost ratio exceeds the 
ଵఉ െ 1 threshold, 

cooperation cannot be displaced. 
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ߚ

ܿ ܾܿ ܾ

attraction greater than  ଶଷ

Note that the results in Proposition 1 and Lemma 1 follow directly from the general property that a 

strategy that yields a strict symmetric Nash equilibrium
13

 is evolutionary stable as well: therefore, 

when investigating these types of games, in order to assess the evolutionary stability of a strategy, 

all one needs to show is the existence of the corresponding unique Nash equilibrium. 

 

It should be noted at this point, that although an ESS strategy is resistant against invasion, the 

relative size of the basin of attraction is what ultimately decides the amount of time spent in the 

long run in each equilibrium when both are ESS, which is the non-degenerate case we will focus 

most of the attention on (and depends on the size of ߚ relative to the percentage cost). To argue that, 

let alone the possibility that historical conditions may have led to the establishment of 

evolutionarily stable cooperation, cooperators can (under certain conditions) invade a mixed 

population, we will introduce two more results, followed by some numerical examples aimed at 

clarifying the propositions. 

 

First, let’s bear in mind that cooperation will be a risk-dominant strategy if there exist values of ߙ 

and ߚ for which the sum of a player’s payoffs when cooperating is greater than the sum of her 

payoffs when defecting. Moreover, cooperation will be advantageous if there exist values of ߙ and 

 for which the sum of the payoff to reciprocal cooperation and twice the payoff to cooperating 

when the opponent defects is greater than the sum of the payoff to defecting when the opponent 

cooperates and twice the payoff to mutual defection. The last condition plays an important role in 

determining the fixation probability of cooperation in stochastic game dynamics with finite 

populations
14

. 

In terms of the payoffs in Table 6, these conditions translate to: 

• C is risk‐dominant if ܾ െ 2 ൐  

• C is advantageous  if ܾ െ 3 ൐  

Which are obviously never satisfied. Nevertheless, if we again consider subjective utility functions 

that take also in account the relative standing of one’s payoff with respect to the other player’s, 

cooperation can be not only risk-dominant, but also advantageous, therefore having a basin of 

. The following two inequalities, which are obtained simply by applying the 

                                                 
13 For which the agents’ best responses are unique, as is the case for the cooperative strategy in the modified PD game 
when the threshold is met. 
14 See Nowak et al. (2004) for a clear explanation of the implications of being advantageous for a strategy, in terms of 
the probability that a single mutant originating from it (and its successors) will replace a homogeneous population 
initially following the other strategy. An advantageous strategy will overtake the ‘hostile’ population with a probability  
greater than the inverse of its size, therefore fixating with greater probability than the random drift.  
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ሺࢻ െ ሻࢼ ൏ െ2 ࢈ࢉ ൅ ࢉ
conditions for risk-dominance and advantageousness to Table 7, are the basis for the paired 

propositions aimed at summarizing the findings.    

       ሺૢሻ 
 

roposition 2 (sufficient condition for risk-dominant cooperation) 

o long as the difference between the disadvantageous deviation and the advantageous deviation 

ሺ૛ࢻ െ ሻࢼ ൏ െ૜ ࢈ࢉ ൅ ࢉ

P

 

S

preference parameters is sufficiently negative (more than twice as negative as the relative cost of 

the altruistic act), cooperation will risk-dominate defection. Namely, when both strategies are ESS, 

the basin of attraction of cooperators is greater than ½.  

      ሺ૚૙ሻ 
 

roposition 3 (sufficient condition for advantageous cooperation) 

o long as the difference between the disadvantageous deviation and the advantageous deviation 

P

 

S

preference parameters is sufficiently negative (more than three times as negative as the relative cost 

of the altruistic act), cooperation will be advantageous. Namely, when both strategies are ESS, the 

basin of attraction of cooperators is greater than 
ଵଷ . 

 

Note that both conditions (9) and (10) are satisfied so long as ߙ ا  This amounts to say that .ߚ

completely characterized in terms of the payoffs of the prisoner’s dilemma game. 

