
Munich Personal RePEc Archive

Does deregulation drive innovation

intensity? Lessons learned from the

OECD telecommunications sector

Polemis, Michael and Tselekounis, Markos

Department of Economics, University of Piraeus, Piraeus, 185 34,

Greece

15 March 2019

Online at https://mpra.ub.uni-muenchen.de/92770/

MPRA Paper No. 92770, posted 15 Mar 2019 17:35 UTC



Does deregulation drive innovation intensity? Lessons learned from  

the OECD telecommunications sector  

 

Michael L. Polemisa,b* and Markos Tselekounisa 

a Department of Economics, University of Piraeus, Piraeus, 185 34, Greece 
b Hellenic Competition Commission, Member of the Board, Athens, Greece. 

 

Abstract 

The channel between innovation and industry regulation constitutes a non-lasting debate 
among the economists and researchers within the recent years. Despite the significant 
contributions on this field, mostly made from the empirical standpoint, the existing 
literature is still incomplete. This might be attributed to the fact that existing studies fail 
to combine a strong theoretical framework with the empirical scrutiny in order to 
exemplify and decompose the relationship between regulation intensity and innovation 
activity. We attempt to shed light on this limitation by theoretically modeling the 
telecommunications sector, in which access regulation impacts the non-separable activity 
in process and product innovation.  We then empirically test our model by deploying an 
efficient panel threshold technique along the lines of Hansen (1999). Our balanced panel 
dataset comprises of 32 OECD countries over the period 1995-2012. The empirical 
results unveil a non-monotonic relationship of an “inverted V-shaped” form between 
regulation and innovation. We argue that beyond certain thresholds increasing the 
regulatory stringency further results in decreasing sector innovation. Our findings survive 
robustness checks after the inclusion of two alternative threshold variables (market 
structure and entry regulation) incurring significant implications for the policy makers 
and government officials.   
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1. Introduction 

In many network industries, such as electricity, gas, rail and telecommunications, 

the existing demand and cost conditions lead to significant market failures. In particular, 

their natural monopolistic structure, combined with high levels of vertical integration and 

network externalities, results in the inability of market forces to achieve the desirable 

competitive outcome (Buckley, 2003; Economides, 2005). In such cases, sector-specific 

regulators establish the conditions under which firms compete for and in the market, thus 

affecting market structure, firms’ profits and industry performance. It is therefore 

imminent that regulation dictates the intensity of competition, which in turn determines 

the market performance in terms of static and dynamic efficiency (Laffont and Tirole,  

2000; Röller, and Waverman, 2001). 

Static efficiency is related to the short-run regulatory goal of promoting 

productive efficiency (i.e., existing assets are utilized efficiently) and allocative 

efficiency (i.e., existing resources are efficiently allocated to the economy). On the 

contrary, dynamic efficiency concerns the long-run goal of encouraging product 

innovation (which reflects a quality-upgrading activity) and process innovation (which 

reflects a cost-reducing activity). Although it is widely acknowledged that perfectly 

competitive markets achieve static efficiency, the impact of competition intensity on 

firms’ incentives to invest in innovation has been one of the most fiercely debated topics 

among economists, academics and policy makers. 

The beginning of this dispute dates back in early 1940s, when Schumpeter (1942) 

argued that innovation activity is positively correlated with large firms and market power 



since competition stifles innovation profits. This statement calls for a short-run legal 

protection as a reward for successful innovation. On the other hand, Arrow (1962) has 

pointed out that market power provides firms with disincentives to innovate as they 

mainly focus on protecting the status quo rather than engaging in developing costly 

disruptive technologies. Arrow’s argument implies a clear policy for opening competition 

as a means to foster innovation. Although there is a sizeable literature studying the link 

between market structure and innovation, no clear consensus has been reached by 

combining the findings of theoretical and empirical works.1  

This inconclusive relationship is highlighted by Motta (2004) who suggests a 

“middle ground” environment to spur innovation, where a sufficient degree of 

competition is combined with high enough market power coming from the innovative 

activities. In a similar vein, Shapiro (2012) concludes that innovation is spurred if the 

market is contestable. As a result, it is not clear whether more stringent regulation (which 

usually leads to more concentrated markets) or more light regulation (which usually 

results in more intense competition) stimulates higher levels of innovation initiatives (see, 

for instance, Blind, 2012; Amable et al, 2016).  

This paper introduces the novel theory of non-separable activity in process and 

product innovation into a simple theoretical framework in order to explain the time-

evolving relationship between regulation and innovation activity in the 

telecommunications sector. We contribute the literature in many fronts. First and 

foremost, we are the first to unravel a statistically significant relationship between 

                                                           
1 See Wörter et al. (2010) for an excellent review of this literature. 



regulatory stringency and innovation for both above and below the optimal level of 

regulatory intensity. For this reason, we rely on a suitable econometric methodology 

along the lines of Hansen (1999) to precisely estimate the threshold parameter, which in 

most of the other studies is arbitrarily given (see among others Marino et al, 2019; 

Papaioannou, 2017). Moreover, we build and combine a theoretical framework along 

with the empirical findings to analyse the causal link between deregulatory stringency 

and innovation activity. 

The main finding of this paper is that the impact of regulation on innovation is a 

priori ambiguous. In particular, when the overall innovation activity results in more (less) 

product innovation than process innovation, more strict regulation increases (decreases) 

the level of innovation activity. A suitable application of this finding to the 

telecommunications sector unveils an inverse V-shaped relationship between regulation 

and innovation. This non-monotonic relationship is empirically tested by using non-

parametric techniques within a panel threshold framework of the OECD countries over 

the period 1995-2012. The theoretical and empirical findings well explain the descriptive 

impact of regulation on innovation activity in the OECD telecommunications sector.   

The rest of this paper is organized as follows. Section 2 describes the deregulatory 

process in the telecommunications sector among OECD countries, while Section 3 

discusses their innovation activity trying to link regulatory stringency with patent 

intensity. Sections 4 and 5 present the theoretical model and the applied empirical 

methodology, respectively. Section 6 discusses the empirical findings of the study and 

performs the necessary robustness checks. Finally, Section 7 concludes the paper.  

 



2.  The deregulatory process in the OECD telecommunications sector 

The telecommunications sector in the OECD countries has undergone substantial 

regulatory and institutional reforms. In the early 1980s most OECD telecommunications 

sectors were still governed by state-owned vertically integrated operators, the so-called 

“incumbents” (see, among others, Li and Lyons, 2012; Jeanjean and Houngbonon, 2017). 

These monopoly firms were legally protected and subject to strict retail price regulation 

(see, among others, Gruber and Koutroumpis, 2013; Agiakloglou and Polemis, 2018) to 

meet social and macroeconomic goals (Boylaud and Nicoletti, 2001).  

Policy actions facilitating market liberalization and privatization were 

implemented in the United States (US) and United Kingdom (UK) in the early 1980s and 

in Europe in the 1990s. These actions were dictated by the conventional wisdom that 

competition and private incentives improve allocative and productive efficiency (Aghion 

and Griffith, 2005; Peitz, 2003).  

The first wave of the deregulation process focused on privatizing national 

operators and changing the form of price regulation from rate-of-return to more flexible 

incentive-based regulations, such as price-cap regulation. The building block of these 

initiatives lies in the view that privatization and incentive-based regulations improve on 

the weak incentives for cost efficiency in rate-of-return regulation of monopoly operators. 

In the second wave of deregulation, governments authorized entry by alternative 

operators, the so-called “new entrants”, and the provision of new services (e.g., mobile 

services and value-added services) into the market. In order to facilitate efficient entry, 



sector-specific National Regulatory Authorities (NRAs) were established with the 

responsibility of regulating, supervising and monitoring the market. 

The third wave of deregulation concerns the full liberalization of the market, 

implying the end of the exclusivity period of the incumbent operators. The promotion of 

service-based competition was achieved by mandating incumbents to grant entrants with 

access to their metallic local loops at regulated prices. This form of regulation is widely 

known as Local Loop Unbundling (LLU), which implies that the incumbents’ essential 

access network is separated from its overall core facilities and downstream operations in 

order to allow for commercial wholesale supply of this upstream input (De bijl and Peitz, 

2002). It is thus obvious that policy makers and government officials were challenged to 

reform the telecommunications industry due to inefficiencies identified in its vertically 

integrated segments (Paleologos and Polemis, 2013).  

However, as competition rises and new entrants are competing effectively with 

the incumbent operator, the goal of regulation is shifting towards more deregulatory 

policies which promote sustainable facilities-based competition, thus creating a “level 

playing field” between the incumbent and entrants.  

Figure 1 presents a scatter graph of the intensity of telecommunications regulation 

in each OECD country one year and fifteen years after the full liberalization of the market 

in most of OECD countries. The stringency of regulation is captured by the OECD 

overall regulatory reform index for telecommunications (Telecommunications Reform 

Index - TRI). Lower (higher) values of the TRI index reflects a less (more) stringent 

regulation.  



Figure 1: Changes in the TRI (1999 and 2013).  

   

 

 

 

 

 

 

 

 

 

 

 

Note: The vertical solid line dividing the graph's plot area represents the non-weighted average for the 
beginning of the regulatory period (2.7), while the horizontal one denotes the non-weighted average for the 
end of the sample period (1.0).    

Source: OECD International regulation database   

The figure is split into four quadrants. Countries located in the South-West 

quadrant have consistently adopted deregulatory schemes. Countries located in the North-

East quadrant are characterized by an above-average regulatory intervention, although 

they have moved towards less strict regulatory schemes. Countries placed in the North-

West quadrant perform a moderate deregulation, whereas countries placed in the South-

East quadrant have experienced a drastic deregulation process. 

