
Munich Personal RePEc Archive

Changes in Environmentally Sensitive

Productivity and Technological

Modernization in China’s Iron and Steel

Industry in the 1990s

Fujii, Hidemichi and Kaneko, Shinji and Managi, Shunsuke

2009

Online at https://mpra.ub.uni-muenchen.de/92754/

MPRA Paper No. 92754, posted 15 Mar 2019 16:40 UTC



 1 

Changes in Environmentally Sensitive Productivity and Technological 

Modernization in China’s Iron and Steel Industry in the 1990s. 

 

 

Abstract. Technological modernization is widely believed to contribute positively both to 

economic development and to environmental and resource conservation, through productivity 

improvements and strengthening of business competitiveness. However, this may not always 

be true, particularly in the short term, as it requires substantial investments and may impose 

financial burdens on firms undertaking such investments. This study empirically examines the 

effects of technological modernization in China’s iron and steel industry in the 1990s on 

conventional economic productivity (CEP) and environmentally sensitive productivities 

(ESPs). We employ a directional distance function that can handle multiple inputs and outputs 

to compute relative production efficiencies. We apply these models to the data covering 27 

iron and steel firms in China between 1990 and 1999—a period when the Chinese iron and 

steel industry modernized rapidly. We find that ESPs have continuously improved, even in the 

period when the CEP declined. 
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1 Introduction 

China’s economic growth has been extremely rapid, with an annual growth rate of 

approximately 10% over the last two decades (Asian Development Bank, 2007). The resulting 

economic development has created environmental and resource problems that threaten China’s 

sustainability (De Groot et al., 2004)1. The annual economic cost of environmental degradation 

and pollution has been estimated to be equivalent to 5.8% of China’s annual gross domestic 

product in 2003 (World Bank, 2007). Economic expansion in China lead to a rapid increase in 

consumption of natural resources, which limit resources available not only domestically but 

also internationally. The government of China is targeting a 20% reduction in energy 

consumption per unit of GDP during the eleventh five-year plan that covers the periods over 

2006 and 2010. The large literature on energy and the environment has empirically analyzed 

and reported energy efficiencies of various production sectors and/or China’s entire economy, 

as measured by energy input per unit of production output (e.g., Fisher-Vanden et al., 2004). 

The apparent drastic increase in energy consumption in China has raised global concerns in 

various academic and policy arenas. 

In order to alleviate the stresses on energy resources and environmental concerns while 

expanding production, technological modernization is widely believed to contribute 

                                                 

1 To respond to the problem, a levy system has been introduced (see Jiang and McKibbin, 2002; Wang and 

Wheeler, 2003). 
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positively not only to economic development but also to environmental and resource 

conservation, through productivity improvements and strengthening of business 

competitiveness. However, this may not always be true, particularly in the short term, as it 

requires substantial investments and may impose a financial burden on the firms. This study 

uses data on China’s iron and steel industry in the 1990s to examine empirically, and to 

compare the effects of, technological modernization on conventional economic productivity 

(CEP) and environmentally sensitive productivities (ESPs). The CEP are defined as 

productivity based on the conventional production theory that measures the ratio between 

desirable outputs and production inputs such as labor and capital stock. The ESPs define 

productivity in terms of the balance between resource inputs and undesirable outputs in 

addition to the usual input–output combinations of the CEP. 

China became the world’s largest crude steel producer in 1996, having been only fifth in 

1980. Its steel production reached 123 million tons in 1999, which was more than three times 

its 1980 production, resulting in an average annual growth rate of 6.5% for the 16 years. 

Although China’s steel production since 2000 has shown even more rapid growth, the period 

between 1990 and 1999 can be characterized as being based on significant progress in 

technological modernization. Specifically, the proportion of crude steel produced by the 

continuous casting process increased from approximately 20% in 1990 to 90% in 1999, and 

open-hearth furnaces were phased out during this period. In such an energy-intensive industry, 
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this technological modernization brought large benefits to the iron and steel industry via 

improved energy efficiency2. 

On the other hand, the iron and steel industry was one of the largest users of fresh water in 

China, accounting for 16% of total fresh water consumption in the industrial sector in 2004 

(China Environmental Yearbook, 2005). In addition, the water pollution intensity of the iron 

and steel industry is also higher than other industrial sectors. Unlike energy resources—such as 

coal, crude oil, and natural gas—that are global commodities, water is a local commodity 

subject to domestic policies. In China, particularly in the north, water scarcity due to 

decreasing precipitation and rapidly increasing water consumption threatens people and 

industries (World Bank, 2008). Considering that steel production is taking place throughout 

the country, water efficiency improvement in the iron and steel industry is another important 

policy concern for resource management in China. 

Moreover, this is not confined to the iron and steel industry, because both energy and 

water shortages appear to pose the most urgent environmental risks for China’s continued high 

growth in the long run (Woo, 2007), energy and water resource efficiency improvements in 

manufacturing production have emerged as formidable challenges. Because the government 

treats energy and water policies differently, past achievements in efficiency improvements may 

differ when comparing the two. 

                                                 

2 See Kaneko et al. (2006) for financial assessments of introduction of specific energy saving technologies in 

China’s iron and steel companies. 
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Physical efficiencies, defined as energy or water input in quantity per unit of output, 

improved between 1990 and 19993. However, physical efficiency measurement does not 

incorporate the economic value of products. In order to reflect it, an alternative measurement 

is energy or water input in quantity per monetary value of output. Many articles have 

computed the energy efficiency of China’s iron and steel industry (e.g. Worrell et al., 1997; 

Kim et al., 2002; Price et al., 2002). However, this alternative measurement still does not fully 

reflect the dimensions of productivity such as capital and labor productivities derived in 

economic production theory. 