                                                

whether a cooperator can invade or not a population of defectors boils down to a comparison of the 

sign and  magnitude of the parameters modeling agents’ responses to deviations from the reference 

outcome. If positive deviations (making more than the other player) are sufficiently more important 

than negative ones (being worse-off than the opponent), a single cooperator will have a fixation 

probability that is greater than the inverse of the (finite) population size
15

. As a last remark on the 

above propositions, it should be noted that inequalities (6), (9) and (10), corresponding, 

respectively, to the sufficient conditions for ESS, risk-dominant and advantageous cooperation, are 

 
15 In the limit of weak selection. Roughly put, this condition means that in a multilevel selection environment, 
selection between groups (which favors cooperators) is much weaker than selection within groups (which favors 
defectors). See the section on multilevel selection below. 
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ave a tangible 

presentation of their impact on the achievement and robustness of the mutual cooperation 

material payoffs for the row player when b=5 and c=1  

C D 

Evolutionary escape from the prisoner’s dilemma: examples of OR preferences 

 

To better grasp the significance of the other regarding preferences and in order to h

re

outcome, let’s focus on a numerical version of Table 6; consider the following matrix, given by b=5 

and c=1:   

 

Table 8- PD 

 

C 4 െ1 

D 5 0 

 

Again, the o ly dominant strategy is Defect and the Nash equilibrium is (D,D), yielding the 

efficient output (0,0). If we introduce the transformed matrix to account for other-regarding 

ayoffs for the row player when b=5 and c=1 (under OR)  

C D 

n

in

preferences, we get:  

 

Table 9- PD subjective p

 

C 4 െ1 െ  ߙ6

D 5 െ  0 ߚ6

 

The above specificatio  guarant s that (C,C) is an evolutionarily stable strategy if ߚ > ଵ଺n ee . To get an 

ea of the magnitude of the parameter modeling reactions to positive deviations from the reference id

outcome, note that in the games investigated in Part I
16

, the value of ߚ that best fits all six games is 

approximately .16 and .15 in the IBE+IA and QRE+IA models respectively, which almost coincides 

with the 
ଵ଺ threshold (=.16ത). 

 

Let’s consider, in turn, d ffei rent values of ߙ and ߚ and check what the result will be in terms of the 

volutionary fate of cooperation. First, assume agents exhibit identical ‘purely altruistic’ 

t

                                                

e

preferences (hereafter PA) with symmetrical reac ions to positive and negative departures from the 

opponent’s outcome given by: 

 
16 which were not PD games but rather non‐constant sum games spanning a wide parameter space (but including an 
almost symmetric one, game 12,  in terms of the observed frequencies and equilibrium predictions) 
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൝ ࢼ ൐ |ࢻ|0 ൌ  ሻۯ۾ ࢉ࢏࢚࢘ࢋ࢓࢓࢙࢟ሺ         |ࢼ|
 

An individual with such preferences is a (symmetrical) pure altruist in the sense that she responds to 

neven distributions with a (equal magnitude) utility gain or loss when, respectively, her opponent 

ider the following parameter values: ߙ ൌ െ0.2 and ߚ ൌ ൅0.2 and 

otice that they satisfy (symmetric PA). Now Table 9 becomes: 

nd PA: ࢻ ൌ െ૙. ૛, ࢼ ൌ ൅૙. ૛ ൐ ૚૟

ࢻ ൏ 0

u

is better-off or worse-off. That is, not only she displays altruistic behavior in the domain of positive 

deviations from the other player’s outcome (by incurring in a utility loss due to the empathy for the 

other player’s underperformance), but she also responds altruistically in the domain of negative 

divergences (by experiencing a utility gain associated with the other player outperforming her). 

While such a strong form of altruism is admittedly uncommon, it is still insightful to consider the 

consequences of PA preferences for the evolution of cooperation; moreover, a less demanding case 

will be subsequently considered. 

 

For the sake of concreteness, cons

n

 

Example 1- PD subjective payoffs for the row player when ࢈ ൌ ૞, ࢉ ൌ ૚ a    
C D  

C 4 0.2 

D 3.8 0 

 

We already k w that ooperation is an ESS, since ߚ is larger than the threshold; moreover, 

efection is not an ESS, as 0.2>0. In fact, one can verify that conditions (9) and (10) are satisfied, 

 but with asymmetrical 

actions to positive and negative departures from the opponent’s outcome
17

, as given by: 

൝ ࢼ ൐ |ࢻ|0 ൏  ሻۯ۾ ࢉ࢏࢚࢘ࢋ࢓࢓࢙࢟ࢇሺ         |ࢼ|
                                                

no c

d

implying that cooperation is advantageous for the given parameter values.  

