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1 Introduction

The seminal study by Tobin (1965) initiated an influential literature in macroeconomics that
explores the relationship between inflation and economic growth. Studies in this literature have
focused on how inflation affects economic growth via the accumulation of physical capital and/or
human capital.1 However, an important insight from the seminal study by Solow (1956) is that
economic growth is ultimately driven by technological progress. Therefore, it is important
to also understand the effects of inflation in a growth model with endogenous technological
progress. Marquis and Reffett (1994) explore the effects of inflation in the R&D-based growth
model developed by Romer (1990). However, this early study by Marquis and Reffett (1994) and
many subsequent studies in this branch of the literature have mostly focused on a representative-
household setting with homogeneous firms. In this study, we find that the interdependence
between heterogeneous households and heterogeneous firms leads to novel results.
Specifically, we develop a monetary Schumpeterian growth model with heterogeneous firms

and heterogenous households. We model firm heterogeneity in the Schumpeterian quality-
ladder model by assuming that the step size of quality improvements is randomly drawn from a
Pareto distribution. Then, to allow for endogenous firm entry, we assume that R&D entrepre-
neurs need to pay an entry cost to enter the market after observing the step size of their quality
improvements. As a result, an entrepreneur would enter the market if and only if her quality
improvement is sufficiently large, which in turn generates an endogenous distribution of quality
improvements that are implemented. Motivated by the empirical evidence in Piketty (2014),
we consider an unequal distribution of wealth as an important source of income inequality.
Therefore, we model household heterogeneity in the Schumpeterian model by assuming that
households have different levels of wealth in order to generate an endogenous income distrib-
ution. Within this growth-theoretic framework, we explore the effects of monetary policy on
innovation and income inequality. In summary, we find that inflation has an inverted-U effect
on economic growth and income inequality under endogenous firm entry.
The inverted-U effect of inflation on economic growth under endogenous entry of hetero-

geneous firms can be explained as follows. Inflation increases the cost of R&D via the cash-
in-advance (CIA) constraint on R&D and decreases the arrival rate of innovation, which is a
negative effect of inflation on economic growth.2 The lower rate of creative destruction how-
ever increases the expected value of future profits and the market value of inventions, which in
turn lowers the entry threshold for quality improvements. With more inventions being imple-
mented, inflation also has a positive effect on economic growth. These positive and negative
effects together generate an inverted-U effect of inflation on economic growth if the entry cost
is sufficiently large.
Interestingly, this inverted-U effect of inflation on economic growth also leads to an inverted-

U effect of inflation on income inequality in the Schumpeterian model. In our model, income
inequality is increasing in the ratio of wealth income to wage income. Therefore, either an
increase in the real interest rate or an increase in the value of financial assets would increase
income inequality. Given the Euler equation under which the real interest rate is increasing in
the growth rate of consumption, the abovementioned inverted-U effect of inflation on economic
growth causes an inverted-U effect on the real interest rate and hence also an inverted-U effect

1See for example Stockman (1981), Abel (1985), Dotsey and Ireland (1996), Gillman and Kejak (2005), Ho
et al. (2007) and Wong (2016).

2Marquis and Reffett (1994) also find a negative effect of inflation on R&D, which is supported by empirical
evidence based on cross-country panel regressions in Chu et al. (2015).
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on income inequality. Furthermore, inflation has both positive and negative effects on the value
of financial assets. On the one hand, by slowing down the rate of creative destruction, inflation
increases the market value of monopolistic firms, which in turn increases the value of financial
assets. On the other hand, by lowering the entry threshold for quality improvements, inflation
reduces the average step size of quality improvements implemented in the market and decreases
the average markup ratio, which in turn decreases the market values of monopolistic firms and
financial assets. Combining all these effects yields an overall inverted-U effect of inflation on
income inequality, which exists only under endogenous entry of heterogeneous firms. We also
calibrate the model to perform a quantitative analysis and find that our model is able to match
a growth-maximizing inflation rate of 5% and an inequality-maximizing inflation rate of 12%
that are estimated using cross-country panel data. Finally, we simulate the utility-maximizing
inflation rate and explore how it is affected by relative household wealth.
This study relates to the literature on innovation and economic growth. Romer (1990)

develops the seminal R&D-based growth model in which economic growth is driven by the
invention of new products. Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion
and Howitt (1992) develop the Schumpeterian quality-ladder model in which economic growth
is driven by the innovation of higher-quality products. For tractability, these seminal studies
and many subsequent studies assume a constant step size of quality improvement. Important
exceptions include Klette and Kortum (2004) and Minniti et al. (2013). Minniti et al. (2013)
develop a Schumpeterian growth model with random step sizes of quality improvements drawn
from a Pareto distribution.3 This study extends the elegant model in Minniti et al. (2013) by
allowing for a Hopenhayn-Melitz-type entry cost to generate endogenous entry of heterogeneous
firms4 and introducing heterogenous households with different asset holdings. In other words,
this study contributes to the literature by developing a Schumpeterian growth model with two
dimensions of heterogeneity among households and firms.
This study also relates to the literature on innovation and inflation. In this literature, the

seminal study by Marquis and Reffett (1994) analyzes the effects of inflation on innovation in a
variant of the Romer variety-expanding model. Subsequent studies analyze the effects of infla-
tion in the Schumpeterian quality-ladder model; see for example Chu and Lai (2013), Chu and
Cozzi (2014), Chu et al. (2015), He and Zou (2016), Huang et al. (2017), Neto et al. (2017), He
(2018) and Lin et al. (2019).5 However, all these studies feature a constant step size of quality
improvement. As a result, these studies predict a monotonic relationship between inflation
and economic growth, which is different from the inverted-U relationship between inflation and
economic growth often found in empirical studies.6 As a result, Chu et al. (2017) develop a
monetary Schumpeterian growth model with endogenous entry of heterogeneous firms,7 and
they show that their model can generate an inverted-U relationship between inflation and eco-
nomic growth and match empirical estimates of the growth-maximizing inflation rate under

3A recent study by Iwaisako and Ohki (2019) develops a Schumpeterian growth model with random quality
improvements drawn from a uniform distribution.

4See also Baldwin and Robert-Nicoud (2008), Haruyama and Zhao (2008) and Gustafsson and Segerstrom
(2010) who adapt a similar entry cost into the R&D-based growth model with heterogeneous firms, but they do
not consider random increments on the quality ladder.

5See also Funk and Kromen (2010), Benigno and Fornaro (2018) and Oikawa and Ueda (2018), who consider
sticky prices in the Schumpeterian growth model. Our study assumes flexible prices in order to focus on the
effects of inflation on long-run growth.

6See for example Bick (2010) and Lopez-Villavicencio and Mignon (2011) for recent studies.
7See also Arawatari et al. (2018) and Hori (2019) who consider monetary policy in the presence of hetero-

geneity in the productivity of R&D entrepreneurs.
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plausible parameter values. However, all the abovementioned studies feature a representative
household; therefore, they cannot be used to analyze the implications of monetary policy on
the income distribution. Therefore, this study introduces heterogeneous households into this
literature in order to analyze the effects of monetary policy on income inequality in addition to
innovation and economic growth.
This study also relates to the literature on innovation and income inequality. Representative

studies include Chou and Talmain (1996), Li (1998), Zweimuller (2000), Foellmi and Zweimuller
(2006), Kiedaisch (2017), Grossman and Helpman (2018), Jones and Kim (2018) and Aghion et
al. (2019). These studies focus on the relationship between income inequality and innovation.
Our study complements these interesting studies by exploring the effects of monetary policy on
innovation and income inequality. Chu and Cozzi (2018) explore the effects of R&D subsidies
and patent policy on income inequality, but not monetary policy. More importantly, Chu
and Cozzi (2018) focus on a Schumpeterian growth model with a constant step size of quality
improvement. We show that endogenous entry of heterogeneous firms is necessary for the
emergence of an inverted-U effect of inflation on income inequality that is consistent with our
empirical finding.8

In the New Keynesian literature, recent studies such as McKay and Reis (2016) and Kaplan
et al. (2018) introduce heterogeneous agents into the standard New Keynesian model to explore
the effects of government policies on inequality via nominal rigidity. In the New Monetarist
literature, studies have also introduced heterogeneous agents into the search-theoretic monetary
model to explore the effects of inflation on inequality via search and matching frictions; see
Rocheteau et al. (2018) for a recent study and a discussion of earlier studies. Our study differs
from these interesting studies by exploring the effects of inflation on inequality in a monetary
Schumpeterian growth model with heterogeneous agents in which inflation affects inequality via
R&D and innovation. In other words, we focus on the long-run effects of monetary policy on the
macroeconomy, which complement the interesting effects, emphasized by the New Keynesian
model and the search-theoretic monetary model, at different time horizons.
The rest of this study is organized as follows. Section 2 presents the model and solves the

market equilibrium of the aggregate economy. Section 3 explores the distributions of wealth
and income. Section 4 analyzes the effects of monetary policy. Section 5 provides a quantitative
analysis. Section 6 concludes. Proofs are relegated to the appendix.

2 A Schumpeterian model with heterogeneous firms and

heterogeneous households

The Schumpeterian quality-ladder model is based on Aghion and Howitt (1992) and Grossman
and Helpman (1991). We consider the monetary Schumpeterian growth model in Chu et al.
(2017) featuring (a) a CIA constraint on R&D,9 (b) lab-equipment specifications for innovation
and entry that use final good as the input, (c) random quality improvements as in Minniti
et al. (2013) and (d) a fixed entry cost that generates endogenous entry of heterogeneous
firms as in Hopenhayn (1992) and Melitz (2003). Furthermore, we follow Chu and Cozzi

8See also Natob (2015) who finds an inverted-U effect of inflation on income inequality using dynamic panel
regressions with cross-country data.

9See Chu et al. (2015) for a discussion of empirical evidence for the presence of cash requirements on R&D
and also Berentsen et al. (2012) for a discussion of theoretical justifications and microfoundations.
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(2018) to introduce heterogeneous households with different asset holdings into the monetary
Schumpeterian model.

2.1 Households

There is a unit continuum of households, which are indexed by h ∈ [0, 1]. They have identical
homothetic preferences over consumption ct(h) but own different levels of wealth.

