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Abstract 

A number of studies have explored the semi- and nonparametric estimation of stochastic 

frontier models by using kernel regression or other nonparametric smoothing techniques. 

In contrast to popular deterministic nonparametric estimators, these approaches do not 

allow one to impose any shape constraints (or regularity conditions) on the frontier 

function. On the other hand, as many of the previous techniques are based on the 

nonparametric estimation of the frontier function, the convergence rate of frontier 

estimators can be sensitive to the number of inputs, which is generally known as “the 

curse of dimensionality” problem. This paper proposes a new semiparametric approach 

for stochastic frontier estimation that avoids the curse of dimensionality and allows one to 

impose shape constraints on the frontier function. Our approach is based on the single-

index model and applies both single-index estimation techniques and shape-constrained 

nonparametric least squares. In addition to production frontier and technical efficiency 

estimation, we show how the technique can be used to estimate pollution generating 

technologies. The new approach is illustrated by an empirical application to the 

environmental adjusted performance evaluation of U.S. coal-fired electric power plants. 
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1. Introduction 
 

Estimation of production frontiers is usually based either on the nonparametric data 

envelopment analysis (DEA: Farrell, 1957; Charnes et al. 1978) or on the parametric 

stochastic frontier analysis (SFA: Aigner et al., 1977; Meeusen and van den Broeck, 1977). 

While traditional SFA builds on parametric regression techniques, DEA is based on a linear 

programming formulation that does not assume a parametrical functional form for the 

frontier, but relies on general regularity properties such as monotonicity and convexity. 

Although both DEA and SFA have their own weaknesses, it is generally accepted that the 

main appeal of SFA is its stochastic, probabilistic treatment of inefficiency and noise, 

whereas the main advantage of DEA lies in its general nonparametric treatment of the 

frontier. A large number of different DEA and SFA estimators have been presented during 

the past three decades; see Fried et al. (2008) for an up-to-date review.  

 

In recent years, many new semi- and nonparametric stochastic frontier techniques have been 

developed both to relax some of the restrictive assumptions used in fully parametric frontier 

models and to narrow the gap between SFA and DEA. In the presence of panel data, Park et 

al. (1998, 2003, 2006) presented several semiparametric SFA models based on different 

assumptions concerning the dynamic specification of the model and joint distribution of 

inefficiencies and the regressors. Although the proposed semiparametric panel data models 

relax the assumption about inefficiency distribution, the functional form representing the 

production technology is still assumed to be known apart from a finite number of unknown 

parameters. Adams et al. (1999) further extended these approaches by developing a 

semiparametric panel data estimator that relaxes the distributional assumption for 

inefficiency and does not specify functional form for a subset of regressors. On the other 

hand, in a cross-sectional setting different kind of semiparametric approach was considered 

by Fan et al. (1996), who estimated a SFA model where the functional form of the 

production frontier is not specified a priori, but distributional assumptions are imposed on 

error components as in Aigner et al. (1977). In addition to various semiparametric SFA 

approaches, Kneip and Simar (1996), Henderson and Simar (2005) and Kumbhakar et al. 

(2007) have proposed fully nonparametric stochastic frontier techniques based on kernel 

regression, local linear least squares regression and local maximum likelihood, respectively. 

From these nonparametric approaches, the first two require panel data, while the third was 

developed for a cross-sectional setting. 
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Although the assumptions required by the aforementioned semi- and nonparametric 

stochastic frontier approaches are weak compared to parametric approaches, there is no 

guarantee that the frontiers estimated with these techniques would satisfy any regularity 

conditions of microeconomic theory. This is not unexpected, as these approaches were not 

developed to account for shape constraints such as monotonicity, concavity or homogeneity. 

Instead of shape constraints, the techniques used for estimating semi- or nonparametric 

frontier functions assume the frontier to be smooth (i.e. differentiable) and require one to 

specify bandwidth or other smoothing parameter prior to estimation. Nevertheless, since the 

smoothness assumptions are often arbitrary and the results can be very sensitive to the value 

of the smoothing parameter, in many applications it can be more justified to impose certain 

shape constraints than to specify a value for the smoothing parameter. In fact, as 

demonstrated by popular nonparametric DEA estimators, it is even possible to avoid 

smoothness assumptions completely by employing shape constraints. However, although 

DEA estimators can satisfy different regularity constraints by construction, they count all 

deviations from the frontier as inefficiency, completely ignoring all stochastic noise in the 

data. Due to the exclusion of noise, DEA as well as the recently developed, more robust, 

order-m and order-� frontier estimators, are fundamentally deterministic.1 Hence, it is 

generally important to develop semi- and nonparametric approaches that are both stochastic, 

and similarly with DEA and some other deterministic frontier techniques, use shape 

constraints instead of smoothness assumptions. Besides technical efficiency measurement, 

these kinds of approaches are needed in environmental and economic efficiency analysis, 

where it is very often justified to assume that the frontier satisfies certain shape constraints. 

 

To our knowledge, so far there have been only a few studies that have examined the 

estimation of semi- and nonparametric stochastic frontier models under shape constraints. 

Banker and Maindiratta (1992) proposed a maximum likelihood model that combines a 

DEA-style shape-constrained nonparametric frontier with a SFA-style stochastic composite 

error. However, because their model is extremely demanding computationally, it has not 

been estimated in any empirical applications. Kuosmanen and Kortelainen (2007) suggested 

                                                
1 For the developments in frontier estimation using deterministic approaches that are more robust to outliers 
and/or extreme values than DEA, see Cazals et al. (2002) and Aragon et al. (2005). In addition, Martins-Filho 
and Yao (2007, 2008) have recently presented two smooth nonparametric frontier estimators that are also 
more robust for outliers than DEA. In any event, all these estimators are deterministic in the sense that they do 
not separate efficiency from the statistical noise contrary to stochastic frontier estimators. 
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a similar kind of stochastic frontier approach, where the shape of the frontier is estimated 

nonparametrically using shape-constrained nonparametric least squares. They call this 

model as Stochastic Nonparametric Envelopment of Data (StoNED). In contrast to Banker 

and Maindiratta (1992), their nonparametric least squares approach is computationally 

feasible and can be applied quite straightforwardly, as it is based on quadratic 

programming. 

  

Although the approach developed by Kuosmanen and Kortelainen (2007) can be applied for 

the estimation of shape-constrained stochastic frontiers in various kinds of settings, 

similarly to many other nonparametric methods, the precision of the shape-constrained least 

squares estimator decreases rapidly as the number of explanatory variables (i.e. inputs) 

increases. This phenomenon, known as “the curse of dimensionality” in nonparametric 

regression, implies that when data include several input variables (i.e. 3 or more), one needs 

very large sample size to obtain a reasonable estimation precision. This weakness of 

nonparametric least squares estimator is essential, because in many applications, the number 

of inputs is greater than 2, while the sample size is moderate. As relatively small samples 

with many input variables are commonly used in stochastic frontier applications, it is also 

important to explore flexible approaches that are not sensitive to dimensionality, but still 

allow one to impose shape constraints. 

 

In this paper, our main objective is to extend the work of Kuosmanen and Kortelainen 

(2007) to semiparametric frontiers by developing a new approach which avoids the curse of 

dimensionality but allows us to impose regularity conditions on the frontier function. The 

shape-constrained semiparametric specification we propose is based on the single-index 

model, which is one of the most popular semiparametric models in econometrics literature. 

