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Abstract 

Cornes and Itaya (2010) showed that in a two-player game of voluntary provision of 

two public goods if the players have different preferences, and if both players 

simultaneously make positive contributions to both public goods, the system of 

equations representing the Nash equilibrium is overdetermined. We extend this 

proposition to a model of voluntary provision of two or more public goods and show 

that if the players have different preferences, and if the number of players who 

contribute simultaneously to two or more public goods is more than the number of 

public goods, the system representing the Nash equilibrium is overdetermined. This 

result implies that in a large group, the share of players contributing to multiple public 

goods may well be quite small and the majority of the players may contribute to at the 

most one public good.  
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1. Introduction 

Voluntary provision of public goods has been an important issue in the literature of 

public economics. Compared to voluntary provision of one public good, voluntary 

provision of two or more public goods has been paid limited attention, except for 

several papers such as Kemp (1984); Bergstrom et al. (1986); Cornes and 

Schweinberger (1996); Dasgupta and Kanbur (2005); Cornes and Itaya (2010); and 

Ihori et al. (2014). However, it has not been sufficiently investigated how many players 

contribute to two or more public goods in a Nash equilibrium.1 

One exception is Cornes and Itaya (2010). Cornes and Itaya considered an 

economy consisting of two players, one private good, and two voluntarily provided 

public goods. They then showed that if the players have different preferences, and if 

both players simultaneously make positive contributions to both public goods, the 

system of equations representing the Nash equilibrium consists of equations strictly 

more than unknown variables, i.e., the system of equations is overdetermined. Thus, 

they claimed “there “almost surely” does not exist a Nash equilibrium in which both 

players simultaneously make positive contributions to both public goods” (Cornes and 

Itaya (2010), Proposition 2(i), p. 369).  

However, they did not extend their proposition to more general settings. There 

remain unsolved questions such as “How is their proposition modified if we introduce a 

new player to the model?” or “How about if we introduce another public good?” 

In this paper, we extend their model to a model in which many players 

voluntarily contribute to many public goods. We assume that H  players voluntarily 

contribute to J  public goods and that every player has different preferences. Then, we 

show that the system of equations representing a Nash equilibrium wherein J  players 

contribute to two or more public goods is overdetermined. 

 For example, consider an economy wherein players voluntarily provide two 

public goods. In this economy, a system of equations representing a Nash equilibrium 

wherein two players voluntarily contribute to both public goods is overdetermined 

irrespective of the number of players. Even if there exist one hundred players, a Nash 

                                                 
1 The identification of contributors in one public good model has been investigated in 

the literature (McGuire and Groth 1985; McGuire 1991; Andreoni and McGuire 1993). 
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equilibrium wherein two players contribute to both public goods is unlikely to exist. 

 Our result implies that if many players voluntarily contribute to a limited 

number of public goods, a limited number of players contribute to two or more public 

goods and the majority of players contribute to at the most only one public good.  

 

2. Model 

Let us consider an economy consists of H players. They consume I private goods and 

voluntarily provide J public goods. Let h

ic  be the amount of private good i consumed 

by player h, 
jG  the amount of public good j, h

jg  the contribution to public good j by 

player h, h
Y  the income of player h, iq  the price of private good i, and 

jp  the unit 

cost of contribution to public good j. We assume that h
Y , iq , and 

jp  are positive 

constants, and that each player considers the contributions made by other players as 

given. Following Bergstrom et al. (1986), a Nash equilibrium of this model is defined as 

follows. 

 

Definition: A Nash equilibrium of this model is a vector of private goods consumption 

and contributions to public goods, * *( , ),h h

i jc g  for 1, , ,h H=  1, , ,i I=  1, , ,j J=  

such that for each player {1, , }h H , it solves the following problem: 

( )
1 1

1 1
,, , , , ,

max , , , , ,
h h h h

I J

h h h

I J
c c g g

U c c G G  

subject to 

1

,
H

h

j j

h

G g
=

=  for 1, , ,j J=    (1) 

1 1

,
I J

h h h

i i j j

i j

Y q c p g
= =

= +      (2) 

where (.)h
U  is strictly increasing, strictly quasi-concave, and twice continuously 

differentiable in all arguments.  