 

Now assume agents still exhibit identical ‘purely altruistic’ preferences,

re

ࢻ  ൏ 0
|ߙ  ൏ ߚ| 0.117 To limit the size of the exposition, we will only focus on the | |case, although its complementary also lends 

itself to meaningful interpretations: when, for example, ߙ ൌ െ0.2 and ߚ ൌ ൅ , the resulting game no longer has 
one symmetric NE, but becomes an anti‐coordination game of the Hawk‐Dove type, in which it is mutually beneficial 
for the players to play different strategies, and the two asymmetric Nash equilibria obtain.  
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An individual with such preferences is an asymmetrical pure altruist in the sense that she responds 

to uneven distributions with a utility gain or loss of unequal magnitude, depending on whether  her 

ൌ ૞, ࢉ ൌ െ૙. ૚, ࢼ ൌ ൅૙. ૛ ൐ ૚૟

opponent is better-off or worse-off. In particular, the above specification implies that the utility gain 

from the other player’s superior performance is less than the utility loss due to the empathy for the 

other player’s underperformance. Let ߙ ൌ െ0.1 and ߚ ൌ ൅0.2, leading to: 

 

Example 2- PD subjective payoffs for the row player when ࢈ ૚ and PA: ࢻ ൌ   

C D  

C 4 െ0.4 

D 3.8 0 

 

Now both strategies are ESSs, and we have two symmetric Nash equilibria (unlike in the preceding 

ple where only the mutually cooperative equilibrium was evolutionarily stable). Furthermore, 

bit identical ‘conditionally altruistic’ preferences, which 

re given by: 

ࢻ ൏ ߚ
One such agent reacts with a disutility to both positive and negative deviations from the reference 

outcome (as in standard IA preferences), displaying asymmetric behavior in the form of envy when 

Example 3 bjective p  row player when ࢈ ൌ ૞, ࢉ ൌ ૚ and CA: ࢻ ൌ ൅૙. ૚, ࢼ ൌ ൅૙. ૞ ൐ ૟

exam

under these OR preference parameters, cooperation is no longer risk-dominant, i.e. defect is the 

strategy with the largest basin of attraction. 

 

Lastly, consider the case of agents that exhi

a

൝ࢻ ൐ ࢼ0 ൐ 0         ሺۯ۱ ࢉ࢏࢚࢘ࢋ࢓࢓࢙࢟ࢇሻ 
being outperformed, and altruistic aversion to advantageous inequality. The last inequality implies 

that positive deviations from the opponent’s outcome matter more than negative ones. Letting ߙ ൌ ൅0.1 and ߚ ൌ ൅0.5, leads to: 

 

- PD su ayoffs for the
૚
 

C D  

C 4 െ1.6 

D 2 0 

 

For this parameterization, we again have the case of two evolutionarily stable strategies and two 

strict Nash equilibria; what changes with respect to Example 2 is that now cooperation is risk-



30  

 

ominant, and therefore has a larger basin of attraction. It nevertheless fails to pass the test for 

tionary investigation of the latter. To some extent, this has been addressed in 

e literature (see, for the complete information scenario, Bester and Guሷ th, 1998 and Guሷ th and 

t-dependent, since the population 

nd group sizes determine the level of “effective uncertainty” faced by the agents, so that when 

                                                

d

advantageousness given by (10), signifying that its basin of attraction (while being larger than that 

of the defect strategy) is not sufficiently large to guarantee that the lineage originating from a single 

mutant of the cooperative strategy will prevail over a population of defectors.  

 

Related literature on the evolution of preferences: can altruism survive when preferences are 

not fully observable? 

  

Of course the sensitivity of the above results on the degree of pro-social behavior (here synthesized 

by ߚ) calls for an evolu

th

Napel, 2006), who show that, under certain conditions, the most debated being the transparency of 

individual preferences resulting from the common knowledge assumption, strategies based on 

materialistic as well as non-materialistic payoffs such as IA can successfully evolve and stabilize 

under pairwise random matching in infinitely large populations. The limitations of the perfect 

observability of preferences have recently been explored by Ok and Vega-Redondo (2001) and 

Dekel et al. (2007), and some alternatives have come forward in order to allow for imperfect 

inference of preferences. Both papers agree on the conclusion that, in the complete lack of 

information on other players’ preferences, Nash materialistic-only solutions will be restored. 