For the estimation of the model, we develop a three stage approach. While the first stage 

applies either sliced inverse regression or a monotone rank correlation estimator (both of 

which are common single-index estimation techniques), the second and third stages are 

based on similar estimation techniques used for the StoNED model. However, in contrast to 

StoNED estimation, our approach is not sensitive to the curse of dimensionality, because 

the second stage in the proposed framework is always univariate regression regardless of 

the number of inputs. 
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In addition to developing a new method for semiparametric frontier estimation, we show 

how the proposed approach can be modified for environmental production technology 

estimation in pollution generating industries. Following standard environmental economics 

and frontier approaches, we estimate an environmental production function by modeling 

emissions as inputs. In the empirical application of the paper, we illustrate the proposed 

semiparametric approach in environmental technology estimation with data on U.S. coal-

fired electric power plants. We estimate environmental sensitive technical efficiency scores 

using the methods proposed in the paper and some traditional frontier methods. 

 

The remainder of the paper is organized as follows. Section 2 presents the StoNED model 

and shows how it can be estimated by using shape-restricted nonparametric least squares. 

Section 3 proposes a shape-constrained single-index frontier model and a three stage 

approach for estimating the model. In Section 4 we show how the proposed approach can be 

modified for environmental production frontier estimation. Section 5 illustrates the 

developed methods using an empirical application to electric power plants� Section 6 

presents the conclusions.  � 

 

2. Estimation of shape-constrained nonparametric frontier 
 

Since the semiparametric approach proposed in this paper is closely related to the StoNED 

approach and applies the same estimation techniques, we start by presenting the StoNED 

model and show how it can be estimated. For further technical details concerning this 

section, we refer to Kuosmanen and Kortelainen (2007) (hereafter KK). 

  

Let us consider a multi-input single-output setting, where m-dimensional input vector is 

denoted by x, the scalar output by y and deterministic production technology by the 

production function f(x). In contrast to parametric SFA literature, we do not assume any 

functional form for the production function, but in the line with DEA, we require that 

function f belongs to the class of continuous, monotonically increasing and globally 

concave functions, denoted by 
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Further, we follow SFA literature (and deviate from DEA) by introducing a two-part 

composed error term �i = vi - ui, in which the second term 
i

u  is a one-sided technical 

inefficiency term and the first term 
i

v  is a two-sided statistical disturbance capturing 

specification and measurement errors. Using this notation, we consider the following 

stochastic production frontier model (or composed error model): 

 

( ) ( ) ,   1,...,�� � � � � �x x
i i i i i i

y f f v u i n                     (2) 

 

where it is assumed that 2

. .
(0, )��

i u
i i d

u N , 2

. .
(0, )��

i v
i i d

v N  and that 
i

u  and 
i

v  ( 1,...,�i n ) are 

statistically independent of each other as well as of inputs x
i
. Of course, following SFA 

literature, other distributions such as gamma or exponential could be used for the 

inefficiency term 
i

u  (see e.g. Kumbhakar and Lovell, 2000). However, here we follow the 

standard practice and assume the half-normal specification.  

 

Following KK, the model (2) is referred to stochastic nonparametric envelopment of data 

(StoNED) model. It is worth noticing that StoNED model has links to parametric SFA as 

well as nonparametric DEA models. Firstly, if f is restricted to some parametric functional 

form (instead of the class F2), SFA model by Aigner et al. (1977) is obtained from (2). 

Secondly, if we impose the restriction 2 0� �
v

 and relax the assumptions concerning the 

inefficiency term, the resulting deterministic model is similar to the single-output DEA 

model with an additive output-inefficiency, first considered by Afriat (1972). Thus, in 

contrast to other SFA models presented in literature, the StoNED model clearly connects to 

DEA, as monotonicity and convexity assumptions are required but no a priori functional 

form for frontier is assumed.  

 

Standard nonparametric regression techniques cannot be used directly to estimate model (2), 

because ( )
i

f x � is not the conditional expected value of 
i

y � given 
i

x ��

� � � �( ) ( ).
i i i i i i

E y f E f�� � �x x x x � In fact, under the half-normal specification for the 

inefficiency term, we know that � �( ) 2 / 0� � �� � � � �
i i i i u

E E ux x  (see e.g. Aigner et 

al., 1977). Thus, as the expected value of the composite error term is not zero, 
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nonparametric least squares and other nonparametric regression techniques would produce 

biased and inconsistent estimates. However, this problem can be solved by writing the 

model as  

�

� � � �( ) ( ) ,   1,...,� � � �� � � � � � �x x
i i i i i

y f g i n ���� � (3) 

 

where � �i i
E u� � x  is the expected inefficiency and ( ) ( )g f �� �x x  can be interpreted as 

an “average” production function (in contrast to the “frontier” production function f), and 

� � �� �
i i

 is a modified composite error term that satisfies assumption � � 0
i i

E � �x . As 

the modified errors �
i
 satisfy standard assumptions, the average production function can be 

estimated consistently by nonparametric regression techniques. Further, note that because 

�  is a fixed constant, average function g belongs to same functional class 2F  as f (i.e. it 

satisfies monotonicity and concavity constraints). Thus, the frontier function f is estimated 

simply by adding up the nonparametric estimate of shape-restricted average function g and 

the expected inefficiency� . 

   

For estimating the shape-constrained average production function KK proposed to use a 

convex nonparametric least squares (CNLS) technique, which minimizes least squares 

subject to monotonicity and concavity restrictions. It is worth emphasizing that the CNLS 

technique is particularly suitable for estimating model (2), because in contrast to most other 

nonparametric techniques it only requires monotonicity and concavity conditions (i.e. the 

maintained assumptions of both StoNED and DEA models), and no further smoothness 

assumptions (such as the degree of differentiability and the bounds of the derivatives). 

Based on the insight that monotonicity and concavity constraints can be written as linear 

inequalities by applying Afriat’s theorem (Afriat, 1967, 1972), Kuosmanen (2008) proved 

that the following quadratic programming problem can be used for CNLS in a multiple 

regression setting: 

2

, ,
1

min   subject to
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where �
i
 is the modified composite error term of equation (3) and g

i i i i
y � �� �� x  is the 

value of average production function g for observation i. Problem (4) includes the quadratic 

objective function with n(m+1) unknowns and n2+n linear inequalities. The first constraint 

of CNLS problem (4) is interpreted as a regression equation, while the second constraint 

enforces concavity similarly to the Afriat inequalities and the third constraint imposes 

monotonicity. It is important to notice that the constant term 
�
�  and the slope coefficients 

!
��

 (k = 1,…, m) of the regression equation are observation-specific.2 More specifically, 

CNLS regression (4) estimates n tangent hyper-planes to one unspecified production 

function instead of estimating one regression equation.  

 

Although (4) provides estimates ˆ g

i
y  and tangent hyperplanes for the observed points, it does 

not yet give an estimator for the average function g. For this purpose, one can take the 

following piecewise linear function (or representor function) 

 

" #1,...,

ˆˆˆ ( ) min ( )�
�

�� �x � x
i i

i n
g ,    (5) 

 

where ˆˆ ,� �
i i

 are estimated coefficients from model (4). This function is a legitimate 

estimator for the shape-constrained production function, as it minimizes the CNLS problem 

and satisfies monotonicity and concavity constraints globally (not just in observed points).3 

Basically, (5) interpolates linearly between the solutions of problem (4) giving piecewise 

linear function, where the number of different hyperplane segments is chosen 

endogeneously and is typically much lower than n. Because of the piecewise linear 

structure, estimator (5) appears to be very similar to DEA (see KK, for a graphical 

illustration). However, it is worth emphasizing that ˆ ( )xg  does not yet estimate the frontier, 

but the average production function g(x). Nonetheless, in this framework the shape of the 

frontier f(x) must be exactly the same as that of the average practice and the difference 

between functions results only from the expected inefficiency (compare formula (3)). 

