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Abstract

This study estimates time varying fiscal multipliers from the aspect of fiscal policy

rules derived from the systematic component along the line of “Agnostic Identifica-

tion Procedure” proposed by Caldara and Kamps (2017) for the US economy between

1952:Q1-2018:Q1. To do so, we adopt time-varying parameter structural vector au-

toregressive (TVP-SVAR) with MCMC procedure by a Bayesian approach, and identify

both of government spending and tax cut shocks using the zero and sign restrictions

method proposed by Arias, Rubio-Ramirez and Waggoner (2018). And we compare

those values with time varying version identified by standard sign restriction along

the line of Mountford and Uhlig (2009). Our estimation reports that time-varying fis-

cal multipliers of output by government spending rule could be nearly double for one

year but decline to unity after eight years, and seem to have been very stable for long

terms such as sixty years. By contrast, those of tax cut rule are more fluctuate and

negative for long run except the 1990’s.
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1 Introduction

The effectiveness of fiscal policy has been the subject of a long-standing debate among

economists and policymakers. Even though governments around the world often imple-

ment fiscal stimulus packages in hope that they will counter the economic downturn,

in fact, there is still no clear-cut answer to how and why the fiscal policy can have an

impact on the economy. Theoretically, neoclassical and New Keynesian models can lead

to the exact opposite implications about the policy increasing public spending or cutting

taxes. While empirical investigation could be expected to shed light on the debate, almost

all existing identification schemes at least partly rely on the assumptions suggested by

the theoretical models, and the different estimation methods or identification strategies

lead to substantial disagreement on the sign and the size of fiscal multipliers. 1

Another problem of assessing the effect of fiscal policy is that even if we can choose

one specific empirical approach, results may vary as the sample period varies. The pos-

sibility of structural change or time variation of transmission mechanism of the fiscal

policy can be important problems for the government, since the massive fiscal stimulus

are always put in place when the severe economic downturn happens, which tends to

come with significant structural changes. Indeed, several empirical studies suggests the

shift of fiscal multipliers with business cycles (Tagkalakis (2008), Auerbach and Gorod-

nichenko (2012), Bachmann and Sims (2012), Candelon and Lieb (2013) and Caggiano

et al. (2015)) and the volume of public debt level (Favero et al. (2011), Corsetti et al.

(2012) and Ilzetzki et al. (2013)).

In this paper, we uncover changes in the effects of government spending shocks in

the US over the period 1952-2018. To address the issues mentioned above, our meth-

ods have two distinct features. First, to identify both of government spending and tax

cut shocks in a parsimonious and a data-consistent way, we use the systematic com-

ponent identification scheme proposed by Caldara and Kamps (2017) and Arias et al.

(2018). According to Caldara and Kamps (2017), frequently used identification method,

which includes recursive ordering assumptions on the structural shocks, sign restric-

tion on the impulse response and Proxy SVAR approach, can be characterized by the

different type of the restrictions on the systematic component of fiscal policy represented

as the rules relating policy instruments (e.g. government spending, tax rate) to macroe-

conomic conditions. In these existing methods, the sign and the size of coefficients on

non-policy variables (e.g. output, inflation rate, interest rate) of such policy rule are im-

plicitly assigned by the elements outside the data, for example economic theory, timing

assumption, or estimation methods itself. In contrast, the systematic component iden-

tification approach explicitly uses information of directly estimated policy rule, so the

imposed identification assumption is based on the evidence consistent with the data. In

1For a comprehensive survey, see Chinn (2013).

2



this paper, we impose the sign and zero restriction on the contemporaneous response of

government spending to the changes of other non-policy variables based on the estima-

tion results of fiscal spending and tax rules by Caldara and Kamps (2017). The method

allows us to be free of any a priori assumption about the response of non-policy vari-

ables to the fiscal spending shocks, to adopt an agnostic position concerning the still

controversial topics such as the existence and size of crowding effects of government ex-

penditure and to provide useful information to test various theoretical implications the

different models have suggested.

Second, we document the time-variation of fiscal spending multiplier using the tools

of Bayesian time-varying parameters VAR (TVP-VAR) model. As argued in Cogley and

Sargent (2005) and Primiceri (2005), the model has great flexibility in terms of capturing

non-linearities and time heterogeneity and outperforms simpler methods including sub-

sample or rolling-windows estimation by allowing us to estimate, not impose a priori, the

number and the timing of the breaks. Although TVP-VAR models have been already used

in a large number of papers focusing on monetary policy (Cogley and Sargent (2001),

Cogley and Sargent (2005), Primiceri (2005), Baumeister, and Benati (2013), Belongia

and Ireland (2016)), much less work has been done on the fiscal policy analysis. Kirchner,

Cimadomo, and Hauptmeier (2010) investigates changes in the impact of EURO area’s

government spending shocks using a recursive identification scheme. Pereira and Lopes

(2014) estimates the TVP-VAR model with Blanchard and Perotti (2002) type restriction

using the US data before the global financial crisis. To best of our knowledge, this is the

first paper to combine the systematic component approach with the TVP-VAR framework

and to document the time-varying fiscal spending multipliers in the US.

Using five endogenous variables, i.e., (1) government spending, (2) real GDP (3) tax

revenue (4) inflation (5) nominal interest rate, we estimate for the US economy between

1952:Q1-2018:Q1. The main findings are as follows. Time-varying fiscal multipliers of

output by government spending rule could be nearly double for one year but decline to

unity after eight years, and seem to have been very stable for sixty years. By contrast,

those of tax cut rule are negative except period of the 1990’s. We verify that this method

is quite useful to do this end by compared with identifications by only sign restrictions,

since the contemporaneous elasticity of output and inflation, whose signs and zero re-

striction this method can control, is thought to strongly affect both size and direction of

fiscal multipliers.

The remaining of this paper is organized as follows. Section 2 describes about the

TVP-VARs as well as identifications of fiscal policy shocks. Estimated results including

time-varying impulse responses of the policy shocks and time-varying fiscal multipli-

ers are reported in Section 3. Section 4 concludes. The methods of the identification

with sign and zero restrictions and a Bayesian inference including algorithms for MCMC

simulation for TVP-VARs are described in four appendix sections.
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2 Empirical Methodology

In this section, we describe empirical methodology measuring time variations of fis-

cal multipliers. In the first subsection, a TVP VAR model incorporated with stochas-

tic volatilities (SV) in its disturbance terms is introduced as our backbone model. The

distinguished advantage of the model is to be designed to make coefficients and the co-

variance matrix of innovations time-vary in terms of all aspects from the viewpoint of

‘agnostic’. The second subsection describes how to identify two fiscal policy shocks us-

ing the systematic component approach. The final two subsections deals with calculating

fiscal multipliers and data used for estimation. Again, the methods of the identification

with sign and zero restrictions and a Bayesian inference including algorithms for MCMC

simulation for TVP-VARs are described in four appendix sections.