However, in both cases important qualifications must be made.
18

  

 

In Ok, Vega-Redondo, the stress is posited on the conditions affecting the degree of knowledge 

about the opponents’ preferences, which in their model are contex

a

preference unobservability doesn’t induce sizeable uncertainty (e.g. the size of the population is 

small), incomplete information is not enough to ensure the stability of individualistic preferences. In 

other words, with little de facto uncertainty, although unobservable, individualistic agents need not 

prosper at the expense of the altruists.  

 

 
18

 One debatable characteristic that both papers share is the assumption that the aggregate play in the population 

corresponds to a Bayesian-Nash equilibrium: this requires an incredible amount of computational ability on the part of 

rational agents, especially when one’s opponents are allowed to be a multiplicity (as in Ok and Vega-Redondo). In fact, 

in a Bayesian game, a strategy for a player is a complete plan of actions that covers every contingency that might arise 

for every type that player might be. A strategy must not only specify the actions of the player given the type that he is, 

but must specify the actions that he would take if he were of another type. 
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he informational content of the number of subgroups in the 

opulation) and are treated as exogenous in order to analyze the consequences for stability of 

al biological and evolutionary game theoretic models, in which 

netically programmed behavior is the mold on which evolution operates, when it comes to the 

                                                

In Dekel et al., the graduated  levels of preference observability are explicitly considered (rather 

than emerging indirectly as a result of t

p

various degrees of observability. Namely, the parameter p captures the amount of knowledge that an 

agent has on her opponent (the probability of observing her preferences) independently of what the 

opponent observes, as is the case, say for a poker game with private information on the cards and 

different bluffing abilities
19

. while the general conclusions they draw support Nash equilibrium in 

the context of the evolution of preferences when p=0 (the case of complete lack of information on 

the opponent), these conclusions don’t readily carry over to the cases of intermediate observability 

and, of course, to the opposite degenerate case of complete (payoff and preference) information, 

where the stability of altruism is recovered and the efficient payoff achieved. An important remark 

with respect the scope of the present analysis, concerns the authors’ findings regarding PD games, 

that “inefficient strict equilibria (i.e. Defect-Defect) may fail to be stable with any arbitrarily small 

degree of observability (despite being stable with no observability)”. In fact, they show that the only 

other stable distribution obtains for p=1, and is characterized by a monomorphic population
20

 where 

all individuals are ‘unexploitable’ conditional cooperators, who will only cooperate if the opponent 

cooperates with probability one. Such a preference turns out to be evolutionarily stable as, loosely 

speaking, those who possess it are exempt from the typical exploitation from defectors or from 

cooperators who will cooperate on fewer occasions, this last situation being ruled out by the 

degenerate value of p=1.       

   

To summarize, the lesson to be drawn from the recent literature on the evolution of preferences is 

that, unlike in the tradition

ge

evolution of human preferences in complex adaptive systems, it seems unlikely that an inherited 

behavioral package guides agents in all the decisions to be made throughout life. It may instead well 

be the case that preferences are context-dependent and a different answer might apply depending on 

the specifics of the interactions that are considered. That is to say, certain environments will favor 

altruistic behavior, while others will favor individualism. In particular, factors that augment the 

observability of types, such as the  presence of relatively large subgroups in Ok and Vega-Redondo 

(implying a small effective matching uncertainty) or the ability to detect the opponent’s intentions 

 
19 Note that this specification doesn’t suit well in situations where opponents’ reciprocal information is highly 
correlated. For example, to further expand the gaming analogy, in community card poker games such as Texas 
hold’em, one player’s information on an opponent is not independent of the opponent’s knowledge.   
20 A monomorphic population is one where all individuals have identical preferences 
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or 

uccessful pro-social behavior.  

ehavior in the prisoner’s dilemma. Namely, the above examples 

hed light on the importance of the context in determining whether cooperation will spread and 

ne alternative way

in Dekel et al. (which, for example, is likely to be greater in societies where agents frequently 

engage in face-to-face interactions), can suffice to immunize altruism against egoistic mutants.    