 

                                                
2 The slope coefficients �

i
 are so-called Afriat numbers and represent the marginal products of inputs (i.e., the 

sub-gradients ( )$ x
i

g ). 
 

3 Since estimator ˆ( )xg  gives estimates also for unobserved points, it can be used, for example, to estimate 

substitution and scale elasticities. 
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To obtain estimates for production frontier and inefficiency of firms, one first needs to 

estimate the expected inefficiency �  and the unknown parameters ,� �
u v

 from the CNLS 

residuals �̂
i
 given by model (4). Estimation can be done straightforwardly using the method 

of moments (MM) which is a standard technique in stochastic frontier literature (see e.g. 

Kumbhakar and Lovell, 2000).4 Having obtained estimates ˆ ˆ,� �
u v

 with MM, the frontier 

production function f can then be consistently estimated by 

  

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 /� � �� � � �x x x
i i i u

f g g .   (6) 

 

Hence, similarly to the frequently used MOLS approach, production frontier is obtained by 

shifting the average production function upwards by the expected value of the inefficiency 

term.  

 

The estimation of the technical inefficiency score for a particular observation is based on 

the Jondrow et al. (1982) formula: 

 

( / )
( )

1 ( / )

% � �
� � �

� �
& &

& &
& &

' (�
� � ) *�+ �, -

i iE u �� � � (7) �

 

where 2 2 2/( )� � � � �& � � �
i u u v

, 2 2 2 2 2/( )� � � � �& � �
u v u v

and � �.%  and � �.+  are the standard 

normal density and distribution functions, respectively. The conditional expected value of 

inefficiency for firm i is calculated by substituting estimates ˆ ˆ,� �
u v

 and ˆ ˆ ˆ 2 /� � � �� �
i i u

 

in formula (7). However, as usual, this formula can only be used as a descriptive measure in 

a cross-sectional setting, because it is not a very good predictor for ui.
5 

 

It is important to notice that the StoNED model presented above assumes an additive 

structure for the composite error term. This is opposite to most SFA applications that are 

based on the multiplicative error model 

 

� �; exp( ),
i i i i

y f v u!� �x � � � � (8) 

                                                
4 Alternatively, instead of MM one could use pseudolikelihood (PSL) approach developed by Fan et al. 
(1996).  Both MM and PSL are consistent under similar conditions, but the latter is computationally somewhat 
more demanding. Because of this, in this paper we apply more standard MM technique. 
5 In the cross-sectional setting Jondrow et al. formula is an unbiased but inconsistent estimator for ui, as the 
variance of the estimator does not converge to zero. 
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which is prior to estimation transformed into the additive form by taking logarithms of both 

sides of equation.6 Although both additive and multiplicative models typically assume 

homoskedasticity of error terms, the latter is normally less sensitive to heteroskedasticity 

problem than the former. This is especially true if heteroskedasticity is related to firm size, 

which is quite typical in applications where firms are of notably different sizes. Since the 

multiplicative error structure can remove or alleviate potential heteroskedasticity, in some 

applications it can be useful to apply StoNED with a multiplicative error structure. 

However, as no parametric functional form for f  is specified, it is more natural to use an 

alternative multiplicative error model   

 

 

� �exp exp( )
i i i i

y f v u� �' (, -x �� � � (9) 

 

where � � 2.f F�  and error terms are assumed to have the same distribution as before. 

Importantly, (9) can also be transformed into additive form by taking logarithms. This 

implies that estimation techniques elaborated above can be applied for the model, where the 

dependent variable is logarithmic output and independent variables (or inputs) are expressed 

in levels. However, it is important to notice that in this framework shape constrains are 

imposed for the transformed model, not for the original multiplicative model (9). Thus, even 

though the estimated frontier function ˆ ( )f x  is always both monotonic and concave with 

respect to inputs, the estimated deterministic production technology ˆˆ exp ( )' (� , -fy x  is 

assured to be monotonic, but not globally concave. This is because the exponential function 

preserves monotonicity, but not concavity. This property can be seen both as a weakness 

and strength of model (9). If one wants to impose production technology as concave with 

respect to inputs, this model is not sufficient for that purpose in contrast to a model with an 

additive error structure. On the other hand, as the multiplicative model does not require 

production technology to be concave, this can be a more natural framework in applications, 

where concavity is not a well-grounded assumption. 

 

 

                                                
6 For example, the frequently applied Cobb-Douglas and translog functional forms are based on the log-
transformation of the multiplicative error model. 
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3. Estimation of shape-constrained single-index frontier 
 

3.1. Background 
 

Although StoNED models with an additive and multiplicative error structure can be 

estimated in various kinds of applications, there are some aspects that restrict the 

applicability of these approaches. One important constraint is related to the nonparametric 

functional form of the production function. Besides being an important strength, it can be 

also seen as a weakness of the StoNED approach. This is because the nonparametric 

function simultaneously allows great functional flexibility, but also sets considerable 

demands on the data set used in the application. In practice, the problem is that the precision 

of the nonparametric least squares estimator decreases rapidly as the number of explanatory 

variables (i.e. inputs) increases. This phenomenon, which is general in nonparametric 

regression and known as the “curse of dimensionality”, implies that when data includes 

several input variables (usually 3 or more) very large sample is needed to obtain acceptable 

estimation precision (see e.g. Yatchew, 2003, for detailed discussion). 

  

As relatively small samples with many input variables are commonly used in frontier 

applications, there is a need for shape-constrained semiparametric approaches that are not 

sensitive to dimensionality. Although some methods for the estimation of semiparametric 

stochastic frontier functions have been presented (see e.g. Fan et al., 1996; Adams et al., 

1999), these techniques were not developed for estimation under regularity conditions. In 

addition, they assume a smooth frontier function and require one to specify bandwidth prior 

to estimation. Since no shape constraints are utilized, these techniques can be very sensitive 

to the chosen bandwidth value. Due to these deficiencies, it is important to examine the 

estimation of semiparametric stochastic frontier functions under shape constraints in detail. 

 

In the next subsections we develop a shape-constrained semiparametric approach for 

frontier estimation based on the single-index model. It is worth noting that the presented 

model can be seen as the extension of the more general StoNED framework. By making 

stronger assumptions on the functional form than in StoNED but less restrictive than in 

parametric models, this model offers a compromise between StoNED and parametric shape-

restricted approaches. Importantly, the proposed semiparametric approach has both 

advantages and weaknesses in comparison to StoNED. The main advantage is the 
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estimation precision that can be increased by assuming a semiparametric functional form. 

This means that this approach can usually be applied in applications where the number of 

observations is small and/or there are many explanatory variables. In addition, in a multiple-

input setting, the proposed estimation techniques are also computationally less demanding 

than the estimation approach presented in Section 2. On the other hand, it should be noted 

that there is always a trade-off between the estimation precision and the flexibility of the 

functional form specification, as additional assumptions on functional form also increase the 

risk of specification errors. 