2.1 Set up TVP-VAR-SV

Consider the p-th lag length structual vector autoregression (SVAR(p) ) model defined as

A0,tyt = A1,tyt−1 + · · ·+Ap,tyt−p +Σtεt, εt ∼ N(0, I), (1)

where yt is a k × 1 vector of observed variables, structural parameters Ai,t, i = 1, ..., p,

are k × k matrices of time varying coefficients, and a contemporaneous matrix A0,t is

invertible and decomposed into a orthogonal matrix Qt , i.e., QtQ
′
t = I , and a lower

triangular matrix Atr,t such that A0,t = QtAtr,t, where

Atr,t =










1 0 · · · 0

a21,t
. . .

. . .
...

...
. . .

. . . 0

ak1,t · · · akk−1,t 1










.

The disturbance εt is a k × 1 vector of structural shocks and a time-varying covariance

matrix Σt is a diagonal matrix that contains the stochastic volatilities which reflect the

changes of the independent structural shocks σi,t such as

Σt =










σ1,t 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 σk,t










.

And the p-th lag length reduced VAR (p) model corresponding to above SVAR model is

given by
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yt = B1,tyt−1 + · · ·+Bp,tyt−p + ut, ut ∼ N(0, Ωt ), (2)

where Bi,t is a time varying reduced-form parameters given by Bi,t = A−1
0,tAi,t, and ut

is a one-period ahead forecasting error: ut = A−1
0,tΣtεt, because A0,tΩA

′
0,t = ΣtΣ

′
t. And

also we can rewrite the one-period ahead forecasting errors as ut = A−1
tr,tQtΣtεt , using

A−1
0,t = A−1

tr,tQ
′
t. Notice that Qt is a random matrix so that we can select its value to make

structural shocks identified to satisfy zero and sign restrictions, as explained in the next

subsection.

Letting βt be a stacked k2p× 1 vector of the elements in the rows of the k × k matrices

of the B1,t,· · · ,Bp,t, and at be the vector of non-zero and non-one elements of the lower

triangular matrix Atr,t . ht is the logarithm of the diagonal elements of time varying

volatilities matrix, ln σ2j,t. The dynamics of the time varying parameters of the reduced

form are following random walk process as below.

βt+1 = βt + uβ,t, (3)

at+1 = at + ua,t, (4)

ht+1 = ht + uh,t, (5)

where βt = (β11,t, ..., βkk,t) , at = (a21,t, ..., akk−1,t) and ht = (h1,t, ..., hk,t) with hj,t = lnσ2j,t
for j = 1, ..., k. And ub,t, ua,t, and uh,t, are assumed to be normally distributed with a zero

mean and diagonal covariance matrices, Σβ, Σa, and Σh . The structural shocks are also

assumed to independent with the time-varying parameters such as









εt

uβ,t

ua,t

uh,t









∼ N

















0

0

0

0









,









1 0 0 0

0 Σ2
β 0 0

0 0 Σ2
a 0

0 0 0 Σ2
h

















. (6)

2.2 Identification by Systematic Components

Fiscal Policy Rules

Systematic component approach to identify the structural shocks is first proposed by

Caldara and Kamps (2017) and Arias et al. (2018). They focus on the fact that the identi-

fication of policy shocks implies the specification of the systematic component of policy,

which describes how policy usually reacts to economic conditions.2 As pointed out in

Caldara and Kamps (2017), labeling a structural shock in the SVAR as the goverment

spending shock is equivalent to specifying the same equation as the government spend-

2This fact is pointed out by Leeper, Sims, and Zha (1996), Leeper and Zha (2003), and Sims and Zha

(2006a).
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ing rule. Without loss of generality, we let the first shock be the government spending

shock. The first equation of (1)

a0,t,1yt =

p
∑

ℓ=1

aℓ,t,1yt−l + σ1,tε1t (7)

is the time-varying government spending rule, where ε1t denotes the first entry of εt, aℓ,t,1

denotes the first row of Aℓ,t for 0 ≤ ℓ ≤ p, and aℓ,t,ij denotes the (i, j) entry of Aℓ,t. From

equation (7), it is clear that restricting the systematic component of government spending

policy is equivalent to restricting aℓ,t,1 for 0 ≤ ℓ ≤ p.

Our TVP-VAR model consists of five endogenous variables: government spending, de-

fined as the sum of government consumption and investment (gt); gross domestic prod-

uct (yt); consumer price inflation (πt); the 3-month T-bill rate (rt); and federal tax revenue

(taxt). We take the natural logarithm and extract a quadratic trend for all the variables in

per capita terms except πt and rt. We estimate the model on quarterly data for the U.S.

from 1952 to 2018.

Our government spending rule can be written as

gt = ψy,t yt + ψr,t rt + ψπ,t πt + ψtax,t taxt
︸ ︷︷ ︸

systematic component

+ εg,t
︸︷︷︸

shock.

(8)

where ψy,t = −a−1
0,t,11a0,t,12, ψπ,t = −a−1

0,t,11a0,t,13, ψr,t = −a−1
0,t,11a0,t,14, and ψtax,t = −a−1

0,t,11a0,t,15.

Since our identification concentrates on the contemporaneous structural parameters, we

here abstract from lag variables. Based on the estimation results of Caldara and Kamps

(2017), we impose the zero and sign restrictions on these systematic components as

summarized in Table 1.

Table 1: Systematic Components Restrictions for Government Spending Rule

parameters ψy,t ψπ,t ψr,t ψtax,t

Zero and Sign Restrictions <0 <0 =0 =0

Notes: “=0” denotes zero restriction, and “<0” and “>0” stand for negative and positive restrictions,

respectively.

Since all the parameters in (8) have clear rolls for the movement of policy variable, we

can add some interpretations about the sign of them. For example, a negative elasticity of

inflation rate in the government spending rule may reflect the fact that nominal govern-

ment spending is not fully indexed to inflation in the U.S., so real government spending

falls in response to an increase in inflation. The important thing here, however, is that

we do NOT impose the restriction ψπ < 0 based on this theoretical interpretation. Rather,

we simply accept the fact that estimated coefficent on πt in the government spending

rule is negative, and draw on this empirical evidence to identify the spending shock. The

same thing can be said to the other restrictions.
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In similar way, our tax cut rule can be written as

Taxt = ψty,t yt + ψtr,t rt + ψtπ,t πt + ψtg,tGovt
︸ ︷︷ ︸

systematic component

+ εtax,t
︸ ︷︷ ︸

shock.

, (9)

where ψy,t = −a−1
0,t,51a0,t,12, ψπ,t = −a−1

0,t,15a0,t,13, ψr,t = −a−1
0,t,15a0,t,14, and ψg,t = −a−1

0,t,15a0,t,11.