We apply a nonparametric production frontier approach to measure productivity, using a set 

of mathematical programming techniques to estimate the relative efficiency of production units, 

and identifying best practice frontiers (see, for example, Färe et al., 1994; Zhang, 2002). One of 

those methods, Data Envelopment Analysis (DEA), is a particularly useful technique when the 

technological efficiency assumption of all firms in all periods might be suspect. According to 

Zhou et al. (2008), DEA has gained great popularity in energy and environmental modeling in 

recent years. We use a DEA directional distance function model that can model multiple inputs 

and outputs to compute relative production efficiencies of firms. Using annual scores of the 

efficiency for each firm, we derive Luenberger Productivity Indicators (LPIs) over the study 

period to measure Total Factor Productivity (TFP) changes. LPIs measured using 

                                                 

3 From 1990 to 1999, energy efficiency improved by more than 150%, and the fresh water input per unit output of 

crude steel fell (China Industrial Water Conservation Report, China Statistical Yearbook). 
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conventional production inputs such as capital stock and labor and good outputs changes in 

CEP. On the other hand, when we add inputs of natural resources and outputs of 

environmental emissions to the CEP model, the derived LPI defines and measures changes in 

ESP. We apply the models to data covering 27 iron and steel firms in China between 1990 and 

1999—a period when the Chinese iron and steel industry modernized rapidly. 

The above-mentioned methodology applies to three ESP models with different directional 

vectors for input-output variables to evaluate environmentally sensitive productivities, in 

addition to the CEP (market) model. The first ESP model (Energy model)—specifies energy 

as an input and carbon dioxide emissions (CO2) as an bad output—typifies and evaluates 

environmentally sensitive productivity for global environmental and resources issues, 

whereas the second ESP model (Water model)—treats fresh water as an input and wastewater 

discharge as a bad output—typifies and evaluates productivity with respect to local 

environmental and resource issues. The Last ESP model (Joint model), by combine the first 

and second ESP models, evaluating both global and local environmental and resource issues. 

 

2 Literature Reviews 

2.1 Iron and Steel Industry in China 

In the 1980s, China’s iron and steel was produced in inefficient facilities, and its industry 

lagged behind that in developed countries. Until 1980, because of internal and external 
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political factors, limited technology transfer from developed countries contributed to this lag, 

and China was restricted to introduce aging technologies and equipment from the former 

Soviet Union and Eastern Europe. China’s iron and steel industry was eventually modernized 

following economic reform and liberalization policies. 

In 1980, by which time Japan had ceased production in open-hearth furnaces, 35% of 

production in China was still from open-hearth furnaces (see Figure 1). In the early 1990s, 

they still accounted for approximately 20% of total iron and steel production. China’s slow 

process in phasing out its open-hearth furnaces in the 1980s and early 1990s occurred for two 

reasons. First, converter furnace technology requires a significant monetary investment, and 

second, the iron and steel industry was running at full capacity to meet China’s rapidly growing 

demand, making the rapid phasing out of open-hearth furnace production very difficult. 

<Figure 1 about here> 

Casting processes are also important in improving energy resource efficiency. The 

continuous casting share of the steel production in China increased rapidly during the 1990s, 

rising from 20% in 1990 to almost 90% in 1999 (see Figure 2). Adapting modern production 

processes led to productivity and energy efficiency improvements. Energy consumption per 

unit of crude steel production dramatically improved when open-hearth furnaces were phased 

out and the continuous casting method came into general use during the 1990s. 

<Figure 2 about here> 
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An increase in the water-recycling rate during the 1990s was another important 

achievement resulting from technological modernization of China’s iron and steel industry. 

Three major factors improved water usage efficiency (China Industrial Water Conservation 

Report (CIWCR), 2004). First, technological improvements in blast furnaces reduced water 

usage. Second, two new drying methods for removing furnace dust required less water usage 

than conventional methods and facilitated water conservation. The third factor was simplifying 

production processes by installing electric arc furnaces and using the continuous casting 

method. These improvements reduced the amount of water required, and the water-recycling 

rate also increased because of wastewater quality improvement. The water recycling rate of 

China’s iron and steel industry rose from only 57% in 1980 to 75% in 1990, and to 85% in 1999 

(CIWCR). From 1990 to 1999, the volume of fresh water inputs and industrial wastewater per 

ton of crude steel dropped by more than half. 

Changes in policy and regulations affecting the iron and steel industry played an important 

role in improving the business environment underlying the technological modernization. 

China imposed price controls on steel product prices until 1992. Price deregulation affected 

the performance in China’s iron and steel industry. The price of steel rapidly increased after 

price deregulation. Wire rod, for example, was 1,600 Yuan per ton in February 1992 before the 

policy change, but immediately after the change in April 1992, the price increased to 1,750 

Yuan per ton. Wire rod reached 3,500 Yuan per ton in December 1992, meaning the price more 
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than doubled within a year. Although the price of steel continued to increase during 1993, it 

started declining in late 1993 and bottomed at 2,000 Yuan per ton in December 1993 

(Yearbook of Iron and Steel Industry of China, 1994, 1995). 

These rising prices enabled firms to make large profits in a short period. However, another 

market reform also provided stable foundations for the iron and steel industry to ensure larger 

profits during the same period. Under the contract management system, which was the sales 

system introduced in the 1980s, the enterprise was permitted to sell steel products only to 

customers designated by the government (Sugimoto, 1993; Ye, 2000). However, after the price 

and market reforms in 1992, firms were allowed to have direct contracts with their customers. 