 

3.2. Single-index model 
 

In econometric and statistics literature, various semiparametric regression models have been 

developed. This section presents a semiparametric model that does not suffer from the curse 

of dimensionality problem, and thus, allows one to include as many inputs or explanatory 

variables as needed in the analysis. The proposed approach is based on the single-index 

model (e.g. Härdle and Stoker, 1989; Ichimura, 1993), which is one of the most referred 

semiparametric regression models and has been widely used in various kinds of 

econometric applications.7 The single-index model is based on the following specification:  

 

� �� �; ,�� �y g h x �                                        (10) 

 

where �  is a m.1 unknown parameter vector to be estimated, the function � �.h  (called 

index function) is known up to a parameter vector � , � �.g  is an unknown function and �  is 

an  unobserved random disturbance with � � 0E � �x . The statistical problem is to estimate 

the parameter vector �  and conditional mean function g  from a sample 

� �" #, , 1,...,  
i i

y i n�x . Note that the whole model as well as � �� �;g h x �  are semiparametric, 

since � �;h x �  is a parametric function and �  lies in a finite-dimensional parameter space, 

while g  is a nonparametric function belonging to the infinite-dimensional parameter space. 

 

                                                
7 See Geenens and Delecroix (2006) for the survey of the single-index model and its estimation techniques, 
and Yatchew (2003) for application examples. 
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Although it is possible to assume different kinds of functional forms for index function 

� �.h , most typically the linear index � �;h ��x � � x  is assumed. Model (10) with 

� �;h ��x � � x  is called a linear single-index model (e.g. Ichimura, 1993). In the context of 

production function and frontier estimation, use of linear single-index models implies that 

we assume an unknown production function to depend on a linear index of inputs, but no 

parametric functional form is assumed for this relationship. For simplicity, in this paper we 

will assume a linear index function and thus, the “single-index model” will always refer to 

the linear single-index model. Nevertheless, we note that in some frontier applications 

alternative or more general parametric functional forms (than linear) can be more 

appropriate for index function. It is, for example, possible to include cross products (or 

interactions) of explanatory variables in the index function (e.g. Cavanagh and Sherman, 

1998). 

 

It is important to notice that in single-index models some normalization restrictions are 

generally required to guarantee the identification of the parameter vector.8 First of all, the 

matrix of explanatory variables X is not allowed to include a constant term. This restriction 

is called location normalization. The second restriction, called scale normalization, requires 

that one of the  (k=1,...,m)
k
/  coefficients is imposed to equal one.9 This means that we can 

only identify the direction of the slope vector � , that is, the collection of ratios 

" #j k ,  , 1,...,j k m/ / � , not the length or orientation of coefficients. Without lost of 

generality, we will thus set the first component of �  to unity and denote the parameter 

vector to be estimated as � �2' 1
m

/ / ��� � . Location and scale normalization have to 

be imposed, because otherwise it would not be possible to uniquely identify the index 

function. Besides these two normalizations, it is also required that X includes at least one 

continuously distributed variable, whose coefficient is not zero and that there does not exist 

perfect multicollinearity between components of X. In addition, depending on the used 

estimation technique some assumptions about nonparametric function g are needed to avoid 

perfect fit. 

 

 

                                                
8 Identification of single-index models is discussed in detail by Ichimura (1993). 
9 There are also some other possibilities for scale normalization, see Ichimura (1993). 
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3.3. Estimation techniques 
 

The main challenge in estimating single-index models is not the estimation of 

nonparametric function g , but the parameter vector � . In fact, given an estimator �̂  for � , 

ˆ( )g �� x  can be estimated using any standard nonparametric regression techniques (e.g. 

Geenens and Delecroix, 2006). However, as our aim is to develop an approach for shape-

constrained production frontier estimation similarly as in Section 2, we need a technique 

that allows us to estimate the nonparametric function g  under regularity conditions. 

Although it would be possible to use some other shape-constrained estimation techniques in 

the case of one explanatory variable (i.e. estimated single-index ˆ �� x ), analogously with the 

StoNED approach presented in Section 2 we will use CNLS for the estimation of average 

function g . By using CNLS, we do not need to assume differentiability of the frontier 

function or any other smoothness properties. This is in contrast to other shape-restricted 

nonparametric estimation techniques such as smoothing spline or Sobolev least squares (see 

e.g. Yatchew, 2003), which require one to specify a value for smoothing parameter in 

addition to shape constraints.  

 

With regard to the estimation of single-index coefficient vector � , there does not exist one 

method above the others, as various techniques have their own benefits and weaknesses. 

This same fact also explains why there is a great variety of methods available for single-

index models. Most estimators can be classified into two main categories: the M-estimators 

and direct estimators. Typical examples of M-estimators include semiparametric nonlinear 

least squares estimator (Ichimura, 1993) and semiparametric maximum likelihood estimator 

(Delecroix et al., 2003), while most popular direct estimators are average derivative method 

(Härdle and Stoker, 1989), density-weighted average derivative estimator (Powell et al., 

1989) and sliced inverse regression (Li, 1991; Duan and Li, 1991). The advantage of direct 

estimators is that they provide an analytic form and are therefore computationally relatively 

easy to implement. Instead, M-estimators have somewhat better theoretical properties, but 

they are also computationally much more demanding, as they require the solving of 

nonlinear optimization problem with nonconvex (or nonconcave) objective function. In 

addition to direct and M-estimators, some other estimators for index coefficients have been 

developed such as monotone rank correlation estimator (Cavanagh and Sherman, 1998).  
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In this paper, we will show how the sliced inverse regression (SIR) and the monotone rank 

correlation (MRC) estimator can be used for estimating the single-index coefficient vector 

�  in stochastic frontier estimation.10 As these two estimators are based on different 

assumptions and computational procedures, the use of both methods in a typical empirical 

application can make the analysis more robust. Therefore, we will also apply both 

techniques in the empirical application. There are two important reasons for the selection of 

SIR and MRC among many possibilities in this context. First of all, both techniques are 

based on assumptions that are consistent with the assumptions used in the second stage of 

our approach. In fact, to our knowledge SIR and MRC are the only single-index estimators 

that do not require the conditional mean function g to be differentiable. Since we use the 

non-smooth CNLS for estimating the nonparametric function in the second stage, here it 

would thus be questionable to use techniques that require the differentiability of g for the 

estimation of index parameters. The second relevant reason to prefer MRC and SIR to other 

possible estimators is related to the choice of the smoothing parameter. In contrast to all 

other single-index estimators mentioned above, MRC does not require bandwidth or a 

tuning parameter of any other kind. Instead, in SIR estimation one has to choose the number 

of slices, which is partially similar to bandwidth choice used in kernel regression. However, 

the number of slices for SIR is generally less crucial than the selection of bandwidth for 

typical nonparametric regression or density estimation problems (see Li, 1991, for 

discussion). Due to these important properties, we consider SIR and MRC the most suitable 

estimation techniques for the parametric part of the shape-restricted average production 

function. 

 

3.4. Frontier estimation 
 

Single-index models and techniques have been utilized in various kinds of econometric 

applications, including binary response, censored regression and sample selection models. 

Nevertheless, applications in the field of production economics have been rare, and we are 

aware of only two studies that have used the single-index model in production function 

estimation. Das and Sengupta (2004) used the single-index model to estimate both 

production and utilization functions for Indian blast furnaces, while Du (2004) proposed 

single-index specification for the deterministic frontier model that does not account for 

                                                
10 I am thankful to Leopold Simar for the suggestion to use the rank correlation estimator. 
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shape constraints. To avoid the dimensionality problem, the single-index model is not so 

advantageous in deterministic frontier estimation, since one can estimate (deterministic) 

nonparametric quantile frontiers in a parametric convergence rate (see Aragon et al., 2005; 

Martins-Filho and Yao, 2008). However, this is not the case with stochastic frontier 

estimation, and thus single-index model can be a much more useful tool in stochastic 

frontier application than in deterministic ones. Moreover, as it does not require the 

specification of functional form for production function a priori, it is important to consider 

how single-index specification can be used in stochastic frontier estimation in general and 

in shape-restricted estimation, in particular. 