Based on the estimation results of Caldara and Kamps (2017), we impose the sign re-

strictions on these systematic components as summarized in Table 2.

Table 2: Systematic Components Restrictions for Tax Cut Rule

parameters ψy. ψr ψπ ψg

Sign Restrictions >0 >0 >0 <0
Notes: “<0” and “>0” stand for negative and positive restrictions, respectively.

It is worth noting that the main part of our restrictions are represented as sign and

zero restrictions directly on the structural parameters, unlike a large number of stud-

ies using set identification impose sign restrictions on the impulse response functions.

We do so using the Bayesian approach and the techniques developed in Arias, Rubio-

Ramirez, and Waggoner (2018).

Impulse Response Functions (IRFs)

Next, we consider the derivation of IRFs in a standard VAR with constant structural

parameters:A0, A+, following Arias, Rubio-Ramirez, and Waggoner (2018). Let Lh(A0, A+)

denote the IRF of the i-th variable to j-th structural shock at finite horizon h given by a

n× n matrix as below.

IRh(A0, A+)
︸ ︷︷ ︸

n×n

= (A−1
0 J ′F hJ)′

where A′
+ = [A′

1, · · · , A
′
p],

F
︸︷︷︸

pn×pn

=









A1A
−1
0 In · · · 0

...
...

. . .
...

Ap−1A
−1
0 0 · · · In

ApA
−1
0 0 · · · 0









and J
︸︷︷︸

pn×n

=









In

0
...

0









,

where In is a n×n identity matrix. Next, we apply them to the IRFs in the TVP-VARs. The

IRFs: Lh(A0, A+), can be rewritten as

IRh(At,0, At,+)
︸ ︷︷ ︸

n×n

=

(

A−1
t,0J

′

(
t+h∏

i=t

Fi

)

J

)T

,
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where A′
t,+ = [A′

t,1, · · · , A
′
t,p],

Ft
︸︷︷︸

pn×pn

=









At,1A
−1
t,0 In · · · 0

...
...

. . .
...

At,p−1A
−1
t,0 0 · · · In

At,pA
−1
t,0 0 · · · 0









.

Notice that the product of time-varying structural parameters: At,kA
−1
t,0 is equivalent to

time-varying reduced-form parameters Bt,k for 1 ≤ k ≤ p.

Using the orthogonal matrix Qt, the above IRF, IRh(A0, A+)= IRh(AtrQ,A+) , is trans-

formed to IRh(Atr, A+Q
′)Q, for horizons, 0 ≤ h ≤ ∞. It indicates that the sets of struc-

tural parameters (A0, A+) and (Atr, A+Q
′) are observationally equivalent so that we can

replace A0 with Atr in the IRF. Accordingly, instead of A0, the lower triangular matrix

Atr derived from Cholesky decomposition is used together with the matrix Q to be conve-

nient to calculate. Let f(A0, A+) be combination of contemporaneous matrix A0 and the

stacked IRF at horizon zero and long term: L, given by a 3n× n matrix as below.

f(A0, A+) =






A0

IR0(A0, A+)

IRL(A0, A+)






︸ ︷︷ ︸

3n×n

=






AtrQ

IR0(Atr, A+Q
′)Q

IRL(Atr, A+Q
′)Q






︸ ︷︷ ︸

3n×n

. (10)

Using the function f(A0, A+), we can identify the SVARs imposed from the zero and sign

restrictions of the IRFs to the two fiscal policy shocks. From Tables 1 and 2, we impose

the matrix A0, while the restrictions of the IRFs are following Tables 3 and 4. Those tables

show the zero and sign restrictions of government spending and tax cut rules for both of

short and long terms, respectively. In the case of government spending rule, the positive

shock immediately increases government spending and gradually converge to the zero

for long run as Table 3. After disappearing of effect of this shock, variation of output also

converges to the zero for long run. Meanwhile, the tax cut shock immediately decrease

tax revenue and gradually converge to the zero for long run as Table 4. Similarly, the

effect of output also disappears for long run.

Table 3: Sign and Zero Restrictions for IRF to Government Spending Shock

Structural Endogenous Variables

Shocks Gov. Output π R Tax

Gov. Spend. Short Run >0 ? ? ? ?

Shock Long Run =0 =0 ? ? ?

Notes: “=0” denotes zero restriction, and “<0” and “>0” stand for negative and positive restrictions, respec-

tively. “?” denotes no restriction.
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Table 4: Sign and Zero Restrictions for IRF to Tax Cut Shock

Structural Shocks Gov. Tax Output π R

Tax Cut Short Run (0 Q) ? <0 ? ? ?

Shock Long Run (20 Q) ? =0 =0 ? ?

Notes: “=0” denotes zero restriction, and “<0” and “>0” stand for negative and positive restrictions, respec-

tively. “?” denotes no restriction.

2.3 Alternative Identification

We also introduce an alternative model in order to compare and evaluate the magnitude

and direction of time varying fiscal multipliers. To do so, we adopt one of prevalent

models which identify a fiscal policy shock by only sign restriction proposed by Mountford

and Uhlig (2009). In this model, government spending shock is assumed to be orthogonal

to tax, monetary policy and business cycle shocks. In addition, our compared model

incorporate zeros restriction for long run to these four temporary shocks, since they are

associated with demand shocks which indicates that they have effect on endogenous

variables only in short run along the lines of Blanchard and Quah (1985). The zero and

sign restriction are represented in Table 5.

Table 5: Zero and Sign Restrictions of Alternative Model

Shocks Gov. Output π r tax

Gov Spend. Short Run >0 ? ? ? ?

Shock Long Run =0 ? ? ? ?

Tax Short Run ? ? ? ? >0

Shock Long Run ? ? ? ? =0

Business Cycles Short Run ? >0 ? ? ?

Shock Long Run ? =0 ? ? ?

Monetary Policy Short Run ? <0 <0 >0 ?

Shock Long Run ? =0 =0 =0 ?

Notes: “=0” denotes zero restriction, and “<0” and “>0” stand for negative and positive restrictions, respec-

tively. “?” denotes no restriction.

2.4 Measuring Fiscal Multipliers

In this study, we calculate an impact fiscal multiplier and a present value fiscal multi-

plier following Mountford and Uhlig (2009). The impact fiscal multiplier at horizon i of

structural shock s on endogenous variables y is defined as IFM = △yt+i/△gt , and is

calculated from

9



e′yLi(A0, A+)qs

e′gL0(A0, A+)qs

1

(GOV/GDP )
,

where gt is the government spendings at period t, and (GOV/GDP ) denotes the average

share of the government expenditure in GDP over the sample period. In the similar

way, the present value fiscal multiplier at horizon i of structural shock s on endogenous

variables y is given by CFM =
∑H

i=0 β
i△yt+i/

∑H
i=0 β

i△gt+i, and is calculated from

∑H
i=0 β

ie′y Li(A0, A+) qs
∑H

i=0 β
ie′g Li(A0, A+) qs

1

(GOV/GDP )
,

where H is the number of horizon to measure the impact of the policy shock for a spec-

ified interval and β is a discount factor. In our simulation, we calculate four cases

characterized from different horizons, i.e., H = 4, 8, 12, 20.