We can thus conclude that all OECD countries (except US) have decreased the 

regulatory restrictions imposed to the telecommunications sector, although the rate of 

deregulatory process varies significantly among countries. Such variations can be mainly 

explained by the fact that the timing of entry liberalization in each of the three 
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telecommunications market segments (long distance network or trunk services, 

international and mobile telephony services) is quite different among OECD countries 

(see Table 1).  

Table 1: Regulation of entry  

Country Year of liberalization 
 Trunk International Mobile 

Australia 1991 1991 1992 
Austria 1998 1998 1995/1996 
Belgium 1998 1998 1996 
Canada 1990 1992 - 
Czech Republic 2000 2000 - 
Denmark 1996 1996 Prior to 1992 
Finland 1993 1993 Prior to 1992 
France 1998 1998 1989 
Germany 1998 1998 1991 
Greece 2001 2001 1993 
Hungary 2002 2002 n/a 
Ireland 1998 1998 n/a 
Italy 1998 1998 1994 
Japan 1986 1987 1987 
Korea 1996 1996 n/a 
Luxembourg 1998 1998 1998 
Mexico 1996 1996 n/a 
Netherlands 1997 1997 1995 
New Zealand 1990 1990 n/a 
Norway 1998 1998 1992 
Poland n/a n/a n/a 
Portugal 2000 2000 1991 
Spain 1998 1998 1994 
Sweden 1994 1992 1986 
Switzerland 1998 1998 1998 
Turkey 2006 2006 1997/1998 
United Kingdom 1985 1986 1984 
United States 1984 1984 1983 

Notes: n/a = not available.  

Source: OECD International Regulation Database and Boylaud and Nicoletti, (2001).   

  

 

 

 



3. Innovation activity in the OECD telecommunications sector  

The previous section made it clear that the liberalization of the 

telecommunications market that took place in the OECD countries was a crucial step 

towards establishing effective competition in sectors previously monopolized by state-

owned firms. As we have discussed in Section 1, although there is an indisputable 

positive effect of less strict regulation on competition intensity, the impact of promoting 

competition, through lessening regulatory restrictions, on firms’ innovation activity is 

quite ambiguous. 

This paper contributes to the ongoing debate concerning the relationship between 

regulation and innovation by studying the impact of regulatory stringency on the 

innovation activity in the OECD telecommunications market. Figure 2 correlates the 

average number of telecommunications-related patent grants in the OECD countries with 

the average level of the Telecommunications Reform Index (TRI) in a yearly basis from 

1980 to 2012. 

From the inspection of Figure 1, we can deduce that there is an inverted-U 

relationship between regulation and innovation in the OECD telecommunications sector. 

The interpretation of this link is closely related to the impact of competition on firms’ 

incentives to innovate. In order to elaborate on this link, we have to analyze the evolution 

of the OECD telecommunications market during the studying period.  

 



Figure 2: Patent grants and regulatory stringency in the OECD telecommunications 
sector (1980-2012).  
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Note: The figure denotes the OECD average value of the number of patent grants to the EPO and the 
regulatory reform index for telecoms (TRI) per year. The dashed curve denotes the trend line.      

Source: OECD TRI Data Regulation and OECD Patent Grants 

In the early 1980s, strict legal restrictions had induced the state-owned incumbent 

operators to monopolize the telecom market. The absence of competition and the rate-of-

return regulation were deterring factors for undertaking costly innovation initiatives. The 

first wave of liberalization gave incumbent operators incentives to innovate. Ai and 

Sappington (2002) find that changing the regulatory standard from rate-of-return 

regulation to more flexible incentive-based regulations leads to an increase in process 

innovation.  

During the second wave of liberalization, new entrants could enter more and more 

segments of the market. The incumbent firms were reacting to the increasing competition 

by undertaking innovation activities to protect their dominant position. Such initiatives 

were focusing in process innovation to reduce their production cost since the former 



state-owned operators were quite inefficient compared to new entrants.  In addition, the 

provision of new services, such as mobile telephony, led both incumbent and entrants to 

invest in product innovation.  

This positive relationship between less strict regulation and innovation was 

prevailing until the late 1990s. Most OECD countries fully liberalized the 

telecommunications market in 1998, while continuing to withdraw regulatory restrictions 

with the goal of further increasing competition. However, just one year after the full 

liberalization of the telecommunications market, firms started to decrease their innovation 

rate as a reaction to the increased competition level. As the LLU prices were moving 

towards the incumbents’ cost of providing the access with the goal of cancelling any 

advantage of such vertically integrated firms, the innovation incentives of both 

incumbents and entrants were decreasing.  

In particular, the technological progress in digital transmission and packet 

switching allowed for product innovation. However, incumbents were not willing to 

heavily invest in quality knowing that they would be mandated to provide access to their 

upgraded networks at cost-based prices (Cave and Prosperetti, 2001). Therefore, entrants 

preferred to avoid the cost of product innovation as they could free-ride on the 

incumbents’ networks at such low access prices (Valletti, 2003). In addition, a 

sufficiently high level of productive efficiency had been reached, thus giving room for 

only marginal process innovations.  



The negative relationship between competition and innovation in the liberalized 

telecommunications sector has been proven both theoretically and empirically. 2 

Therefore, telecom regulators have to deal with the common trade-off between promoting 

static and dynamic efficiency (Bouckaert et al., 2010).  

The inverted-U relationship between regulation and innovation is therefore 

explained by studying the innovation incentives related to higher competition levels stem 

from less strict regulation. There is a sizeable literature stream verifying a non-monotonic 

“inverted U-shaped” relationship between competition and innovation (see, for instance, 

Aghion et al., 2005, Amable et al., 2010).  

The paper closest to ours is that of Marino et al. (2019) who study the relationship 

between innovation and regulation in the OECD electricity sector from 1985 to 2010. 

They find descriptive evidence of an inverted U-shaped relationship between the average 

number of patents and the sectoral regulatory index depicting the average regulation 

intensity. Combining the descriptive evidence from the telecommunications and the 

electricity sectors in the OECD area, we conclude that a significant reform in such 

network industries triggers the regulatory trade-off between static and dynamic 

efficiency.  

A crucial difference between the two sectors is that, according to the descriptive 

evidence, the optimal degree of regulatory intensity in telecommunications in terms of 

innovation activity lies almost in the middle of full regulation and full deregulation (3/6), 

whereas the same degree in the electricity sector is closer to full regulation (4/6).  

                                                           
2 Cambini and Jiang (2009) and Tselekounis et al. (2014) provide an extensive review of this literature. 



The estimation of such optimal levels should be the main goal of the theoretical 

and empirical studies focusing on interpreting the relationship between regulation and 

innovation in network industries. Contrary to Marino et al. (2019) who do not empirically 

derive such optimal regulatory level, we build on a threshold model which succeeds in 

estimating the degree of regulatory intensity that maximizes innovation incentives. In 

addition, Marino et al. (2019) lacks of a strong theoretical framework, whereas we 

develop a theoretical model that succeeds in describing the evolving relationship between 

regulation and innovation in the telecommunications market. 

4.  Theoretical Framework  

In this section, we present a theoretical modeling setup which well describes the 

relationship between regulation and innovation in the telecommunications market. We 

then characterize the equilibrium of the game which is solved backwards. Last, we draw 

some policy implications based on the main findings of our analysis. 

4.1. The Model  

We consider an unregulated downstream market in which a vertically integrated 

incumbent (firm I) and a new entrant (firm E) compete for providing a homogeneous 

final telecommunications service to consumers. The two firms compete á la Cournot, 

meaning that they choose their quantities ( Iq  and Eq , respectively) simultaneously and 

independently. This type of competition well reflects the telecommunications sector since 

it is characterized by significant capacity constraints. 

The provision of one unit of the final service requires one unit of an upstream 

input owned by the incumbent. Therefore, the entrant has to pay a per-unit wholesale 



price 0w   to the incumbent in order to have access to this critical input (e.g., the access 

network). The production of the upstream input incurs a per-unit cost 0c   regardless of 

whether the critical input is used by the incumbent or the entrant. Any other production 

and distribution costs are normalized to zero. It is reasonable to assume that w c  in 

order to ensure that the incumbent’s profit from its upstream activity is non-negative.  

The quality of the final service, which is positively affected by the incumbent’s 

activity in product innovation, increases the valuation of consumers for 

telecommunications services. However, as Vareda (2010) points out, in most cases the 

innovation activity does have an impact on both demand (increasing the quality of the 

services allowing better communication experience) and cost (decreasing marginal costs 

due to the use of more sophisticated equipment).  

As a result, the incumbent is incapable of separating its innovation activity 

between product innovation and process innovation. This means that an overall 

innovation activity   translates into: (i) a final product of better quality which increases 

the initial reservation price of the final service A  by  ; and (ii) a more efficient 

production technology which decreases the marginal cost of producing the upstream input 

by (1 )  . The cost of innovating is given by 2 / 2 , where   denotes the rate at 

which the overall innovation activity becomes marginally more expensive. 

Given the above setting, the profit functions of the incumbent and the entrant are 

given, respectively, by 

2( ) ( )
2I I EP C q w C q        

(1) 

and 



( )E EP w q    

(2) 

where P  is the retail price of the final service given by the inverse demand function 

( )I EP A b q q     and C  is the marginal cost of producing the upstream input 

given by (1 )C c     . Parameter b  reflects the slope of the inverse demand 

function. 

