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A number of papers through the years have addressed the price-yield relationship, the approximation of 

bond returns and the associated components of price sensitivity. Typically, the research has been focused 

around the concept of duration and convexity to explain the price sensitivity of a bond to changes in its yield. 

Fixed income portfolio managers, however, are also interested in what happens to bond prices over a certain 

investment horizon, i.e. how time passage affect bond returns together with yield changes.  

Chance and Jordan [1996] examines this in a very neat way by a second order Taylor series expansion 

around the current market yield 𝑦0 and time to maturity 𝑡𝑘0 of the price of a bond. In doing so, they are 

able to analyze the total return of the bond and attribute it to the five factors at hand plus an error term. The 

factors are the first order effects from duration and time passage, the second order effects from convexity 

and a squared time passage component and, finally, the cross component effect from the interaction 

between duration and time passage. Another advantage with this approach is that it is easy to generate 

returns for bonds along the yield curve for a certain investment horizon. This is very useful for creating 

scenarios for portfolio optimization purposes, what-if analysis or break-even calculations. 

Due to the fact that the price-yield relationship is non-linear, the conventional approximation models give 

close results for yield changes of up to ± 100 basis points. Beyond that point, errors tend to increase 

significantly. Barber [1995] addresses this issue by expanding the natural logarithm of the price of a bond in 

a Taylor series around 𝑦0. The relationship between the logarithm of the price of a bond and its yield is 

much less non-linear (or much more linear whichever way is preferred), which means that the Barber model 

is able to give close approximations of bond returns even when the yield range goes beyond ± 100 basis 

points. In fact, even as far as ± 300 basis points. Such a wide yield range would be very helpful when 

analyzing different yield curve scenarios, but the model does unfortunately not account for the passage of 

time. 

In this paper, an extension to the Barber [1995] model is developed in order to draw from his close 

approximations over a relatively wide yield range, but also to include the time passage effect on bond 



 

July 2012 

 

returns, in the spirit of Chance and Jordan [1996], to make the model suitable for scenario analysis which 

allows for yield changes over a certain investment horizon.  

The model 

Let the price of a bond be given by 

𝑃 = ∑ 𝐶𝐹𝑘(1 + 𝑦)𝑡𝑘
𝐾

𝑘=1                                            (1) 

where 𝐶𝐹𝑘 is the 𝑘thcash flow of the bond, k=1,2,…,K, 𝑦 is the yield to maturity of the bond and 𝑡𝑘 is the 

time to maturity of the 𝑘th

cash flow of the bond. The modified duration of the bond is given by 

𝑀𝑑𝑢𝑟 = − 1𝑃0 𝜕𝑃𝜕𝑦                                              (2) 

and the convexity of the bond is given by 

𝐶𝑣𝑒𝑥 = 1𝑃0 𝜕2𝑃𝜕𝑦2                                                 (3) 

Expanding the natural logarithm of the price of the bond in a Taylor series around 𝑦0   and 𝑡𝑘0 results in:

𝑙𝑛𝑃 ≈  𝑙𝑛𝑃0 + 1𝑃0 𝜕𝑃𝜕𝑦 ∆𝑦 + 1𝑃0 𝜕𝑃𝜕𝑡𝑘 ∆𝑡𝑘 

+ 12 [ 1𝑃0 𝜕2𝑃𝜕𝑦2 − 1𝑃02 (𝜕𝑃𝜕𝑦)2] (∆𝑦)2 

+ 12 [ 1𝑃0 𝜕2𝑃𝜕𝑡𝑘2 − 1𝑃02 ( 𝜕𝑃𝜕𝑡𝑘)2] (∆𝑡𝑘)2 

+ [ 1𝑃0 𝜕2𝑃𝜕𝑦𝜕𝑡𝑘 − 1𝑃02 𝜕𝑃𝜕𝑦 𝜕𝑃𝜕𝑡𝑘] ∆𝑦∆𝑡𝑘          (4) 

Define bond theta as  𝜃 = ln (1 + 𝑦), which is the return increment resulting from pure time passage and is 

related to the first derivative of the bond price with respect to time to maturity 𝑡𝑘. According to (4), five 

partial derivatives are needed in the Taylor expansion. The five derivatives are the following: 

𝑖)           𝜕𝑃𝜕𝑦 = −𝑀𝑑𝑢𝑟𝑃0 

 

𝑖𝑖)           𝜕2𝑃𝜕𝑦2 = 𝐶𝑣𝑒𝑥 𝑃0 
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𝑖𝑖𝑖)           𝜕𝑃𝜕𝑡𝑘 = −𝜃𝑃0 

 

𝑖𝑣)           𝜕2𝑃𝜕𝑡𝑘2 = 𝜃2𝑃0 

 

            𝑣)           𝜕2𝑃𝜕𝑦𝜕𝑡𝑘 = 𝑃0[𝑀𝑑𝑢𝑟𝜃 − (1 + 𝑦)−1] 
Note that ∆𝑡𝑘 in a strict mathematical sense must be ≤ 0, due to the fact that time passage only can decrease 

the time to maturity of the bond. For practical purposes, though, the signs of the derivatives iii) and v) will be 

changed
1

 because it is more convenient to think of an investment horizon of, for example, three month as 

0.25 years rather than -0.25 years. With that in mind, substituting the above derivatives into (4), changing the 

signs of iii) and v), and rearranging gives the following: 

𝑅𝑐 = 𝑙𝑛 ( 𝑃𝑃0) ≈ 𝜃∆𝑡 − 𝑀𝑑𝑢𝑟∆𝑦 

+ 12 [𝐶𝑣𝑒𝑥 − 𝑀𝑑𝑢𝑟2](∆𝑦)2 +(1 + 𝑦)−1∆𝑦∆𝑡             (5) 

This is the continuously compounded return approximation, which can be annualized according to: 

𝑅𝑎 = 𝑃𝑃0 − 1 ≈ 𝑒𝑅𝑐 − 1                                                        (6) 

Note that equation (6) also can be used to work out the approximate new price 𝑃 at the horizon, given 

changes in 𝑦 and 𝑡𝑘. 𝑃 ≈ 𝑃0 𝑒𝑅𝑐                                                                                    (7) 

 

It is important to account for any interim coupon payments within the horizon to get a meaningful price. 

This kind of adjustment, however, is not needed when calculating the return approximations. 

Comparison of true returns and approximate model returns 

In this section some hypothetical bonds and their returns are examined over different time horizons and 

over a rather wide yield range in order to see how the logarithmic model (5) compares to the true returns of 

                                                           
1 Derivative iv),  i.e. the second order derivative of 𝑙𝑛𝑃 with respect to 𝑡𝑘 in the Taylor expansion cancels out and 

does not appear in the approximation formula (5). 
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these bonds. The conventional model of Chance and Jordan [1996] will also be included in this analysis to 

see if the logarithmic approach can improve upon the return approximations of their model as the yield 

range widens.   

The hypothetical yield curve is shown in Exhibit 1 and consists of par bonds with maturities of 2, 5, 10 and 

30 years, with coupons and yields of 3, 4, 4.75 and 5.25% respectively. 

  

 

 

The yields are shocked by 100 and 300 basis points respectively, over 30 and 360 days, to see how close the 

model can get to the true returns. To simplify for the reader to replicate the results below, the scaling of the 

parameters that goes into the approximation formula (5) are shown here for the 3% 2 year par bond, 

assuming a 100 basis point yield rise over 30 days: Mdur=1.9135, Cvex=5.5458, Theta=0.0296, Yield=0.03, 

∆y=0.01 and ∆t=0.0833. Exhibits 2 through 5 shows the results of the above scenarios. Clearly a 300 basis 

points yield shift in 30 days might be a bit over the top, but the main purpose is to test the accuracy of the 

model approximations. As can be seen in Exhibit 2, the logarithmic model gets pretty close to the true 

returns, with an error of 0.0073% for the 30 year bond. For the same bond the conventional model has an 

error of 0.1411%, which is several times larger, but still low for practical purposes. Exhibit 3 shows what 

happens when the horizon goes from 30 to 360 days. The errors increase for both models, but are still 

relatively low at 0.0121% and 0.1587% respectively. So lengthening the time horizon does not seem to feed 

the errors too badly. 
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EXHIBIT 1 ∎ Hypothetical Par Yield Curve
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EXHIBIT 2 ∎  Return approximations for 100 bp rise in yield over 30 days

2y 5y 10y 30y

Coupon 3.00% 4.00% 4.75% 5.25%

Yield 3.00% 4.00% 4.75% 5.25%

Price 100.00 100.00 100.00 100.00

Mdur 1.91 4.45 7.82 14.94

Cvex 5.55 25.01 76.39 335.35

Theta 2.96% 3.92% 4.64% 5.12%

New Yield 4.00% 5.00% 5.75% 6.25%

New Price 98.44 96.06 92.98 87.03

Approx Price 98.44 96.06 92.98 87.04

Price error 0.00 0.00 0.00 0.01

True Return -1.5650% -3.9397% -7.0162% -12.9655%

Logarithmic Model Return -1.5645% -3.9392% -7.0154% -12.9582%

Return error 0.0005% 0.0005% 0.0008% 0.0073%

Conventional Model Return -1.5629% -3.9338% -6.9976% -12.8244%

Return error 0.0021% 0.0059% 0.0186% 0.1411%   

 

EXHIBIT 3 ∎  Return approximations for 100 bp rise in yield over 360 days

2y 5y 10y 30y

Coupon 3.00% 4.00% 4.75% 5.25%

Yield 3.00% 4.00% 4.75% 5.25%

Price 100.00 100.00 100.00 100.00

Mdur 1.91 4.45 7.82 14.94

Cvex 5.55 25.01 76.39 335.35

Theta 2.96% 3.92% 4.64% 5.12%

New Yield 4.00% 5.00% 5.75% 6.25%

New Price 101.98 100.39 97.80 91.93

Approx Price 101.99 100.39 97.80 91.94

Price error 0.00 0.00 0.00 0.01

True Return 1.9833% 0.3864% -2.2020% -8.0699%

Logarithmic Model Return 1.9877% 0.3907% -2.1978% -8.0579%

Return error 0.0043% 0.0042% 0.0042% 0.0121%

Conventional Model Return 1.9732% 0.3916% -2.1698% -7.9112%

Return error -0.0102% 0.0052% 0.0322% 0.1587%  

 

Exhibit 4 and 5 shows the result of a 300 basis point yield rise over 30 and 360 days respectively. As 

expected the errors are much larger now, but the logarithmic model still remains comfortably below one 

percent at 0.1677% for the 30 year bond, whereas the conventional model now has an error of 3.2802% for 

the same bond. Again, increasing the time horizon from 30 to 360 days only accounts for a smaller part of 
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the error, whereas going from a yield shift of 100 to 300 basis points accounts for the larger part of the error 

increase. The errors for the 30 year bond in the 360 day scenario are 0.2069% and 3.5247%, respectively, 

for the logarithmic and conventional models. 

 

EXHIBIT 4 ∎  Return approximations for 300 bp rise in yield over 30 days

2y 5y 10y 30y

Coupon 3.00% 4.00% 4.75% 5.25%

Yield 3.00% 4.00% 4.75% 5.25%

Price 100.00 100.00 100.00 100.00

Mdur 1.91 4.45 7.82 14.94

Cvex 5.55 25.01 76.39 335.35

Theta 2.96% 3.92% 4.64% 5.12%

New Yield 6.00% 7.00% 7.75% 8.25%

New Price 94.96 88.20 80.14 67.45

Approx Price 94.96 88.20 80.14 67.62

Price error 0.00 0.01 0.01 0.17

True Return -5.0400% -11.8047% -19.8622% -32.5475%

Logarithmic Model Return -5.0354% -11.7984% -19.8568% -32.3798%

Return error 0.0046% 0.0063% 0.0054% 0.1677%

Conventional Model Return -5.0156% -11.7058% -19.4761% -29.2673%

Return error 0.0244% 0.0989% 0.3860% 3.2802%   

 

EXHIBIT 5 ∎  Return approximations for 300 bp rise in yield over 360 days

2y 5y 10y 30y

Coupon 3.00% 4.00% 4.75% 5.25%

Yield 3.00% 4.00% 4.75% 5.25%

Price 100.00 100.00 100.00 100.00

Mdur 1.91 4.45 7.82 14.94

Cvex 5.55 25.01 76.39 335.35

Theta 2.96% 3.92% 4.64% 5.12%

New Yield 6.00% 7.00% 7.75% 8.25%

New Price 100.09 93.75 85.72 72.46

Approx Price 100.13 93.79 85.76 72.66

Price error 0.04 0.04 0.04 0.21

True Return 0.0883% -6.2496% -14.2760% -27.5439%

Logarithmic Model Return 0.1315% -6.2085% -14.2389% -27.3370%

Return error 0.0431% 0.0411% 0.0370% 0.2069%

Conventional Model Return 0.1713% -5.9595% -13.5796% -24.0192%

Return error 0.0830% 0.2901% 0.6964% 3.5247%  
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Exhibit 6 shows the difference between model and actual returns for the logarithmic and conventional 

models over a yield range of 2.00% to 8.25% for a 5.25% 30 year par bond with a 360 day time horizon. As 

can be seen, the conventional model starts to diverge badly at about ± 100 basis points from the initial yield 

of 5.25%. The logarithmic model, on the other hand, behaves pretty well within the entire yield range with 

errors far below one percent. 

 

 

 

Using the par bonds in the examples above, Exhibit 7 shows the return profile of being long an equal 

duration barbell of the 2 and 30 year par bonds versus being short a bullet in the 10 year par bond over a 91 

day time horizon. The barbell position has a convexity of 154.95 and the 10 year has a convexity of 76.39. 

The duration is 7.82 for both positions. As shown, the logarithmic model approximation of returns is very 

close to the actual returns of this position, whereas the conventional model starts to diverge at about ±100 

basis points. 
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It is also interesting to see how different coupon levels change the accuracy of the model. In Exhibit 8, the 

return errors are shown for a 30 year bond with a coupon of zero, 1pp below par, par and 1pp above par 

respectively for the logarithmic and conventional models, with a time horizon of 360 days and a yield rise of 

300 basis points. 

 

Exhibit 8 ∎  Return Errors for 30 Year Bond with Different 

Coupons for a 300 bp Rise in Yield over 360 Days

Coupon Logarithmic Conventional

Par + 1 %-point 0.2192% 3.3144%

Par 0.2069% 3.5247%

Par - 1%-point 0.1842% 3.8078%

Zero 0.0283% 9.4024%  

 

As can be seen, the accuracy of the logarithmic model is far better than that of the conventional model. The 

logarithmic model performs better the lower the coupon relative to yield and is extremely close in the zero 

coupon case. The conventional model, on the other hand, seem to perform better the higher the coupon 

and very poorly so in the zero coupon case. 
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Since the relationship between the logarithm of the price of a bond and its yield gets closer to linearity the 

lower the coupon, there is less curvature to account for in the Taylor approximation and therefore the 

second order yield term contributes relatively less. This is the reason why the accuracy is so high for zero 

coupon bonds in the logarithmic model, since there is literally no curvature to account for at all. In the case  

of continuous compounding, as opposed to discrete compounding which is used in this paper, the 

relationship is exactly linear. 

Increasing the coupon will introduce more curvature and make the model relatively more dependent on the 

second order yield term, which in turn will increase the approximation error. But even as coupons get 

higher, the relationship between the logarithm of the price of a bond and its yield is still markedly more 

linear than in the case of the normal price-yield curve and this is why the logarithmic model is far more 

accurate in general.  

A closer look at the approximation formula of the logarithmic model (5), shows that the second order term 

with regard to squared yield changes has convexity minus modified duration squared within the brackets. 

This is very similar to the definition of cash flow variance, which is the excess convexity of a coupon bond 

over an equal duration zero coupon bond, due to the fact that the former has dispersed cash flows and the 

latter does not. 

The cash flow variance of a bond is defined as 

𝐶𝐹𝑉 =  ∑ 𝑤𝑘(𝑡𝑘 − 𝐷)2 = 𝐶 − 𝐷2𝐾
𝑘=1            (8)    

where 𝑤𝑘 is the present value weight of the 𝑘th

cash flow of the bond using continuous compounding, 

k=1,2,…,K,  𝑡𝑘 is the time to maturity of the 𝑘th

cash flow of the bond, 𝐷 is the duration of the bond defined 

as 𝐷 = ∑ 𝑤𝑘𝑡𝑘 , and 𝐶 is the convexity of the bond defined as 𝐶 = ∑ 𝑤𝑘𝑡𝑘2 . 

So, in the conventional Taylor expansion, the second order yield term is related to convexity, whereas in the 

logarithmic case it is related to cash flow variance because most of the price-yield curvature has been 

stripped out to a degree equal to the square of duration. 

CONCLUSIONS 

By extending the logarithmic Barber [1995] model to include the passage of time, in accordance with the 

ideas of Chance and Jordan [1996], very tight approximations can be achieved not only for a wide yield 

range, but also for time horizons as long as a year. These results lend themselves very neatly to creating 

scenarios and calculating bond returns for portfolio optimization purposes, what-if analysis and break-even 

calculations. The model has proved to be far more accurate than the conventional model in all kind of 

scenarios. 

ENDNOTES 

The author wants to thank Per Von Rosen and Per-Olov Karlsson for double checking the mathematics in 

this paper and for useful comments. The author is, of course, solely responsible for any remaining errors in 

this paper.   
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