 

Following Cornes and Itaya (2010), we assume that all goods are essential, or 

0
lim /

h
i

h h

i
c

U c
→
  =   for 1, ,i I=  and 

0
lim /

j

h

j
G

U G
→
  =   for 1, ,j J= . 
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We now focus on how many players simultaneously contribute to two or more 

public goods. Let us consider a list of public goods to which player h  contributes 

positive amounts. Let *hS  be a set of indexes of public goods that player h  

contributes.  Index j  is in *hS  if and only if player h  contributes a positive 

amount to public good j : 

* *{ | 0}.h h

jS j g=        (3) 

For example, if player 1 contributes positive amounts to public goods 1 and 2 and does 

not contribute to the other public goods, we obtain 1* {1, 2}S = . Then, we classify the 

players based on the size of *hS  as follows: 

 

Definition: Player h  is a noncontributor if *hS  is empty. He/she is a unilateral 

contributor if the size of *hS  is one. He/she is a multilateral contributor if the size of 

*hS  is more than one. 

 

Next, we consider how many players are multilateral contributors. Let us form 

groups of players according to how many public goods they contribute. We define the 

group of noncontributors as *
0N  and that of unilateral contributors as *

1N . In general, 

we define the group of players contributing to k  types of public goods as *
kN . Note 

that the members of group *
kN  may differ in the combination of public goods they 

contribute: one member might contribute to public goods 1,...,k , while another 

member might contribute to public goods 2,..., 1k + . We denote the size of group *
kN  

by *
kn . By definition, we obtain the following: 

 *

0
.

J

kk
H n

=
=   (4) 

The left-hand side of (4) is the number of players in this model, while the right-hand 

side is the sum of the number of players contributing to k  public goods from 0k =  

to k J= .  

Then, we have our main result as the following proposition: 
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Proposition 1: Let us suppose that there is a Nash equilibrium of this model, * *( , ),h h

i jc g  

for 1, , ,h H=  1, , , 1, , .i I j J= =  We assume that the number of players 

contributing to k  types of public goods in the equilibrium, *
kn , satisfies the following 

inequality: 

*

2

( 1) .
J

k

k

k n J
=

−       (5) 

Then, the system of equations representing the Nash equilibrium is overdetermined. 

 

Proof: The Lagrangian function of player h’s utility maximization problem is defined as 

follows: 

( )1 1
1 1 1

, , , , , .
I J J

h h h h h h h h h h

I J i i j j j j

i j j

L U c c G G Y q c p g g 
= = =

 
= + − − + 

 
        (6) 

We denote the Lagrange multipliers in the Nash equilibrium by *h  and *h
j  

( 1, ,j J= ). Then, * * *, , ,h
i jc g   and *h

j  satisfy the first order conditions for 

'h s utility maximization, which are given as follows: 

* 0, for 1, , .
h

h

ih

i

U
q i I

c


− = =


                   (7) 

 * * 0, for 1, , .
h

h h

j j

j

U
p j J

G
 

− + = =


                   (8) 

* * 0, for 1, , .h h

j jg j J = =                   (9) 

Solving (7) for private good 1, we obtain the following: 

*

1 1

1
.

h
h

h

U

q c
 

=


     (10) 

Substituting (10) in (7), we obtain the following: 

1 1

,  for 2, , .
h h

i

h h

i

qU U
i I

c q c

 
= =

 
   (11) 

If public good j  is in set *hS , which is the set of indexes of public goods to which 

player h  contributes, this follows: 
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*

1 1

,  for .
h h

j h

h

j

pU U
j S

G q c

 
= 

 
   (12) 

If player h  is a noncontributor, h ’s budget constraint becomes the following: 

* *
0

1

, for .
I

h h

i i

i

Y q c h N
=

=        (13) 

By aggregating the budget constraints of unilateral and multilateral contributors, we 

obtain the following: 

* *
0 0

* *

1 1

I J
h h

i i j j

i jh N h N

Y q c p G
= = 

= +   ,   (14) 

where *
jG  is the amount of public good j  provided in the Nash equilibrium.  