10 Household
h has the following utility function:

u(h) =

∫
∞

0

e−ρt ln ct(h)dt, (1)

where the parameter ρ > 0 is the subjective discount rate.
Household h supplies one unit of labor to earn wage income wt and maximizes utility u(h)

subject to
ȧt(h) + ṁt(h) = rtat(h)− πtmt(h) + itbt(h) + wt + τ t − ct(h). (2)

at(h) is the real value of financial assets (i.e., equity of monopolistic firms) owned by household
h, and rt is the real interest rate. mt(h) is the real value of cash holdings of household h, and πt
is the inflation rate. bt(h) is the amount of cash borrowed from household h by entrepreneurs
for R&D, and it is the nominal interest rate.

11 The CIA constraint is given by bt(h) ≤ mt(h).
Finally, the government provides a lump-sum transfer τ t to each household.

12

From standard dynamic optimization, household h’s consumption path is given by

ċt(h)

ct(h)
= rt − ρ, (3)

which shows that the growth rate of consumption is the same across households such that
ċt(h)/ct(h) = ċt/ct for all h ∈ [0, 1], where ct ≡

∫ 1
0
ct(h)dh denotes aggregate consumption.

Therefore, the growth rate of aggregate consumption is also given by

ċt
ct
= rt − ρ. (4)

2.2 Final good

Final good yt is produced by a unit continuum of competitive firms using the following Cobb-
Douglas production function:

yt = L
θ
tK

1−θ
t , (5)

10Due to the households’ homothetic preferences, the aggregate economy behaves as if there is a representative
household; see for example Caselli and Ventura (2000). Nevertheless, the heterogeneity in wealth holdings still
enables us to explore the endogenous distribution of income.
11It can be shown as a no-arbitrage condition that the rate of return on borrowing bt(h) must equal rt + πt.
12The transfer is financed by seigniorage. Alternatively, we can assume that seigniorage is used to finance

a public good, in which case all our analytical results would be the same so long as the (potentially utility-
enhancing) public good is non-productive.
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where Lt is labor input and θ ∈ (0, 1) measures labor intensity in production. Kt is a composite
of a unit continuum of differentiated intermediate goods kt(j) given by

Kt = exp

(∫ 1

0

ln kt(j)dj

)
. (6)

From profit maximization using (5), the conditional demand function for Lt is

wtLt = θyt. (7)

From profit maximization using (5) and (6), the conditional demand function for kt(j) is

pt(j)kt(j) = (1− θ) yt, (8)

where pt(j) is the price of kt(j).
13

2.3 Intermediate goods

There is a unit continuum of industries indexed by j ∈ [0, 1]. In each industry j, there is a
monopolistic industry leader, who holds a patent on the latest technology and dominates the
market until the arrival of the next innovation.14 The production function of the leader in
industry j is

kt(j) = qt(j, ωj)xt(j), (9)

where qt(j, ωj) is the quality-level of the leader in industry j and ωj is an integer denoting the
quality vintage of the intermediate goods produced by the leader in industry j. xt(j) is the
quantity of input j produced using final good with an one-to-one technology (i.e., xt(j) units of
final good produce xt(j) units of input j). From Bertrand competition, the equilibrium price
of kt(j) is a markup over the marginal cost 1/qt(j, ωj) given by

pt(j) =
λt(j)

qt(j, ωj)
, (10)

where the markup ratio λt(j) ≡ qt(j, ωj)/qt(j, ωj − 1) is determined by the size of the quality
improvement by the leader in industry j. The equilibrium level of monopolistic profit is

Πt(j) =

[
λt(j)− 1

λt(j)

]
pt(j)kt(j) =

[
λt(j)− 1

λt(j)

]
(1− θ)yt ≡ Πt(λ), (11)

where the second equality uses (8).

2.4 R&D and entry

In this section, we present the three steps of innovation. First, an entrepreneur invents a
higher quality product. Then, the size of the quality improvement is randomly drawn from a
Pareto distribution. Finally, if and only if the quality improvement is sufficiently large, then
the entrepreneur would pay a fixed entry cost to enter the market.

13Here pt(j) is denominated in units of the final good.
14See Cozzi (2007) for a discussion of the Arrow replacement effect.
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2.4.1 Invention

R&D is performed by competitive entrepreneurs. If an entrepreneur employs Rt(j) units of
final good to engage in innovation in industry j, then she would succeed in inventing the next
higher-quality product in the industry with an instantaneous probability φt(j) given by

φt(j) = Rt(j)/αt. (12)

To ensure balanced growth, αt ≡ αQ
(1−θ)/θ
t measuring the difficulty of R&D is increasing the

aggregate technology level Qt,
15 which is defined as

Qt ≡ exp

(∫ 1

0

ln qt(j, ωj)dj

)
. (13)

To facilitate the payment of Rt(j), the entrepreneur needs to borrow the amount ζRt(j) of cash
from households, where ζ ∈ (0, 1] is the CIA parameter. The borrowing cost is determined
by the nominal interest rate it. Therefore, the total cost of R&D is (1 + ζit)Rt(j). Let’s use
vet (j, ωj + 1) to denote the expected value of an invention before the realization of the size of
its quality improvement. The R&D condition is given by

φt(j)v
e
t (j, ωj + 1) = (1 + ζit)Rt(j)⇔ vet (j, ωj + 1) = (1 + ζit)αQ

(1−θ)/θ
t . (14)

2.4.2 Random quality improvements

We follow Minniti et al. (2013) to assume that when an R&D entrepreneur invents a higher-
quality product in industry j, the quality step size λt(j) > 1 is randomly drawn from a station-
ary Pareto distribution with the following probability density function:

f(λ) =
1

κ
λ−

1+κ
κ , (15)

where the parameter κ ∈ (0, 1) determines the shape of the Pareto distribution. Given that the
expected value of λt(j) is equal across industries, (11) implies that the expected value Π

e
t (j) of

monopolistic profit Πt(j) is also the same across industries such that Π
e
t (j) = Π

e
t for j ∈ [0, 1].

Therefore, we follow the standard treatment to focus on the symmetric equilibrium in which
the arrival rate of innovation is equal across industries, such that φt(j) = φt for j ∈ [0, 1].

16 As
a result, the expected value of an invention does not depend on j such that vet (j, ωj + 1) = v

e
t

for j ∈ [0, 1].

2.4.3 Endogenous firm entry

Following Hopenhayn (1992) and Melitz (2003), we consider a fixed entry cost to generate an
endogenous entry of heterogeneous firms. Let’s denote vt(λ) as the ex post value of an invention
(i.e., after the realization of the quality step size λ). In this case, the entry condition is

vt(λ) ≥ βt, (16)

15Venturini (2012) provides empirical evidence for the presence of increasing R&D difficulty.
16Cozzi et al. (2007) provide a theoretical justification for the symmetric equilibrium to be the unique

rational-expectation equilibrium in the Schumpeterian model.
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where the entry cost βt = βQ
(1−θ)/θ
t is proportional toQ

(1−θ)/θ
t to ensure balanced growth. Given

that Πt(λ) is increasing in λ, there exists a threshold quality level λ̃t above which vt(λ) ≥ βt
for all λ ≥ λ̃t. Also, it can be shown that vt(λ)/Q

(1−θ)/θ
t is stationary in equilibrium. Then,

Lemma 1 shows that the threshold quality level λ̃ in vt(λ̃) = βt is stationary.

Lemma 1 There exists a unique and stationary threshold quality level λ̃t = λ̃ for all t.

Proof. See Appendix A.

Given the stationary threshold λ̃, Lemma 2 derives the no-arbitrage condition for the ex-

pected value vet of an invention. In (17), Pr(λ ≥ λ̃) = λ̃
−1/κ

is the probability that a randomly
drawn quality step size is larger than the threshold λ̃.

Lemma 2 The no-arbitrage condition for the expected value vet of an invention is

rt =
Πet + v̇

e
t + Pr(λ ≥ λ̃)β̇t − Pr(λ ≥ λ̃)φt[v

e
t + Pr(λ ≥ λ̃)βt]

vet + Pr(λ ≥ λ̃)βt
. (17)

Proof. See Appendix A.

2.5 Monetary authority

We consider the nominal interest rate it as the policy instrument, which is exogenously set by
the monetary authority. The Fisher equation is given by it = πt + rt, where πt ≡ Ṗt/Pt is
the inflation rate and Pt is the price level of final good. Given the aggregate nominal money
balance Mt ≡ Ptmt, the growth rate of the aggregate nominal money balance is

µt ≡
Ṁt

Mt

= πt +
ṁt

mt

= it − rt +
ṁt

mt

= it − ρ−
ċt
ct
+
ṁt

mt

, (18)

where the last equality uses the aggregate consumption path in (4). It can be shown that given a
stationary nominal interest rate i, aggregate consumption ct and aggregate real money balance
mt grow at the same rate on the balanced growth path. Therefore, on the balanced growth
path, the growth rate of the nominal money balance is determined by the nominal interest rate
such that µ = i − ρ. The government uses the seigniorage revenue Ṁt to finance a lump-sum
transfer τ t that has a real value given by

τ t =
Ṁt

Pt
= µt

Mt

Pt
, (19)

which yields τ t = (i− ρ)mt on the balanced growth path.
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2.6 Decentralized equilibrium

The equilibrium is a time path of allocations {ct(h), at(h),mt(h), bt(h), yt, Lt, kt(j), xt(j), Rt(j)},
a time path of prices {wt, rt, pt(j), vt(λ)} and a time path of policies {it, τ t}. Also, at each
instance of time, the following conditions hold:

• household h ∈ [0, 1] maximizes utility taking {wt, rt, it, τ t} as given;

• competitive firms produce final good yt to maximize profit taking prices as given;

• monopolistic firm j ∈ [0, 1] produces intermediate good kt(j) and chooses {xt(i), pt(j)} to
maximize profit;

• competitive R&D entrepreneurs choose Rt(j) to maximize expected profit taking vt(λ) as
given;

• the market-clearing condition for labor holds such that Lt = 1;

• the market-clearing condition for final good holds such that
∫ 1
0
ct(h)dh +

∫ 1
0
xt(j)dj +

∫ 1
0
Rt(j)dj + λ̃

−1/κ
φtβt = yt;

• the total amount of cash owned by households equals the amount of cash borrowed by
entrepreneurs such that

∫ 1
0
mt(h)dh =

∫ 1
0
bt(h)dh = ζ

∫ 1
0
Rt(j)dj;

• the total value of assets owned by households equals the value of all monopolistic firms
such that

∫ 1
0
at(h)dh =

∫ 1
0
vt(j)dj ≡ vt;

• the monetary authority uses seigniorage to finance a lump-sum transfer τ t = Ṁt/Pt.

2.7 Aggregate economy

First, we derive the growth rate of aggregate technology Qt by differentiating the log of (13)
with respect to time and using the law of large numbers:

Q̇t
Qt
=

[∫ 1

0

lnλt(j)dj

]
Pr(λ ≥ λ̃)φt =

[∫
∞

λ̃

(lnλ) f̃(λ)dλ

]
λ̃
−1/κ

φt = (ln λ̃+ κ)λ̃
−1/κ

φt, (20)

where λ̃
−1/κ

φt is the composite arrival rate of implementable quality improvements and κ+ln λ̃
is the average step size of implemented quality improvements. As for the truncated density
function f̃(λ) due to the threshold λ̃, it is defined as

f̃(λ) ≡
f(λ)∫

∞

λ̃
f(λ)dλ

= λ̃
1
κf(λ). (21)

For the rest of the analysis, we assume that the distribution of quality step sizes in production
is also given by f̃(λ).17 Then, we derive the aggregate production function for yt in Lemma 3.

17This assumption can be microfounded. For example, when the quality threshold decreases, some previously
invented products, which are below the previous threshold but above the new threshold, would enter the market
immediately. Similarly, when the quality threshold increases, some previously invented products, which are
above the previous threshold but below the new threshold, would exit the market immediately if the scrap value
of exiting a market, before a product is replaced by a higher-quality product, is also βt.
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Lemma 3 The aggregate production function for yt is given by

yt =

(
1− θ

λ̃eκ
Qt

) 1−θ
θ

. (22)

Proof. See Appendix A.

The aggregate production function in (22) implies that the growth rate of aggregate output
yt is given by

gt ≡
ẏt
yt
=
1− θ

θ

Q̇t
Qt
=
1− θ

θ
(ln λ̃+ κ)λ̃

−1/κ
φt, (23)

where the last equality uses (20). Lemma 4 shows that given a stationary nominal interest rate
i, the aggregate economy is on a unique and stable balanced growth path along which φ and g
are also stationary.

Lemma 4 The aggregate economy is on a unique and stable balanced growth path.

Proof. See Appendix A.

The no-arbitrage condition for the ex-post value of an invention with λ ≥ λ̃ is given by

Πt(λ)

vt(λ)
= r + λ̃

−1/κ
φ−

v̇t(λ)

vt(λ)
= ρ+ λ̃

−1/κ
φ, (24)

where the last equality uses the aggregate consumption path in (4) and the property that ct
and vt both grow at the steady-state equilibrium growth rate in (23). Then, substituting (11)

and (24) into the entry condition vt(λ̃) = βQ
(1−θ)/θ
t , we obtain

(
λ̃− 1

λ̃

)
1

β
=
(ρ+ λ̃

−1/κ
φ)Q

(1−θ)/θ
t

(1− θ)yt
. (25)

From (17), the equilibrium value of vet on the balanced growth path is determined by

Πet

vet + λ̃
−1/κ

βt

= rt + λ̃
−1/κ

φ−
v̇et + λ̃

−1/κ
β̇t

vet + λ̃
−1/κ

βt

= ρ+ λ̃
−1/κ

φ, (26)

where the last equality uses the aggregate consumption path in (4) and the property that ct,
vet and βt all grow at the steady-state equilibrium growth rate in (23). The expected value of
monopolistic profit is given by

Πet =

[∫
∞

λ̃

(
λ− 1

λ

)
f(λ)dλ

]
(1− θ)yt =

[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]

(1− θ)yt. (27)

Substituting (26) and (27) into the R&D condition in (14) yields

[
λ̃− 1/(1 + κ)

λ̃
1+κ
κ

]
1

(1 + ζi)α + λ̃
−1/κ

β
=
(ρ+ λ̃

−1/κ
φ)Q

(1−θ)/θ
t

(1− θ)yt
. (28)
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Combining (25) and (28), we obtain the following condition:

(λ̃− 1)λ̃
1/κ
=
β

α

κ

1 + κ

1

1 + ζi
, (29)

where the left-hand side is monotonically increasing in λ̃. Therefore, (29) implicitly determines
the unique equilibrium value of λ̃ as a decreasing function in the nominal interest rate i. Using
(22), (25) and (29), we obtain the following condition:

λ̃
−1/κ

φ =
λ̃
−(1/κ+1/θ)

1 + ζi

κ

1 + κ

(1− θ)1/θ

αeκ(1−θ)/θ
− ρ, (30)

which determines the unique equilibrium value of the composite innovation rate λ̃
−1/κ

φ. The
right-hand side of (30) is decreasing in the nominal interest rate i for a given value of λ̃; however,

λ̃ is also decreasing in i. Therefore, the overall effect of i on λ̃
−1/κ

φ is ambiguous. The following

proposition from Chu et al. (2017) summarizes the overall effects of i on λ̃
−1/κ

φ and g.

Proposition 1 If the entry cost parameter β is sufficiently large (small), then the nominal
interest rate i has an inverted-U effect (a monotonically negative effect) on the composite inno-

vation rate λ̃
−1/κ

φ and the equilibrium growth rate g.

Proof. See Appendix A.

Intuitively, when the entry cost β is zero, the nominal interest rate i has no effect on the
distribution of quality improvements that are implemented because all firms enter the market.
In this case, the entry threshold becomes λ̃ = 1, and the equilibrium growth rate g = 1−θ

θ
κφ

is monotonically decreasing in the nominal interest rate i via the innovation arrival rate φ.
However, when the entry cost β is positive, the nominal interest rate i affects the entry threshold

λ̃ in addition to the innovation arrival rate φ. In this case, Pr(λ ≥ λ̃) = λ̃
−1/κ

is increasing
in the nominal interest rate i because an increase in the nominal interest rate i reduces the
entry threshold λ̃ and leads to more quality improvements being implemented. Intuitively, the
nominal interest rate i has a negative effect on the arrival rate φ of future innovations, which
in turn increases the expected value of the profit stream generated by an implemented quality
improvement and decreases the minimum quality step size that makes incurring the entry cost
profitable. Overall, the effects of the nominal interest rate i on the composite innovation rate

λ̃
−1/κ

φ and the equilibrium growth rate g = 1−θ
θ
(ln λ̃+ κ)λ̃

−1/κ
φ become ambiguous and follow

an inverted-U pattern when the entry cost β is sufficiently large.

3 Wealth and income distributions

In this section, we show that the wealth distribution is stationary and determined by its initial
distribution. Then, we show that the income distribution is also stationary but endogenously
affected by the nominal interest rate.
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3.1 Wealth distribution

In equilibrium, household h ∈ [0, 1] lends all its cash to entrepreneurs such that mt(h) = bt(h).
Substituting this condition into (2) yields

ȧt(h) + ḃt(h) = rt[at(h) + bt(h)] + wt + τ t − ct(h), (31)

where we have also used the Fisher equation rt = it − πt. Aggregating (31) for all h, we have

ȧt + ḃt = rt(at + bt) + wt + τ t − ct. (32)

Let’s denote zt(h) ≡ at(h) + bt(h) as household h’s wealth, which consists of financial assets
and bond holdings. Then, we define sz,0(h) ≡ z0(h)/z0 as the initial share of wealth owned
by household h, and sz,0(h) is given at time 0. We consider a general distribution function of
initial wealth share with a mean of one and a standard deviation of σz > 0.
Taking the log of wealth share sz,t(h) ≡ zt(h)/zt at time t and differentiating the resulting

expression with respect to time yield

ṡz,t(h)

sz,t(h)
=
żt(h)

zt(h)
−
żt
zt
=
ct − wt − τ t

zt
−
ct(h)− wt − τ t

zt(h)
. (33)

Then, (33) can be re-expressed as

ṡz,t(h) =
ct − wt − τ t

zt
sz,t(h)−

sc,t(h)ct − wt − τ t
zt

, (34)

where sc,t(h) ≡ ct(h)/ct is the share of consumption by household h at time t. Taking the log
of sc,t(h) and differentiating the resulting expression with respect to time yield

ṡc,t(h)

sc,t(h)
=
ċt(h)

ct(h)
−
ċt
ct
. (35)

Given that ċt(h)/ct(h) = ċt/ct from (3) and (4), (35) becomes ṡc,t(h) = 0 for all t, which in turn
implies sc,t(h) = sc,0(h) for all t.

18 Given that {at, bt, zt, ct, wt, τ t} all grow at the same rate
g on the balanced growth path, (34) represents a one-dimensional differential equation, which
describes the potential evolution of sz,t(h) given an initial sz,0(h). In Appendix A, we show that
the coefficient on sz,t(h) in (34) is positive and equal to ρ. Together with the fact that sz,t(h) is
a state variable, the only solution consistent with long-run stability is ṡz,t(h) = 0 for all t, which
is achieved by consumption share sc,t(h) jumping to its steady-state value shown in Appendix
A. Lemma 5 shows that as an equilibrium outcome, the wealth distribution is stationary and
remains the same as the initial distribution, which is given at time 0.19

Lemma 5 The wealth share of household h ∈ [0, 1] is given by sz,t(h) = sz,0(h) for all t.

Proof. See Appendix A.

18sc,0(h) is an endogenous variable to be determined in Appendix A.
19See also Garcia-Penalosa and Turnovsky (2006) who show the stationarity of the wealth distribution in an

AK growth model.
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3.2 Income distribution

From (31), income earned by household h is given by

It(h) = rtzt(h) + wt. (36)

Aggregating (36) yields total income earned by all households given by

It = rtzt + wt. (37)

Combining (36) and (37) yields the share of income earned by household h given by

sI,t(h) ≡
It(h)

It
=
sz,0(h) rtzt + wt

rtzt + wt
, (38)

which also uses zt(h) = sz,t(h)zt = sz,0(h)zt from Lemma 5. The distribution function of income
share sI,t(h) has a mean of one and the following standard deviation:

σI,t ≡

√∫ 1

0

[sI,t(h)− 1]2dh =
rtzt

rtzt + wt

√∫ 1

0

[sz,0(h)− 1]2dh =
rtzt/wt

1 + rtzt/wt
σz, (39)

which is also the coefficient of variation of income and is increasing in rtzt/wt. As discussed in
Chu and Cozzi (2018), income inequality σI,t is increasing in rtzt/wt because an unequal distri-
bution of wealth is the source of income inequality in the model. Therefore, whenever interest
income rtzt increases relative to wage income wt, the degree of income inequality increases.