In subsequent years, this new market system gained popularity throughout China. As a result, 

the proportion of steel products sold in the new market system rapidly increased from 27% in 

1988 to 91.8% in 1995 (Yearbook of Iron and Steel Industry of China, 1989, 1996). 

Iron and steel firms greatly increased their profits because of increasing prices and market 

reforms. These high returns encouraged technological advancements in iron and steel 

production. Higher profits enabled firms to invest in new technologies such as continuous 

casting equipment and basic oxygen furnaces and to build new manufacturing factories. 

Additionally, the demand for high valued-added steel products, such as seamless pipe and thin 

steel plate, also increased because of the economic development of China and export 
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expansion, which required advanced technologies (Sugimoto, 1993). The demand push factors 

further enhanced the acceleration of investments into advanced technologies. 

2.2 Productivity Measurement 

Many productivity evaluation techniques are based on the frontier efficiency concept 

originally proposed by Farrell (1957): to evaluate inefficiency by specifying the production 

frontier with the best performing observations, and measuring the distance of inefficient 

samples from the frontier. The empirical specification methods of frontier efficiency divide 

into two types: parametric and nonparametric. The parametric method uses Stochastic Frontier 

Analysis (SFA) with production frontiers like those of the Cobb–Douglas and Translog 

functions (see Schmidt (1986) for survey). The nonparametric method uses the DEA developed 

by Charnes et al. (1978), where nonparametric linear programming techniques are applied. 

Previous studies empirically analyzing productivity in the Chinese iron and steel industry have 

used both SFA and DEA. 

Wu (1995) used SFA to measure the efficiency of 61 iron and steel firms in China from 

1984 to 1992. Data variables are value added, fixed capital and number of workers, and the 

production function was assumed to fit the Cobb–Douglas function. Wu found that 

productivity efficiency could increase by more than 7.0% if inefficiently performing firms 

were shut down and their resources transferred to efficient firms. Movshuk (2004) measured 

the productivity of China’s state-owned iron and steel firms using SFA with the firm-level data 
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of value added, fixed capital, number of workers, and vintage years. He found productivity 

increased at an annual rate of 6.4% using the Translog function and 4.4% using Cobb–Douglas 

for the period between 1988 and 2000. These two studies did not consider resource efficiency 

and pollution abatement; therefore, we interpret the derived productivities as CEP. On the 

other hand, Zhang et al. (2008) applied the Cobb–Douglas production function in a SFA to 

estimate the effects of energy-saving technologies and investments in innovation on the 

productive efficiency of 19 Chinese iron and steel firms for the period from 1990 to 2000. 

They found that a part of productive efficiency growth is attributable to the adoption and 

amelioration of energy-saving measures (pulverized coal injection technology and continuous 

casting technology). They also noted that large firms possess a substantial efficiency advantage 

over small and medium steel makers. 

In contrast, Ma et al. (2002) analyzed the productivity of China’s iron and steel firms by 

applying DEA between 1987 and 1997. They used energy consumption as an input variable in 

addition to the other variables of total production value, pig iron production, crude steel 

production, volume of steel products, number of workers, fixed assets, liquid assets and years 

since establishment. They found that productivity improved by 3% per year. 

Wei et al. (2007) investigate the energy efficiency changes in China’s iron and steel sector 

during the period from 1994 to 2003 using the Malmquist Index. They employed DEA model 

with provincial panel data, which allows for various energy inputs and product outputs. Energy 
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efficiency improvement is decomposed into two components, technical change (production 

frontier shifting effect), and technical efficiency change (catching-up effect) over time. The 

study reported that energy efficiency in the iron and steel sector increased by 60% between 

1994 and 2003. Furthermore, this increase is mainly attributable to technical progress rather 

than technical efficiency improvement. 

Even though many articles have already used DEA and SFA, it is not simple and easy to 

expand these to consider pollution issues, partly because of the methodological difficulty 

when incorporating undesirable outputs into production measurements. To address this issue, 

Färe (1989) developed the Hyperbolic Distance Function (HDF), which can consistently 

identify undesirable output as an extension of nonparametric approaches. However, the HDF 

imposes the strong assumption of the same multiplier and divisor for increases in desirable 

output and decreases in undesirable output while maintaining inputs constant. Chambers et al. 

(1996) and Chung et al. (1997) developed the directional distance function (DDF) approach to 

ease the restriction. There is a growing literature on methodologies for measuring productivity 

efficiency with DDF incorporating environmental pollution (Hailu and Veeman, 2000; Managi 

et al., 2005; Zhou, 2008; Managi et al., 2009). We examine explicitly the relative importance 

of multiple environmental pollution such as both global and local pollution. 

3 Methods and Data 

3.1 Directional Distance Function (DDF) 
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Let 𝑥 ∈ ℜ+L , 𝑏 ∈ ℜ+R , 𝑦 ∈ ℜ+M  be vectors of inputs, environmental output (or undesirable 

output) and market outputs (or desirable output), respectively, and then define the production 

technology as: 

𝑃(𝑥) = {(𝑥, 𝑦, 𝑏): 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 (𝑦, 𝑏)}. (1) 

We assume that the good and bad outputs are null joint; a company cannot produce desirable 

output without producing undesirable outputs (Shephard et al., 1974): 

(𝑦, 𝑏) ∈ 𝑃(𝑥);  𝑏 = 0 ⇒ y = 0. (2) 

Before defining the directional vectors in a productivity analysis that considers undesirable 

outputs, either strong disposability or weak disposability needs to be assumed. The difference 

between the strong and weak disposability of undesirable outputs is attributed to the 

opportunity cost of pollution abatement (see Färe et al. 1986 and 1989). The strong 

disposability assumes that the undesirable output is not regulated and a firm can freely 

dispose it. Otherwise, regulation on the undesirable output should potentially incur the cost 

for the firm to dispose. This conceptual clarification was translated into modeling framework 

of frontier productivity analysis in a way that weak disposability applies when an undesirable 

output is disposed of in proportion to the reduction of desirable outputs, holding the input 

vector constant (Färe et al., 1995). In this case, the reduction of good output is regarded as a 

cost of disposing the undesirable output.  
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Considering that the pollutants in this study are CO2 emission and wastewater discharge, 

CO2 emission is assumed under strong disposability and wastewater discharge is assumed 

under weak disposability, respectively, since wastewater is regulated in China. Here, the 

possibility that CO2 emission reduction achieved through energy and resource saving with 

technological modernization, while maintaining the level of desirable outputs, is specifically 

treated by setting directional vectors. If resource inputs potentially causing pollution are not 

considered in the model, there is the possibility of bias in the productivity measurements 

under the strong disposability assumption. Therefore, we include energy inputs in the models 

and assume CO2 emission can be reduced without changing the production level of the 

desirable output, but reducing energy inputs. 

Weak disposability can be mathematically expressed as below (Färe et al., 1989): 

(𝑦, 𝑏) ∈ 𝑃(𝑥) and 0 ≤  ≤ 1 ⇒ (y, b) ∈ 𝑃(𝑥). (3) 

Under the null-joint hypothesis and weak disposability, this directional distance function 

can be computed for firm k by solving the following optimization problem: 

D⃗⃗ (x𝑘𝑙 , y𝑘𝑚, b𝑘𝑟 , g𝑥𝑙 , g𝑦𝑚 , g𝑏𝑟) = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑘,
 (4) 

s.t. ∑ 𝜆𝑖𝑥𝑖𝑙𝑁𝑖=1 ≤ 𝑥𝑘𝑙 + 𝛽𝑘g𝑥𝑙                𝑙 = 1,⋯ , 𝐿, (5) 

 ∑ 𝜆𝑖𝑦𝑖𝑚𝑁𝑖=1 ≥ 𝑦𝑘𝑚 + 𝛽𝑘g𝑦𝑚         𝑚 = 1,⋯ ,𝑀, (6) 
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 ∑ 𝜆𝑖𝑏𝑖𝑟𝑁𝑖=1 = 𝑏𝑘𝑟 + 𝛽𝑘g𝑏𝑟              𝑟 = 1,⋯ , 𝑅, (7) 

 𝜆𝑖 ≥ 0                                            (𝑖 = 1,⋯ ,𝑁), (8) 

where l, m, r represent types of input, desirable output, and undesirable output, respectively. x 

is an input matrix with dimensions L  N, y is a desirable-output matrix with dimensions M  N, 

and b is an undesirable-output matrix with dimensions R  N. Furthermore, gx is the directional 

vector of the input matrix, gy is the directional vector of the desirable-output matrix and gb is 

the directional vector of the undesirable-output matrix, k is the inefficiency score of the firm k, 

and i is the weight variable. To estimate the inefficiency score of all firms, the model needs to 

be applied independently to each of the N firms. 

3.2 The Luenberger Productivity Indicator 

In order to analyze changes in efficiency over time, aggregated indices such as the Malmquist 

Index and Luenberger Productivity Indicator have been developed (Luenberger, 1992; 

Chambers et al., 1996; Chambers, 2002). They are derived from the efficiency scores of 

production frontier models. These productivity indices are measures of total factor productivity 

(TFP), when the efficiency score comes from economic production frontier models. TFP 

includes all categories of productivity changes and can be decomposed further to provide a 

better understanding of the relative importance of various components, including Technical 

change and Efficiency change (Färe et al., 1994). Technical change measures shifts in the 
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production frontier, so-called frontier shift. Efficiency change measures changes in the position 

of a production unit relative to the frontier, the so-called catching-up factor. 

We employ the Luenberger Productivity Indicator (LPI) (Chambers et al., 1998) as a TFP 

measure because the LPI is believed to be more robust than the widely used Malmquist 

Indicator (Luenberger, 1992; Chambers et al., 1998). Change in the LPI is further decomposed 

into technical change and efficiency change. 

The Luenberger Productivity Indicator is computed with the results of the DDF model and 

derived as follows (Luenberger, 1992; Chambers et al., 1998): 

LPItt+1 = TECHCHtt+1 + EFFCHtt+1,
 

(9) 

TECHCHtt+1 = 12 {D⃗⃗ t+1(𝑥t, 𝑦t, 𝑏t) + D⃗⃗ t+1(𝑥t+1, 𝑦t+1, 𝑏t+1)−D⃗⃗ t(𝑥t, 𝑦t, 𝑏t) − D⃗⃗ t(𝑥t+1, 𝑦t+1, 𝑏t+1) }, (10) 

EFFCHtt+1 = D⃗⃗ t(𝑥t, 𝑦t, 𝑏t) − D⃗⃗ t+1(𝑥t+1, 𝑦t+1, 𝑏t+1), (11) 

where 𝑥t represents input for year t, 𝑥t+1 is input for year t+1, 𝑦t is desirable output for year 

t, and 𝑦t+1 is desirable output for year t+1. 𝑏t represents undesirable output for year t, and 

𝑏t+1 is undesirable output for year t+1. The LPI score is computed based on inefficiency 

scores derived from the different combinations of observations and frontiers between t and 

t+1. D⃗⃗ t(𝑥t, 𝑦t, 𝑏t) denotes the inefficiency score of year t based on the frontier in year t, while 

D⃗⃗ t+1(𝑥t, 𝑦t, 𝑏t) is the inefficiency of year t based on the frontier in year t+1. 

The LPI can be calculated as the cumulative score over time as follows: 
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𝐿𝑃𝐼𝑡𝑡+1+𝐿𝑃𝐼𝑡+1𝑡+2 + ⋯+ 𝐿𝑃𝐼𝑡+𝑛−1𝑡+𝑛 = 𝐿𝑃𝐼𝑡𝑡+𝑛. (12) 

The DDF model commonly assumes either constant return to scale (CRS) or variable return 

to scale (VRS). In this study, we apply CRS to avoid an infeasible calculation in time series 

analysis. We note that imposing CRS does not eliminate the possibility of infeasible LP 

problems when weak disposability is imposed on bad outputs4. When we model bad outputs in 

LP, the potential for infeasible LP problems results from imposing weak disposability on the 

undesirable outputs and specifying an LP problem that uses a period t reference technology 

with observations from period t+15. Based on Färe (1994) and Färe et al. (1996), the VRS 

model tends to have infeasible results more often than the CRS model when computing 

productivity change because the VRS has stronger restrictions for solving a linear program6.  

We confirmed with our models that the calculation of productivity changes under the VRS 

is infeasible7. Therefore, we apply the CRS model in this study. 

                                                 

4 If weak disposability is imposed, the only procedure that guarantees avoiding infeasible LPs is combining a 

windows technology with using only period t+1 as the reference technology for all mix-period LP problems (see 

Färe et al., 2007). 

5 We apply a contemporaneous frontier in our study. An alternative approach is window analysis, which is a 

compromise between the contemporaneous and sequential approaches (see Shestalova, 2003; Asmild et al., 2004). 

Färe et al. (2001) also provided an alternative specification that combines a windows technology with using only 

period t+1 as the reference technology for all mix-period LP problems to solve an infeasible LP program. 

6 Färe et al. (1986) pointed out that incorporating VRS with weak disposability requires solving a nonlinear 

programming problem. 

7 Under VRS assumption, 41 Infeasible LP problems were found in water model, 17 infeasible LP problems 

were found in energy and 15 infeasible LP problems we occurred in joint model. These infeasible LP problems 

were mainly observed in small and medium scale firms and  from 1991 and 1994. This might be because prices 
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3.3 Data 

Most of our dataset comes from the China Iron and Steel Industry Fifty-Year Summary 

(CISIFS) and CIWCR. Data for the 27 firms covers the decade from 1990 to 1999. The 

selected firms account for 68% of the crude steel production in China, based on fiscal year 

2000. Mostly they are the larger firms in the industry (see Table 1). These 27 firms account for 

approximately 65% of the fresh water input and industrial wastewater discharge and 45% of 

total energy consumption of the iron and steel industry in 1999. 

<Table 1 about here> 

Profits (in real value added) and crude steel production (tonnes) are both used as the 

desirable outputs, whereas fixed capital stock and gross wages are input data for productivity 

estimation. Because the existence of high volatility and extreme hikes in prices of steel 

products cause disturbance in, and instability of, the computation of productivity 

measurements, we employ both physical outputs and value of outputs as our desirable outputs. 

We admit that these two measures correlate when the price is stable. However, the correlation 

does not cause problems in computation of DDF models when the price and/or value of 

products are significantly changing over time in our study. However, during the 1990s, as 

China’s industry strove to improve energy efficiency in crude steel production, it was also 

expanding into processing steel products and increasing the production of high-value-added 

                                                                                                                                                        

were deregulated and firms’ profits increased sharply even though other inputs and undesirable outputs did not 

change so much in that period. 
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products, such as steel plates and steel pipes. This manufacturing process necessitates the 

input of additional energy to generate the same output. Firms that followed the strategy of 

developing and manufacturing high-value-added products during the 1990s may display 

lower efficiency if efficiency is evaluated as the ratio of total energy consumption to crude 

steel production. Therefore, developing new and high-value-added products may actually 

increase energy use. 

We use gross wages to reflect the quality of engineers and managers because the number of 

employees or working hours does not reflect the quality of the work. We assume that the 

salaries of the employees managing the modern equipment would change during the 

technological modernization period. 

Other variables used in the models are CO2 emissions and wastewater discharge as 

undesirable outputs with energy consumption and fresh water consumption as inputs. Energy 

consumption is aggregated by inputs in physical units such as electricity, coal, coke, oil, and 

natural gas (CISIFS) and net calorific value coefficient (IPCC, 2006). We specially consider 

double counting of the energy consumption between coal consumption and the coke-making 

process (CISIFS) when the firm operates the coke-making process, and the induced energy 

consumption for purchased coke otherwise. Similarly, energy for power generation is 

properly treated by the national average conversion factor for electricity (China Energy 

Statistics). CO2 emission data is calculated using energy consumption data and IPCC CO2 
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coefficients (IPCC, 2006). All monetary values of fixed capital stocks, gross wages, and value 

added are deflated to fiscal year 1990 levels using the ex price indicator for the iron and steel 

industry in the China Statistical Yearbook 2000. 

3.4 Application of Models 

This study applies the DDF to four models; namely, the Market model, the Water model, the 

Energy model and the Joint model. Only the Market model has combinations of input and 

output variables different from those in the other three. In the Market model, profits and 

crude steel production are the desirable outputs, and capital stock and wage are the inputs. On 

the other hand, in the other three models, profits and crude steel production are the desirable 

outputs, and CO2 emission and wastewater discharge are the undesirable outputs. 

Furthermore, energy and fresh water consumption are used as inputs in addition to capital 

stock and wages. The difference between the three models is found in the directional vector 

combinations as summarized in Table 28. The Water, Energy and Joint models seek to capture 

environmentally sensitive productivity relating to water, energy and joint effects on water and 

energy, whereas the Market model is set for reference. 

<Table 2 about here> 

The directional vector specifies for inefficient firms the way to improve productivity 

towards the frontier production line. In the Joint, Water and Energy models, we set the 

                                                 

8 The inefficiency score result of DDF depends on the combination of directional vectors (see Vardanyan and 

Noh, 2006). 
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directional vector as (gy, gx, gb) = (y, –x, –b), while in the Market model, we set it as (gy, gx) = 

(y, –x). This type of directional vector assumes that an inefficient firm can improve 

productivity while increasing desirable outputs and decreasing undesirable outputs and/or 

inputs in proportion to the initial combination of actual inputs and outputs. 

For further analysis of the results, we separate the firms by company scale and regional 

characteristics. First, we divided the sample into three groups by size of production: large, 

medium and small. Companies that produced more than 5 million tons of crude steel annually 

during the 1990s are categorized as large, firms with production ranging between 1 and 5 

million tons as medium and firms with production of less than 1 million tons as small. The 

sample sizes for large, medium and small are 4, 14 and 9 firms, respectively. Second, for 

regional characteristics, we divided the sample into north and south groups by location of the 

firms9. Particular attention is paid to the northern part of China, which experienced water 

scarcity in the 1990s, and hence we hypothesize that firms in the north use water resources 

more efficiently than those in the south. The northern group consists of 11 firms (2 large, 7 

medium and 2 small) located in Beijing, Gansu, Hebei, Henan, Inner Mongolia, Jilin, Liaoning, 

Shangdong and Shanxi provinces. The southern group consists of 16 firms (2 large, 7 medium 

and 7 small) located in Anhui, Chongqing, Guangdong, Guizhou, Hunan, Hubei, Jiangsu, 

Jiangxi, Shanghai, Sichuan, Yunnan and Zhejiang provinces. 

                                                 

9 All sample companies were state-owned firms, and all factories are within the provinces. Therefore, this does 

not cause a problem in our study. 
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Large and medium firms are equally located in the north and the south, but more small firms 

are located in the south. Large firms started to set up continuous casting earlier than small and 

medium firms in the early 1990s, but steel production in open-hearth furnaces was still 

widespread even in the large firms. This can be explained by two major reasons: the rapid 

increase in China’s domestic steel demand and the extremely high costs of replacing and 

updating equipment in large firms. 

4 Results 

The important results are illustrated in Figures 3 to 7 and Tables 3 and 4. The figures show the 

average productivity changes derived from LPIs over the 1990s for all firms in the analysis. 

The tables show the average inefficiency scores over the 1990s by size and region. 

Productivity by LPIs is normalized as zero at initial productivity in 1990, while efficient 

firms in the frontier line have zero in the efficiency score. 

4.1 Discussion of Results for 27 Firms 

Figure 3 compares the productivity changes for four models. The productivities in all models 

in Figure 3 increased rapidly from 1992 to 1993, affected by the price liberalization policy in 

1992. Almost all iron and steel firms experienced record profits in 1993 thanks to the price 

increases. However, the productivities declined from 1993 until 1996 because steel price 

decline and large investments in capital accumulation reduced capital productivity. 

<Figure 3 about here> 
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As the CEP in the Market model is close to zero in 1999, one can infer that market 

productivity has changed little during the 1990s. The ESPs in the Water, Energy and Joint 

models had trends similar to the Market model from 1990 to 1996. In contrast to the Market 

model, after 1996, the ESPs gradually increased, from which it can be inferred that advances 

in technology contributed to firms’ improved environmental performance. From the Joint 

model result, we find that water and energy efficiency improved in tandem in China’s iron and 

steel firms in the 1990s. 

Comparison of the LPI, TECHCH, and EFFCH indicators allows us to examine how the 

gaps in productivity changed. The EFFCH indicator in Figure 4 was negative in 1993 and 

1994, while the TECHCH indicator in Figure 5 achieved a maximum in the same period. These 

results demonstrate that the inefficient-firm group had efficiency gaps from the firms on the 

frontier in 1993 and 1994 compared with 1990, but the efficiency gaps narrowed from 1994 to 

1999, especially in the Water models. The EFFCH indicator in all models rose sharply after 

1994, demonstrating that inefficient firms reduced their efficiency gap during this period. Most 

efficient firms used continuous casting and discontinued open-hearth furnaces before 1994, but 

some small and inefficient companies only introduced such equipment and process 

enhancements after 1994 (CISIFS). As a result, the gap began decreasing from 1994. 

<Figure 4 and Figure 5 about here> 

The TECHCH indicator in the Market model declined after 1997, because the strategies of 

large companies shifted from low-value-added products such as bar steel and shaped steel as 
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conventional products to high-value-added products such as seamless pipe and thin steel plate 

requiring more advanced technology and larger investments. Capital productivity temporarily 

declined for large companies, which is consistent with the declining TECHCH indicator in the 

Market model in the late 1990s. These results show the major changes in China’s production 

facilities during the 1990s driven by two modernization factors; namely, the rising demand for 

steel products and the liberalization of the steel market. 

4.2 Productivity and Firm Size 

One objective of this study is to examine the differences in the efficiency gap and productivity 

change among the three groups defined by firm size. From Table 3, four large firms were 

efficient from 1990 to 1997 in all models even though some firms used open-hearth furnaces. 

One could interpret this as the result of economies of scale. Small and medium firms improved 

their efficiency from 1994 in all models, especially medium scale firms in the Water model. 

These results show that the efficiency gap between efficient and inefficient firms decreased in 

the 1990s. 

<Table 3 and Figure 6 about here> 

From Figure 6, medium and small firms achieved greater productivity improvements in the 

1990s than large firms. The LPI of large firms from 1997 to 1999 declined in the Joint model. 

Substantial investments in new equipment caused this decline, which temporarily decreased 

capital productivity. The LPI of small firms was highest for all models in 1999. This might be 

because the technological level of small firms was relatively low in 1990, so small firms had 
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potential to improve efficiency in the 1990s. Therefore, small firms could more easily change 

production plants than large and medium firms could. 

4.3 Productivity and Region 

Comparing the efficiency gap by region is another objective in this study, especially because 

the water shortage in northern China may affect the results in the Water model. During the 

1990s, the Yellow River stopped flowing at times because of lack of water. In response, the 

Yellow River Conservancy Commission of the Ministry of Water Resources restricted water 

use in the industrial sector (Shao et al., 2009), forcing many firms in this region to improve 

their water use efficiency to maintain production volume. Firms in the north should thus be 

more water resource efficient than those in the south. 

Table 4 shows the average inefficiency score by region. According to this table, northern 

firms had less productive efficiency than southern firms in the early 1990s, but after 1994, 

northern firms rapidly improved their efficiency in all ESP models. The Water model had 

notably big regional differences between north and south. However, from Figure 7, there is 

no much difference of the productivity change from 1990 to 1999 between northern firms and 

southern firms. One interpretation might be that larger firms, especially Shanghai Baosteel 

Group Corporation, in the south tended to introduce latest facilities from Japan and German. 

Therefore, they do not require large additional investment compared to large firms in north. 

Even in later 1990s, south firms have high environmentally sensitive productivities. In 
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addition, there are seven small firms in the south while only two in the north. Since smaller 

firms often have potential productivity improvement potential, there are rather small 

difference between north and south.   

<Table 4 and Figure 7 about here> 

5. Conclusions 

This study analyzes the effect on the environmental performance of firms caused by the rapid 

modernization of production facilities in the 1990s in China’s iron and steel industry. The 

conclusions can be summarized as follows. 

First, the environmentally sensitive productivity in the Water, Energy and Joint models 

shifted similarly to productivity in the Market model from 1990 to 1996. After 1996, 

environmentally sensitive productivity gradually increased even as CEP decreased. From the 

Joint model result, water and energy efficiency improved in tandem in Chinese iron and steel 

firms in the 1990s. These results also indicate that the capital productivity of the iron and steel 

sector temporarily declined in the late 1990s because of large investments in equipment 

modernization. This modernization enabled steel companies to save resources and to reduce 

environmental damage. 

Second, the environmentally sensitive productivity of large firms was relatively low in 1999, 

while that of small and medium firms improved rapidly in the 1990s. One could interpret this 

improvement as due to the technological gap in 1990 between large and small firms. Small 
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firms were relatively inefficient in 1990, which provided them with potential to improve 

efficiency in the 1990s. 

Third, both northern and southern firms caught up to the frontier in the late 1990s. In 

particular, environmentally sensitive productivity of southern firms improved more rapidly 

than that of northern firms in the Water model. One could interpret this improvement as a 

function of firm size distribution because the south had a higher proportion of small firms. 

Small firms rapidly improved their productivity, especially in the Water model. The 

environmentally sensitive productivity of northern firms improved more rapidly than that of 

southern firms in the Energy model. 

From a traditional viewpoint, equipment modernization is achieved by capital investment, 

and this capital input decreases productivity in the short term. However, if we consider 

environmental output and resource efficiency together, productivity increased even though 

conventional productivity, which does not consider environmental factors, decreased in the 

Chinese iron and steel sector in the 1990s. Economic and environmental concerns are 

substitutes on average and on the frontier. Managers might be considering the trade-off of 

resource/environmental factors and economic performance. This trade-off is evident in our 

results. These aspects, especially including water usage in the data, have not been analyzed in 

previous studies. Our results provide evidence to explain sustainable development by 

technological innovation. 
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Table 1  Size breakdown of firms in China’s iron and steel industry 

Total crude steel production 

(million tons) 

Number of iron and steel firms 

Overall China  Samples in this study 

In 1990:    

0.50 to 0.99 12  9 

1.00 to 4.99 16  12 

5.00 or greater 0  0 

Total numbers of firms 1,589  27 

    

In 2000:    

0.50 to 0.99 13  0 

1.00 to 4.99 37  23 

5.00 or greater 4  4 

Total numbers of firms 2,997  27 

Source: Yearbook of Iron and Steel Industry of China 2003 

 

Table 2 Combinations of directional vector in each model for calculating inefficiency of firm k 

  Water model Energy model Joint model Market model 

Directional vector of 

desirable output (gy) 

Crude steel 𝑦𝑘𝑠𝑡𝑒𝑒𝑙 𝑦𝑘𝑠𝑡𝑒𝑒𝑙 𝑦𝑘𝑠𝑡𝑒𝑒𝑙 𝑦𝑘𝑠𝑡𝑒𝑒𝑙 
Value added 𝑦𝑘𝑣𝑎𝑙𝑢𝑒 𝑦𝑘𝑣𝑎𝑙𝑢𝑒 𝑦𝑘𝑣𝑎𝑙𝑢𝑒 𝑦𝑘𝑣𝑎𝑙𝑢𝑒 

Directional vector of 

undesirable output (gb) 

Waste water 𝑏𝑘𝑤𝑎𝑠𝑡𝑒 0 𝑏𝑘𝑤𝑎𝑠𝑡𝑒 Unused 

CO2 0 𝑏𝑘𝐶𝑂2 𝑏𝑘𝐶𝑂2 Unused 

Directional vector of  

input (gx) 

Labor 0 0 0 𝑥𝑘𝑙𝑎𝑏𝑜𝑟 

Capital stock 0 0 0 𝑥𝑘𝑐𝑎𝑝𝑖𝑡𝑎𝑙
 

Fresh water 𝑥𝑘𝑓𝑟𝑒𝑠ℎ
 0 𝑥𝑘𝑓𝑟𝑒𝑠ℎ

 Unused 

Energy 0 𝑥𝑘𝑒𝑛𝑒𝑟𝑔𝑦
 𝑥𝑘𝑒𝑛𝑒𝑟𝑔𝑦

 Unused 

Note: All of these variables are used as data in three ESP models. The nonzero value indicates the variable is 

also used as directional vector. The value of zero indicates that the variable is not used as a directional vector but 

used as data. Fresh water, energy and two undesirable output variables are not used as data in Market model.  
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Table 3  Average inefficiency score by company scale 

 Energy model Water model Joint model Market model 

 Large Medium Small Large Medium Small Large Medium Small Large Medium Small 

1990 0.00 0.25 0.14 0.00 0.47 0.35 0.00 0.27 0.15 0.00 0.06 0.11 

1991 0.01 0.19 0.16 0.02 0.39 0.39 0.01 0.20 0.21 0.00 0.05 0.12 

1992 0.00 0.17 0.16 0.00 0.21 0.29 0.00 0.16 0.17 0.00 0.05 0.12 

1993 0.00 0.15 0.35 0.00 0.26 0.59 0.00 0.13 0.36 0.00 0.06 0.11 

1994 0.00 0.15 0.30 0.00 0.22 0.61 0.00 0.15 0.34 0.00 0.12 0.14 

1995 0.00 0.18 0.34 0.00 0.29 0.66 0.00 0.17 0.38 0.00 0.08 0.12 

1996 0.00 0.19 0.35 0.00 0.31 0.69 0.00 0.19 0.39 0.00 0.08 0.11 

1997 0.00 0.15 0.24 0.00 0.26 0.58 0.00 0.15 0.26 0.00 0.07 0.07 

1998 0.01 0.15 0.24 0.01 0.24 0.42 0.01 0.16 0.26 0.02 0.05 0.07 

1999 0.00 0.08 0.17 0.00 0.15 0.49 0.00 0.08 0.19 0.03 0.05 0.03 

 

 

 

Table 4  Average inefficiency score in 27 firms, North and South group 

 Energy model Water model Joint model Market model 

 All North South All North South All North South All North South 

1990 0.17 0.24 0.12 0.35 0.39 0.32 0.18 0.25 0.13 0.07 0.10 0.05 

1991 0.17 0.20 0.14 0.34 0.32 0.35 0.19 0.23 0.16 0.06 0.07 0.06 

1992 0.15 0.20 0.11 0.21 0.27 0.16 0.15 0.20 0.11 0.06 0.09 0.04 

1993 0.18 0.21 0.16 0.31 0.29 0.32 0.18 0.21 0.16 0.07 0.08 0.06 

1994 0.19 0.19 0.18 0.31 0.31 0.32 0.20 0.20 0.19 0.11 0.12 0.10 

1995 0.21 0.18 0.23 0.37 0.25 0.44 0.22 0.17 0.25 0.08 0.08 0.08 

1996 0.23 0.19 0.25 0.39 0.28 0.46 0.23 0.18 0.27 0.08 0.08 0.07 

1997 0.15 0.13 0.16 0.31 0.21 0.37 0.16 0.14 0.17 0.06 0.07 0.05 

1998 0.17 0.13 0.20 0.27 0.21 0.32 0.18 0.14 0.21 0.05 0.05 0.05 

1999 0.11 0.08 0.13 0.24 0.16 0.30 0.12 0.08 0.14 0.04 0.03 0.05 
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Figure 1  Share of steel production by operation method 

 

Source: Steel Statistical Yearbook 2005 (International Iron and Steel Institute, 2005a) 

Figure 2  Crude steel production and continuous casting ratio 

 

Source: World Steel in Figures 2005 (International Iron and Steel Institute, 2005b) 
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Figure 3  27 firms’ average score of cumulative productivity (LPI) change in each model  

 

 

Figure 4  27 firms’ average score of cumulative efficiency change (EFFCH) in each model 
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Figure 5  27 firms’ average score of cumulative technical change (TECHCH) in each model 

 

 

Figure 6  Cumulative productivity (LPI) score in Joint model by firm scale 
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Figure 7  Cumulative productivity (LPI) score in Joint model by region 
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