Firms play a two-stage game. In stage one, the incumbent chooses the level of the 

non-separable activity in process and product innovation. In stage two, the downstream 

firms make their optimal quantity choices. In order to study the impact of regulation on 

innovation activity in the telecommunications market, we assume that the wholesale price 

w  is exogenously set by the sector-specific regulator at the beginning of the game.3 

Higher levels of w  signify a more strict regulation which favors the dominant incumbent 

firm, whereas lower levels of w  are related to more intense competition in the 

downstream market.  

4.2. Equilibrium analysis 

Taking the first-order conditions of Eqs. (1) and (2) with respect to Iq  and Eq , 

respectively, gives the reaction functions of firm I and E: 4 

2 2
E

I
A c qq

b
 

   

(3) 

and 

                                                           
3 This means that innovation activities are undertaken under regulatory certainty. See Tselekounis and 
Varoutas (2013) for the impact of regulatory uncertainty on investment incentives.  

4 It is easy to show that the second-order conditions for profit-maximization always hold. 



2 2
I

E
A w qq

b
 

   

(4) 

It is interesting to point out that Iq  and Eq  are strategic substitutes and that the 

former is positively affected by the overall innovation activity of the incumbent, whereas 

the latter only positively depends on the part of the incumbent’s innovation that improves 

the quality of the product. This is reasonable since both product and process innovation 

make the incumbent better off, whereas the entrant is only benefited by the spillover 

effect of quality-enhancing innovation. Solving the system of Eqs. (3) and (4) with 

respect to Iq  and Eq  yields the optimal quantity chosen by each firm: 

2 (2 )
3I

A c wq
b
    

  

(5) 

and 

2 (1 2 )
3E

A w cq
b
    

  

(6) 

From the inspection of the retail equilibrium, we can deduce that the wholesale 

price and the marginal cost of providing access affect the optimal choices of the two 

firms in completely different directions. Most significantly, the level of innovation 

activity always affect the incumbent’s quantity in a positive way, whereas its impact on 

the entrant’s quantity is positive if and only if more than half of the non-separable 

innovation activity proves to be quality-enhancing. 

Substituting the retail equilibrium outcomes in the incumbent’s profit function 

given by Eq. (1) and then take its first-order condition with respect to   gives the level of 

innovation activity that maximizes the profit of the incumbent: 



2
(7 5 ) (2 5 ) 5 (2 1)

9 10 10 2
A c w

b
  
  

    


  
 

(7) 

 

Given that the second-order condition of I  with respect to   requires the denominator 

of Eq. (7) to be positive, the incumbent’s optimal level of innovation activity is always 

positive provided that both firms are active in the downstream market. 

Equation (7) gives the level of non-separable innovation activity chosen by the 

incumbent. It is obvious that this privately-optimal level of innovation depends on the 

wholesale price of the critical input. Since this price is usually set by the regulator, we 

can study the effect of regulation on the overall innovation activity from a theoretical 

perspective. 

Interestingly enough, the impact of regulation on the incumbent’s incentives to 

innovate is a priori ambiguous. In particular, when [0,0.5)  , more strict regulation is 

related to less innovation activity. On the contrary, when (0.5,1]  , the impact of 

regulation on innovation activity is positive. In other words, when the incumbent’s 

innovation activity results in more (less) product innovation than process innovation, 

more strict regulation increases (decreases) the incentives of the incumbent to innovate. 

Finally, when the quality-enhancing and the cost-reducing effects are equal (i.e., when 

0.5  ), the regulation of the upstream market does not affect the innovation activity. 

The above analysis of the relationship between regulation and innovation activity 

explains the evolution of the average number of telecommunications-related patent grants 

in the OECD countries. Before market liberalization, the monopolistic structure of the 

market was fully protected by the regulatory policy. After market liberalization, the 



deregulation process has been implemented by gradually relaxing the entry barriers 

associated with the regulatory framework, as well as by ensuring a level-playing field 

between the active operators. This (de)regulatory policy can be reflected by a decreasing 

TRI index as shown in Figure 2. In our modeling setup, the main goal of such policies 

can be captured by a decreasing wholesale price w . To put it differently, the TRI index 

and the parameter w  reflect the level of regulatory stringency.   

As we have discussed in Section 3, in the early stages of market liberalization, 

most innovation activities made by the incumbent operators would result in more process 

than product innovations. The reason is that, at these stages, the state-owned incumbents 

were quite inefficient operators, meaning that most innovation activities could be more 

easily transformed into cost-reducing rather than quality-enhancing innovations. This 

liberalization period is related to low levels of  , implying a negative relationship 

between regulation and innovation activity. In other words, as the wholesale price 

decreases from significantly high levels (thus reflecting significant barriers to entry), the 

incentives for undertaking innovation activities increase. This effect is also present in 

Figure 1, since a decrease in the TRI index from a high initial level results in an increase 

in the average number of telecommunications-related patent grants in the OECD 

countries. 

On the contrary, when the market competitiveness has exceeded a sufficiently 

high competitive structure (denoting by 0.5  ), the innovation activities are more 

likely to result in new products rather than in processes that reduce the production cost. 

Indeed, more symmetric firms strive to differentiate themselves by offering products of 

higher quality. However, when the wholesale price is set close to the cost of providing the 



critical input, the incumbent does not have significant incentives to lower its upstream 

cost.  

In our modeling setup, this tendency translates into high levels of  , implying a 

positive relationship between regulation and innovation activity. This means that as the 

wholesale price further decreases, the incentives for undertaking innovation activities 

decrease as well. This result is in line with the impact of a decrease in the TRI index on 

the number of patents when this index has reached its optimal level in terms of innovation 

incentives.  

This optimal level reflects a turning point since a marginal increase or decrease in 

its value reverses the relationship between regulation and innovation. In our theoretical 

framework, this turning point is captured by the level of   which makes the cost-

reducing and the quality-enhancing effects equal (i.e., 0.5  ). For [0,0.5)  , a 

decrease in w  leads to an increase in   and for (0.5,1]  , a decrease in w  leads to a 

decrease in  . However, if we consider that the value of   increases during the 

deregulation process captured by a decreasing w , we derive an inverted-V relationship 

between regulatory stringency and incentives to innovate. This relationship is not only 

present in Figure 1 which shows the analysis of the real data, but also derived from the 

empirical analysis that follows. 

As a result, we can deduce that our theoretical framework succeeds in describing 

the evolving relationship between regulation and innovation in the telecommunications 

sector. We should point out that this non-monotonic relationship drawn by our modeling 

setup is derived due to the novel use of the non-separability nature of innovation 



activities. It is obvious that process innovation or product innovation alone would result 

in a monotonic relationship, thus failing to satisfactorily explain the descriptive evidence 

depicted in Figure 1.   

4.  Data and Methodology  

This section describes the data that we used, while providing and analysing the 

descriptive statistics for the sample variables. Moreover, we discuss and analyse the 

estimation strategy and the econometric methodology applied (parametric and threshold 

model) to empirically estimate the relationship between regulation and incentives to 

innovate. 

4.1  Data and variables  

We use a yearly balanced panel data set for 32 OECD countries (N=32) over the 

period 1995 to 2012 (T=17). The reason we restricted our sample to this time span was 

strictly dictated by severe data discrepancies in most of the sample variables. However, 

since our main goal is to empirically investigate the effect of deregulation on innovation, 

this choice could not raise any issue regarding the sample selection since little reform of 

the telecommunications sector occurred before 1995 (see also Figure 2).    

The panels used in this study comprise 20 EU countries (e.g. Austria, Belgium, 

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, 

Italy, Luxembourg, Netherlands, Poland, Portugal, Slovakia, Spain, Sweden and the 

United Kingdom), while the rest fall outside the EU market (i.e. Australia, Canada, Chile, 

Iceland, Japan, Korea, Mexico, New Zealand, Norway, Switzerland, Turkey and the 

United States).    



Our dependent variable is the number of patents (PAT) granted by the European 

Patent Office (EPO) in the ICT technology domain, which includes four distinct 

categories (telecommunications, consumer electronics, computers-office machinery and 

other ICT). In order to have a representative sample, we isolate the telecommunications 

IPC codes from the rest patent categories. 5  The data for this variable are publicly 

available from the OECD patent database.6  Despite some limitations such as secrecy, 

lead time, comparison deficiencies that are raised when patents are used as proxy for 

innovation activity (see Marino et al, 2019), they are regarded by the existing literature as 

reliable and efficient measure of innovation (see for example Marino et al, 2019; Drivas 

et al, 2016; Drivas et al, 2017; Deltas and Karkalakos, 2013).   

To capture the effect of regulatory intensity on innovation, we used three 

measures of upstream product market regulation for the telecommunications sector 

obtained by the OECD.7 Firstly, we used the overall regulatory index of the sector (TRI) 

as our main regime-dependent variable (threshold variable). We also used two other 

regulatory indexes namely STRUCT and ENTRY which are components of the TRI. 

These measures capture regulatory conditions in terms of market structure (e.g (market 

share of new entrants in the trunk, international and mobile telephony market) and entry 

characteristics (i.e legal conditions of entry into trunk, international and mobile telephony 

market) in the specific sector (see Marino et al, 2019; Polemis and Stengos, 2017). All 

                                                           
5 The IPC codes that are included in the telecommunications category of the EPO are the following: G01S, 
G08C, G09C, H01P,  H01Q, H01S3/025,043,063,067,085,0933,0941,103,133,18,19,25), H01S5, H03B, 
H03C, H03D, H03H, H03M, H04B, H04J, H04K, H04L, H04M, H04Q.  