Lemma 6 Income inequality is increasing in the ratio of interest income to wage income.

Proof. Equation (39) shows that σI,t is increasing in rtzt/wt.

Recall that total wealth is given by zt = at + bt. The amount of financial assets at in the
economy is given by

at = vt =

∫
∞

λ̃

vt(λ)f̃(λ)dλ =
[
λ̃
1/κ
(1 + ζi)α + β

]
Q
(1−θ)/θ
t , (40)

which uses
∫
∞

λ̃t
vt(λ)f(λ)dλ = (1 + ζi)αt + λ̃

−1/κ

t βt. Using (7), (22) and (40), we derive

a

w
=
[
λ̃
1/κ
(1 + ζi)α + β

] (λ̃eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
. (41)

The amount of borrowing bt in the economy is given by

bt = ζRt = ζαQ
(1−θ)/θ
t φt, (42)

where the last equality uses (12). Using (7), (22) and (42), we derive

b

w
= ζαφ

(λ̃eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
. (43)

Using (4), (41) and (43), we derive the ratio of total interest income to wage income as

rz

w
=
r(a+ b)

w
= (ρ+ g)

[
λ̃
1/κ
(1 + ζi)α + β + ζαφ

] (λ̃eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
, (44)

where the growth rate g, the quality threshold λ̃ and the innovation arrival rate φ are determined
by (23), (29) and (30), respectively.
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4 Monetary policy on growth and inequality

In this section, we explore the effects of monetary policy on economic growth and income
inequality. We begin by exploring the relationship between the inflation rate and the nominal
interest rate. From the Fisher equation, the inflation rate is given by

π = i− r = i− g(i)− ρ, (45)

where the last equality uses (4). Differentiating the steady-state equilibrium inflation rate π in
(45) with respect to the nominal interest rate i yields

∂π

∂i
= 1−

∂g(i)

∂i
. (46)

Therefore, so long as ∂g(i)/∂i < 1, the relationship between the steady-state equilibrium in-
flation rate and the nominal interest rate is positive.20 This positive long-run relationship
between the inflation rate and the nominal interest rate is supported by empirical studies such
as Mishkin (1992) and Booth and Ciner (2001). In the following sections, we explore the ef-
fects of the nominal interest rate on economic growth and income inequality. It is useful to
note that any relationship between the nominal interest rate and growth/inequality would also
apply to inflation and growth/inequality given the positive relationship between inflation and
the nominal interest rate.

4.1 Monetary policy under a zero entry cost

We first consider the case of a zero entry cost β = 0. In this case, the threshold quality level
becomes λ̃ = 1. Then, the equilibrium growth rate in (23) becomes g = 1−θ

θ
κφ, where the

innovation arrival rate φ in (30) simplifies to

φ =
1

1 + ζi

κ

1 + κ

(1− θ)1/θ

αeκ(1−θ)/θ
− ρ, (47)

which is decreasing in the nominal interest rate i. As for the effect of the nominal interest rate
i on income inequality, we know from Lemma 6 that we simply have to examine how i affects
the ratio of total interest income to wage income in (44). We begin by examining separately
the effects of i on ra/w and rb/w.
Under a zero entry cost, the ratio of asset interest income to wage income simplifies to

ra

w
=

(
ρ+

1− θ

θ
κφ

)
1

ρ+ φ

κ

1 + κ

1− θ

θ
, (48)

which uses (4), (41) and (47). Recall that the innovation arrival rate φ is decreasing in the
nominal interest rate i. Therefore, (48) shows that the nominal interest rate i has two opposing
effects on the ratio ra/w of asset interest income to wage income. First, an increase in i reduces
the real interest rate r = ρ + 1−θ

θ
κφ by decreasing innovation and the equilibrium growth

rate. This corresponds to the interest-rate effect of innovation on income inequality identified

20Under our calibrated parameter values, the equilibrium inflation rate is indeed increasing in the nominal
interest rate.

14



in Chu and Cozzi (2018), who consider R&D subsidies instead of monetary policy. Second,
an increase in i reduces the rate of creative destruction and raises the asset-wage ratio a/w.
This corresponds to the asset-value effect of innovation on income inequality in Chu and Cozzi
(2018). Equation (48) shows that as ρ → 0, the two effects cancel each other. For the more
general case with ρ > 0, differentiating ra/w in (48) with respect to i yields the following result:

∂ra/w

∂i
> 0⇔ κ <

θ

1− θ
. (49)

Therefore, the positive asset-value effect of i on income inequality dominates the negative
interest-rate effect of i on income inequality if and only if κ < θ/(1− θ). This result generalizes
the one in Chu and Cozzi (2018), who consider a symmetric quality step size and find that the
asset-value effect of R&D subsidies dominates the interest-rate effect of R&D subsidies if and
only if the quality step size is sufficiently small. In the case of asymmetric quality step sizes,
the average quality step size is increasing in κ. Therefore, a small value of κ implies a small
average quality step size, under which the asset-value effect dominates the interest-rate effect
of monetary policy on income inequality.
Under a zero entry cost, the ratio of bond interest income to wage income simplifies to

rb

w
=

(
ρ+

1− θ

θ
κφ

)
ζφ

α(eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
, (50)

which uses (4) and (43). Equation (50) shows that the ratio rb/w of bond interest income to
wage income is increasing in the innovation arrival rate φ, which in turn is decreasing in the
nominal interest rate i. The first negative effect is that an increase in i reduces the real interest
rate r = ρ + 1−θ

θ
κφ by decreasing innovation and the equilibrium growth rate. The second

negative effect is that an increase in i decreases R&D and the amount of borrowing, which in
turn decreases the bond-wage ratio b/w.
Combining (48) and (50) yields the ratio of total interest income to wage income given by

rz

w
=

(
ρ+

1− θ

θ
κφ

)[
1

ρ+ φ

κ

1 + κ

1− θ

θ
+ ζφ

α(eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ

]
. (51)

As ρ → 0, the two effects of the nominal interest rate i on the ratio ra/w of asset interest
income to wage income cancel each other. In this case, we are left with the negative effects
of i on the ratio rb/w of bond interest income to wage income. For the more general case in
which ρ > 0, the overall effect of i on rz/w depends on the relative value of κ and θ/(1 − θ).
If κ > θ/(1 − θ), then the effects of i on ra/w and rb/w are both negative. In this case, the
overall effect of the nominal interest rate on income inequality is negative. If κ < θ/(1 − θ),
then the effect of i on ra/w is positive whereas the effect of i on rb/w is negative. In this case,
the overall effect of the nominal interest rate on income inequality can be positive, negative or
U-shaped. Proposition 2 summarizes these results.

Proposition 2 Given a zero entry cost parameter β, an increase in the nominal interest rate
has the following effects: (a) it has a negative effect on income inequality if κ > θ/(1− θ) and
(b) it may have a positive, negative or U-shaped effect on income inequality if κ < θ/(1− θ).

Proof. See Appendix A.
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4.2 Monetary policy under a positive entry cost

We now consider the general case of a positive entry cost β > 0. Recall that the effects of the
nominal interest rate on income inequality depend on how it affects the ratio of total interest
income to wage income, which depends on r, a/w and b/w. Proposition 1 shows that the nominal
interest rate has an inverted-U effect on the equilibrium growth rate under a sufficiently large
entry cost β. Therefore, the nominal interest rate also has an inverted-U effect on the real
interest rate r = ρ + g under a sufficiently large entry cost β. It is useful to note that this
interest-rate effect works through the quality threshold λ̃ in addition to the innovation arrival
rate φ in the previous section and in Chu and Cozzi (2018).
We now consider how the nominal interest rate affects the asset-wage ratio a/w. Substituting

(29) and (30) into (41) yields

a

w
=

1

ρ+ λ̃
−1/κ

φ

λ̃− 1/(1 + κ)

λ̃

1− θ

θ
, (52)

where the quality threshold λ̃ > 1 is determined by (29) and decreasing in the nominal interest
rate i. In the previous section with β = 0, the quality threshold is simply λ̃ = 1. In this special
case, the positive asset-value effect works through the innovation arrival rate φ, which in turn
is decreasing in i. However, in the more general case with β > 0, the asset-value effect also
works through the quality threshold λ̃ via two channels. First, as explained in the discussion of
Proposition 1, an increase in the nominal interest rate i reduces the entry quality threshold λ̃,

which in turn leads to more innovations being implemented and increases λ̃
−1/κ

in the composite

creative destruction rate λ̃
−1/κ

φ. This effect works to decrease a/w as shown in (52). Second,
the lower average quality step size also reduces the average markup ratio and the average value
of monopolistic firms, which in turn decreases a/w. It is useful to note that these negative
asset-value effects have the opposite sign as the one in the previous section by working through
a different channel that is the quality threshold λ̃, which is absent in Chu and Cozzi (2018).
We now consider how the nominal interest rate affects the bond-wage ratio b/w. Substituting

(29) and (30) into (43) yields

b

w
= ζαλ̃

1/κ

[
λ̃− 1

λ̃
1/θ

(1− θ)1/θ

βeκ(1−θ)/θ
− ρ

]
(λ̃eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
. (53)

Equation (53) shows that the nominal interest rate i affects b/w through λ̃ via multiple channels.
The main effect is similar to and complements the one in the previous section but once again
works through a different channel that the nominal interest rate reduces the quality threshold
and the average quality step size, which in turn decreases the average markup ratio and the
expected value of monopolistic profits. This general-equilibrium effect in turn reinforces the
direct negative direct of i on R&D and the amount of borrowing as well as the bond-wage ratio
b/w.
In Section 4.1, we find that in the case of a zero entry cost β = 0 and a positive discount

rate ρ > 0, an increase in the nominal interest rate has both positive and negative effects on
income inequality. In this section, we find that in the case of a positive entry cost β > 0, an
increase in the nominal interest rate has additional effects on income inequality via endogenous
firm entry. Therefore, when the entry cost β and the discount rate ρ are both positive and
the CIA parameter ζ, which determines the effects of the nominal interest rate, is sufficiently
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large, we find that an increase in the nominal interest rate has a potentially inverted-U effect
on income inequality. Specifically, Proposition 3 shows that the effect of the nominal interest
rate on income inequality is firstly increasing and eventually decreasing.