 

Let us now consider a stochastic frontier model based on the single-index specification. We 

assume that the frontier function f  belongs to the shape-restricted class 2F  and that it has a 

single-index structure (10). This implies that the production frontier is monotone increasing 

and concave with respect to the index function. Semiparametric SFA model with an additive 

error structure and the same error term assumptions as before (see Section 2) can be written 

as 

 

� � � �
� � ,         1,...,

i i i i i

i i

y f f

g i n

� � � �

�

� �� � � � � �

�� � �

� x � x

� x
                                    (11) 

 

where � � �
i i i

v u  is the composed error term, �  is the expected inefficiency, 

� � � �. .g f �� � 2F�  is the average production function and 
i i i i

v u� � � �� � � � �   is the 

modified composite error term with � � 0� �
i i

E x . Note that the frontier function f  and the 

average production function g  have the same index functions, as constant �  only affects 

location, not index (which cannot have a constant). Because of this property, it is possible to 

estimate the single-index coefficient vector using the average production function g .  

 

It is also important to note that the above single-index specification can easily be modified 

for a frontier model with a multiplicative error structure (9). This multiplicative model uses 

logarithmic output as dependent variable, but is otherwise similar to (11). Hence, the 

estimation techniques elaborated below can be also used for estimating a single-index 

frontier with multiplicative error structure. 
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For the estimation of the single-index frontier model, the following three stage procedure 

can be used: 

    

[1] Estimate the coefficient vector �  by using either sliced inverse regression (SIR) or 

the monotone rank correlation estimator (MRC) and calculate the values of index 

functions ˆ
i i

z �� � x ,  i =1,…,n  with the given estimates. 

 

[2] Use the shape-restricted univariate CNLS (4) to estimate fitted values of the 

average production function � �ig z . (To estimate average function for unobserved 

values of z, use (5).) 

 

[3] Use the method of moments to estimate error term parameters and frontier function 

and Jondrow et al. measure (7) to calculate inefficiency scores.  

 

Estimation techniques used in stages [2] and [3] have been explained in Section 2, so we 

skip these stages here and concentrate on stage [1]. We next describe the main principles of 

SIR and MRC that are used in the first stage and then comment on the statistical properties 

of the proposed three stage approach.  

 

Sliced inverse regression was proposed for the purpose of dimension reduction by Li 

(1991). The basic principle behind the method is simple; parameter vector �  is estimated by 

using inverse regression � �E yx , where the vector of explanatory variables x is explained 

by y. The inverse regression of x on y is based on a nonparametric step function as 

elaborated below. Computationally, SIR is probably the easiest single-index technique, 

because it does not require iterative computation and basically can be implemented with any 

econometric or statistical program. Related to this, the method is feasible and not 

computationally demanding to use even if the number of explanatory variables is very 

large.11 On the other hand, in contrast to other single-index techniques, SIR requires an 

assumption that for any mR�b , the conditional expectation � �E z� � �b x � x  is linear in z. Li 

(1991) has shown that this condition can be satisfied if the matrix of explanatory variables 

                                                
11 For example, Naik and Tsai (2004) estimated a single-index model with 2424 observations and 166 
explanatory variables using SIR, although only 16 of the variables proved to be significant. 



 

 

18 

X is sampled randomly from any nondegenerate elliptically symmetric distribution (such as 

multivariate normal distribution). This can be restrictive assumption in some applications, 

even though it has been shown that the linearity assumption generally holds as a reasonable 

approximation, when the dimension of x is large (see Hall and Li, 1993).  

 

As far as the estimation procedure is concerned, SIR is quite different in comparison to 

most other regression techniques. In SIR, the parameter vector �  is estimated by using the 

principal eigenvector 1�  of the spectral decomposition formula: 

 

     1 1 1,y
� �  xx � �                             (12) 

 

where 1�  is the largest eigenvalue (i.e. 1 2 ...
m

� � �	 	 	 ),  x  is the covariance matrix of x, 

and � �( )
y

Cov E y �x x  is the covariance matrix of the conditional mean of x given y. 

Formula (12) can be used for calculating �  after  x  and 
y

 x  have been substituted by 

their estimates.  x can be estimated by the usual sample covariance matrix 

� �� �1

1

ˆ n

i ii
n
�

�
� � � � x x x x x , where 

i
x  denotes the values of inputs for observation i and 

x  contains means of input variables. Estimation of 
y

 x  requires that the range of output y 

is first partitioned into Q slices " #1,..., Q
s s , and then the m-dimensional conditional mean 

function (or inverse regression) ( )E y�� x  for each slice 
q

s  is estimated by the sample 

average of the corresponding xi’s, that is 

1

1

1( )
ˆ   if ,

1( )

n

i i q

i
q qn

i q

i

y s

y s

y s

�

�

�
� �

�

 

 

x
�                                     (13) 

where 1(.)  is the indicator function taking value 1 and 0 depending on whether 
i

y  falls into 

the qth slice or not. 
y

 x  can then be estimated by using a weighted sample variance-

covariance matrix 

  � �� �
1

ˆ ˆ ˆˆ ,
Q

q q qy
q

p
�

�
 � � � x � x � x                                   (14) 
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where ˆ
q

p  is the proportion of observations in slice q. By substituting the estimates  ̂x  and 

ˆ
y

 x  into (12), we can obtain a SIR estimate 1
ˆ ˆ�� �  (i.e. the principal eigenvector of the 

spectral decomposition). Furthermore, it is then straightforward to calculate ˆ
i i

z �� � x  for all 

observations and use these values in CNLS regression in the second stage. 

  

It is worth emphasizing that the number of slices Q used in (13) and (14) has to be chosen 

before the estimation. However, the choice of Q does not usually affect the SIR estimates, 

as long as the sample size is large enough to provide useful approximations. To this end, Li 

(1991) showed that the number of slices for SIR is generally less crucial than the selection 

of bandwidth or a smoothing parameter for typical nonparametric regression or density 

estimation problems. In contrast to the choice of bandwidth parameter in kernel regression, 

the number of slices does not either affect consistency or convergence rate of the estimator 

(Duan and Li, 1991). 

 

Monotone rank correlation estimator (MRC). Han (1987) first proposed an estimator 

based on the rank correlation between the observed dependent variable and the values fitted 

by the model. This maximum correlation estimator was later generalized by Cavanagh and 

Sherman (1998) and called a monotone rank correlation estimator (MRC). In contrast to 

other single-index estimators, the main benefit of MRC is that it does not require one to 

specify bandwidth or any other tuning parameter before the estimation. Instead, the method 

requires the conditional mean function g to be monotonic with respect to the index. 

Although this might be a restrictive assumption in certain applications, in this context it is 

actually very natural and justified, since we use it in stage [2].  