2.5 Data

We use the quarterly data from the U.S. for the period between 1952:Q1 and 2018:Q1.

Following Caldra and Kamps (2017), we select the observed variables composed from

five endogenous variables: government spending, defined as the sum of government

consumption and investment (gt); gross domestic product (yt); consumer price inflation

(πt); the 3-month T-bill rate (rt); and federal tax revenue (taxt). We take the natural

logarithm and extract a quadratic trend for all the variables in per capita terms except πt

and rt. Data are shown as Figure 1.
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Figure 1: Data

Notes: Our TVP-VAR model adopts seven endogenous variables: government spending, defined
as the sum of government consumption and investment (gt); gross domestic product (yt); private
consumption (ct); private non-residential investment (invt); consumer price inflation (πt); the 3-
month T-bill rate (intt); and federal tax revenue (taxt). We take the natural logarithm and extract
a quadratic trend for all the variables in per capita terms except πt and rt. We estimate the model
on quarterly data for the U.S. from 1952:Q1 to 2018:Q1.

3 Evidence on Time-Varying Fiscal Multiplier

3.1 MCMC Simulations

As described in the previous section, we adopt the Bayesian estimation with MCMC simu-

lation to obtain the posterior estimates satisfied both of zero and sign restrictions showed

in Table 1, based on the algorithm 4 proposed by Arias et al. (2018). We run 240,000

MCMC simulations which consists of 15,000 iterations times 16 chains, discarding the

first 5000 iterations of each chain to converge to the ergodic distribution, and sampling

only draws satisfying the zero and sign restrictions out of the next 10,000 iterations of

each chain. To calculate the effects of the IRF for the long run, we set L = 80 quarter (20

years) ahead in eq.(10).

Figure 2 shows the transition of the acceptance rates satisfying the zero and sign

restrictions out of the 160,000 samples in each period. The acceptance rates of the

identification by the government spending rule changes within the range of 15 % to over

20 % for the sample period, while those of identification by the tax cut rule show the

range of around 5 %. These acceptance rates mean that approximately 30 thousands
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samples are used for posterior estimation of SVAR based on the government spending

rule, and 8 thousands samples are used in the case of the tax cut rule, respectively.

And we use these samples to calculate time-varying fiscal multipliers as shown in the

following subsection.

Figure 2: Accepted Rates of Zero and Sign Restrictions

3.2 Time Variations of Systematic Components

Panel (a) of Figure 3 show the time series transition of poserior means of parameters of

systematic components based on method by the government spending rule, while Panel

(b) draws those of coefficients of a corresponding column out of contemporaneous matrix

A0 derived from identification by the tax cut rule.

According to the paper by Caldara and Kamps (2017), the contemporaneous elasticity

of government spending to output: ψy, and to inflation rate: ψπ, are reported to be around

-0.13 and -0.75, respectively. On the other hand, our estimations of time varying those

elasticities show -1.0 and -3 through -4, respectively, which mean they are much higher

absolute values than those fixed values reported by Caldara and Kamps (2017) over all

of the sample period. Meanwhile, the posterior means of ψy are positive and around 1.5

over all sample period and those of ψπ are around 2.5 for the tax cut rule, as Panel (b).

Differences of sizes and signs of ψy andψπ between two models are thought to be influence

fiscal multipliers according to Caldara and Kamps (2017). In the following subsection,

we examine this thing using time-varying parameter SVAR.
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Figure 3: Contemporaneous Elasticities of Fiscal Policy Rules

(a) Government Spending Rule

gt = ψy,t yt + ψr,t rt + ψπ,t πt + ψtax,t taxt
︸ ︷︷ ︸

systematic component

+ εgt
︸︷︷︸

shock.

,

parameters ψy. ψr ψπ ψtax

Sign and Zero Restrictions <0 =0 <0 =0

1950 1960 1970 1980 1990 2000 2010 2020
-5

-4

-3

-2

-1

0

1

2

y

r

(b) Tax Cut Rule

Taxt = ψty,t yt + ψtr,t rt + ψtπ,t πt + ψtg,tGovt
︸ ︷︷ ︸

systematic component

+ εtax,t
︸ ︷︷ ︸

shock.

,

parameters ψy. ψr ψπ ψg

Sign Restrictions >0 >0 >0 <0

1950 1960 1970 1980 1990 2000 2010 2020
-2

-1

0

1

2

3

y

g

r

Notes: The blue shade areas stand for the recessions reported by NBER.
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3.3 Time Variations of Impulse Responses

Government Spending Shock

We draw two-dimension version of IRFs as Figure 4. The upper six graphs of Panel (a) in

the figure depict the IRFs of real GDP to the government spending shock with respect to

six different periods; i.e., 1960:Q1, 1970:Q1, 1990:Q1, 2000:Q1, 2010:Q1, while lower

six graphs show time varying those of six different horizons; i.e., 1 Q ahead, 4Q ahead,

8Q ahead, 12Q ahead, 16Q ahead, 20 Q ahead for sample periods. The blue solid lines

represent the posterior means of the IRF fixed by periods, while light blue shaded areas

represent 68\% intervals. Similarly, the red solid lines and red shaded area are the

posterior means and 68 % band of the IRF fixed by horizons, respectively. Panels (b),

(c) and (d) depict the same kinds of graphs for tax revenue, interest rate, and inflation,

respectively.

As shown in Panel (a), we can verify that the positive spending shock makes responses

of real GDP for overall of horizon positive and the zero restriction of output for long run

make itself converge to zero for all sample period. Meanwhile, we can see that familiar

hump shape responses of the three variables, although there are neither sign nor zero

restrictions for the three variables except government expenditure for contemporaneous

response and for long run. These shapes are due to restriction by the systematic compo-

nent of fiscal policy rules. As Panel (b), posterior means of contemporaneous response of

tax revenue are also positive for all sample period although 68% bands hit the line of 0

% in around 15Q. And they seem to gradually converge to zero in spite of not imposing

zero restrictions.

In the cases of interest rate and inflation, results of the IRFs are also positive to the

government expenditure, and both seem to converge gradually to steady state. For over

long sample period from 1952Q1 to 2018Q1, all of the IRFs have been very stable to the

government spending shock.

Tax Cut Shock

In the similar way, Figure 5 shows the IRFs of the four variables to the tax cut shock.

The tax cut shock make responses of interest rate and inflation positive but those of gov-

ernment spending negative. On the other hand, the response of output are ambiguous,

since 68 % band of the response cover both of positive and negative areas. However, we

observe that posterior means of these responses go to negative for long run from 1960’s

to 1980’s, while those change to be positive for middle terms in 1990’s and 2000’s.
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Figure 4: Time Varying Impulse Response Functions to Government Spending Shock

(a) Response of real GDP (b) Response of Tax Revenue

(c) Response of Interest Rate (d) Response of Inflation

Notes: The blue solid lines represent the posterior means of the IRF fixed by periods, while light
blue shaded areas represent 68% intervals. Similarly, the red solid lines and red shaded area are
the posterior means and 68% band of the IRF fixed by horizons, respectively.
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Figure 5: Time Varying Impulse Response Functions to Tax Cut Shock

(a) Response of real GDP (b) Response of Gov. Spending

(c) Response of Interest Rate (d) Response of Inflation

Notes: The blue solid lines represent the posterior means of the IRF fixed by periods, while light
blue shaded areas represent 68% intervals. Similarly, the red solid lines and red shaded area are
the posterior means and 68% band of the IRF fixed by horizons, respectively.

3.4 Time Variations of Fiscal Multipliers

Figures 6 through 8 depict the cumulative fiscal multipliers of real GDP, government

spending and tax revenue, respectively. The upper, middle and lower graphs of each

figure represent time-varying fiscal multipliers for period of one, five and eight years

after both of the fiscal policy shocks hits the economy, respectively. The red line is the
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posterior means of time-varying fiscal multipliers identified by the government spending

shock and the blue line is those by tax cut shock. The dotted lines of both colors are the

average of time varying fiscal multiplier for all of the periods. Our paper pays attention

for examining the extent to which real GDP is influenced by an increase of government

expenditure by one percent. Therefore, we quantify the present discounted value of

cumulative fiscal multipliers for both identifications of the policy shocks by Caldara and

Kamps (2017).

As Figure 6, the time-varying fiscal multipliers of real GDP by government spending

rule (the red solid line) could be nearly double for one year but decline to unity after eight

years, and seem to have been very stable for sixty years. On the other hand, those of tax

cut rule (the blue solid line) are positive but tiny for one year, and change to negative for

more than five years except period of the 1990’s.

As Figure 7, the tax cut shock is likely to reduce the same size of government spending

before 1990 for all three kinds of horizons, because the three cumulative multipliers (the

blue solid line) show minus one. After the 1990’s, the cumulative multipliers for five

and eight years reach at two or over. It also indicates that a tax raise shock requires an

increment of government spending more than the increment of tax. And as Figure 8, the

government spending shock (the red solid line) increase the same size of increase of tax

revenue for all three kinds of horizons for all over sample period. It means that response

of tax revenue to the government spending shock have been stable.

Figure 6: Cumulative Fiscal Multipliers of Real GDP
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Notes: The blue shade areas stand for the recessions reported by NBER.
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Figure 7: Cumulative Fiscal Multipliers of Government Spending
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Figure 8: Cumulative Fiscal Multipliers of Tax Revenue
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3.5 Robustness Check

Here, as robustness check, we expand our models from five endogenous variables to

seven variables by adding private consumption and investment. Figure 9 show the pos-

terior means of coefficents of systematic components based on fiscal policy rules, eq.(8)

and eq.(9). Similar to the case of five variables model, the sign and zero restrictions of

government spending rule and tax cut rule follow Table 1 through Table 4. By introduc-

ing private consumption and investment, coefficients of ψy of both rules become more

than twice of five variables version, since the coefficients of private consumption and

investment, ψc and ψi, have opposite signs against ψy . In other words, sizes of ψc and ψi

work to balance out both of government spending and tax against impacts to increment

of GDP. It suggests that we should also consider sign restrictions for ψc and ψi for both

fiscal policy rules. However, increasing number of sign restrictions brings to decreasing

in acceptance rate of Bayesian estimation as shown in Table 1, and it requires much

more sampling number of MCMC procedure.

Figure 9: Contemporaneous Elasticities of Fiscal Policy Rules Using Seven Variables

(a) Government Spending Rule (b) Tax Cut Rule
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Notes: Coefficients are based on fiscal policy rules, eq.(8) and eq.(9). The sign and zero restrictions of

government spending rule and tax cut rule are following Table 1 through Table 4.

And Figure 10 shows cumulative multipliers of four variables, i.e., real GDP, tax

revenue, private consumption and private investment, by government spending shocks

identified by systematic component of government spending rule and by just sign re-

striction in Mountford and Uhlig (2009)’s style as described in Section 2.3. As Panel (a),

the seven-variable-version of time-varying fiscal multipliers of real GDP by systematic

component (the red solid and dashed lines) are very similar to the five-variable’s one,

since the averages for one year and for five years are around two and one, respectively.

But, the size of multipliers of tax revenue are less than one, which means smaller than

five-variable version as Panel (b). By contrast, multipliers by just sign restriction (the

blue solid and dashed lines) are as small as 0.5 or less, even though they are positive.

The size of multipliers of consumption and investment is new information, as shown in
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Panels (c) and (d). We figure out that the response of private consumption to government

spending is positive for short period but negative for long run. Meanwhile, the responses

of private investment are negative for both of short and long run.

3.6 Discussion

Finally, we consider why these two fiscal policies have different effect on real GDP as

Figure 6. Our previous estimations, which adopted a similar TVP-VAR with seven vari-

ables including private consumption and investment as Figure 9, found that there are a

positive response of the consumption and a negative response of the investment to the

positive government spending shock. In particular, these relationships become much

stronger in the 1990’s than other periods. Accordingly, we suggest that there are causal

relations among those variables as below.

G ↑⇒ C ↑ + I ↓⇒ Y ↑⇒ T ↑= G ↑

A positive government spending shock generates positive feedback cycle of real GDP

except private investment. These relations have recently been supported by a heteroge-

neous agent New Keynesian (HANK) approach (Kaplan et al. 2018). As Figure 6, these

relations lies within all over sample period.

On the other hand, until the 1980’s, there are causal relations between those vari-

ables and a tax cut shock as below.

T ↓⇒ I ↑⇒ G ↓= C ↓⇒ Y + 0

The impact of real GDP to tax cut had had limited magnitude for the period. It indicates

that tax reduction policy did not show a significant effect on real economic activities

under the Regan Administration, in spite of emerging budget deficit. However, after

entering to the 1990’s we can see that tax effect on private consumption and investment

have got stronger written as

T ↓⇒ I ↑↑⇒ G ↓= C ↓↓⇒ Y ↑

As we have known, in the actual US economy between 1992 and 2000 the Clinton Ad-

ministration had taken the fiscal expansion policy including tax increase in order to

resolve fiscal deficit produced in the previous presidential period. That is, opposite tax

policy had been taken and, as result, it induces to both of massive decline of private

investment and rise of private consumption because of increase of government spending

generated from increment of tax revenue.

After the middle term of the 2000’s, the administration has gone back to the Republi-

can Party, and the effect of tax reduction also came back to the previous level. However,
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Figure 10: Cumulative Fiscal Multipliers using Seven Variables

(a) real GDP (b) Tax Revenue
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the fiscal multipliers of government spending shown stable until 2000 seem to have

gradually declined since 2000.

From our estimations, we are wondering whether there is asymmetric effects between

an increase and a decrease of tax. By contrast, there are symmetric effects between

positive and negative government spending policies. In other words, a tax reduction

policy brings no significant impact of real GDP with increase of investment and decrease

of consumption, whereas a tax raise policy obviously declines real GDP by including

massive decline of private investment despite expansion of government spending.

4 Conclusion

This study estimates time varying fiscal multipliers from the aspect of a fiscal policy rule

derived from the systematic component along the line of “Agnostic Identication Procedure”

proposed by Caldara and Kamps (2017) for the US economy between 1952:Q1-2018:Q1.

To do so, we combine time-varying paramter vector autoregressive (TVP-VAR) with MCMC

procedure by a Bayesian approach, and indentification of a fiscal policy shock using both

of the zero and sign restrictions method proposed by Arias, Rubio-Ramirez and Waggoner

(2018). (So we call our model a TVP-SVAR.)

And we compare those values with time varying version identified by standard sign

restriction along the line of Mountford and Uhlig (2009). Our estimation reports that

time-varying fiscal multipliers of output by government spending rule could be nearly

double for one year but decline to unity after eight years, and seem to have been very

stable for long terms such as sixty years. By contrast, those of tax cut rule are more

fluctuate and negative for more than five years except period of the 1990’s.

According to empirical results, we are wondering whether there is asymmetric effects

between an increase and a decrease of tax, while we suppose that there are symmetric

effects between positive and negative government spending policies. In other words, a

tax reduction policy brings no significant impact of real GDP with increase of investment

and decrease of consumption. By contrast, a tax raise policy obviously declines real

GDP including massive decline of private investment despite of expansion of government

spending.

We verify that this method is quite useful to do this end by compared with iden-

tifications by only sign restrictions, since the contemporaneous elasticity of output and

inflation, whose signs and zero restriction this method can control, is thought to strongly

affect both size and direction of fiscal multipliers.
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A Appendix

A.1 Zero and Sign Restrictions

Zero restrictions

We consider how to impose the IRFs from the zero restrictions, using the manner by

Arias, Rubio-Ramirez, and Waggoner (2018). Let Zj denote a matrix in which the number

of column is equal to the number of rows in f(A0, A+) and j is the j-th structural shock

imposing the zero restrictions. Using the orthogonal matrix Qt, the product of the zero

restrictions matrices and the IRF is transformed as below.

Zj f(A0Q, A+Q) ej = Zj f(A0, A+)Qej = Zj f(A0, A+) qj ,

where qj = Qej. And then, the zero restrictions will hold if and only if

Zjf(A0, A+)qj = 0, for 1 ≤ j ≤ n.

where n is number of endogenous variables. From Table 1 and Table 3, we set up the

matrix of zero restrictions of government spending shock, Z1, as

Z1
︸︷︷︸

Rz×3n

=











y g π R t | y g π R t | y g π R t

0 0 0 1 0 | 0 0 0 0 0 | 0 0 0 0 0

0 0 0 0 1 | 0 0 0 0 0 | 0 0 0 0 0

0 0 0 0 0 | 0 0 0 0 0 | 1 0 0 0 0

0 0 0 0 0 | 0 0 0 0 0 | 0 1 0 0 0











where elements corresponding to the endogenous variables imposed zero restrictions are

set one, otherwise zero. The first n columns of the zero restriction matrix correspond

to contemporaneous matrix A0 , the second n columns correspond to the short run

restriction; LR0(A0, A+), while the latter n columns of the matrix do to the long run

restrictions: LRL(A0, A+). And the number of rows, RZ , equals the number of the zero

restrictions of the corresponding i-th shock shown in Tables 1 and 3. Notice that the the

number of the zero restrictions is equal to the number of endogenous variables: n, less

the ordinal number i of the i-th structual shock.

Sign restrictions

In the similar way to the above zero restrictions, sign restrictions can be implemented

using a matrix expression. Let Sj be a matrix in which the number of column is equal

to the number of rows in f(A0, A+) and j is the j-th structural shock imposed the sign

restrictions. Using the orthogonal matrix Qt, the product of the sign restrictions matrices

and the IRF is transformed as below.
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Sj f(A0Q,A+Q) ej = Sjf(A0, A+)Qej = Sjf(A0, A+)qj ,

And then, the sign restrictions will hold if and only if

Sj f(A0, A+) qj > 0, for 1 ≤ j ≤ n.

From Table 1 and Table 3, we set up the matrix of sign restrictions of government spend-

ing shock, S1, as

S1
︸︷︷︸

RS×3n

=









y g π R t | y g π R t | y g π R t

1 0 0 0 0 | 0 0 0 0 0 | 0 0 0 0 0

0 0 1 0 0 | 0 0 0 0 0 | 0 0 0 0 0

0 0 0 0 0 | 0 1 0 0 0 | 0 0 0 0 0









,

where elements corresponding to the endogenous variables imposed the sign restrictions

are set one, otherwise zeros. The first n columns of the sign restriction matrix correspond

to contemporaneous matrix A0 , the second n columns correspond to the short run

restriction; LR0(A0, A+), while the latter n columns of the matrix do to the long run

restrictions: LRL(A0, A+). And the number of rows, RS, indicates the number of the sign

restrictions of the corresponding i-th shock shown in Tables 1 and 3.

QR decomposition

Let X = QR be the QR decomposition of a n × n matrix X. The n × n random matrix Q

has the uniform distribution, i.e., QQ′ = I. and the n× n matrix R is a upper triangular

matrix.

Let the matrix X be defined as

Xj(A0, A+)
︸ ︷︷ ︸

n×n

=

[

Zjf(A0, A+)

Q′
j−1

]T

,

and the orthogonal matrix Qj given from the QR decomposition of a n×n matrix Xj(A0, A+)

satisfies the zero restrictions, or Xj(A0, A+)qj = 0 where qj = Qjej. By stacking them such

as Q = [q1, · · · , qn], we obtain the rotation matrix Q to identify the SVAR model.

Algorithm for both restrictions

Finally, we show algorithm for both restrictions using the above QR decomposition. The

sets of structural parameters are identified based on Algorithm 4 by Arias et al. (2014)

consisting of the following four steps.

1. Draw the sets of reduced-form parameters (B,Ω).
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2. Using the QR decomposition mentioned above, draw an orthogonal matrix Q satis-

fies the zero restrictions, or Zjf(A0, A+)qj = 0, for 1 ≤ j ≤ n .