 

Hence, in contexts where preferences are, to some degree at least, observable, the match between 

evolution of preferences and standard evolutionary models is likely to dissolve, leaving room f

s

 

To sum up, even from the three stylized cases considered above, one can already draw meaningful 

lessons about other-regarding b

s

whether it will be stable once it has established itself in a large population. The answer to the latter 

question is yes (given the choice of ߚ), but, when it comes to the former, we get mixed results. The 

most favorable one for altruism obtains  in Example 1, where cooperation is not only risk-dominant,  

but also advantageous (and Defect is not an ESS). Such a neat conclusion supporting the 

evolutionary success of cooperation is not achieved in Example 2, in which both strategies are ESS, 

but Defect has a larger basin of attraction. Finally, Example 3 gives us an opportunity to observe a 

mixed bag result: again both strategies are ESS and two symmetric pure Nash equilibria arise, as 

was the case for the previous example. In comparison to the latter, however, cooperation now has 

the larger basin of attraction (but not sufficiently large to be advantageous).  

 

Spatial considerations in the prisoner’s dilemma 

 

O  to model the (experimentally observed) tendency to cooperation is, as 

 such as those arising when imposing structure 

n the population, i.e. via group formation and splitting. Before turning to these considerations, 

tions agents’ preferences again contain terms representing two-sided 

inequality aversion, in order to represent the taste for equitable material payoffs. More specifically, 

 be consistent with the indirect evolutionary analysis performed by [Guth, Napel] and in order to 

make comparisons  with their results, let’s consider two alternative quadratic IA preferences, for 

mentioned above, to allowi for spatial considerations

o

we’ll extend the preceding analysis by investigating the evolutionary implications of other-

regarding preferences that are slightly more complicated than the above linear IA ones. Recall the 

linear IA specification ࣯௜൫ߙ௜ , ௜ߚ , ௜ݔ , ௝൯ݔ ൌ ௜ݔ െ ௝ݔ൛ݔ௜݉ܽߙ െ ௜ݔ , 0ൟ െ ௜ݔ൛ݔ௜݉ܽߚ െ ௝ݔ , 0ൟ,    ݅ ് ௜ߚ ;݆ ൑ ;௜ߙ  0 ൑ ௜ߚ ൑ 1. 

 

In the non-linear specifica

to
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both of which an agent always suffers from unequal material payoffs no matter who is 

disadvantaged: 

 ट࢏ሺ࢏ࢽ, ,࢏࢞ ሻ࢐࢞ ൌ ࢏࢞ െ ࢏࢞ටห࢏ࢽ െ ,࢏ࢽሺ࢏ห       (DMD) ट࢐࢞ ,࢏࢞ ሻ࢐࢞ ൌ ࢏࢞ െ ૝࢏ࢽ ห࢏࢞ െ  ห૛         (IMD)࢐࢞

Note that the gamma specification, in terms of the standard s (ߙ and ߚሻ, imposes the 

following constraint:  ߙ௜ ൌ ௜ߚ ൌ ௜ߛ ൒ 0 

In other words, individual i has a non-negative aversion o agnitude with respect to 

isadvantageous as well advantageous inequality. While this assumption may seem strong, it has 

non-constant sum games. In fact, the results for  the  best overall  fitting  

ncept, for which the value of ߙ is remarkably 

ss, let’s assume also ߛ௜ ൌ  ௝ and let’s repeat the evolutionary stabilityߛ

for row player, accounting for non-linear inequity aversion with decreasing 

 

IA parameter

f the same m

d

been utilized in the cited literature, and, it is backed to some extent from the analysis performed in 

SECION A on the 6 

parameters in the two hybrid games are as follows: 

IBE+IA:  157.=ߚ  160.=ߙ  

QRE+IA  147.=ߚ  243.=ߙ 

Suggesting a strong relevance of the advantageous inequity aversion sentiments, especially when 

modeling the equilibrium decisions with the IB co

close to the value of ߚ. 
For the sake of concretene

analysis for the new utility functions, by resorting to the modified payoff matrices:  

 

Table 10: subjective PD payoffs 

marginal damage (DMD) 

 C D 

C ܾ െ ܿ -c- ߛ√ܾ ൅ ܿ 

D b-ߛ√ܾ ൅ ܿ 0 

Table 11: subjective PD payoffs for row player, accounting for non-linear inequity aversion with increasing 

arginal damage D) 

C D 

m (IM

 