 

In the single-model where the dependent variable is y, the MRC estimator proposed by 

Cavanagh and Sherman (1998) uses the following objective function: 

 

� �ˆ arg max ,i n i

i

y R ��  � � x                        

where � �.n
R  is the function that ranks the index values.12 Although this may first like a 

relatively simple objective function, it is not easy to maximize due to the non-smooth rank 

                                                
12 For logarithmic output, one simply uses  ln(yi) in the place of yi. 



 

 

20 

function. More importantly, since the objective function is discontinuous and thus not 

differentiable, it cannot be optimized with standard gradient-based algorithms (such as 

Newton-Raphson or BFGS). The difficulty to compute the estimator can create problems in 

empirical applications, since one has to rely on direct search algorithms that can locate a 

local optimum that is not a global optimum. In addition, search algorithms can sometimes 

be sensitive to the starting values of the parameters. In fact, many previous MRC studies 

have employed the Nelder-Mead simplex algorithm, which is not necessarily robust to 

starting values and the initial simplex which have to be determined before the estimation. 

Thus, it is possible that the simplex algorithm converges to different local maxima 

depending on the starting values and/or initial simplex. This potential optimization problem 

is demonstrated in Abrevaya (2003) who shows by means of simulations that the MRC 

estimator exhibit many local maxima. The results of his simulations also show that the 

number of local maxima increase considerably when sample size decreases. Because of 

these properties related to computation, at least in applications with a small sample size it 

might be reasonable to prefer SIR to MRC despite the weaker assumptions of the latter. On 

the other hand, if the used algorithm is not sensitive to the starting values or initial simplex, 

MRC could be more robust than the other single-index techniques, because it does not 

require smoothing parameter of any kind. 

 

Asymptotic properties of estimators. Concerning the statistical properties of the proposed 

approach, it is worth emphasizing that the three stage method elaborated above uses 

estimators that are consistent under their assumptions. This means that the frontier function 

can also be estimated consistently if all model assumptions are valid. In addition, we have 

more specific asymptotic results for estimators used in different stages. First of all, n -

consistency and asymptotic normality of SIR and MRC estimators were shown by Duan and 

Li (1991) and Cavanagh and Sherman (1998), respectively. While SIR allows � �.g  to be 

totally unknown, its consistency depends on the linear condition explained above. Instead, 

the consistency of MRC is assured by the monotonicity of � �.g  with respect to the index.  

Secondly, the univariate CNLS estimator, which we use in the second stage, has been 

proved consistent by Hanson and Pledger (1976). Thirdly, under the stated distributional 

assumptions for the composed error term, error term parameters can be estimated 
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consistently in a parametric convergence rate, even if the avarage production function is 

estimated with nonparametric or semiparametric methods (see Fan et al., 1996).  

 

Besides the asymptotic results above, the benefit of the proposed approach in comparison to 

nonparametric frontier approaches is that it avoids the curse of dimensionality, as the 

frontier function can be estimated as accurately as the one-dimensional nonparametric 

model regardless of the number of explanatory variables. Of course, these better statistical 

properties can be achieved by using stronger assumptions on the structure of the model than 

in nonparametric estimation. Related to this, one possible weakness of the single-index 

model in frontier applications can be the fact that the model assumes a nonparametric 

functional form for the index function, not for individual variables. Despite the 

semiparametric treatment of the frontier, it can thus be a somewhat restrictive specification 

in certain applications. However, in contrast to previous techniques estimating 

semiparametric stochastic frontier functions, the single-index approach proposed here does 

not require smooth frontier and is based on shape-constrained estimation similarly to 

popular deterministic frontier techniques. 

 

4. Estimation of pollution generating technology  
 

4.1. Modelling emissions 
 

In many industries, firms or other productions units produce undesirable outputs, such as 

pollution, in addition to desirable outputs. The emerging literature focuses on estimating 

production technologies that create pollution as a by-product of their production processes. 

In this literature, emissions are taken into account by estimating environmental production 

or frontier functions that include emissions as well as traditional inputs and outputs. We 

next extend the semiparametric approach proposed in the paper to the estimation of 

pollution generating (or environmental production) technologies. To motivate for our 

approach, we start by shortly reviewing various approaches used to estimate environmental 

production frontiers and environmentally adjusted technical efficiency or environmental 

efficiency scores. For brevity, we will mainly concentrate on previous SFA approaches, 

even though deterministic frontier approaches have been somewhat more common in the 

applications on this research area.  
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The estimation of environmental production technologies has mainly been based on DEA, 

deterministic parametric programming and parametric SFA methods. Evidently, the most 

difficult question in estimating frontier functions and/or efficiency measures in this context 

has been the issue of how to model emissions. In fact, although various approaches have 

been given justification and many academic debates have emerged, it is still open to 

discussion which is the “correct way” to model emissions when estimating pollution 

generating technologies. Following the seminal paper of Färe et al. (1989), the most 

common approach in DEA literature has been to model emissions as weakly disposable 

outputs, which basically means that the model accounts for the possibility that emissions 

cannot be reduced freely. However, many alternative approaches based on DEA or 

parametric programming have been presented and used in applications.  

 

Instead, in classical and Bayesian SFA literature, it has been a common approach to model 

emissions as inputs (e.g. Koop, 1998; Reinhard et al., 1999, 2000; Managi et al., 2006). 

This “input approach” originates from environmental economics literature, where the 

standard approach of modelling nonlinear production and abatement processes is to treat 

waste emissions “simply as another factor of production” (Cropper and Oates, 1992). The 

main intuition behind this approach is that equivalently with input reduction pollution 

abatement is costly, as abatement requires either an increase in traditional inputs or a 

reduction in outputs. Therefore, it has been argued that it is justified to model emissions 

technically as inputs even if they represent undesirable outputs or residuals of the 

production in the fundamental sense. Importantly, the recent paper by Ebert and Welsch 

(2007) also presents a rigorous justification for the view that emissions can be modelled or 

interpreted as an input in the production process. In this paper, it is formally shown that a 

well-behaved production function with emissions as input is one of the three equivalent 

ways to model a production technology if the material balance is accounted for as an 

additional condition13. This result is of great importance, as some previous studies (e.g. 

Coelli et al., 2007) have argued conversely that the input approach is not consistent with the 

material balance condition.  

 

                                                
13 According to the material balance condition (or the law of mass conversion), the flow of materials taken 
from the environment for economic use, generates a flow of materials with an equal weight back into the 
environment. 
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Two notable exceptions for the input approach in SFA literature are Fernandez et al. (2002), 

where emissions are modelled separately from traditional inputs in a different equation, and 

Fernandez et al. (2005), who model emissions as normal outputs after data transformation. 

While the essential limitation of the former study is the separability assumption, the latter is 

more general in the sense that it allows nonseparability of outputs and inputs. On the other 

hand, to obtain a dependent variable for the regression model, Fernandez et al. (2005) need 

to transform emissions into desirable outputs and estimate a certain kind of parametric 

aggregator function that combines both untransformed and transformed outputs into one 

aggregated output.  

 

4.2. Semiparametric input approach 
 

Here we follow the standard environmental economics approach by modelling emissions as 

inputs in the estimation of environmental production frontiers. This means that we construct 

a statistical model for the good output conditional on inputs and emissions. It is worth 

emphasizing that treating emissions similarly to inputs simplifies estimations, as we can 

apply the framework proposed in Section 3. Furthermore, since the econometric estimation 

of multiple input, multiple output technologies is plagued with difficulties even in a fully 

parametric context (compare e.g. Fernadez et al., 2005), it seems sensible to use the input 

approach in the semiparametric estimation.  