3. Keep the draw if the sign restrictions are satisfied, or Sj f(A0, A+) qj > 0, for 1 ≤ j ≤ n,

otherwise discard the draw.

4. Return to step 1 until the required number of draws from the posterior distribution

conditional on the sign and zero restrictions has been obtained.

Here, we remark as follows. In Step 2 and Step 3, the structural parameters A0 are

observationally equivalent to the lower triangular matrix Atr. So instead of A0, we use Atr

derived from the inverse of Cholesky decomposition of Ω. And A+ is derived from BAtr.

A.2 Bayesian Estimation Methodology

State space model of TVP VARs

The TVP VARs are represented as state space models consisted of observation equations

and state equations. In our model, the observation equation is Eq. (2) with observable

variables yt, and the state equations are Eq. (3), Eq.(4), and Eq.(5) with time-varying

parameters, , regarded as state variables. And all parameters of the models are just

three such as σβ, σa and σh which determine covariances in Eq.(6).

Bayesian inference and MCMC Algorithm

Most of empirical studies dealing with TVP VARs have recently employed Bayesian infer-

ence via MCMC algorithm. Our study also follows them. There are four reasons to adopt

the Bayesian estimation via the MCMC. First, its counterpart method: maximum likeli-

hood estimation (MLE) method, is intractable to estimate because the state space model

includes the nonlinear state equation (5) involved stochastic volatilities. Second, under

the situation such as the uncertainty of parameters, the MCMC method is affordable to

estimate simultaneously both of state variables and parameters. Third, the functions of

both parameters and states variables such as the impulse response functions are also

able to be sampled as the posterior distributions of the functions. Forth, all sampled

parameters and state variables do not satisfied zero and sign restrictions. The impulse

response functions just satisfied both restrictions are sampled as the products of the

identified structural VAR.

In the state space model and the impulse response function involved the SVARs,

draws generated iteratively from the following conditional posterior distributions of state

variables and parameters must tend to convergence to the posterior joint distributions

based on the property of Gibbs sampler. The MCMC algorithm estimating our model

consists of the following nine steps.
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1. Initialize parameters: Σβ, Σa, Σh, and state variables: at, βt, ht.

2. Generate the state variables βt given at, ht, Σβ, yt, from the conditional posterior

distribution: f(βt|at, ht,Σβ ,yt).

3. Generate the parametersΣβ given βt, from the conditional posterior distribution:

f(Σβ |βt).

4. Generate the state variables at given βt, ht, Σa, yt, from the conditional posterior

distribution: f(at|βt, ht,Σa,yt).

5. Generate the parametersΣa given at, from the conditional posterior distribution:

f(Σα|αt).

6. Generate the state variables ht given βt, at, Σh, yt, from the conditional posterior

distribution: f(ht|at, βt,Σβ ,yt).

7. Generate the parameters Σh, given ht, from the conditional posterior distribution:

f(Σh|ht).

8. Generate the IRFs: f(A0, A+), based on the structural parameters: A0, A+, identified

with zero and sign restrictions, given at, βt, ht, yt.

9. Return to step 2 until the required number of draws from the posterior distribution

Here, we remark some points of the above MCMC simulation. In Step 8, the identification

of SVARs and generation of IRFs are implemented from the way described of Section 2.2.

In Steps 2 and 4, the simulation smoother of de Jong and Shephard (1995) is used for

drawing βt and at . In Step 7, a nonlinear filtering method based on block-sampling

method is used for sampling stochastic volatility ht, following Shephard and Pitt (1997),

Watanabe and Omori (2004) and Nakajima et a. (2011). These parts explaining the

MCMC procedure generating parameters in reduced-form TVP-VARs are described in

Appendix A1in more detail.

The priors of the parameters are specified as:(Σβ)
2
i ∼ IG(20, 10−4), (Σa)

2
i ∼ IG(20, 10−4),

and (Σh)
2
i ∼ IG(20, 10−4), where subscript i denotes the i-th diagonal elements of the

covariance matrices and IG an inverse-Gamma distribution. The initial state variables

are set as β0 ∼ N(0, 10I), a0 ∼ N(0, 10I), and h0 ∼ N(0, 10I).

A.3 MCMC procedure for TVP-VARs

In Section 2.3, we describe the nine steps of the MCMC algorithm estimating our model.

Here, we focus on the steps generating parameters in reduced-form TVP-VARs. This

section is described based on Appendix of Nakajima (2011) and Nakajima et al. (2011).

26



A.3.1 Generate the state variables βt given at, ht, Σβ, Yt, from the conditional

posterior distribution: f(βt|at, ht,Σβ , Yt).

To generate βt from the conditional posterior distribution: f(βt|at, ht,Σβ , Yt), we introduce

the simulation smoother by de Jong and Shephard (1995) and Durbin and Koopman

(2002) using the state space model with respect to βt given by

yt = Xtβt +A−1
t Σtεt, t = s+ 1, · · · , n, (11)

βt+1 = βt + uβ , t = s+ 1, · · · , n− 1,

where βs is set as µβ0, and uβs ∼ N(0,Σβ0).

A.3.2 Generate the state variables at given βt, ht, Σa, Yt , from the conditional

posterior distribution: f(at|βt, ht,Σa, Yt).

To generate at from the conditional posterior distribution: f(at|βt, ht,Σa, Yt), the simula-

tion smoother is also adopted from the following state space model,

ŷt = X̂tat +Σtεt, t = s+ 1, · · · , n,

at+1 = at + uat, t = s, · · · , n− 1,

where as = µa0, uas ∼ N(0,Σa0), ŷt = yt −Xtβt, and

X̂t =















0 · · · 0

−ŷ1t 0 0 · · ·
...

0 −ŷ1t −ŷ2t 0 · · ·

0 0 0 −ŷ1t · · ·
...

. . . 0 · · · 0

0 · · · 0 −ŷ1t · · · −ŷk−1t















,

for t = s+ 1, · · · , n.

A.3.3 Generate the state variables ht given βt, at, Σh, Yt, from the conditional

posterior distribution: f(ht|at, βt,Σβ , Yt).

To generate the stochastic volatility ht from the conditional posterior distribution: f(ht|at, βt,Σβ , Yt),

we conduct the inference for hjt
n
t=s+1 separately for j, because it is assumed that Σh and

Σh0 are diagonal matrices. Let y∗it denote the i-th element of Atyt. Then, we can write:

y∗it = exp(hit/2)εit, t = s+ 1, · · · , n,
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hi,t+1 = hit + ηit, t = s, · · · , n− 1,

(

εit

ηit

)

∼ N

(

0,

(

1 0

0 ν2i

))

,

where ηis ∼ N(0, ν2i0), and ν2i are the i-th diagonal elements of Σh and Σh0, respectively,

and ηit is the i-th element of uht. We sample ht = (hi,s+1, · · · , hin) using the multi-move

sampler developed by Shephard and Pitt (1997) and Watanabe and Omori (2004), the

algorithm of which is described in the following subsection.

A.3.4 Generate the parameters Σα , Σβ, andΣh.

To generate the parameter Σa given at, we draw the sample from the conditional posterior

distribution: Σ|at ∼ IW (ν̂, Ω̂−1), where IW denotes the inverse-Wishart distribution, and

ν̂ = ν0+n−1, Ω̂ = Ω0+
∑n−1

t=1 (at+1−at)(at+1−at)
′ in which the prior is set as Σ ∼ IW (ν0,Ω

−1
0 ).

Sampling the diagonal elememts of Σβ, Σh is also the same way to sample Σa.

A.4 Multi-Move Sampler of Stochastic Volatilities

This section is described based on Appendix of Nakajima (2011) and Nakajima et al.

(2011). The algoritm of the multi-move sampler proposed by Shephard and Pitt (1997),

Watanabe and Omori (2004) is adopted to generate draws of stochastic volatilities in the

TVP-VARs from the conditional posterior distributions explainded in Appendix A2. We

show the stochastic volatilities model again.

y∗t = exp(ht/2)εt, t = s+ 1, · · · , n,

ht+1 = φht + ηt, t = s, · · · , n− 1,

(

εt

ηt

)

∼ N

(

0,

(

1 0

0 σ2η

))

,

where y∗t denote the i-th element of Atyt shown in Eq.(11). For drawing a typical block

such as(hr, · · · , hr+d), we consider the draw of

(ηr−1, · · · , ηr+d−1) ∼ π(ηr−1, · · · , ηr+d−1|ω)

∝

∏ 1

eht/2
exp

(
y∗2t
2eht

)

×
∏

f(ηt)× f(hr+d) (12)

where
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f(ηt) =







exp
{

−
(1−φ2)η2

0

2σ2
η

}

exp
(

−
η2t
2σ2

η

)
(if t = 0),

(if t ≥ 1),

f(hr+d) =







exp
{

−
(hr+d+1−φhr+d)

2

2σ2
η

}

1

(if r + d < n),

(if r + d = n),

and ω = (hr−1, hr+d+1, β, γ, φ, ). The posterior draw of (hr, · · · , hr+d) can be obtained by

running the state equation with the draw of (ηr−1, · · · , ηr+d−1) given hr−1.

We sample (ηr−1, · · · , ηr+d−1) from the density (12) using the acceptance-rejection MH

algorithm (Tierney, 1994; Chib and Greenberg, 1995) with the following proposal distri-

bution constructed from the second-order Taylor expansion of

g(ht) ≡ −
ht
2

−
y∗2t
2eht

,

around a certain point ĥt which is given by

g(ht) + g(ht) + g′(ĥt)(ht − ĥt) +
1

2
g′′(ĥt)(ht − ĥt)

2

∝
1

2
g′′(ĥt)

{

ht −

(

ĥt −
g′(ĥt)

g′′(ĥt)

)}2

,

Here, the first and second derivatives are obtained such that

g′(ĥt) = −
1

2
+

y∗2t
2eht

, g′′(ĥt) = −
y∗2t
2eht

,

And the proposal density of π(ηr−1, · · · , ηr+d−1|ω) is given by

q(ηr−1, · · · , ηr+d−1|ω) ∝
∏

exp

{

−
(h∗t − ht)

2

2σ∗2t

}

×
∏

f(ηt),

where

σ∗2t = −
1

g′′(ĥt)
, h∗t = ht + σ∗2t g

′(ĥt), (13)

for t = r, · · · , r + d − 1, and t = r + d in the case that r + d = n. Meanwhile, in the case

thatr + d ≤ n,

σ∗2r+d =
1

−g′′(ĥt+d) + φ2/σ2η
(14)

h∗r+d = σ∗2r+d
{
g′(hr+d)− g′′(hr+d)hr+d + hr+d/σ

2
η

}
, (15)
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for t = r + d. The proposal density of the AR-MH algorithm is derived from the following

state space model,

h∗t = ht + ςt, t = s+ 1, · · · , n,

h,t+1 = ht + ηt, t = s, · · · , n− 1, (16)

(

ςt

ηt

)

∼ N

(

0,

(

σ∗2t 0

0 σ2η

))

,

with ηr−1 ∼ N(0, σ2η) when r ≥ 2 and ηs ∼ N(0, σ2η/(1 − φ2)). Given ω, we draw candidate

point of (ηr−1, · · · , ηr+d−1) for AR-MH algorithm by running the simulation smoother over

the state-space representation (16).

For realizing efficient drawings, we need to calculate the mode of the above posterior

density for (ĥr, · · · , ĥr+d). Numerically, we obtain the mode by iterating the following steps

several times,

1. Initialize (ĥr, · · · , ĥr+d).

2. Compute (h∗r , · · · , h
∗
r+d), and (σ∗r , · · · , σ

∗
r+d) by eq.(13) through eq.(15).

3. Run the simulation smoother for state space model eq.(16) with (h∗r , · · · , h
∗
r+d), and

(σ∗r , · · · , σ
∗
r+d) as obervable variables. And Generate estimations h∗t = E(ht|ω) for

t = r, · · · , r + d.

4. Replace (ĥr, · · · , ĥr+d) with (h∗r , · · · , h
∗
r+d).

5. Return to Step 2.

To implement a block sampling for ht, they are devided into K+1 blocks, say, (hk(i−1), · · · , hk(i))

for i = 1, · · · ,K + 1. Shephard and Pitt (1997) suggested to adopt stochastic knots for de-

termining the positions of blocks: i, the rule of which is given by

k(i) = int

[
n(j + Ui)

K + 2

]

,

for i = 1, · · · ,K, where int is a function rounding to an integer value from the insight, and

Ui is the random sample from the uniform distribution U [0, 1].

References

[1] Arias, J. E., J. F. Rubio-Ramirez, and D. F.Waggoner (2018) “Inference Based on

SVARs Identified with Sign and Zero Restrictions: Theory and Applications,” Econo-

metrica 86 (2), March 2018, p. 685-720.

30



[2] Arias, J.E., Dario Caldara and Juan F. Rubio-Ramirez (forthcoming) “The Systematic

Component of Monetary Policy: An Agnostic Identification Procedure,” Journal of

Monetary Economics.

[3] Auerbach, Alan J., and Yuriy Gorodnichenko (2012) Measuring the output re-

sponses to scal policy. American Economic Journal: Economic Policy 4(2), 1-27

[4] Auerbach, Alan J., and Yuriy Gorodnichenko (2013) Fiscal multipliers in recession

and expansion. In Fiscal Policy after the Financial Crisis, ed. Alberto Alesina and

Francesco Giavazzi (Chicago: University of Chicago Press) pp. 63-98
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