C b-c െܿ െ 4ߛ ሺܾ ൅ ܿሻଶ 

D ܾ െ 4ߛ ሺܾ ൅ ܿሻଶ 0 
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sing the same conditions for ESS and risk dominance, we can check whether the non-linear 

cification can nalize cooperation in the PD game. As before, cooperation will be ESS under 

conditions that can be interpreted in terms of the magnitude of the preference parameter relative to 

 game payoffs. Namely, the following two are the sufficient conditions for cooperation to be 

volutionarily stable, under decreasing marginal damage IA and increasing marginal damage IA 

U

spe ratio

the

e

respectively: 

ࢽ  ൐ ࢈√ࢉ ൅  ሺ૚૚ሻ           ࢉ
 ૝ࢽࢉ ൐ ሺ࢈ ൅ ሻ૛ࢉ         ሺ૚૛ሻ 
Cooperators, however, will never be risk-dominant (for positive cost of the altruistic action), as 

ere is no value of ߛ for which the sum of a player’s payoffs when cooperating is greater than the 

sum of her payoffs when defecting. This is due to the symmetrical structure of the utility loss, 

which, unlike in the IA and its OR generalization considered above, is assumed by utilizing one 

arameter only (ߛ). Such assumption rules out the ߚ ب  possibility which is the driver behind ߙ

ors have discussed the implications of allowing for population clusters to play a role in 

ining the evolution of norms. For example, Boyd and Richerson (2002), BR in what follows, 

ics model of imitation taking place in isolated population to show that 

group beneficial norms can spread rapidly under plausible conditions”.  

 payoff ones, provided the 

 

th

p

conditions (9) and (10), which can only be satisfied when negative deviations from the reference 

outcome have a different impact than positive ones (as frequently observed in the empirical 

literature).  

        

Structured populations 

 

To shed light on the determinants of altruistic behavior, we introduce structure in the population. 

Several auth

determ

utilize a replicator dynam

“

More specifically, by utilizing replicator equations on a structured population, they model the 

situation where most encounters take place with group members, but  “payoffs are determined by 

the composition of the local group, but cultural traits can diffuse among groups…partially isolated 

groups can be stabilized at different equilibria with different average payoffs.”  Consequently, 

behaviors can rapidly spread from high payoff groups to neighboring low
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olds for finite but large populations. That is, if 

 and not 

take place on much shorter time-scales.  

tcome, namely that 

itation only takes place within isolated groups. 

 not be wiped out by the insurgence of defecting 

ee-riders even in the absence of group selection today, as long as the gains and losses implicit in 

 important, as in a 

odern society interactions among agents have shifted towards the anonymous single-shot type (for 

rate at which imitation among individuals take place is sufficiently high. This feature is the driver of 

the faster time-scale of the norm spread achieved in BR, which sets apart their model from those 

based on group extinction (or splitting, Nowak).   

This approach overcomes some limitations inherent in the majority of the pre-existing literature, 

identified by the authors with respect to the broad category of group selection considered.  

For the within-group models of equilibrium selection in the spirit of [Kandori et al., 1993], which 

focus on the within-group effects of random processes on the frequencies of play of different 

strategies, they highlight a shortcoming which h

mutation rates are small, as is generally assumed in the literature, the stable equilibrium that 

survives  the evolutionary process will be the one with the largest basin of attraction,

(necessarily) the group beneficial trait. 

For the between groups models, characterized by competition between groups on alternative stable 

equilibrium, the time required to transition from one equilibrium to another (possibly more 

beneficial) is on a time-scale of a millennium, making these models well suited to explain historical 

transitions to group beneficial behavior, but not diffusion of a number of social institutions from 

one society to another, which may well 

  

The crucial assumption behind BR is that successful strategies are imitated by neighboring groups, 

even if these strategies will lower imitators’ payoffs in their own group (where different social 

norms are implemented). This assumption is the mechanism that drives the diffusion of the group 

beneficial trait, as it provides the basis for the escape from the “segregation” ou

im

 

Multilevel selection: historical justifications for the evolution of cooperation 

 

If we are satisfied with this historical account of the establishment of altruistic behavior via group 

selection, we are guaranteed that cooperation will

fr

the environment (b,c) and the other-regarding preferences (ߚ) satisfy (6). This is

m

instance due to the customary use of the internet as a mediator for transactions between anonymous 

partners parties in an increasingly global arena). One might argue that in a world characterized by 

impersonal interactions, the conditions that allowed altruistic groups to prevail are no longer in 
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scratch mine” attitude 

ards reciprocating), indirect reciprocity (I will scratch your back because someone else 

(via frequency-dependent selection), but also affects differentially different groups 

production. These payoffs describe the commonly assumed non-dynamical interactions taking 

place, and consequently groups of cooperators will not be able to sustain themselves due to the 

increased cost of credibly signaling one’s adherence to the cooperative norm. 

     

Following Nowak (2006), one can classify the mechanisms by which cooperation can evolve 

according to five broad categories: kin selection (the inclination of related individuals to engage in 

cooperative behavior), direct reciprocity (the “I will scratch your back if you 

tow

scratched mine), network reciprocity (spatial structure is assumed to allow for unevenly mixed 

populations where some individuals interact more frequently than others) and multilevel selection 

(where the population is divided into groups whose members are allowed to enact different 

strategies depending on whether they are  matched with own-group members or with members of 

other groups).   

In the present work we will adopt the latter mechanism to study the evolution of cooperation, and 

we will focus on a rather simple formulation of multilevel (or group) selection, which is suitable to 

analytical investigation and nevertheless captures the basic idea that selection acts not only at the 

individual level 

at the higher spatial level (via constant selection arising from group splitting occurring when groups 

reach the maximum size due to the addition of offsprings). That is, it seems reasonable to presume 

that different groups will spread at different rates; in the simplest form of multilevel selection, 

assume that cooperator groups (only cooperating among each other by paying a cost c for each other 

member of the group to receive a benefit b) and defector groups (never cooperating with anyone 

and therefore incurring neither costs nor benefits) can develop and also be subject to selection 

pressures leading to a higher rate of splitting for successful groups. This is modeled by matching 

every group birth with the extinction of a randomly selected group. Arguably they will evolve at 

different paces, and it may well be that a group of cooperators fares better than a group of defectors.  

 

For the sake of concreteness, we will continue to focus on the prisoner’s dilemma, because of its 

resistance to the cooperative equilibrium. In this environment, the population updating of strategies 

takes  place asynchronously, meaning that at any period a single individual is selected for 

re

place at the group level, namely that groups split at rates that are proportional to the average fitness 

of individuals in that group. When a group splits (with probability p), a randomly selected group is 

taken out in order to maintain the population constant. For small p, the fixation probability of a 
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off matrix which accounts for both levels of 

election (individual and at the group level). First note that, since cooperator groups have a constant 

single cooperator in the entire population is given by the fixation probability of a single cooperator 

in a group times the fixation probability of that group. 

 

Utilizing the findings from Nowak (2006) and Langer et al. (2008), and recalling the PD 

formulation in table (1), one can shift attention to a pay

s

payoff b−c, while defector groups have a constant payoff 0, one can think of the between-group 

selection in terms of a payoff matrix as well, as if the groups were playing the following game: 

 

Table 12: between group selection  

 C D 

C ܾ െ ܿ ܾ െ ܿ 

D 0 0 

 

Let m and n be the maximum group size and the maximum number of groups respectively. Nowak 

ws that t e payoffs orresponding to the overall dynamics (stemming from the frequency-

ependent selection at the individual level and from the constant selection at the group level), can 

sho h c

d

be aggregated by simply adding the two matrices multiplied by their respective population sizes. 

This yields a unified payoff matrix whose payoffs summarize all the relevant information, 

  

Table 13: combined matrix accounting for within and between selection 

 C D 

C ሺܾ െ ܿሻሺ݊ ൅ ݉ሻ ܾ݉ െ ܿሺ݉ ൅ ݊ሻ 
D ܾ݊ 0 

 

The rationale behind this way of ag regating payoffs  as follows: for fixation of a new strategy in 

omogeneous population using the other strategy, first the game dynamics within one group (of 

ize n) have to be won and then the game dynamics between m groups have to be won. For weak 

 

g is

a h

s

selection and large m and n, the overall fixation probability is the same as the fixation probability in 

the single game using the combined matrix in table (13) and population size, mn. The stochastic 

process on two levels can be studied by a standard replicator equation using the combined matrix 

(and is work currently in progress). 
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Appendix A: Games utilized in Selten & Chmura; in this paper only games 7 to 12 (non-constant 

sum games) are investigated.  
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