 

To present the idea formally, let us now denote the p-dimensional vector of emissions by w 

and the m-dimensional traditional input vector by x. We will now consider the function 

f(x,w), which we call environmental production frontier. By following Section 3, we will 

assume that this function takes the single-index form ( , ) ( ),f f � �� �x w � x �w  where f is a 

nonparametric function belonging to the shape-restricted class 2F , � and �  are parameter 

vectors and � ��� x �w is the (linear) index function. Shape constraints imply that the 

environmental production frontier is monotonically increasing and concave with respect to 

the index function. 

 

As we model emissions similarly to traditional inputs, we can now present the frontier 

model simply as  
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� � � � ,         1,...,
i i i i i i i

y f g i n� �� � � �� � � � � � �� x �w � x � w                         (15) 

 

where � � �
i i i

v u  is the composed error term, �  is the expected inefficiency, � � �� �
i i

  is 

the modified composite error term with � � 0
i i

E x� �  and � � � �. .g f �� � 2F�  is the 

average environmental production function.  

 

To estimate model (15), we can use the three stage approach elaborated in Section 3. 

Having estimated residuals �̂
i
, environmentally adjusted technical efficiency scores (or 

environmental efficiency scores) can be calculated  by employing the Jondrow et al. (1982) 

measure (7). There are some other measures available for the environmental efficiency 

estimation in SFA literature, but these require a parametric functional form for the 

environmental production function (see Reinhard et al., 1999; Fernandez et al., 2005). 

 

5.  Application to electric power plants 
 

5.1. Data and estimations 
 

In this section the proposed semiparametric techniques are applied to empirical data both to 

illustrate the new techniques and to compare the efficiency estimates given by these 

methods with those obtained by StoNED and standard DEA and SFA methods. We estimate 

an environmental production frontier and environmentally adjusted technical efficiency 

scores for a set of U.S. coal-fired power plants by using the same data set as in Färe et al. 

(2007a). This data set includes 92 observations from year 1995 and is based on the larger 

database used by Pasurka (2006) and Färe et al. (2007b). It is important to notice that these 

data only include plants in which at least 95% of total fuel consumption (in Btu) is provided 

by coal. This guarantees that the plants included in the data are comparable with respect to 

their production technology. 

 

For estimating the frontier functions and efficiency scores, we will use one desirable output, 

two different emissions and two inputs. The desirable output is net electrical generation in 

gigawatt-hours (GWh) and pollution variables include sulfur dioxide (SO2) and nitrogen 

oxides (NOx) emissions. Input variables consist of capital stock measured in 1973 million 

dollars and the annual average number of employees at the plant. Concerning the data 
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sources, net electrical generation and fuel consumption data come from the Annual Steam 

Electric Unit Operation and Design Report, published within the Department of Energy 

(DOE) by the Energy Information Administration, EIA767. These data are also used by 

DOE to derive emission estimates of SO2 and NOx. Capital and labor data is based on the 

information compiled by the US Federal Energy Regulatory Commission (FERC). For 

details on how the data set has been constructed and on different assumptions made to 

elaborate the variables, we refer to Färe et al. (2007a). Table 1 presents descriptive statistics 

for each variable used in the analysis. 

 

Table 1. Descriptive statistics for the model variables 
 

Variable Units Mean St. dev. Min. Max. 
Electricity GWh 4686.5 4065.3 166.6 18212.1 

Capital stock Dollars (in millions, 
1973$) 

240.0 146.4 39.4 750.0 

Employees The number of workers 185.2 110.9 38.0 535.0 
SO2 Short tons 40745.2 48244.8 1293.2 252344.

6 

NOx Short tons 17494.0 16190.1 423.1 72524.1 

 

Besides the variables in Table 1, Färe et al. (2007a) also included the heat content (in Btu) 

of coal, oil and gas consumed at the plant as variables in their DEA models. However, as we 

next argue, there are some important reasons for why these variables are not so useful in 

stochastic frontier estimation. First of all, it was observed in preliminary estimations that the 

heat content of oil and gas did not have any explanatory power for electricity in these coal-

fired plants. In contrast, the heat content of coal turned out to correlate almost perfectly with 

electricity generation, as the correlation coefficient was as high as 0.996. Since there is a 

close to linear relationship between coal input and electricity, all regression models that 

include the heat content of coal as an explanatory variable would yield an almost perfect 

regression fit independently of other variables and functional form of the model. In 

stochastic frontier estimation, this would imply that the frontier function and average 

production function are equal or that there is no inefficiency according to the estimated 

model. This was observed in the linear and log-linear SFA models where the heat content of 

coal was the only explanatory variable as well as in more general models that included 

many input variables. However, it needs to be emphasized that this does not imply there to 

be no inefficiency in the utilization of some other inputs or emissions generated by the 
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plant. Due to these reasons, we think it is justified not to include the heat content variables 

in the stochastic frontier models in this case.14 For comparability, we will also exclude these 

variables from the DEA model we estimate. Nevertheless, we note that in DEA models the 

inclusion of the coal variable does not create similar problems as in SFA and there is 

inefficiency even after including it as the additional model variable. The reason for the 

divergence of DEA and SFA in these kinds of cases is left for future research. 

 

We estimate the frontier functions and efficiency scores by using a Cobb-Douglas SFA 

estimator, StoNED, single-index stochastic frontier estimators based on SIR and MRC as 

well as a variable returns to scale (VRS) DEA estimator. Since the data include plants that 

differ notably with respect to their size, regression models with an additive error structure 

are more sensitive to the heteroskedasticity problem than models with a multiplicative error 

structure. As a result of this data property, we decided to use the multiplicative error 

specification (9) in the single-index and StoNED models. Thus, in these models the 

dependent variable is ln(GWh) while independent variables are measured in levels. Instead, 

in the variable returns to scale DEA model we use the level variable (i.e. GWh) as an 

output, because DEA applications based on logarithmic variables are very rare. 

 

The DEA and parametric SFA models were estimated with Limdep. To estimate CNLS 

regression used in the second stage of the single-index frontier models and in StoNED, the 

GAMS code of Kuosmanen (2008) was used. The first stage of MRC and SIR frontier 

models were estimated with GAUSS and R, respectively. For the former, we employed the 

GAUSS code written by Jason Abrevaya, whereas the latter is based on the dr package in R.  

  

As explained in Section 3, the MRC estimation requires one to use a non-gradient search 

algorithm to optimize the non-smooth objective function. Similarly to other previous MRC 

applications, an iterative Nelder-Mead simplex method was used for that purpose. For 

computations, we used the same iteration scheme as in Cavanagh and Sherman (1998). As 

starting values, we tried least squares estimates as well as some other values. Unfortunately, 

the coefficients were sensitive both to the starting values and the chosen initial simplex. 

Taking into account the simulation results of Abrevaya (2003), we doubt this problem is a 

                                                
14 However, if one would be interested in analysing the effect of various inputs on electricity generation, then 
it could be warranted to include the heat content of coal in the regression model. 
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consequence of the small sample size used in the application.15 On the other hand, it should 

be noted that although the parameter estimates were sensitive to the starting values, the 

effect was substantially slighter on the estimated index functions. In the next section, we 

will give the results of the single-index model based on OLS starting values. However, 

because of computational problems, it is important to be cautious when interpreting the 

results of the MRC estimation. 

 

In contrast to MRC, the SIR estimates are not sensitive to computational issues. However, 

in SIR, one has to determine the number of slices Q used in the nonparametric step function. 

We calculated parameter estimates and index functions with different values for Q. 

Although the choice of Q affected the values of coefficients, the index function estimates 

were very similar independently of the number of slices. As an evidence of this, the 

correlation coefficients between the index function estimates based on different values of Q 

are of important note. For example, the correlation coefficients between index functions 

based on Q = 3, 7 and 15 were 0.993, 0.995 and 0.9998, respectively. In the following, we 

report the results based on Q = 7. 