The Nash equilibrium levels of private goods consumption and public goods 

provision, * *( , )h

i jc G , must solve the system of (11), (12), (13), and (14).  

 

Table 1. The number of equations to be solved in the Nash equilibrium 

Expression Total number of equations 

(11) ( 1)I H−  

(12) 
*

1

J

k

k

kn
=
  

(13) *
0n  

(14) 1 

Total 
*

2

1 ( 1)
J

k

k

HI k n
=

+ + −  

 

In Table 1, we count the numbers of equations in this system. Expression (11) 

indicates the first-order conditions on private goods consumption. There are 1I −  

equations for each player, and there are H  players in this economy. Thus, we have a 

total of ( 1)I H−  equations. Expression (12) represents the first-order condition for 
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player h  to make a positive contribution to public good j . If player h  is a unilateral 

contributor, he/she has one equation on the efficiency of his/her contribution. Counting 

these equations for every unilateral contributor, we have *
1n  equations. If player h  

contributes to k  types of public goods, there exist k  equations corresponding to the 

public goods the player contributes. Counting the equations for every player 

contributing to k  types of public goods, we obtain *
kkn  equations. Thus, we obtain a 

total of *

1

J

kk
kn

=  equations. Expression (13) signifies the budget constraints for 

noncontributors. Because there are *
0n  noncontributors, we obtain *

0n  equations. 

Expression (14) describes the budget constraint for unilateral and multilateral 

contributors. Summing up the budget constraints for all players contributing to at least 

one public good, we obtain only one equation. Computing the total number of equations, 

we obtain the following: 

* * * *
0 0

1 1

* *

1 1

*

1

*

2

( 1) 1 ( ) 1

1

( 1) 1

1 ( 1) .

J J

k k

k k

J J

k k

k k

J

k

k

J

k

k

I H kn n HI H n kn

HI n kn

HI k n

HI k n

= =

= =

=

=

− + + + = − − + +

= − + +

= + − +

= + + −

 

 





    

(15)

 

The unknown variables of the system of equations are *h

ic  and *
jG . We have 

HI  variables for *h

ic  and J  variables for *
jG . As a total, we have HI J+  unknown 

variables. 

 If expression (5) holds, we obtain the following: 

 *

2

1 ( 1) 1 ,
J

k

k

HI k n HI J HI J
=

+ + −  + +  +   (16) 

which means that the number of equations is more than the number of unknown 

variables. Thus, the system of equations representing the Nash equilibrium is 

overdetermined.  

 

Proposition 1 is a generalized version of Cornes and Itaya’s (2010) proposition 
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2(i). Suppose that there are two public goods, 2J = . Then, expression (5) becomes  

*
2 2n  .     (17) 

The left-hand side of (17) is the number of players contributing to both public goods. 

Then, Proposition 1 means that if two or more players contributing to both public goods, 

the system of equations representing the Nash equilibrium is overdetermined. 

Proposition 1 also shows how many multilateral contributors can exist in a 

model with more than two public goods. Interestingly, the number of multilateral 

contributors is bounded not by the number of players but by the number of public goods. 

If players consume J  public goods in an economy, any Nash equilibrium wherein J  

players contribute to two or more public goods is unlikely to exist because the system of 

equations representing the equilibrium is overdetermined.  

Unlike the number of multilateral contributors, the number of unilateral 

contributors and that of noncontributors are not bounded. What is the difference 

between the multilateral and unilateral contributors? Let us suppose that player h  

contributes to public goods 1 and 2. In this case, the first-order conditions for the player 

include one more equation than that for a unilateral contributor because player h  

allocates his/her contributions to public goods 1 and 2. Thus, if there are more 

multilateral contributors, there are more equations to be solved. However, the number of 

unknown variables is fixed. Thus, if the system of equations is not overdetermined, the 

number of multilateral contributors is bounded.  

From Proposition 1, we immediately obtain the following corollary: 

 

Corollary 1: In the following Nash equilibria, the system of equations representing the 

equilibrium is overdetermined: 

(i) Equilibrium with J  or more multilateral contributors. 

(ii) Equilibrium wherein two or more players contribute to all the public goods. 

(iii) Equilibrium wherein one player contributes to all the public goods, and at least 

one player contributes to two or more public goods. 

 

3. Conclusion 

In this paper, we have constructed a model in which H  players voluntarily contribute 
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to J  public goods. Our proposition implies that unless the system is overdetermined, 

the number of multilateral contributors, who contribute to two or more public goods, is 

at the most 1J − . Thus, in a large group, the share of players contributing to multiple 

public goods may be quite small, and the majority of the group members may contribute 

to at the most one public good.  

 

Acknowledgments 

Earlier versions of this paper were presented at Workshop in Honour of Professor 

Richard Cornes, on September 2, 2016, at Australian National University and the 74th 

Annual Congress of the International Institute of Public Finance on 23 August 2019, at 

University of Tampere. The author thanks Toshihiro Ihori, Martin C. McGuire, Yuzo 

Higashi, Jun-ichi Itaya, and participants of the workshop and conference for their 

insightful comments and questions. This work was supported by JSPS KAKENHI 

[grant numbers 26380366, 15H01952]. 

 

References 

Andreoni, J. and M. C. McGuire (1993) Identifying the free riders: A simple algorithm 

for determining who contribute to a public good, Journal of Public Economics, 51(3), 

pp. 447-454, https://doi.org/10.1016/0047-2727(93)90076-6. 

Bergstrom, T., L. Blume and H. Varian (1986) On the private provision of public goods, 

Journal of Public Economics, 29(1), pp. 25-49, 

https://doi.org/10.1016/0047-2727(86)90024-1. 

Cornes, R. and J. Itaya (2010) On The Private Provision of Two or More Public Goods, 

Journal of Public Economic Theory, 12 (2), pp. 363–385, 

https://doi.org/10.1111/j.1467-9779.2009.01455.x. 

Cornes, R. C. and A. G. Schweinberger (1996) Free riding and the inefficiency of the 

private production of pure public goods, Canadian Journal of Economics, 29(1), pp. 

70-91, https://doi.org/10.2307/136152. 

Dasgupta, I. and R. Kanbur (2005) Bridging communal divides: Separation, patronage, 



 
 

10 
 

and integration, in C. B. Barrett eds. The Social Economics of Poverty: On identities, 

communities, groups and networks, Routledge: Abingdon. 

Ihori, T., M. C. McGuire and S. Nakagawa (2014) International Security, Multiple 

Public Good Provisions, and The Exploitation Hypothesis, Defence and Peace 

Economics, 25(3), pp. 213-229, http://dx.doi.org/10.1080/10242694.2012.752229. 

Kemp, M.C.(1984) A note of the theory of international transfers, Economics Letters, 

14(2-3), pp. 259-262, https://doi.org/10.1016/0165-1765(84)90092-2. 

McGuire, M.C. (1991) Identifying the free riders: How to partition a group into positive 

and zero contributors to the common good, University of Maryland Working paper, 

91-14. 

McGuure, M.C. and C. H. Groth, Jr. (1985) A method for identifying the public good 

allocation process within a group, Quarterly Journal of Economics, 100(Supplement), 

pp. 915-934, https://doi.org/10.1093/qje/100.Supplement.915. 