6 https://stats.oecd.org/Index.aspx?DataSetCode=PATS_IPC  

7 https://stats.oecd.org/index.aspx?DataSetCode=PMR  



these regulatory measures fall within the interval [0 – 6]. A high (low) score is awarded 

to countries characterized by increased (decreased) regulated sector (Conway and 

Nicoletti, 2006). The reason that justifies the use of the specific OECD regulatory 

measures instead of other proxies of upstream product market regulation (i.e. 

Telecommunications Regulatory Governance Index, Fraser index, etc) is attributed to the 

fact that these indexes “[…] capture regulatory management practices that are imposed 

on network telecommunications sector, by measures of the governance of the bodies that 

design, implement and enforce these regulations” (Agiakloglou and Polemis, 2018), 

while on the other hand are broadly used by the empirical literature (see for example Li 

and Lyons, 2012; Paleologos and Polemis, 2013; Amamble et al, 2016; Agiaklogou and 

Polemis, 2018).  

Lastly, we supplement our analysis with the use of three other variables namely 

GDP, EXP and IMP to control for macroeconomic fluctuations or trade shocks (Marino 

et al, 2019). GDP accounts for the annual percentage growth rate of GDP at market prices 

based on constant 2010 USD dollars. EXP denotes the exports of goods and services as 

percentage of GDP. Specifically, EXP includes the value of merchandise, freight, 

insurance, transport, travel, royalties, license fees, and other services, such as 

communication, construction, financial, information, business, personal, and government 

services, while it excludes compensation of employees and investment income and 

transfer payments. Lastly, IMP, denotes the imports of goods and services and is 

expressed as percentage of GDP. The data are drawn from the World Development 



Indicators (WDI) database provided by the World Bank.8. The following table presents 

the descriptive statistics of the sample variables.   

 

 

Table 2: Summary statistics of the sample variables  

Variables  Observations  Mean Standard 
deviation  

Min Max 

TRI 576 2.141 1.558 0.429 6 
ENTRY 576 1.400 1.880 0 6 
STRUCT 576 2.472 1.302 0.888 6 
PAT 576 217.7 458.5 0 2,774 
GDP (%) 576 2.771 3.163 -14.72 11.80 
IMP (%) 576 42.16 22.79 7.708 156.4 
EXP (%) 576 44.15 27.11 8.972 187.1 
ln(PAT) 576 2.627 3.770 -6.908 7.928 
ln(TRI) 576 0.498 0.741 -0.843 1.792 
ln(STRUCT) 576 0.796 0.444 -0.118 1.792 
ln(ENTRY) 576 -3.397 3.958 -6.908 1.792 
ln(TRI)  GDP 576 2.040 3.589 -9.762 19.49 
ln(TRI)  EXP 576 22.70 43.87 -74.65 226.1 
ln(TRI)  IMP 576 21.82 39.86 -62.61 191.2 
ln(STRUCT)  GDP 576 2.663 3.489 -10.17 19.35 
ln(STRUCT)  EXP 576 35.77 31.90 -3.509 226.1 
ln(STRUCT)  IMP 576 34.56 29.22 -3.743 191.2 
ln(ENTRY)  GDP 576 -5.634 19.00 -76.77 101.7 
ln(ENTRY)  EXP 576 -158.9 232.9 -1,293 226.1 
ln(ENTRY)  IMP 576 -149.1 211.8 -1,081 191.2 

Source: OECD and World Bank.   

4.2  Preliminary testing for cross-section dependence and stationarity    

One of the additional complications that arise when dealing with panel data 

compared to the pure time-series case, is the possibility that the variables or the random 

disturbances are correlated across the panel dimension. The early literature on unit root 

and cointegration tests adopted the assumption of cross-sectional independence (see 

Pesaran 2015). However, it is common for macro level data to violate this assumption 
                                                           
8 https://datacatalog.worldbank.org/dataset/world-development-indicators.   



which will result in low power and size distortions of tests that assume cross-section 

independence. For example, cross-section dependence in our data may arise due to 

common unobserved effects triggered by differences in the regulatory framework among 

the OECD countries. Therefore, before proceeding to unit root and cointegration tests we 

test for the existence of cross-section independence.  

For this reason, we use the cross-section dependence test (CD test) developed by 

Pesaran (2004). As it is evident from Table 3 the relevant test strongly rejects the null 

hypothesis of cross-section independence (P-values = 0.000). In face of this evidence we 

proceed to test for unit roots using tests that are robust to cross-section dependence (i.e 

second generation tests for unit roots in panel data).  

Table 3: Cross section dependence test results 

Variable  CD test P-value Correlation Absolute 
(correlation) 

ln(PAT) 26.25*** 0.000 0.278 0.391 

ln(TRI) 80.56*** 0.000 0.853 0.853 

ln(ENTRY) 76.74*** 0.000 0.817 0.817 

ln(STRUCT) 77.78*** 0.000 0.823 0.823 

GDP 52.02*** 0.000 0.550 0.553 

EXP 48.07*** 0.000 0.509 0.578 

IMP 50.40*** 0.000 0.533 0.643 

ln(TRI)  GDP 45.62*** 0.000 0.483 0.528 

ln(TRI)  EXP 72.80*** 0.000 0.771 0.797 

ln(TRI)  IMP 74.28*** 0.000 0.786 0.799 

ln(STRUCT)   GDP 57.46 *** 0.000 0.608 0.610 

ln(STRUCT)   EXP 63.02*** 0.000 0.667 0.694 



ln(STRUCT)   IMP 64.69*** 0.000 0.685 0.717 

ln(ENTRY)   GDP 35.04 *** 0.000 0.371 0.428 

ln(ENTRY)   EXP 56.67*** 0.000 0.600 0.682 

ln(ENTRY)  IMP 59.36 *** 0.000 0.628 0.696 

Notes: Under the null hypothesis of cross‐sectional independence the CD statistic is distributed as a 
two‐tailed standard normal. Results are based on the test of Pesaran (2004). The p‐values are for a 
one‐sided test based on the normal distribution. Correlation and Absolute (correlation) are the average 
(absolute) value of the off‐diagonal elements of the cross‐sectional correlation matrix of residuals. 
***significant at 1%. 

 

To examine the stationarity properties of the sample variables we use two second 

generation panel unit root tests namely the “CIPS” and the “PESCADF” test both 

accounting for cross section dependence (Im. et al, 2003; Pesaran, 2003 and Pesaran, 

2007). The latter runs the t-test for unit roots in heterogenous panels with cross-section 

dependence proposed by Pesaran (2003), while the former reports the p-value of the 

Lagrange multiplier (LM) test on the Breusch-Godfrey serial correlation of each 

individual regression (see Pesaran, 2007). The null hypothesis assumes that all series are 

homogeneous nonstationary, while rejection of the null implies that the series do not 

contain a unit root (stationarity). To eliminate the cross section dependence, the standard 

Dickey Fuller (DF) regressions are augmented with the cross section averages of lagged 

levels and first-differences of the individual series (see Lewandowski, 2006).  

It is worth emphasizing that other unit root tests that allow for cross section 

dependence (see for example Breitung and Das, 2005) collapse if it is assumed that 

cross‐correlation is due to common factors, while the “CIPS” test remains valid (see 

Pesaran, 2015; Halkos and Polemis, 2017; Polemis and Stengos 2019). As it is evident 

from the inspection of Table 3, the “CIPS” test provides mixed results. However, the 



“PESCADF” test in both specifications (i.e. with an intercept and with a linear trend) 

provides sufficient evidence that all the series contain a unit root. Since this test has more 

power than “CIPS” test we assume that all of the sample variables are integrated of order 

one (I-1). 

 

 

Table 4: Panel unit root test results. 

Variable  
Pesaran CIPS 

with an 
intercept 

Pesaran CIPS 
with an intercept 
and a linear trend 

Pesaran CADF 
with an intercept 

Pesaran CADF 
with an intercept 
and a linear trend 

ln(PAT) -2.487*** -3.310*** -1.614 [0.740] -2.266 [0.553] 

ln(TRI) -2.077 -2.260 -2.106** [0.018] -2.091 [0.867] 

ln(STRUCT) -2.494*** -2.744 -1.585 [0.790] -2.039 [0.920] 

ln(ENTRY) -1.743 -1.792 -1.773 [0.406] -1.782 [0.998] 

GDP -2.786*** -2.898*** -1.797 [0.354] -2.164 [0.759] 

EXP -1.266 -1.395 -1.432 [0.951]  -1.557 [0.999]  

IMP -1.728 -1.764 -1.916 [0.151] -2.093 [0.865]  

ln(TRI)   GDP -2.861*** -3.298*** -1.033 [0.999]  -1.909 [0.984]  

ln(TRI)   EXP -2.073 -2.361 -1.582 [0.794] -2.113 [0.839] 

ln(TRI)   IMP -2.134 -2.464 -1.543 [0.850] -2.000 [0.948] 

ln(STRUCT)   GDP -3.277*** -3.199***  -1.471 [0.924] -2.164 [0.760] 

ln(STRUCT)   EXP -2.137 -2.434 -1.610 [0.747] -2.294 [0.490] 

ln(STRUCT)   IMP -2.311** -2.419 -1.722 [0.518] -2.155 [0.776] 

ln(ENTRY)   GDP -2.468*** -2.644*  -1.618 [0.733] -1.993 [0.952] 

ln(ENTRY)   EXP -2.178* -2.206   -1.464 [0.930] -1.164 [0.999] 

ln(ENTRY)   IMP -2.108   -2.093 -1.539 [0.856] -1.186 [0.999] 



Notes: Rejection of the null hypothesis indicates stationarity in at least one country. The null hypothesis is 
that of a unit root. The number of lags is determined by the Bayesian Information Criterion (BIC). The 
numbers in square brackets denote the P-values. Significant at ***1%, **5% and *10% respectively. 

 

Having identified the order of integration in the model variables, we proceed with 

the panel cointegration testing. In other words, we are interested to find a long-run 

structural relationship among the sample variables. For this reason, we rely on three 

powerful panel cointeration tests namely the Pedroni's (1999) ADF-based and PP-based 

cointegration tests, the Kao's (1999) ADF-based tests and the Westerlund (2007) test. The 

latter is also suitable to examine if a cointegration relationship exists among a set of 

variables that do not necessarily have the same order of integration (see Pesaran, 2015).  

It is worth mentioning that all the above tests allow for cross-section dependence 

but only the latter requires a balanced panel, while the two former tests (Pedroni and 

Kao) can be applied for unbalanced panel data as well (see Pedroni, 2000; 2001). The 

Westerlund (2007) test represents an error-correction approach to testing for 

cointegration that is based on the statistical significance of the error correction term. The 

intuition behind this approach is that if a long run relationship between the variables in 

our model exists, we can write a regression that allows us to estimate the error-correcting 

terms which reflect the response of the system to random shocks that “pushes” the system 

towards its long-run equilibrium point. If the error-correction terms are significantly 

different from zero across cross-sections, then there is evidence in favor of the existence 

of a long-run relation.   

The results of the tests are presented in Table 5. As it is evident, all tests lead to 

the rejection of the null hypothesis of no cointegration. In other words, cointegration 



statistics provide sufficient evidence to support the existence of a structural relationship 

between the sample variables in each of the three models (see Columns 1-3). 

 

 

 

 

Table 5: Panel cointegration test results  

Test  
(1) 

Model I 

(2) 

Model II 

(3) 

Model III  

Pedroni – Modified PP  3.2661***  
[0.0005] 

3.9449*** 
[0.000] 

3.3115*** 
[0.0005] 

Pedroni – PP -6.8819*** 
[0.000] 

-5.5831*** 
[0.000] 

-7.2864*** 
[0.000] 

Pedroni - ADF -6.3851*** 
[0.000] 

-5.1318*** 
[0.000] 

-5.8675*** 
[0.000] 

Kao – Modified DF -3.3098*** 
[0.0005] 

-3.3672*** 
[0.0004] 

-3.2381*** 
[0.0006] 

Kao –DF -6.2831*** 
[0.000] 

-6.3717*** 
[0.000] 

-6.1912*** 
[0.000] 

Kao - ADF -1.6446* 
[0.050] 

-1.8168** 
[0.0346] 

-1.7281** 
[0.0420] 

W-T  -1.7595** 
[0.0393] 

-1.8686** 
[0.0308] 

-1.7278** 
[0.0420] 

Notes: Model I includes the ln(TRI) as the threshold variable. Model II includes the ln(STRUCT) as the 
threshold variable and Model III includes the ln(ENTRY) as the threshold variable. Pedroni-ADF, Pedroni-
PP, Kao-ADF, stand for Pedroni (1999). ADF-based and PP-based, and Kao (1999) ADF-based 
cointegration tests, respectively. W-T stands for the Westerlund (2007) cointegration test. The null 
hypothesis assumes that there is no co-integration. The numbers in parentheses denote the p-values. 
Significant at ***1% and **5% respectively.     

4.3  The baseline model  

Our simple baseline parametric model that will be contrasted with the threshold 

model (TR) described below takes the following form:  



2
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      
                       (8) 

where logged patent intensity (lnPATit) of country i in time t is regressed on the logged 

value of upstream product market regulation expressed in levels (lnTRIit) and its squared 

(non-linear) term (lnTRIit)2. Moreover, GDP denotes the annual percentage of GDP in 

USD dollars at the country-year level. EXP and IMP denote the exports and imports of 

country i at year t as a percentage of GDP. The vector itX   includes the interaction terms 

(cross-terms), to account for possible non-linearities, while ψ denotes the relevant 

estimated coefficients. To account for unobserved heterogeneity, we include μi which 

stands for the (time invariant) country-specific residual (country FE) that differs between 

countries but remains constant for any particular country (unobserved country FE). 

Moreover, θt is the time variant effect (year FE) and therefore differs across years but is 

constant for all countries in a specific year. The reason we account for time dummies 

(year FE) in our model is that we are able to trace the co movement of the variables due 

to external shocks (Polemis and Stengos, 2019; Asimakopoulos and Karavias, 2016). Our 

model also incorporates country∗year dummies (FE) to control for omission biases 

related to specific unobserved factors such as rate of technical change, sector’s 

productivity, etc (Papaioannou, 2017). Finally εit denotes the idiosyncratic i.i.d 

disturbance term. 

4.4  The threshold model9  

The TR model is expressed by the following equations: 

                                                           
9 The description of the TR model follows closely the study of Polemis and Stengos, (2017).  



,1 t
T
tt xy   tq                                                (9)  

,2 t
T
tt xy   tq                         (10)  

These equations describe the relationship between the variables of interest in each 

of the two regimes (high and low deregulation) and qt stands for the threshold variable 

with γ being the unknown sample split (threshold) value that needs to be estimated. The 

threshold variable may, but has not to be an element of T
tx , the k-dimensional vector of 

exogenous regressors (see Hansen, 1999 and Bick, 2010). We assume for simplicity that 

the error term εt is independent and identically distributed (i.i.d) with mean zero and finite 

variance 2
 , although one can also allow for a conditional heteroskedastic error structure 

and weak dependence. The approach that we employ here does not rely on a known γ. In 

other words the parameter γ needs to be estimated along-side the other unknown 

parameters of the model. However, the method is based on first testing for the presence of 

a threshold effect. Once we reject the null of no threshold we proceed in the estimation of 

the model that includes the estimation of the threshold and allows for the sample split. 

The method is based on a CLS technique that splits the model into the two regimes, 

whereby there is a full interaction of all the variables with the (estimated) threshold.   

By introducing a dummy variable ),()(   tt qId  we can write the model 

above in a single expression (Hansen, 1999, Savvides and Stengos, 2000): 

( )T T
t t t ty x x                              (11) 

where 2  and 1 2    . For testing that there is no threshold the null 

hypothesis is simply that H0: Κ=0 or H0: 21   . That allows for the comparison between 



the TR model and the simple linear benchmark without a threshold. It is worth noting that 

the parameter γ (threshold parameter) is not identified under the null hypothesis of no 

threshold (Κ=0) and usual test statistics have non-standard distributions (Hansen, 2000; 

Kourtellos et al, 2015). Based on the above, our threshold model takes the following 

algebraic form: 

1 2ln( ) (ln ) (ln )it i t it it it it itPAT x I TRI x I TRI                               (12) 

where xit is the vector of exogenous control variables with regime independent 

slope coefficients. I (·) is the indicator function taking the value one when the condition 

in the parenthesis is satisfied and zero otherwise. The latter also, represents the regime 

defined by each threshold variable (lnTRI, lnSTRUCT and lnENTRY), and the threshold 

value γ that needs to be estimated within the model.  

5.  Results and discussion  

This section presents the empirical findings of the study. We first present the results of 

the benchmark parametric model and compare these estimates with the threshold model. 

In addition, we perform the necessary robustness checks by using two alterative 

specifications of regulatory intensity accounting for the market structure and entry 

conditions.  

5.1.  Parametric regression estimates  

Table 6 presents the results from the benchmark parametric (linear and quadratic) 

regressions. Columns 1-3 portray the OLS-FE estimates, while the instrumental variable 

(IV) FE estimates are displayed in columns 4-6. The reason for not using pooled OLS 

estimators is that they do not allow for possible dependence between the time varying 



regressors and the individual-specific effects (Pesaran, 2015). As it is observed, the 

estimates presented in the second column of Table 2 clearly exhibit an inverted-U 

relationship between patents and regulatory stringency which in turn we try to rationalize 

in the subsequent section.  

 

 

Table 6: Parametric regression results  

Dependent variable: ln(PAT)  (1)  

OLS-FE  

(2) 

OLS-FE  

(3) 

OLS-FE 

(4) 

IV-FE 

(5) 

IV-FE  

(6) 

IV-FE 

ln(TRI) 0.394 
(0.412) 

0.689* 
(0.434) 

2.200*** 
(0.583) 

-0.257 
(0.326) 

0.727* 
 

4.618*** 
(0.705) 

ln(TRI)2 - -0.447** 

(0.215) 
-1.174** 
(0.470) 

- -0.872*** 
 

-1.677*** 
(0.0501) 

GDP 0.00337 
(0.0388) 

-0.0139 
(0.0395) 

-0.454 
(0.738) 

0.00466 
(0.0292) 

-0.0226 
 

0.227*** 

(0.0146) 
EXP -0.0329 

(0.0284) 
-0.0347 
(0.0283) 

-0.249*** 
(0.0613) 

-0.0356 
(0.0282) 

-0.0432 
 

0.158*** 

(0.0119) 
IMP 0.0232 

(0.0349) 
0.0184 

(0.0348) 
0.290 

(0.794) 
0.0224 

(0.0338) 
0.0189 

 
0.0651*** 

(0.0149) 
ln(TRI)  GDP 0.0789** 

(0.0349) 
0.0943*** 
(0.0355) 

0.268*** 
(0.0521) 

0.0533 
(0.0332) 

0.0914*** 
 

0.0197 
(0.0307) 

ln(TRI)  EXP 0.0975*** 
(0.0206) 

0.0849*** 
(0.0215) 

0.302*** 
(0.0389) 

0.0913*** 
(0.0207) 

0.0705*** 
 

-0.532*** 

(0.0237) 
ln(TRI)   IMP -0.129*** 

(0.0237) 
-0.116*** 
(0.0244) 

-0.388*** 
(0.0502) 

-0.113*** 
(0.0236) 

-0.0959*** 
 

0.355*** 

(0.0260) 
Constant 1.916*** 

(0.704) 
2.740*** 
(0.806) 

3.760*** 
(0.418) 

- - - 

Country FE  Yes Yes No Yes Yes No 

Year FE  Yes Yes No No No No 

Country   Year FE  No No Yes No No Yes 

Observations 576 576 576 576 576 576 

Countries  32 32 32 32 32 32 

R2-within 0.181 0.188 0.172 0.106 0.142 0.999 

F-statistic  4.78*** 4.79*** 4.88*** 9.11*** 11.13*** 40.32*** 



[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 

Notes: OLS-FE stands for the OLS with fixed effects regressions. IV-FE is for the instrumental variable 
regression models. The numbers in parentheses and square brackets denote the standard errors and the p-
values respectively. Instruments for the IV models (column 2 and 4) include the lagged set of the covariates. 
F-statistics are reported for OLS- FE and IV-FE regressions. Significant at ***1%, **5% and *10% 
respectively.   
 

Both the linear influence of regulation on patents’ activity and its squared 

coefficient estimate are statistically significant alternating their signs starting from 

positive (0689) to negative (-0.477). It is interesting to note that in the linear specification 

under the absence of country*year FE (see Column 1), there is a positive but not 

statistically significant (even at 10%) relationship between patents and regulation 

implying that a non-linear model better explains the correlations between the main 

variables. This findings is reinforced by the existence of statistically significant 

coefficient estimates for all the reported interaction terms (see Columns 2 and 3). 

Surprisingly, the rest of the covariates (GDP, EXP, IMP) do not expose a statistically 

significant relationship with the dependent variable (lnPAT). However, when we account 

for the quadratic specification with (see column 3) and without country ∗ year FE (see 

column 2), we verify that the impact of squared regulation on innovation (proxied by the 

lnPAT) is significantly negative (2.2 and 0.689 respectively), while its linear term is also 

statistically significant and positive (-1.174 and 0.447 respectively).    

We must stress though that estimating Eq. 8 with OLS may be problematic due to 

the fact that patent activity in the telecommunications sector can be endogenously affect 

the level of regulatory intensity in the sector. This may occur either for macroeconomic 

(i.e common trends across the OECD telecommunications sectors) or microeconomic 

reasons (e.g telecommunications demand conditions driven by other sectors). Similarly 

with other empirical studies (see for example Dagoumas and Polemis, 2019; 



Papaioannou, 2017; Dai et al, 2014; Fabra and Requant, 2014), we address this concern 

of reverse causality, by adopting the instrumental variable (IV) approach and the 2SLS.  

In the first stage, we predict the values of ln(TRI) and ln(TRI)2 while in the 

second stage we perform the regressions by using the lagged once covariates as 

instruments (see Chen et al, 2018). In this case, we notice that without the inclusion of the 

quadratic term the effect of product market regulation (PMR) appears to be not 

statistically significant (see Column 4). However, if the effect of regulatory stringency on 

innovation exhibits a concave curve, its marginal effect will be positive before reaching a 

threshold and become negative afterward. This may result in an overall zero effect if we 

force a monotonic relationship (Dai et al, 2014; Chen et al, 2018). We notice though that 

with an inclusion of an additional quadratic term, the estimated effects of regulation on 

sector’s patent activity become statistically significant and their estimate coefficients 

alternate their signs starting from positive to negative. Specifically, when we account for 

country FE only (see column 5) the relevant estimates of the linear and its squared term 

are statistically significant and equal to 0.727 and -0.872 respectively. This suggests a 

non-monotonic relationship in a form of an inverted U-shaped curve. The main difference 

here in relation to the previous OLS-FE specifications, is the positive and statistically 

significant coefficient estimate of the GDP variable (0.227), implying that as expected an 

increase (decrease) in the level of economic growth leads to an increase (decrease) of the 

level of patent activity expressed in natural logarithm.        

All in all, we argue that our results are in alignment with other theoretical and 

empirical studies (see among others Arrow, 1962; Aghion et al, 2005; Van Reenen, 2011; 

Correa and Ornaghi, 2014; Polemis and Tzeremes, 2019) that give sufficient ground on 



the validity of an inverted U-shaped relationship between product market competition and 

innovation. We argue though that the decreasing part of the curve can be attributed to the 

fact that regulatory stringency increases post entry monopoly rents, eliminating the 

number of entrants in the medium term. This leads to a decrease in the level of effective 

competition, which in turn reduces the number of patents granted by the EPO in the 

telecommunications sector. On the contrary, in the increasing part of the curve, a 

strengthening of deregulation generates an “escape competition effect”. This means that 

when deregulation prevails in the sector and firms do not differ substantially in terms of 

their technological level, a firm tries to innovate by increasing the number of patents 

granted to escape competition from the rival firms since profits from being a leader are 

higher than profits from being a follower (see Hashmi, 2013).  

Moreover, our empirical findings differ significantly from the recent study of 

Papaioannou (2017) in which it is argued that a U shaped relationship is present between 

regulation and Information and Communication Technology (ICT) investment across 

eleven EU countries and the US. One reason for this discrepancy, might be attributed to 

the different specification of the model since we use extra covariates and not only 

regulatory index and its squared term. Another explanation for the different findings 

obtained in both studies arises from the different econometric technique that is used in 

each of them. Specifically, the study of Papaioannou (2017) uses a semiparametric 

regression approach where no assumption for the functional form between the sample 

variables is needed compared to our study. We must stress though, that the traditional 

semiparametric local polynomial smooth formulation treats the variables that enter the 

(unknown) nonlinear part of the model as nuisance variables. Therefore, it does not allow 



for the explicit estimation of the marginal effects of these non-linear components on the 

dependent variable (Robinson, 1988; Stengos and Liang, 2005). Lastly, the different 

dependent variable that was used in the other study (ICT investment compared to telecom 

patents) may also justify the different findings.  

 

5.2  Threshold regression estimates   

In this section, we portray the estimates of the threshold regression model (TR), 

where three logged regulatory stringency indexes (TRI, STRUCT and ENTRY) serve as 

threshold variables that classify the sample OECD countries into two regimes (i.e. 

regulatory and de-regulatory regime).10  

However, before we proceed with the relevant estimates, we must first determine 

the number of thresholds (K) in each model since it is possible to obtain multiple sorting 

point estimates (see for example Hansen, 1999). The F-statistics, along with their 

bootstrap p‐values, are presented in the following table. We observe that the null 

hypothesis of no single threshold (K=0) is rejected in all of the three models (see Table 7, 

Columns 1-3) since the bootstrap p‐values are equal to zero.  

Table 7: Threshold test results  

Test for single threshold  

Statistical Hypotheses: 

H0 : No threshold (K=0) 

H1 : At most one threshold (K=1) 

(1) 

Threshold variable 
ln(TRI) 

(2) 

Threshold variable 
ln(STRUCT) 

(3) 

Threshold variable 
ln(ENTRY) 

                                                           
10 The estimations of all the threshold regression models were performed in STATA ver. 15 using the 
“xthreg” command developed by Wang, (2015).    



Threshold estimate 1
   0.9764 

(2.65) 

1.3965 

(4.04) 

1.0989 

(3.00) 

95% confidence interval  [0.9162 , 0.9789]  [1.2767 , 1.4370] [0.8114 , 1.3220] 
F-statistic  28.04** 27.10** 75.07*** 

Bootstrap P-value 0.0580 0.0300 0.0000 

Test for double threshold  

Statistical Hypotheses:  

H0 : One threshold (K=1) 

H1 : At most two thresholds (K=2) 

Threshold variable 
ln(TRI) 

Threshold variable 
ln(STRUCT) 

Threshold variable 
ln(ENTRY) 

Threshold estimate 2
  1.7441 

(5.720) 

1.6330 

(5.119) 

1.6584 

(5.250) 

95% confidence interval [1.7140 , 1.7494] [1.6314 , 1.6372] [1.0636 , 1.1097] 
F-statistic 10.41 4.10 6.15 

Bootstrap P-value 0.3470 0.8980 0.2600 

Notes: The trimming percentage is set to 0.02. 1000 bootstrap replications were used to obtain the p-values 
to test for the number of thresholds. The numbers in parentheses denote the absolute threshold value 
estimates. Significant at ***1%, **5% and *10% respectively. 

On the contrary, the test for the second threshold is not statistically significant in 

any of the three models. As a consequence, we infer that there is only one threshold in all 

of the regression relationships.  The sharp threshold point estimates ( 1
 ) for the three 

models along with their 95% confidence intervals (CI) are also reported in the relevant 

table. More specifically, the threshold estimates range from 0.97 (Column 1) to 1.39 

(Column 2). The interpretation of the overall regulatory index (TRI) threshold estimate 

( 1
 ) comes as follows:  

a) The reported threshold (logged) value 1
 = 0.9764 for the single threshold splits the 

sample into two regimes.  



b) The first regime below the threshold ( 1  0.9764) captures the high levels of 

deregulation since it includes the sample countries where the TRI falls below the value of 

2.65.11   

c) The second regime above the threshold ( 10.9764    or 12.65    in absolute levels) 

includes those OECD countries that are characterized by moderate and high levels of 

regulatory stringency.   

More information about the threshold estimates can be obtained from plots of the 

confidence interval using likelihood ratio (LR) statistics (see Figure 3). Specifically, the 

point estimates are the value of γ at which the LR equals zero (see Hansen, 1999). From 

the inspection of the relevant figure, we observe that the (first-step) threshold estimate is 

the point where the LR1(γ) equals zero, which occurs at 1
  = 0.9764. Since there is not a 

statistically significant second major dip in the LR function around the second-step 

estimate of 2
  = 1.7441, we argue that the single threshold likelihood conveys 

information revealing that there is only one threshold in the regression.  

 
Figure 3: Confidence interval construction in (single) threshold model 

                                                           
11 Since we express the threshold variable in natural logarithm (lnTRI), the antilogarithmic or absolute 
value of threshold parameter can be simply estimated as: 0.97642.718 2.65  
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Notes: The figure portrays the LR confidence interval in the single threshold model. The dotted red line 
denotes the critical value (7.35) at the 95% confidence level.  

 

It must be noted though, that testing a non-monotonic inverted-U shape 

relationship between innovation and regulation using country-level data raises important 

empirical difficulties (Aghion et al, 2019).  

First, one significant issue is the sharp estimation of the turning point of this 

relationship. One simpler but not accurate way is to resort either to non‐linear terms (i.e. 

quadratic terms of the regulation index) or to a non/semi-parametric specification using 

local smoothers or splines. However, as suggested by Polemis and Stengos, (2019) “such 

methods involve bandwidth choices, and they do not lend themselves to estimating sharp 

turning points/thresholds as it is the case in the threshold model”. To solve this 

difficulty, we rely on the estimation of a static panel threshold model with FE firstly 

introduced by Hansen (1999) and later developed by Hansen, (2000), Bick, (2010) and 

Kourtellos et al., (2016). The adopted threshold model avoids the ad hoc, subjective 

pre‐selection of threshold values, since it uses LM tests for the presence of such a 

threshold and then estimates it (see Christie, 2014; Hansen, 2000; Kourtellos et al., 2016).  



Second, we need to deal with the endogeneity of the regulatory stringency in our 

empirical setting. As mentioned before endogeneity may arise from omitted variable bias 

or reverse causality, and prevents us from arguing in favour of a causal effect (Aghion et 

al, 2019). Similarly to other studies (see Polemis and Stengos, 2017; Polemis and 

Stengos, 2019), we attempted to address the presence of a possible endogeneity of the 

regulatory variable (lnTRI) by using the lagged ln(TRI) as the regime-dependent 

(threshold) variable. It is noteworthy that our empirical results remained relatively robust. 

As a consequence, we argue that the issue of endogeneity is not as severe in our case.12  

 Having properly addressed the above estimation problems, and after defining the 

appropriate number of thresholds, we proceed with the discussion of results generated by 

the single threshold model that will be contrasted with the baseline parametric estimates. 

Table 7 presents the results for the empirical relationship between the (logged) regulatory 

stringency and its main drivers under the two classes (deregulated and regulated regime). 

The empirical estimates are presented for both specifications, i.e. without (column 1) and 

with (column 2) time dummies (year FE).13  

The main variable of interest is the level of regulatory stringency measured by the 

logged values of the overall OECD regulatory index (lnTRI). As it is evident, the most 

striking point is that in absence of time FE (see Column 1), regulatory stringency above 

the threshold of 2.65 incurs a significant negative effect (-1.155) on innovation on the 5% 

significance level, while the positive impact (0.136) below the threshold of 2.65 

(deregulated countries) is not statistically significant at all.  

                                                           
12 The results are available upon request.  

13 The results remain fairly robust after the inclusion of country*year FE. To conserve space this set of 
results is available upon request.    



It is evident that the TRI index is more important in the sample above the 

threshold (regulated regime) than below it. This means that a 10% increase in the level of 

regulatory stringency leads to slightly higher decrease (11.5%) in the patent activity of 

the telecommunications sector. This finding concurs that for highly regulated OECD 

countries the level of regulatory stringency does affect negatively the innovation output 

of the sector. In contrast, allowing for time FE reduces the magnitude of the estimates 

(0.0730, −0.911) and establishes significance on the 1% level of the marginal impacts of 

regulation on patents in both regimes. Surprisingly, the regime-independent regressors 

although in general plausibly signed (GDP, EXP and IMP) are not statistically significant 

in both specifications (with and without year FE) even at 10%.  

Table 8: Threshold regression estimates  

Coefficient estimates: 
1 2ln (ln ) (ln )it i it it it it itPAT x I TRI x I TRI             

 
(1) 

Without year FE 
 

(2) 
With year FE 

Regime-dependent regressor   

1̂   
0.136 

(0.365) 
0.0730*** 
(0.0048) 

2̂  
-1.155** 
(0.445) 

-0.911*** 
(0.0559) 

Regime-independent regressors   
GDP -0.000874 

(0.0283) 
0.0159 

(0.0406) 
EXP -0.0342 

(0.0448) 
-0.0539 
(0.0544) 

IMP 0.00267 
(0.0353) 

0.0205 
(0.0417) 

Constant 4.432*** 
(1.128) 

3.460** 
(1.489) 

Country FE  Yes Yes 
Observations 576 576 
Countries  32 32 
R2-within 0.112 0.151 
F-statistic   3.63** 

[0.0106] 
2.39** 

[0.0129] 



Shape of the curve  Nonlinear / Inverted V Nonlinear / Inverted V 

Threshold estimate  (turning point)  0.9764 (Logged value) 
2.65 (Absolute value) 

0.9764 (Logged value) 
2.65 (Absolute value) 

Notes: Standard errors are given in parentheses. The regime-dependent variable is the threshold variable 
(lnTRI). The numbers in square brackets denote the p-values. Similarly to Hansen (1999), each regime has 
to contain at least 5% of all observations. The trimming percentage is set to 0.02 and the Bootstrap 
replications are set to 1000. By construction, the confidence intervals for the threshold estimates can be 
highly asymmetric. Significant at ***1%, **5% and *10% respectively. 

 

These results are in alignment with the study of Marino et al, (2019) who also 

argue that an inverted U shaped relationship between regulation intensity and innovation 

exists in the OECD electricity sector. However, our study departs significantly from the 

empirical findings of Prieger (2002) and Cette et al, (2017) who argue that there is a 

negative monotonic relationship between upstream product market regulation and 

innovation/productivity growth for most of the OECD countries. Their findings indicate 

that increased (decreased) regulatory stringency in a sector tends to decrease (increase) 

the innovation (productivity) growth, revealing that the less competitive is a sector the 

less profound is its innovation intensity. Our findings of an inverted-V relationship 

between regulation and innovation can be compared with the influential study of Aghion 

et al, (2005) in which it is a argued that a non-linear (concave) pattern between 

competition and innovation prevails.  

Lastly, from the careful inspection of Table 4, some interesting remarks emerge. 

First, keeping regulation below the threshold has a marginally but statistically significant 

effect (see Column 2). Second, the impact for regulatory stringency above the threshold 

turns highly significant at 1% level of significance but decreased in absolute level (-0.911 

compared to -1.155). Third, the absolute threshold estimated value is very close to the 

real average value of regulatory stringency over the turning point (1999) of the curve as 



illustrated in Figure 2 (2.65 compared to 2.87). This finding further justifies the inverted-

V shaped relationship between innovation activity and regulatory intensity.  

5.3  Robustness checks  

In this section we perform several checks to sharpen the robustness of our 

empirical findings. Firstly, we re-estimate our benchmark model which is accordingly 

adjusted for the presence of two different components of the TRI index accounting for 

market structure (STRUCT) and entry conditions (ENTRY) respectively. Similarly to 

other empirical studies (see for example Marino et al, 2019; Polemis and Stengos, 2017), 

we run the model specification described by Eq. 12 replacing the TRI variable with its 

two components (STRUCT and ENTRY). We mention though that market structure 

regulation reveal the concentration conditions of the telecommunications sector and 

henceforth is an indirect measure of its competitiveness while entry regulation component 

refers to market contestability (Marino et al, 2019). Secondly, we use the two regulatory 

components as threshold variables instead of the overall regulatory index (TRI) to test the 

stability of the TR model and investigate possible discrepancies.   

Table 9 reports the estimates by regulatory component. As it is evident, the 

empirical findings when market structure regulation (STRUCT) is taken into account do 

not reveal significant differences compared to the TRI regulatory index (see Columns 1-

4). Specifically, the parametric results exhibit an inverted U shaped curve between 

upstream regulation and patent intensity since the relevant estimates alternate their signs 

from positive to negative (see Columns 2 and 4). The magnitude of the estimates are 

much larger in this case, implying that market concentration seems to be the main driver 

resulting to a change in the firms’ incentive to innovate after a significant regulatory 



reform (Marino et al, 2019). Moreover, nearly all of the interaction terms remain 

statistically significant as in the previous benchmark model suggesting a non-linear 

relationship among the main variables of interest. Therefore, we argue that when a 

different regulatory index (STRUCT) enters the benchmark model the empirical findings 

do not reveal significant discrepancies implying that the results are robust.  

However, when we account for the other regulatory index (ENTRY) a different 

picture emerges. As it is evident from the quadratic specifications (see Columns 6-8), the 

relationship between regulation and innovation remains non-linear although not of an 

inverted U shaped form (e.g. negative polynomial coefficients).            

Table 9: Alternative parametric regression estimates    

Dependent 
variable: ln(PAT) 

(1) 

OLS-FE 

(2) 

OLS-FE 

(3) 

IV-FE 

(4) 

IV-FE 

(5) 

OLS-FE 

(6) 

OLS-FE 

(7) 

IV-FE 

(8) 

IV-FE 

ln(STRUCT) 0.569 
(0.651) 

3.553*** 
(1.176) 

-0.509 
(0.497) 

3.321*** 
(0.970) 

- - - - 

ln(STRUCT)2 - -1.573*** 
(0.518) 

- -2.095*** 
(0.459) 

- - - - 

ln(ENTRY) - - - - -0.00305 
(0.0611) 

-0.882*** 
(0.251) 

-0.0805 
(0.0536) 

-1.274*** 

(0.200) 
ln(ENTRY)2 - - - - - -0.144*** 

(0.0398) 
- -0.209*** 

(0.0338) 
GDP 0.0276 

(0.0650) 
-0.0255 
(0.0669) 

0.0281 
(0.0503) 

-0.0481 
(0.0522) 

0.0491 
(0.0430) 

0.0371 
(0.0425) 

0.0130 
(0.0399) 

0.0252 
(0.0386) 

EXP -0.133*** 
(0.0367) 

-0.126*** 
(0.0365) 

-0.128*** 
(0.0364) 

-0.127*** 
(0.0357) 

0.0896*** 
(0.0282) 

0.0657** 
(0.0286) 

0.0707** 
(0.0298) 

0.0271 
(0.0296) 

IMP 0.148*** 
(0.0463) 

0.130*** 
(0.0464) 

0.129*** 
(0.0446) 

0.125*** 
(0.0438) 

-0.133*** 
(0.0324) 

-0.114*** 
(0.0325) 

-0.0801** 
(0.0330) 

-0.0700** 

(0.0320) 
ln(STRUCT)   GDP 0.0216 

(0.0636) 
0.0656 

(0.0648) 
0.000128 
(0.0585) 

0.0639 
(0.0591) 

- - - - 

ln(STRUCT)   EXP 0.180*** 
(0.0310) 

0.166*** 
(0.0311) 

0.155*** 
(0.0305) 

0.149*** 
(0.0300) 

- - - - 

ln(STRUCT)   IMP -0.222*** 
(0.0372) 

-0.200*** 
(0.0376) 

-0.184*** 
(0.0365) 

-0.169*** 
(0.0360) 

- - - - 

ln(ENTRY)   GDP - - - - 0.00862 
(0.00739) 

0.00856 
(0.00729) 

0.00520 
(0.00680) 

0.00755 
(0.00658) 

ln(ENTRY)   EXP - - - - 0.0138*** 
(0.00328) 

0.0108*** 
(0.00335) 

0.0142*** 
(0.00326) 

0.00984*** 

(0.00323) 
ln(ENTRY)   IMP - - - - -

0.0164*** 
(0.00398) 

-
0.0131*** 
(0.00404) 

-0.0156*** 
(0.00392) 

-0.0120*** 

(0.00383) 



Constant 1.626* 
(0.974) 

0.756 
(1.008) 

- - 2.383*** 
(0.733) 

4.219*** 
(0.896) 

- - 

Country FE  Yes Yes Yes Yes Yes Yes Yes Yes 

Year FE Yes Yes No No Yes Yes No No 

Observations 576 576 576 576 576 576 576 576 

Countries  32 32 32 32 32 32 32 32 

R2-within 0.187 0.202 0.124 0.156  0.174 0.074 0.135 

F-statistic/Wald chi2   5.00*** 

[0.000] 

5.25*** 

[0.000] 

10.82*** 

[0.000] 

12.38*** 

[0.000] 

99.57*** 

[0.000] 

114.89*** 

[0.000] 

6.16*** 

[0.000] 

10.48*** 

[0.000] 

Notes: OLS-FE stands for the OLS with fixed effects regressions. IV-FE is for the instrumental variable 
regression models. The numbers in parentheses and square brackets denote the standard errors and the p-
values respectively. Instruments for the IV models (column 2 and 4) include the lagged set of the covariates. 
F-statistics are reported for OLS- FE and IV-FE regressions. Wald Chi-2 are reported for OLS-FE 
regressions. Significant at ***1%, **5% and *10% respectively.   

 

The analysis now turns to the TR estimates generated by the inclusion of the two 

alternative regulatory measures. As it becomes clear, when market structure regulation 

(see Column 1) serves as the threshold variable, we notice that the relevant estimate 

(along with its CI) is larger in its magnitude than before (4.04 compared to 2.65). We 

notice though that this estimate is even larger than the average scale value (3 out of 6) 

revealing a right tail distribution. In other words, the TR model splits the sample into two 

regimes accounting for the heavily regulated countries (above the threshold) and the rest 

(below the threshold). The former includes those OECD countries with significant market 

concentration that are characterised by low levels of competitiveness in the 

telecommunications sector. It is also evident that the inverted-V shaped curve is also 

evident here, since the coefficient below the threshold 1̂  is positive (0.963), while the 

estimate above the threshold 2̂  is of the opposite sign (-0.299).  



Moreover, when the market structure index of the average OECD country falls 

below the threshold, a 10% increase in regulatory intensity, will enhance innovation 

activity by a slightly lower rate of 9.6%. However, if the average country is above the 

threshold then a 10% increase in regulatory stringency will decrease innovation only by 

3% approximately. Hence, the impact of regulatory intensity expressed by the market 

structure index (STRUCT) on innovation is larger quantitatively when it is below than 

above the estimated threshold. This finding is also evident in other threshold studies (see 

for example Asimakopoulos and Karavias, 2016; and Polemis and Stengos, 2019).  

 

 

 

Table 10: Alternative threshold regression estimates  

Coefficient estimates  
(1) 

Threshold variable 
ln(STRUCT) 

(2) 
Threshold variable 

ln(ENTRY) 
Regime-dependent regressor   

1̂   
0.963*** 
(0.256) 

0.0123*** 
(0.0032) 

2̂  
-0.299*** 
(0.094) 

-1.283*** 
(0.413) 

Regime-independent regressors   
GDP 0.0226 

(0.0383) 
0.0154 

(0.0355) 
EXP -0.0639 

(0.0540) 
-0.0631 
(0.0552) 

IMP 0.0225 
(0.0451) 

0.0133 
(0.0445) 

Constant 2.551 
(2.055) 

4.310*** 
(1.410) 

   
Country FE  Yes Yes 
Year FE Yes Yes 
Observations 576 576 
Countries  32 32 
R2-within 0.165 0.190 
F-statistic   12.50*** 14.96*** 



[0.000] [0.000] 
Shape of the curve  Non linear / Inverted V Non linear / Inverted V 

Threshold estimate  (turning point)  1.3965 (Logged value) 

4.04 (Absolute  value) 

1.0989 (Logged value) 

3.0 (Absolute value) 

Notes: Standard errors are given in parentheses. The numbers in square brackets denote the p-values. The 
trimming percentage is set to 0.02 and the Bootstrap replications are set to 1000. The regime dependent 
variable and the threshold variable is the natural logarithm of the regulatory index for telecoms (TRI) 
Significant at ***1%, **5% and *10% respectively. 

 

Similar findings hold in the case of entry regulation (see Column 2). From the 

inspection of Table 10, we argue that an inverted-V shaped curve between regulation and 

innovation is also evident here since the coefficient estimates of the regime-dependent 

regressor (threshold variable) alternative their signs starting from positive (0.0123) to 

negative (-1.283), while they are both statistically significant at 1% level of significance.  

However, in contrast with the previous regulatory component (STRUCT), we 

notice that the effect of regulatory stringency on patents is larger in its magnitude when it 

is above than below the estimated absolute threshold (3.0). Specifically, if the average 

country is above the threshold then a 10% increase in regulatory stringency will decrease 

innovation by a higher percentage equal to 12.8%. On the contrary, when the entry 

regulatory index of the average country is below the threshold, a 10% increase in 

regulatory intensity, will increase innovation by a negligible effect equal to 0.12%. The 

other coefficient estimates (regime-independent regressors), although properly signed are 

not statistically significant even at 10% significance level.  

Lastly, our threshold estimated values are very close with the ones reported in the 

most related contribution with our work (see Papaioannou, 2017). In this study, it is 



argued that the relationship between PMR and ICT diffusion has a U-shaped form. 

However, the “turning” points of the overall weighted regulatory index (TRI) and the 

weighted entry regulation (ENTRY) are approximately 2.5 and 3.1 compared with the 

ones reported in our study (2.65 and 3.0 respectively).   

6.  Conclusions and policy implications   

Effective regulation of telecommunications sector plays a crucial role in the 

political and economic agenda for both developed and developing OECD countries. A 

carefully designed regulatory scheme is also expected, to be a cornerstone of a successful 

and innovative telecommunications performance.  

We attempt to shed light on this relationship by theoretically modeling the 

telecommunications sector, in which access regulation impacts the non-separable activity 

in process and product innovation.  We then empirically test our model by deploying an 

efficient panel threshold technique along the lines of Hansen (1999). Our balanced panel 

dataset comprises of 32 OECD countries over the period 1995-2012.  

We find strong theoretical and empirical evidence of the existence of an inverted 

"V-shaped" relationship between regulatory stringency and innovation in the 

telecommunications sector. We are the first to unravel a statistically significant 

relationship between regulatory stringency and innovation for both above and below the 

optimal level of regulatory intensity.  

We argue that a further increase in regulatory intensity, stimulates an asymmetric 

effect on sector’s innovation across the two regimes (high and low levels of deregulation) 

leaving no doubt that regulatory environment shapes the nexus between deregulation and 



innovation. Specifically, this effect is positive in OECD countries that, on average, have 

experienced a drastic regulatory reform (below the threshold) and negative in those 

countries who have experienced a relatively weak liberalization process (above the 

threshold). 

Our findings survive robustness checks after the inclusion of two alternative 

threshold variables (market structure and entry regulation) incurring significant 

implications for the policy makers and government officials.   
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