Proposition 3 If the product of the discount rate and the entry cost (i.e., ρβ) is positive
and the CIA parameter ζ is sufficiently large, then income inequality is firstly increasing and
eventually decreasing in the nominal interest rate i.

Proof. See Appendix A.

It is important to note that this inverted-U effect of the nominal interest rate on income
inequality is different from the U-shaped effect under a zero entry cost β = 0 in Proposition
2. Therefore, without the entry cost, it is impossible for the model to generate an inverted-U
effect on income inequality. The reason is that as Proposition 1 shows, the nominal interest
rate has an inverted-U effect on the equilibrium growth rate if and only if the entry cost β is
sufficiently large. In other words, endogenous firm entry is necessary for the emergence of an
inverted-U effect of the nominal interest rate on economic growth, which in turn generates an
inverted-U effect on income inequality that is otherwise absent without endogenous firm entry.
The main mechanisms behind this inverted-U effect on income inequality can be summarized

as follows. Given that the real interest rate is increasing in the growth rate of consumption,
the inverted-U effect of the nominal interest rate on economic growth causes an inverted-U
effect on the real interest rate. Furthermore, the nominal interest rate has both positive and
negative effects on the value of assets. On the one hand, by slowing down the innovation arrival
rate, the nominal interest rate increases the market value of monopolistic firms, which in turn
increases the value of assets. On the other hand, by lowering the entry threshold for quality
improvements, the nominal interest rate reduces the average step size of implemented quality
improvements and decreases the average markup ratio, which in turn decreases the market
values of monopolistic firms and assets. Combining all these effects yields an overall inverted-U
effect of the nominal interest rate on income inequality, which exists only under endogenous
entry of heterogeneous firms.

5 Quantitative analysis

In this section, we provide a quantitative analysis. In Section 5.1, we use cross-country data to
estimate the empirical effects of inflation on economic growth and income inequality. In Section
5.2, we calibrate the model to data and our regression estimates before simulating the effects
of inflation. Section 5.3 explores how the wealth holdings of households could affect inflation
and growth.
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5.1 Empirical estimation

To facilitate the subsequent calibration, we first provide an empirical estimation of the effects
of inflation on economic growth and income inequality. Here we use cross-country panel data
to estimate the following regressions:

git = γ1πit + γ2π
2
it + ΓXit + δi + εit,

σit = ω1πit + ω2π
2
it + ΩXit + δi + εit,

where git denotes the growth rate of real GDP in country i at time t, πit denotes the inflation
rate from the Consumer Price Index in country i at time t, and σit denotes income inequality
in country i at time t. The Gini index, which is a conventional measure of income inequality,
is collected from the World Income Inequality Database (WIID) version 3.4. This database
also provides information on the income share of each decile group; e.g., the first decile group
includes the poorest 10% of the population, whereas the tenth decile group includes the richest
10%. We calculate the ratio of income between the top group and the bottom group as an
alternative measure of income inequality. Xit is a vector of the following control variables: a
constant, the degree of openness, the unemployment rate, and investment risks. We follow
Fan and Gao (2017) to use the investment profile index and the corruption index from the
International Country Risk Guide to measure investment risks.21 δi and δi are the country
fixed effects.22 Summary statistics for all variables are reported in Appendix B.
To be consistent with our innovation-driven growth model, we focus on high-income coun-

tries and consider the data from 1995 to 2014. Since the difference between the maximum and
the minimum values of the inflation rate in a few countries are too high (which are close to
the value of hyperinflation rate and much higher than the value of galloping inflation rate),
we delete the top 15% outliers.23 In the first three columns, we define high-income countries
according to the definition given by the WIID. In the last three columns, we define high-income
countries according to the classification given by the World Bank (WB). Table 1 shows that the
overall effects of inflation on economic growth and income inequality follow an inverted-U pat-
tern. The growth-maximizing inflation rate is about 5%,24 whereas the inequality-maximizing
inflation rate is about 12%.25

One concern about our benchmark (reduced-form) regression results is that the nominal
interest rate could enter both in the error term and inflation, which may lead to an endogeneity
problem and bias our results. To address this issue, we use the lending interest rate collected
from CEIC database as an instrumental variable for the inflation rate. As reported in Appendix
B, the results are still robust and the threshold values are similar to the ones in Table 1.

21We rescale these two indexes into a number between zero and ten.
22If we control year fixed effects instead, our results (available upon request) still hold.
23If we delete the top 5% or 10% or 20% outliers instead, the results are still significant.
24This value is between the estimates reported in Bick (2010) and Lopez-Villavicencio and Mignon (2011).
25This estimate is much lower than the estimate in Natob (2015), who however focuses on developing countries.
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Table 1: Effects of inflation on economic growth and income inequality

WIID WB

growth income inequality growth income inequality

(1) (2) (3) (4) (5) (6)

πit 2.368*** 0.179*** 0.159*** 1.742*** 0.184*** 0.162***

(0.506) (0.043) (0.054) (0.513) (0.043) (0.054)

π2it -0.242*** -0.008*** -0.007*** -0.143** -0.008*** -0.007***

(0.066) (0.002) (0.002) (0.062) (0.002) (0.002)

country fixed effect YES YES YES YES YES YES

control variables YES YES YES YES YES YES

observations 612 448 448 740 452 452

R-squared 0.139 0.898 0.923 0.114 0.903 0.929

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are in parentheses. Columns 1 and 4 correspond

to the GDP growth rate. Columns 2-3 and 5-6 use different measures of income inequality. Specifically, columns

2 and 5 correspond to the income difference between the top 10% and the bottom 10% of the population.

Columns 3 and 6 correspond to the Gini coefficient. In the first (last) three columns, high-income countries

follow the classification by the WIID (WB).

5.2 Calibration and simulation

To perform a more realistic quantitative analysis, we generalize the model by introducing elastic
labor supply Lt(h) = 1− lt(h), where lt(h) denotes leisure. The generalized utility function is

u(h) =

∫
∞

0

e−ρt
{
ln ct(h) + η ln

[
lt(h)

(lt)ε

]}
dt, (54)

where the parameter η ≥ 0 determines the importance of leisure lt(h) in utility. We also allow for

external habit, measured by the parameter ε ∈ [0, 1], on leisure lt ≡
∫ 1
0
lt(h)dh.

26 Furthermore,
we impose a CIA constraint on consumption as in Chu and Cozzi (2014). With the additional
cash requirement on consumption, the CIA constraint becomes bt(h) + ϕct(h) ≤ mt(h), where
the parameter ϕ ∈ [0, 1] determines the fraction of consumption spending that is subject to the
CIA constraint. We provide detailed derivations of this generalized model in Appendix C.
We now calibrate the model to perform a quantitative analysis on the relationship between

inflation and economic growth/income inequality. The model features the following structural
parameters {ζ, ρ, θ, η, ϕ, κ, α, β, ε} and policy instrument i. We consider a range of values for
the CIA-R&D parameter ζ ∈ {0.65, 1}.27 We set the discount rate ρ to a conventional value
of 0.05. We set the degree of labor intensity θ to a value of 0.56 in the US; see for example
Karabarbounis and Neiman (2014). We calibrate the leisure parameter η by matching the
average fraction of time devoted to labor supply L as 0.3. We calibrate the CIA-consumption

26It is useful to note that the presence of external habit on leisure does not affect the equilibrium allocations but
only affects welfare. Therefore, the parameter ε enables us to explore its implications on the utility-maximizing
inflation rate without affecting the equilibrium allocations. We do not include external habit on consumption
as it is well known that it leads to a counterfactual comovement between hours worked and productivity shocks.
For example, Khorunzhina (2015) finds that the counterfactual "response of hours worked [...] disappears once
habit in consumption is ruled out but habit in leisure remains".
27We find that when ζ is too small, the calibrated value of κ becomes greater than unity.
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parameter ϕ using the M1-consumption ratio from 1990 to 2016 in the US. As for the Pareto
distribution parameter κ, we calibrate its value by matching an average TFP growth rate g
of 0.5% from 1990 to 2016 in the US. As for the R&D cost parameter α and the entry cost
parameter β, we calibrate their values by matching the growth-maximizing inflation rate and
the inequality-maximizing inflation rate estimated in the previous section. We calibrate the
monetary policy instrument i by matching the average inflation rate in the US, which is about
2.5% in the past two decades. Finally, we will consider the full range of values for the external
habit parameter ε ∈ [0, 1] when evaluating the welfare effects of inflation. The calibrated
parameter values are summarized in Table 2.

Table 2: Calibration

ζ ρ θ η ϕ κ α β i
1.00 0.05 0.56 1.381 0.20 0.34 2.57*10−5 0.19 0.08

0.65 0.05 0.56 1.379 0.20 0.90 3.17*10−3 0.15 0.08

Figure 1 simulates the relationship between inflation and economic growth. We find that
the relationship between inflation and economic growth follows an inverted-U pattern. The
equilibrium growth rate is maximized at an inflation rate of 5.0%. After that, any further
increase in inflation is associated with a decline in economic growth. For example, increasing
the inflation rate from 5% to 15% leads to a decrease in the equilibrium growth rate that ranges
from 0.006% (in the case of ζ = 0.65) to 0.007% (in the case of ζ = 1).

Figure 1a: Inflation and growth (ζ = 1) Figure 1b: Inflation and growth (ζ = 0.65)

Figure 2 simulates the relationship between inflation and income inequality. We find that
the relationship between inflation and income inequality also follows an inverted-U pattern.
The coefficient of variation of income is maximized at an inflation rate of 12%. When the
inflation rate increases from the benchmark value of 2.5% to 12%, the percent change in the
coefficient of variation of income ranges from 0.10% (in the case of ζ = 0.65) to 0.12% (in
the case of ζ = 1). When the inflation rate is above 12%, any further increase in inflation is
associated with a decline in income inequality.
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Figure 2a: Inflation and inequality (ζ = 1) Figure 2b: Inflation and inequality (ζ = 0.65)

Finally, we consider the relationship between inflation and the utility of the households
that have a wealth share of unity (i.e., sz,0(h) = 1).28 This benchmark case corresponds to
social welfare in a model with a representative household. Figure 3 plots the utility-maximizing
inflation rates for ε ∈ [0, 1]. Khorunzhina (2015) estimates that the degree of external habit
ε on leisure is about 0.95, which corresponds to a welfare-maximizing inflation rate of about
14% in the case of ζ = 1. Unlike many previous studies that do not feature innovation and
creative destruction,29 the Friedman rule does not hold in our Schumpeterian model, and the
welfare-maximizing nominal interest rate and inflation rate are both positive. As shown in Chu
and Cozzi (2014), the Schumpeterian model features a negative externality of R&D in the form
of a business-stealing effect; therefore, an increase in inflation that reduces R&D may improve
welfare. Furthermore, in this Schumpeterian model with endogenous entry, which is absent in
Chu and Cozzi (2014), an increase in inflation has an additional positive effect on welfare by
increasing the frequency of entries. So far, we have not explored how the wealth distribution
affects optimal monetary policy. We will shed some light on this issue in the next section.

Figure 3a: Utility-maximizing inflation (ζ = 1) Figure 3b: Utility-maximizing inflation (ζ = 0.65)

28In Section 6, we will explore how the wealth share sz,0(h) affects the utility-maximizing inflation rate.
29See for example Wong (2016) for a recent study that considers a new monetarist model with heterogeneous

agents and the accumulation of human capital as an endogenous growth engine.
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5.3 How wealth inequality affects inflation and growth

An advantage of our model is that it can accommodate any wealth distribution while the
aggregate economy behaves as in a model with a representative household. A disadvantage is
that the wealth distribution does not have a direct effect on aggregate variables, such as the
arrival rate of innovation and the equilibrium growth rate. However, it doesn’t mean that the
wealth distribution is not important to innovation and growth. For example, in the context
of political economy, the median household can have an influence on government policy as we
illustrate below.
We first explore how the wealth share sz,0(h) of a household determines its utility-maximizing

inflation rate π∗(h). We find that an increase in sz,0(h) leads to a decrease in π
∗(h). Intuitively,

given that a household’s consumption is increasing in its wealth, the negative asset-value effects
of inflation are stronger for wealthier households, which in turn prefer a lower inflation rate.
Figure 4 plots the negative relationship between sz,0(h) and π

∗(h) for the case of ε = 0.95.
Given that the households’ preferences on the inflation rate are single-peaked, the median voter
theorem applies. Suppose the wealth share owned by the median household is sz,0(m). Then,
an increase in sz,0(m) would affect the equilibrium growth rate in the economy by decreasing
the inflation rate that is preferred by the median voter and selected in a majority-rule voting
system. Figure 5 plots the relationship between sz,0(m) and the equilibrium growth rate g

∗(m)
that corresponds to the utility-maximizing inflation rate of the median household. As sz,0(m)
increases, the inflation rate preferred by the median household decreases, which in turn causes
the equilibrium growth rate to increase initially until reaching the growth-maximizing inflation
rate of 5% after which the equilibrium growth rate decreases.

Figure 4a: Inflation and wealth share (ζ = 1) Figure 4b: Inflation and wealth share (ζ = 0.65)
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Figure 5a: Growth and wealth share (ζ = 1) Figure 5b: Growth and wealth share (ζ = 0.65)

6 Conclusion

In this study, we have developed a Schumpeterian growth model with two dimensions of het-
erogeneity among households and firms. We model household heterogeneity by assuming that
households own different levels of wealth, which in turn generate an endogenous distribution of
income. We model firm heterogeneity by assuming random quality improvements and a cost of
entering a market, which together generate an endogenous distribution of implemented qual-
ity improvements. Both the income distribution and the implemented quality distribution are
affected by monetary policy. Within this monetary growth-theoretic framework, we find that in-
flation has inverted-U effects on both economic growth and income inequality. Furthermore, we
calibrate our model to match the growth-maximizing and inequality-maximizing inflation rates
that are estimated using cross-country panel data. We also simulate the utility-maximizing
inflation rate and explore how it is affected by the wealth holdings of households.
Finally, our model could feature scale effects as in the first-generation R&D-based growth

model in Romer (1990), Segerstrom et al. (1990), Grossman and Helpman (1991) and Aghion
and Howitt (1992).30 We sidestep this issue by normalizing the supply of labor to unity.
Alternatively, one can remove scale effects in the Schumpeterian growth model by considering
the semi-endogenous-growth approach in Segerstrom (1998) or the second-generation approach
in Peretto (1998, 2007). We leave this potentially interesting extension to future research.

30See Jones (1999) and Laincz and Peretto (2006) for an excellent discussion of scale effects in R&D-based
growth models.
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Appendix A: Proofs

Proof of Lemma 1. It follows from (14) that vet + λ̃
−1/κ

t βt = (1 + ζi)αt+ λ̃
−1/κ

t βt. Differen-
tiating both sides of this equation with respect to time t yields

v̇et + λ̃
−1/κ

t β̇t = (1 + ζi)αt
α̇t
αt
+ λ̃

−1/κ

t βt
β̇t
βt
⇔
v̇et + λ̃

−1/κ

t β̇t

vet + λ̃
−1/κ

t βt

=
1− θ

θ

Q̇t
Qt
, (A1)

where the first equality cancels βtd(λ̃
−1/κ

t )/dt from both sides and the second equality uses

αt = αQ
(1−θ)/θ
t and βt = βQ

(1−θ)/θ
t . Using (A1) and Pr(λ ≥ λ̃t) = λ̃

−1/κ

t , we modify (17) as

rt =
Πet

vet + λ̃
−1/κ

t βt

+
1− θ

θ

Q̇t
Qt
− λ̃

−1/κ

t φt. (A2)

Similarly, we modify (24) for λ = λ̃t as

rt =
Π(λ̃t)

vt(λ̃t)
+
1− θ

θ

Q̇t
Qt
− λ̃

−1/κ

t φt, (A3)

which uses the entry condition vt(λ̃t) = βt = βQ
(1−θ)/θ
t and Pr(λ ≥ λ̃t) = λ̃

−1/κ

t . From (A2)
and (A3), we have

Πet

(1 + ζi)α + λ̃
−1/κ

t β
=
Πt(λ̃t)

β
, (A4)

where

Πet ≡

∫
∞

λ̃t

Πt(λ)f(λ)dλ =

(
λ̃t − 1/(1 + κ)

λ̃
1+κ
κ

t

)

(1− θ)yt (A5)

and

Πt(λ̃t) =
λ̃t − 1

λ̃t
(1− θ)yt (A6)

from (11). Using (A4)-(A6), we also have

λ̃
1
κ

t (λ̃t − 1) =
κ

1 + κ

1

1 + ζi

β

α
, (A7)

which uniquely determines λ̃ > 1 independent of t because the left-hand side of (A7) is increasing
in λ̃t > 1 and the right-hand side is independent of t.

Proof of Lemma 2. In the symmetric equilibrium, we have vet (i, ωi + 1) = v
e
t , which can be

expressed as

vet ≡

∫ λ̃

1

0 f(λ)dλ+

∫
∞

λ̃

[vt(λ)− βt] f(λ)dλ =

∫
∞

λ̃

vt(λ)f(λ)dλ− Pr(λ ≥ λ̃)βt. (A8)

Substituting the no-arbitrage condition for the value of an implemented innovation vt(λ) =
[Πt(λ) + v̇t(λ)− Pr(λ ≥ λ̃)φtvt(λ)]/rt into (A8) yields

rt[v
e
t + Pr(λ ≥ λ̃)βt] = Π

e
t +

∫
∞

λ̃

v̇t(λ)f(λ)dλ− Pr(λ ≥ λ̃)φt

∫
∞

λ̃

vt(λ)f(λ)dλ, (A9)
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which uses (A8) and Πet ≡
∫
∞

λ̃
Πt(λ)f(λ)dλ. Then, we use the R&D condition v

e
t = (1 + ζi)αt

to derive ∫
∞

λ̃

vt(λ)f(λ)dλ = (1 + ζi)αt + Pr(λ ≥ λ̃)βt. (A10)

Differentiating both sides in (A10) with respect to t yields
∫
∞

λ̃

v̇t(λ)f(λ)dλ = (1 + ζi) α̇t + Pr(λ ≥ λ̃)β̇t. (A11)

By substituting (A11) into (A9), with vet = (1 + ζit)αt, we can obtain

rt[v
e
t + Pr(λ ≥ λ̃)βt] = Π

e
t + v̇

e
t + Pr(λ ≥ λ̃)β̇t − Pr(λ ≥ λ̃)φt[v

e
t + Pr(λ ≥ λ̃)βt], (A12)

which is equivalent to (17).

Proof of Lemma 3. Substituting (8) and (10) into (6) yields

Kt = (1− θ) ytQt exp

(
−

∫ 1

0

lnλt(j)dj

)
, (A13)

which uses (13) for Qt. Given that λt(j) > λ̃ for implemented innovations, the truncated
distribution function for implemented innovations is as follows:

f̃(λ) ≡
f(λ)∫

∞

λ̃
f(λ)dλ

= λ̃
1
κf(λ). (A14)

By this,

exp

(
−

∫ 1

0

lnλt(j)dj

)
=

1

λ̃eκ
(A15)

holds. Substituting (A13)-(A15) into yt = K
1−θ
t from (5) yields (22).

Proof of Lemma 4. Define c̃t ≡ ct/Q
(1−θ)/θ
t . Then, from (4), it holds that

·

c̃t
c̃t
= rt − ρ−

1− θ

θ

Q̇t
Qt
. (A16)

From (A3) and (A6), with vt(λ̃) = βt = Q
(1−θ)/θ
t β, the real interest rate can be expressed as

rt =
λ̃− 1

λ̃

1− θ

β

yt

Q
(1−θ)/θ
t

+
1− θ

θ

Q̇t
Qt
− λ̃

−1/κ
φt. (A17)

Substituting (22) and (A17) into (A16) yields

·

c̃t
c̃t
=

(1− θ)1/θ

β(eκ)(1−θ)/θ
λ̃− 1

λ̃
1/θ

− λ̃
−1/κ

φt − ρ. (A18)

Given (29), the right-hand side of (A18) is always decreasing in φt. To obtain the equilibrium
expression of φt off the balanced growth path, we will derive the total demand for final goods.
First, we use (8)-(10), and to have

∫ 1

0

xt(j)dj =

∫ 1

0

(1− θ) yt
λt(j)

dj = (1− θ) yt

∫
∞

λ̃

f̃(λ)

λ
dλ =

(1− θ)yt

(1 + κ) λ̃
. (A19)
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Then from (12), we have ∫ 1

0

Rt(j)dj = αQ
(1−θ)/θ
t φt. (A20)

Combining (A19) and (A20) with the final good market condition yields

φt =
1

α + βλ̃
−1/κ

[(
1−

1− θ

(1 + κ) λ̃

)(
(1− θ)

λ̃eκ

)(1−θ)/θ
− c̃t

]

≡ φ(c̃t
−

), (A21)

which also uses (22) for yt. Finally, by substituting (A21) into (A18), we have a one-dimensional
differential equation in c̃t. Given that φt decreases with c̃t, the right-hand side of (A18) is
increasing in c̃t. The dynamics of c̃t is saddle-point stable; i.e., c̃t jumps to the unique steady-

state c̃ at t = 0. Accordingly, (A18) determines the stationary equilibrium value of λ̃
−1/κ

φt as
in (30). Then, (A21) determines the steady-state value of c̃t as

c̃ =

(
1−

1− θ

(1 + κ) λ̃

)(
1− θ

λ̃eκ

)(1−θ)/θ
− φ

(
α + βλ̃

−1/κ
)
. (A22)

Proof of Proposition 1. By (29) and (30), we have

λ̃
−1/κ

φ =
λ̃− 1

λ̃
1/θ

(1− θ)1/θ

βeκ(1−θ)/θ
− ρ. (A23)

We naturally focus on a non-trivial case where λ̃
−1/κ

φ > 0. There are, thus, lower and upper

bounds of λ̃, say λ− and λ+, such that λ̃
−1/κ

φ > 0 holds if and only if λ̃ ∈ (λ−, λ+). Specifically,
since

(λ̃
−1/κ

φ)′ =
1

θ

(1− θ)1/θ

βeκ(1−θ)/θ
1− (1− θ)λ̃

λ̃
1+1/θ

,

λ̃
−1/κ

φ is an inverted-U shaped function in λ̃ and maximized at λ̃ = 1/(1 − θ). Then, λ− <
1/(1−θ) < λ+ holds. In addition, by (29), λ̃ is decreasing in i, thereby having an upper bound,
denoted as λ, due to i ≤ 0. It is easy to verify that λ increases from 1 to∞ as β increases from
0. When β is such large that λ > 1/ (1− θ) holds, there is an inverted-U shaped relationship

between i ≥ 0 and λ̃
−1/κ

φ, noting λ̃ monotonically decreases with i ≥ 0. Then, when β is small
such that λ < 1/ (1− θ) , the relationship is monotonically negative for any i ≥ 0.
Differentiating (23) with respect to λ̃ yields

(
dg

dλ̃

)
βθλ̃

1+1/θ

1− θ
(A24)

=

(
(1− θ)1/θ

eκ(1−θ)/θ

(
λ̃− 1

)
− βρλ̃

1/θ
)

︸ ︷︷ ︸
≡Λ1(λ̃)

−
(1− θ)1/θ

θeκ(1−θ)/θ

(
ln λ̃+ κ

)(
(1− θ) λ̃− 1

)

︸ ︷︷ ︸
≡Λ2(λ̃)

,

where we have used (A23). Note the following properties: (a) Λ1((1/(1−θ))) > 0 and Λ2(1/(1−
θ)) = 0; (b) Λ1(λ̃) is an uni-modal function (maximized at some λ̃ that is higher than 1/(1−θ))
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and Λ2(λ̃) is a strictly increasing function; (c) Λ1(λ−) = Λ1(λ+) = 0; and (d) Λ1(λ̃) is strictly
concave and Λ2(λ̃) is strictly convex. Taking into account these facts, with a usual graphical
analysis, there must uniquely exist a threshold level of λ̃ ∈ (1/ (1− θ) , λ+), denoted as Λ

∗ in
the figure, under (above) which Λ1(λ̃) > (<)Λ2(λ̃), that is, dg/dλ̃ > (<)0. Recalling that λ
increases with β and then λ̃ decreases with i, we can show that the relationship between i and
g is also inverted-U shaped (negative) if β is large (small).

Proof of Lemma 5. From (3), (4), and (35), we can show that sc,t(h) = sc,0(h) holds for all
t. Substituting this condition into (34) yields

ṡz,t(h) =
ct − wt − τ t

zt
sz,t(h)−

sc,0(h)ct − wt − τ t
zt

. (A25)

According to Lemma 4, {ct, wt, τ t, zt, mt} all grow at the same rate g on the balanced growth
path. Using (4) and (32), it is easy to obtain

ct − wt − τ t
zt

= rt −
żt
zt
= ρ > 0. (A26)

Therefore, the coefficient on sz,t(h) in (A25) is always positive, which in turn implies that
ṡz,t(h) = 0 for all t is the only solution of (A25) consistent with long-run stability. Finally,
imposing ṡz,t(h) = 0 on (A25) yields the steady-state value of sc,t(h) given by

sc,0(h) = 1−
ρ [1− sz,0(h)]

c/z
, (A27)

where we can make use of (40) and (42) to derive

c

z
=

c̃

λ̃
1/κ
(1 + ζi)α + β + ζαφ

. (A28)

Note that c̃ is given by (A22).

Proof of Proposition 2. Differentiating rz/w in (51) with respect to φ yields

d(rz/w)

dφ
= κ

α(eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ

[
ρ

(ρ+φ)2

(
1−θ
θ
κ− 1

)
1
1+κ

(1−θ)1/θ

α(eκ)(1−θ)/θ
+ ζ

(
ρ
κ
+ 21−θ

θ
φ
)]
. (A29)

Given κ > θ/(1− θ), (A29) shows that d(rz/w)/dφ > 0. From (47), we know dφ/di < 0. As a
result, there is a negative effect of i and rz/w.
As for κ < θ/(1− θ), we will show that there are three possibilities: for a feasible range of

φ, (a) d(rz/w)/dφ < 0, (b) d(rz/w)/dφ > 0, or (c) d(rz/w)/dφ < (>)0 if φ is smaller (larger).
Before proceeding, it is useful to note that there is an upper bound of φ since i ≥ 0 with (47),
given by

φ+ ≡
κ

1 + κ

(1− θ)1/θ

αeκ(1−θ)/θ︸ ︷︷ ︸
≡ϑ

− ρ.

We will derive a sufficient conditions for each case, by focusing on both ends of φ ∈ (0, φ+].
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First, by substituting φ→ 0 (i.e., the lower bound) into (A29), we can show that d(rz/w)/dφ >
0 holds at φ→ 0 if (

1−
κ

θ/(1− θ)

)
<
ζρ2

ϑ
. (A30)

Moreover, it is easy to derive d2(rzt/wt)/dφ
2 > 0 when κ < θ/(1−θ). As a result, d(rz/w)/dφ >

0 holds for any φ ∈ (0, φ+]. Given dφ/di < 0, in this case, there is a negative effect of i on
rz/w.
Second, it is straightforward to verify that d(rz/w)/dφ < 0 holds at φ → 0 if (A30) is

violated. In this case, by substituting φ = φ+ into (A29), we can show that d(rz/w)/dφ < 0
also holds at the upper bound, φ = φ+, if and only if

(
1−

κ

θ/(1− θ)

)
> ζϑ

[
ϑ

ρ

2κ

θ/ (1− θ)
+

(
1−

2κ

θ/ (1− θ)

)]
. (A31)

We know d2(rzt/wt)/dφ
2 > 0 when κ < θ/(1 − θ). As a result, d(rz/w)/dφ < 0 holds for any

φ ∈ (0, φ+]. Given dφ/di < 0, in this case, there is a positive effect of i on rz/w.
Finally, if (A31) does not hold, there is a threshold value of φ below (above) which d(rz/w)/dφ <

(>)0; i.e., there is a U-shaped relationship between i and rz/w. Therefore, the effect of i on
rz/w can be negative, positive, or U-shaped.

Proof of Proposition 3. As in the proof of Proposition 1, we focus on the non-trivial case

where λ̃
−1/κ

φ > 0, implying λ̃ ∈ (λ−, λ+) unless βρ = 0. Recall that 1 < λ− < 1/ (1− θ) < λ+.
By (29) and (44), we have

rz

w
= (ρ+ g)λ̃

(1−θ)/θ

[
λ̃− 1/ (1 + κ)

λ̃− 1
+
ζα

β
φ

]
β(eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
. (A32)

By differentiating this with respect to λ̃,

Ξ
d (rz/w)

dλ̃
= λ̃(ρ+g)′

(ρ+g)
+ 1−θ

θ
+ λ̃

(
λ̃−1/(1+κ)

λ̃−1

)′
+ ζα

β
φ′

λ̃−1/(1+κ)

λ̃−1
+ ζα

β
φ

≡ Ψ(λ̃), (A33)

where Ξ > 0 is a composite variable that is strictly positive.31 Here, we can derive from (23)
and (A23) some components of Ψ(λ̃) as

λ̃(ρ+ g)′

(ρ+ g)
=

λ̃

ρ+ g

1− θ

θ

[
λ̃
−1/κ

φ

λ̃
+
(
ln λ̃+ κ

)(
λ̃
−1/κ

φ
)′
]

, (A33a)

(
λ̃
−1/κ

φ
)′
=
(1− θ)1/θ

βeκ(1−θ)/θ

(
λ̃− 1

λ̃
1/θ

)
′

, (A33b)

(
λ̃− 1

λ̃
1/θ

)
′

=
1

θ

1− (1− θ)λ̃

λ̃
1+1/θ

, (A33c)

31Here Ξ ≡ λ̃w
rz
.
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(
λ̃− 1/ (1 + κ)

λ̃− 1

)
′

= −
κ

1 + κ

1

(λ̃− 1)2
, (A33d)

and

φ′ =
(
λ̃
1/κ
)′ (

λ̃
−1/κ

φ
)
+
(
λ̃
1/κ
)(
λ̃
−1/κ

φ
)′
. (A33e)

By evaluating these at λ̃ ∈ {λ−, λ+} and substituting them into (A33), we can obtain32

Ψ(λ̃) = 1
θ
1−(1−θ)λ̃

λ̃−1

[
1−θ
θ

(
ln λ̃+ κ

)
+ (αζ) (1+κ)ρ

β
λ̃
1/κ

(λ̃−1)

(1+κ)λ̃−1

]

︸ ︷︷ ︸
≡Ψ1(λ̃)

+ 1−θ
θ
− κ

(1+κ)λ̃−1
λ̃
λ̃−1︸ ︷︷ ︸

≡Ψ2(λ̃)

(A34)

which reflects λ̃
−1/κ

φ = 0 for λ̃ ∈ {λ−, λ+} with (30). For λ̃ = λ−, Ψ1(λ̃) > 0 always holds due
to λ− < 1/(1 − θ), but Ψ2(λ̃) ≶ 0. For λ̃ = λ+, both Ψ1(λ̃) < 0 and Ψ2(λ̃) > 0 hold due to
λ+ > 1/(1− θ).

Given that λ̃
−1/κ

φ is independent of ζ, λ− and λ+ are also independent of ζ. Thus, changes
in ζ affect (A34) only through the second term of Ψ1. Keeping λ̃ = {λ−, λ+} unchanged, it
is possible to make Ψ(λ̃) larger (smaller) as one needs by increasing ζ, since the coefficient of

Ψ1,
1−(1−θ)λ̃

λ̃−1
, is positive (negative) for λ̃ = λ− (λ̃ = λ+). Therefore, for a sufficiently large ζ,

33

Ψ(λ−) > 0 and Ψ(λ+) < 0 hold; rz/w is first increasing and eventually decreasing in λ̃ on the
feasible domain of λ̃. As we already mentioned, by (29), λ̃ has another upper bound, λ, due to
i ≥ 0. Since, by (29), λ is decreasing in α and satisfies limα→0 λ = ∞, we can also prove that
rz/w first increases and eventually decreases with i on the feasible domain of i, by taking an
appropriately small value of α so that λ > 1/ (1− θ).

32We provide the detailed derivations of (A34) in an online appendix.
33It is worth noting that there exists a sufficient condition for the lower bound of ζ to be less than 1.
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Appendix B: Data and regression results

Table B1: Summary statistics

Obs Mean Std Dev Min Max

Panel A World Income Inequality Database

Economic Growth 612 5.670 9.752 -26.946 32.453

Income Inequality 448 8.143 3.927 4.280 35.240

GINI Coefficient 448 29.693 4.967 22.500 55.433

Inflation Rate 612 2.315 1.839 -4.480 12.678

Unemployment 612 7.309 3.803 1.805 27.466

Openness 612 1.007 0.777 0.167 4.416

Investment Profile 612 8.432 1.568 4.236 10.000

Corruption 612 7.249 1.718 3.333 10.000

Interest Rate 501 6.388 3.576 0.200 20.679

Panel B World Bank

Economic Growth 740 6.366 10.582 -32.872 37.465

Income Inequality 452 8.300 4.082 4.280 35.240

GINI Coefficient 452 29.943 5.293 22.500 55.433

Inflation Rate 740 2.420 2.068 -4.480 12.678

Unemployment 740 6.937 4.060 0.700 27.466

Openness 740 1.014 0.718 0.167 4.416

Investment Profile 740 8.410 1.590 3.333 10.000

Corruption 740 6.801 1.921 3.333 10.000

Interest Rate 601 6.637 3.641 0.200 21.167

Notes: Income Inequality and GINI Coefficient are from the WIID. The former corresponds to the income

difference between the top 10% and the bottom 10% of the population. Investment Profile and Corruption are

two measures of investment risks, which are obtained from the International Country Risk Guide.

Table B2: Effects of inflation on economic growth and income inequality (IV regression)
WIID WB

growth income inequality growth income inequality
(1) (2) (3) (4) (5) (6)

πit 8.063** 0.490*** 0.281** 10.056** 0.502*** 0.286**
(3.213) (0.130) (0.131) (4.110) (0.133) (0.134)

π2it -0.787** -0.016*** -0.011** -0.994** -0.016*** -0.011**
(0.324) (0.004) (0.005) (0.417) (0.005) (0.005)

Kleibergen-Paap rk LM statistic 19.475 36.428 36.428 12.716 36.438 36.438
weak instrument (F-statistic) 12.897 47.083 47.083 7.400 47.375 47.375
country fixed effect YES YES YES YES YES YES
control variables YES YES YES YES YES YES
observations 501 326 326 601 330 330

Note: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors are in parentheses. Columns 1 and 4 correspond

to the GDP growth rate. Columns 2-3 and 5-6 use different measures of income inequality. Specifically, columns 2

and 5 correspond to the income difference between the top 10% and the bottom 10% of the population. Columns

3 and 6 correspond to the Gini coefficient. In the first (last) three columns, high-income countries follow the

classification by the WIID (WB). The Kleibergen and Paap (2006) rk Lagrange Multiplier (LM) statistic reveals

that our strategy passes the under-identification test. Also, the F-statistic of the weak-instrument test is above

the critical value in Stock and Yogo (2005), which suggests that we can reject the weak-instrument hypothesis.
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Appendix C: The generalized model

This appendix presents the key equilibrium conditions for the model with elastic labor
supply under the utility function in (54). Equation (3) is the same, and labor supply is

wt (1− Lt (h)) = ηct (h) (1 + ϕit) . (C1)

The conditional demand functions for labor and intermediate goods are respectively

wt = θyt/Lt, (C2)

Kt = Lt

[
(1− θ)Qt/

(
λ̃eκ
)]1/θ

, (C3)

where Lt ≡
∫ 1
0
Lt (h) dh. From (C3), the aggregate production function can be derived as

yt = Lt

(
1− θ

λ̃eκ

)(1−θ)/θ
Q
(1−θ)/θ
t . (C4)

Substituting (C4) into (25), (30) can be revised as follows:

λ̃
−1/κ

φ =
λ̃
−(1/κ+1/θ)

1 + ζi

κ

1 + κ

(1− θ)1/θ

αeκ(1−θ)/θ
L− ρ, (C5)

where the condition for λ̃ in (29) remains unchanged. We substitute (C2) into (C1) to de-
rive θyt (1− L) /L = η (1 + ϕi) ct. Combining this condition with the resource constraint
∫ 1
0
ct(h)dh+

∫ 1
0
xt(j)dj +

∫ 1
0
Rt(j)dj + λ̃

−1/κ
φβt = yt and (C4), we obtain

θ

(
1− θ

λ̃eκ

)(1−θ)/θ
(1− L) = η (1 + ϕi) c̃, (C6)

where

c̃ =

[
1−

1− θ

(1 + κ) λ̃

](
1− θ

λ̃eκ

)(1−θ)/θ
L−

(
α + βλ̃

−1/κ
)
φ. (C7)

Based on the CIA constraint bt(h) + ϕct(h) = mt(h), (31) can be revised as

żt(h) = rtzt(h)− it[mt(h)−bt(h)]+wtLt(h)+τ t−ct(h) = rtzt(h)+wtLt(h)+τ t−(1 + ϕit) ct(h),
(C8)

where zt(h) = at(h) +mt(h). Aggregating (C8) for all h, we have

zt = rtzt + wtLt + τ t − (1 + ϕit) ct. (C9)

In this generalized model, we know that sc,t(h) = sc,0(h) still holds for all t. Given this condition,
we combine (C8) and (C9) and use (C1) to derive

ṡz,t(h) =
(1 + η) (1 + ϕi) ct − wt − τ t

zt
sz,t(h)−

(1 + η) (1 + ϕi) sc,0(h)ct − wt − τ t
zt

. (C10)
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Using (4), (C1) and (C9) , it is easy to obtain [(1 + η) (1 + ϕi) ct − wt − τ t] /zt = ρ > 0. As
a result, we know ṡz,t(h) = 0 for all t with long-run stability. Imposing ṡz,t(h) = 0 on (C10)
yields the steady-state value of sc,t(h) given by

sc,0(h) = 1−
ρ [1− sz,0(h)]

(1 + η) (1 + ϕi) c/z
, (C11)

where we can make use of (40), (42) and mt(h) = bt(h) + ϕct(h) to derive

c

z
=

c̃

λ̃
1/κ
(1 + ζi)α + β + ζαφ+ ϕc̃

. (C12)

From (C8), income earned by household h is given by

It(h) = rtat(h)− πtmt(h) + itbt(h) + wtLt(h) = rtzt(h) + wtLt(h)− ϕitct(h). (C13)

Aggregating (C13) yields total income earned by all households given by

It = rtzt + wtLt − ϕitct. (C14)

Combining (C13) and (C14) and using (C1), (38) can be revised as follows:

sI,t(h) =
sz,0(h) rtzt + wt − [(1 + η)ϕit + η] sc,0(h)ct

rtzt + wt − [(1 + η)ϕit + η] ct
. (C15)

The distribution of income share sI,t(h) has a mean of one and the following standard deviation:

σI,t =

rtzt
wt
− ρ[(1+η)ϕit+η]

(1+η)(1+ϕit)
zt
wt

1 + rtzt
wt
− [(1 + η)ϕit + η]

ct
wt

σz, (C16)

where

rt
zt
wt
= (ρ+ g)

[
λ̃
1/κ
(1 + ζi)α + β + ζαφ+ ϕc̃

] (λ̃eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
,

ct
wt
=

c̃(λ̃eκ)(1−θ)/θ

θ(1− θ)(1−θ)/θ
.

Therefore, we can solve the six endogenous variables
{
λ̃, φ, L, c̃, sc,0(h), σI

}
using (29), (C5),

(C6), (C7), (C11) and (C16).
We impose balanced growth on (54) to derive the steady-state utility function as

u (h) =
1

ρ

{
ln c0 (h) +

g

ρ
+ η ln [1− L (h)]− ηε ln (1− L)

}
, (C17)

where c0 (h) is the balanced-growth level of consumption at time 0. Substituting c0 (h) =
c0sc,0 (h) into (C17) and then normalizing the initial Q0 to unity yield

u (h) =
1

ρ

{
ln c̃+ ln sc,0 (h) +

g

ρ
+ η ln [1− L (h)]− ηε ln (1− L)

}
, (C18)

where we make use of (C1), (C2) and (C4) to derive

1− L (h) =
η (1 + ϕi)

θ(1− θ)(1−θ)/θ

[
c̃sc,0 (h) (λ̃e

κ)(1−θ)/θ
]
.
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