 

5.2. Results 
 

We start by illustrating the estimated single-index frontiers based on these data. Figures 1 

and 2 plot the values of the index function (×) and single-index frontiers based on SIR and 

MRC. In both figures, the dependent variable ln(GWh) is on the y-axis and the index 

function on the x-axis. Nonetheless, the index values vary between the figures, since they 

are based on different methods. In both cases, the frontier functions are piecewise linear, 

monotonic and concave similarly to StoNED and DEA. This is because we have used 

CNLS in the second stage. Note that there are observations (or index values) above the 

estimated frontier functions. This is expected, as frontiers presented in the figures do no 

account for observation-specific noise terms. However, as usual in SFA, noise terms are 

accounted for in the estimation of inefficiency scores. 

 

    

 

                                                
15 Cavanagh and Sherman (1998) report that their results were not sensitive to the starting values and initial 
simplex. However, their sample included 18967 observations. 
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 Figure 1. Single-index frontier function for SIR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Single-index frontier function for MRC 

 

Since the estimated models include four input or explanatory variables, we cannot present 

the estimated frontiers for StoNED, parametric SFA or DEA in figures. For the purpose of 
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coefficients of efficiency scores between the methods. In addition, the appendix includes 

estimation results for error term parameter estimates from different stochastic frontier 

models. Concerning the technical efficiency scores, for all stochastic frontier models 

inefficiency scores were first estimated by employing the Jondrow et al. measure. Then 

these inefficiency scores were transformed into relative (or Farrell) efficiency scores by 

applying the usual formula exp ( )�� '� (, -i i i
TE E u , where ( )�

i i
E u  is the Jondrow et al. 

measure. 

 

Table 2. Summary statistics on environmentally adjusted technical efficiency scores 

 Mean St. dev. Min. Max. 

Single-index, SIR 0.920 0.072 0.689 1 

Single-index, MRC 0.873 0.109 0.616 1 

StoNED 0.881 0.105 0.587 1 

DEA (VRS) 0.737 0.207 0.273 1 

SFA (Cobb-Douglas) 0.718 0.148 0.445 0.949 

 

Table 3. Correlations of efficiency measures 

 Single-

index, SIR 

Single-

index, MRC 

StoNED DEA 

(VRS) 

SFA 

(Cobb-Douglas) 

Single-index, SIR 1     

Single-index, MRC 0.903 1    

StoNED 0.649 0.809 1   

DEA (VRS) 0.676 0.806 0.848 1  

SFA (Cobb-Douglas) 0.856 0.938 0.785 0.814 1 

 
According to the results, average efficiency is highest for the SIR model and lowest for 

Cobb-Douglas SFA. The difference between single-index models and StoNED in average 

efficiency is small, whereas deviation from DEA and parametric SFA is greater. Note that 

the minimum value of the efficiency score is notably lower for DEA than other models. In 

addition, the standard deviation of efficiency scores for DEA diverges from the others.  
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As far as correlation of efficiency scores between the methods is concerned, the highest 

correlation coefficient 0,938 is between Cobb-Douglas and MRC, while the lowest is 

between SIR and StoNED. However, since all the correlation coefficients are yet quite high, 

it would be risky to present any general conclusions about the differences among the 

methods. Naturally, a more systematic comparison of the different techniques in small 

samples would require the use of simulated data sets. Nevertheless, this application 

demonstrates that the proposed semiparametric estimation techniques can yield empirical 

results that deviate from the results given by traditional DEA and SFA methods. 

  

6. Conclusions 
 

We have presented a new semiparametric approach for stochastic frontier estimation. We 

showed how the proposed shape-constrained model can be estimated in three stages by 

using (1) single-index estimation techniques, (2) convex nonparametric least squares 

(CNLS) and (3) method of moments. Importantly, as our procedure in the second and third 

stages is similar to the StoNED approach presented by Kuosmanen and Kortelainen (2007), 

the proposed approach can be considered a semiparametric extension of StoNED. 

Furthermore, since the second stage in our approach is always univariate regression that 

uses an index function as the only regressor regardless of the number of original 

explanatory variables, one can perceive the first stage as a dimension reduction for the 

second stage. This dimension reduction aspect also explains why the proposed method is 

not sensitive to the curse of dimensionality problem in contrast to StoNED and many other 

non- and semiparametric SFA approaches. 

 

For the first stage estimation, we proposed two different methods: sliced inverse regression 

(SIR) and the monotone rank correlation estimator (MRC). Although there exist many other 

single-index estimation techniques, we considered SIR and MRC most suitable for the 

present model, because in contrast to all other techniques, these do not require the 

differentiability of the frontier function. The main benefit of MRC is that it does not need 

any kind of bandwidth or a smoothing parameter, which means that its estimates are not 

sensitive to an arbitrary smoothness assumption that is the case with most other single-index 

techniques. However, since the MRC estimator is based on the maximization of the non-

smooth objective function, the direct search algorithm used for the estimation can be 

sensitive to the initial parameter values. This computational shortcoming can be especially 
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problematic if sample size is relatively small, which was also the case in our empirical 

application. In contrast to MRC, SIR is generally very easy to calculate and can be 

implemented without any iteration procedures. However, its main weakness is the 

assumption on the linearity of the conditional expectation � �E z� � �b x � x . In addition, 

before estimation SIR requires one to specify the number of slices, which can have some 

effect on the results. All in all, since SIR and MRC have their own strengths and 

weaknesses, we find a good strategy to use both techniques in empirical applications. 

However, with access to a relatively large sample, one might prefer MRC due to its weaker 

assumptions. 

 

In addition to showing how to estimate frontier and technical efficiency scores, we modified 

the proposed semiparametric approach for the estimation of environmental production 

technologies and environmental sensitive technical efficiency scores. For this purpose, we 

followed the standard environmental economics approach by modelling emissions as inputs. 

We illustrated the presented approach with an empirical application to the environmentally 

adjusted performance evaluation of electric power plants. Presumably due to a small sample 

size (n = 92), the MRC estimates were somewhat sensitive to the starting values of the used 

Nelder-Mead simplex algorithm. As index function estimates given by the SIR estimator 

were not sensitive to the number of slices, we rely more on the results given by the latter 

method in this application. It is left for further research to establish whether some other 

optimization method (or a combination of optimizers) would be more robust in MRC 

estimation with smaller sample sizes. 

 

In the future, it would also be interesting and important to compare the performance of our 

semiparametric single-index approaches based on SIR and MRC to StoNED by employing 

simulated data sets. This would perhaps reveal in what kinds of settings the single-index 

approach is an adequate modeling tool and even preferable to StoNED. Another important 

research question would be to extend the proposed non-smooth approach to the estimation 

of smooth shape-constrained semiparametric frontier functions. In addition, it would be 

important to use the approaches proposed in the paper in other kinds of applications. For 

example, profit frontier estimation would be a natural application area, since profit 

functions have to satisfy shape-constraints implied by microeconomic theory. 
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Appendix 
 

Table A1. Estimates for error term parameters 

 Single-index, 

SIR 

Single-index, 

MRC 

StoNED SFA, Cobb-

Douglas 

� �

�
� 0,228 0,273 0,230 0,451 

� �

�
� 0,331 0,251 0,167 0,144 

� �
� 0,161 0,138 0,081 0,225 

� � 0,689 1,088 1,384 3,130 

�


