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Abstract

We present new axiomatic characterizations of five classes of TU-values, the classes of the
weighted, positively weighted, and multiweighted Shapley values, random order values, and
the Harsanyi set. The axiomatizations are given in parallel, i. e., they differ only in one axiom.
In conjunction with marginality, a new property, called coalitional differential dependence,
is the key that allows us to dispense with additivity. In addition, we propose new axioma-
tizations of the above five classes, in which, in part new, different versions of monotonicity,
associated with the strong monotonicity in Young (1985), are decisive.

Keywords Cooperative game - Marginality - Strong monotonicity - Coalitional differential
dependence - Weighted Shapley values - Harsanyi set -

1. Introduction

Parallel axiomatizations of TU values or whole classes of TU values, i. e., the axiomatizations
differ only in one axiom, are popular in cooperative game theory: on the one hand, they show
similarities between TU values and, on the other hand, they work out important differences
that are often only apparently small. Derks et al. (2000) offer a parallel axiomatization of
the Harsanyi set (Hammer, 1977; Vasil’ev, 1978), the class of random order values (Weber,
1988), the class of weighted Shapley values (Shapley, 1953a; Kalai and Samet, 1987), and
the Shapley value (Shapley, 1953b). All given axiomatizations apply additivity whereby the
axiomatization of the weighted Shapley values requires five axioms instead of four in the
other presented axiomatizations. We refer to this parallel axiomatization in the main part,
replacing the five axiom axiomatization of the weighted Shapley values with two elegant new
ones from Casajus (2019), using only four axioms, one for the weighted Shapley values and
one for the subset of positively weighted Shapley values (Shapley, 1953a).

In addition, we remove the axiomatization of the Shapley value and include an axiomatiza-
tion of the multi-weighted Shapley values (Dragan, 1992). The multiweighted Shapley values
extend the Harsanyi payoffs, which are the TU-values from the Harsanyi set. Here, the previ-
ous non-negative players’ weights can be real numbers for each associated coalition, provided
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they add up to a sum of one for each of these coalitions. Although the multi-weighted Shapley
values do not seem realistic for many applications, they have good theoretical significance
and round off our axiomatizations.

While some axiomatizations without additivity are known for the weighted Shapley val-
ues, it looks unsatisfactory for the other classes in this respect. One of the most remarkable
axiomatizations of the Shapley value without additivity comes from Young (1985). Besides
efficiency and symmetry, Young uses strong monotonicity. As the proof shows, the axioma-
tization, in reality, requires only marginality. The symmetry axiom is such strong that the
monotonicity part in strong monotonicity is redundant in this axiomatization.

In our first main result, we axiomatize the above-mentioned classes of TU-values in such a
way that different varieties of monotonicity are decisive. Besides efficiency, monotonicity, and
mutual dependence, Nowak and Radzik (1995) used marginality to axiomatize the weighted
Shapley values. In the first main result, we show that strong monotonicity can replace
marginality and the additional monotonicity property in this axiomatization. In order to
axiomatize the other TU-value classes, we introduce a new weakly and a new strictly strong
monotonicity axiom. Van den Brink et al. (2013) propose weak monotonicity, also a weaker
version of strong monotonicity. We can interpret marginality as a static norm: as long
as a player’s marginal contributions do not change, her payoff should not change. Strong
monotonicity implies that a player’s payoff does not decrease if his marginal contributions
do not decrease. In addition, weak monotonicity presupposes that the worth of the grand
coalition will not decrease either. Our weakly strong monotonicity axiom is also a considerable
weakening of strong monotonicity: Aslong as a player’s marginal contributions do not change,
with the possibility that at most the marginal contribution to one coalition may rise, her
payoff should not fall. In contrast, strictly strong monotonicity means that a player’s payoff
does not decrease if his marginal contributions do not decrease, and increases in all cases if
it is ensured that his marginal contribution to at least one coalition has actually increased.

As a new crucial property within our article, we introduce the coalitional differential de-
pendence axiom, a relaxation of mutual dependence. Mutual dependence means that the
payoff ratios of two players should be the same in two different games where both players
are productive only in coalitions with both players. For coalitional differential dependence
consider two different games where both players are productive only in coalitions that contain
both players. Let us look at the associated games where both players bring the same amount
of change to all supersets of a given coalition, compared to the old games. Then the ratios of
payoff differentials of each old and new associated game should be the same for each player.

Our second main result, a corollary of our first main result and the referred parallel ax-
iomatic characterization, is a completely parallel axiomatic characterization of all above men-
tioned TU-value classes without additivity.

The article is organized as follows. Some preliminaries are given in Section 2. Section 3 is
the main part in which we introduce new axioms and present new axiomatizations, mostly
in parallel. Section 4 concludes. The Appendix (Section 5) contains all the proofs, related
lemmas, and demonstrates the logical independence of the axioms used for axiomatization.

2. Preliminaries

A TU-game (N, v) on a non-empty and finite player set N is given by a coalition function
v: 2V - R, v() = 0. We are only dealing with a fixed player set N so the latter is usually



omitted as an argument. Each S C N is called a coalition, v(S) is called the worth of
coalition S and Q° denotes the set of all non-empty subsets of S. The set of all TU-games
is denoted by V; the null game 0 is given by 0(S) = 0 for all S € N. A TU-game is
called monotonic if v(R) < v(S) for all R, S C N such that R C S. The dividends A, (5)
(Harsanyi, 1959) are defined inductively by

A (S) .: U(S) - ZRQS Av(R>, it S' e QN, and
S0, i S = 0.

An unanimity game ug € V, S € Q% is defined for all T C N by ug(T) =1if S C T
and ug(7T) = 0 otherwise. v is called totally positive (Vasil’ev, 1975) if A,(S) > 0 for
all S C N. S C N is called essential in v if A,(S) # 0. For i € N and S C N\{i}, the
marginal contribution MC?(S) is given by MC?(S):= v(SU{i}) — v(S); i € N is called
a null player in v if v(S U {i}) = v(S) for all S C N\{i}; players i,j € N, i # j, are called
(mutually) dependent (Nowak and Radzik, 1995) in v if v(SU{i}) = v(S) = v(SU{j}). It
is well-known that we have for dependent players 7,5 € N in v,

A,(S) =0 for all S C N such that |[SU{i,j}| = 1. (1)

A TU-value ¢ is an operator that assigns to any v € V a payoff vector ¢(v) € RY. We
define by WV := {f: N — R,,}, w;:= w(i) for all w € W¥ i € N, the collection of all
positive weight systems on N; a weight system on N is a pair (w,o) consisting of a
positive weight system w € W together with an ordered partition o := {Sj, ..., S,} of N,
the collection of all weight systems on N is denoted by W ; the collection of all sharing
systems A € AY on N is defined by

AN = {/\ = (As,i)seqan, ics

Zx\g,i =1 and Ag; > 0 for each S € QN and all i € S},

€S

and the collection A*N of all extended sharing systems A € ATV s defined by

A= I = (0 e es| Do Ass =1 Torall § € 0¥ and alli € 5}

€S

The positively weighted Shapley values Sh™ (Shapley, 1953a) are given by

Shi(v) : Z Z o, A,(S) forall i € N and w e WP
SCN, §3i £~J€

In the specific case that all weights are equal, we get the Shapley value Sh (Shapley, 1953b),
defined by

Shi(v) == > A“Sf) for all i € N.

SCN, S2i

For all (w,0) € WY, the weighted Shapley values Sh("?) (Kalai and Samet, 1987) are
given by
S (w) = Y s Wi A(T) forall i €N,

TCN,T(0)3i “=i€T(o



where T'(0) := TN Sy, m := mazx{l|T NS, # 0, S, € c}. Note, if 0 = {N}, we have
Shwo) = Sh¥. We denote the set of all weighted Shapley values by S and the set of all
positively weighted Shapley values by PS.

Independently of each other, Hammer (1977) and Vasil’ev (1978) established a set of TU-
values called Harsanyi set, also known as selectope, that we denote by H. The payoffs are
made by distributing the Harsanyi dividends via a sharing system. The TU-values H* \ €
AV, from this set, titled Harsanyi payoffs!, are defined by the following,

H)Mv) = Y Asi-A(S), foralli€N. (2)

SCN, 5S>t

If we renounce the non-negativity of the sharing weights, we obtain the TU-value class M of
all multiweighted Shapley values M A (Dragan, 1992), defined by

M) = A{i)+ 3 As, - Au(S) forall i € N and for cach A” € ATV, (3)

1
SCN, S3i

Let IT be the set of all permutations 7 : N — N, and let 7* := {j € N|m(j) < 7 (i)} the coali-
tion of all predecessors of player i € N, including player i. A TU-value 1 is called a random
order value (Weber, 1988) if there is a probability distribution p = (px)rem, Y ey Pr = 1,
such that v can be represented by

P;(v) = Zpﬂ . [v(wi) — U(WZ\{Z})], forall v € Vand i € N.

well

The set of all random order values is denoted by R.
We refer to the following well-known axioms for TU-values ¢.

Efficiency, E. For all v € V, we have ). _y ¢i(v) = v(N).

Null game, NG2 ¢;(0) =0 for all i € N.

Null player, N. For all v € V and i € N such that i is a null player in v, we have ¢;(v) = 0.
Additivity, A. For all v,w € V, we have ¢(v) + ¢(w) = ¢(v + w).

Positivity, Po (Vasil’ev, 1975). For all v € V such that v is totally positive, we have
@i(v) >0 forallie N.

Monotonicity, Mo. For all v € V such that v is monotonic, we have ¢;(v) > 0 for all
1€ N.

Marginality, M (Young, 1985). For all v,w € V and i € N such that MC}(S) = MC}(S)
for all S C N\{i}, we have p;(v) = ¢;(w).

Strong monotonicity, SM. (Young, 1985). For all v,w € V and ¢ € N such that
MC?(S) > MC(S) for all S C N\{i}, we have ¢;(v) > p;(w).

Mutual dependence, MD (Nowak and Radzik, 1995). For all v,w € V and i,j € N such
that ¢ and j are dependent in v and w, we have p;(v)p;(w) = p;(w)p;(v).

Weak sign symmetry, WSS (Casajus, 2019). For all 7,5 € N such that i and j are de-
pendent in v, we have sign(gpi(v)) :sign(gpj(v)).

!These TU-values are also known as Harsanyi payoff vectors or sharing values.
2This axiom is also called triviality.



Superweak sign symmetry, SSS (Casajus, 2019). For all 7,5 € N such that ¢ and j are
dependent in v, we have that sign(;(v)) > 0 implies sign(y;(v)) > 0.

3. Parallel axiomatizations

The claim of this article is to present parallel axiomatizations of some classes of TU values,
which means that we have related axiomatizations that differ only in one axiom. At first, we
recall that all classes considered are in a proper subset relationship.

Remark 3.1. We have PSCSC R CH C M.

The relationship S € R C M is shown in Dragan (1992), R C H is shown in Derks et al.
(2000), H € M follows by (2) and (3), and PS C S is obvious by definition. The following
theorem summarizes well-known axiomatizations into a parallel characterization.

Theorem 3.2. A TU-value ¢ satisfies E, N, and A,
(a) if and only if ¢ € M (Dragan, 1992)°
(b) and Po if and only if ¢ € H (Vasil’ev, 1981; Derks et al., 2000).
(¢) and Mo if and only if ¢ € R (Weber, 1988).
(d) and SSS if and only if ¢ € S (Casajus, 2019).
(e) and WSS if and only if ¢ € PS (Casajus, 2019).

Aside from E and N, all these axiomatizations use A as a central property. The question
arises whether it is possible to have parallel characterizations without this property. For the
weighted Shapley values, some axiomatizations without additivity are well-known. Nowak
and Radzik (1995) used E, M, Mo, and MD to axiomatize S and, by replacing Mo with a
stronger version, PS. MD states that if two players are dependent in two games on the same
player set, the ratio of their payoffs in these two games is equal if in one game the payoffs
of both players are not zero. MD is a rather strong property, and it is easy to prove that it
does not apply to the other classes of values considered in Theorem 3.2.

The following axiom for two different games on the same player set is related. For each of
the two games, we have an additional game in which the players of a coalition S, to which
the dependent players ¢ and j belong, change their cooperation and bring the same amount
of change into all the supersets of S. Then the ratios of the payoff difference of each old and
related new game are the same for both players as long as the payoft differences in a game
are not zero.

Coalitional differential dependence, CDD. For all o, e R, v,w € V, SC N, 4,57 € S
such that ¢ and j are dependent in v and w, we have

[pi(vta us) — @i(v)] [j(w + B us) — p;(w)]
=[0i(v +a-us) = @i (V)] [pi(w+ B - us) — pi(w)]

Remark 3.3. MD implies CDD but not vice versa.

3Originally Dragan used linearity instead of additivity.



The axiomatizations in Nowak and Radzik (1995, Theorem 2.4 and Remark 2.3) of the classes
of weighted and positively weighted Shapley values have a strong connection to the axiomati-
zation of the Shapley value in Young (1985). Young introduced SM that has the considerable
meaning that a player’s payoff should not decrease if the player’s marginal contributions to
all coalitions that do not include her do not decrease. Young used only M to prove his
axiomatization and, in the words of Young (1985), M “is a type of independence condition
rather than a monotonicity condition. ...The reason for emphasizing the somewhat stronger
notion of monotonicity is that it seems to be the most relevant to actual applications.” The
following axiom can shed additional light on the effects of marginality.

Coalitional strategic equivalence, CSE (Chun, 1989). For all v, w € V such that for any
TcON ccR,and all S C N,

v(S) =

{w(S)+c, ifSDOT, ()

w(S), otherwise,

we have @;(v) = p;(w) for all i € N\T.

Chun (1989) introduced this axiom to axiomatize the Shapley value. He assumed that his
axiom is weaker than Young’s strong monotonicity. But Casajus and Huettner (2008) have
shown that this is not the case.

Proposition 3.4. (Casajus and Huettner, 2008) M and CSE are equivalent.

Therefore, CSE stresses the static property of marginality. The following property is placed
somewhere in the middle between M and SM.

Weakly strong monotonicity, WSM. For all v,w € V and i € N such that MC?(T) >
MCH(T) for one T C N\{i}, and MC?(S) = MC(S) for all S C N\{i}, S # T, we have
pi(v) 2 @i(w).

As long as at most one player’s marginal contribution to a single coalition increases and all

other marginal contributions remain unchanged, the payoff to that player will not decrease.
Here, too, another axiom can additionally clarify the meaning of the axiom just introduced.

Coalitional strategic monotonicity, CSM. For all v,w € V such that for any T €
ON ceRyy,and all S C N,

w(S)+¢c, if SDOT,

v(S) = {w(S), otherwise, )

we have ¢;(v) = ¢;(w) for all i € N\T and ¢;(v) > ¢;(w) for all j € T,
Proposition 3.5. WSM and CSM are equivalent.

CSM makes it clear that WSM meets M on the one hand and has a slightly weaker mono-
tonicity property than SM on the other. In addition, we see that WSM (and therefore SM
and the following property where it is obvious) actually consists of two properties. The next
property represents a change of SM to the opposite side.
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Strictly strong monotonicity, SSM. For all v,w € V and i € N such that MC}(S) >
MC¥(S) for all S C N\{i}, we have p;(v) > ¢;(w) and if additionally MC?(T) > MC¥(T)
for at least one ' C N\{i}, we have @;(v) > ¢;(w).

SSM thus corresponds to SM with the additional characteristic that if a player’s marginal
contribution to at least one coalition actually increases, this player also receives a higher
payoff.

Remark 3.6. The following implication is strict: SSM = SM = WSM.

Casajus (2019) poses the question whether the classes of weighted/positively weighted Shap-
ley values can be characterized by E, SM/M, and SSS/WSS. However, we must reject
this assumption. Consider the following TU-value ¢, defined as follows for the player set

N :={i,j}:

o)+ 3810, 3D), I Au({i. ) < 0,
Shi(v), otherwise,

¢i(v) == (6)

and

oL + S8 1) 3 A({i)) <0,
Sh;(v) otherwise.

¢j(v) == (7)

Obviously, ¢ satisfies E, M, SM, SSS, and WSS but ¢ is no weighted Shapley value, yes ¢
is not even a multiweighted Shapley value at alll The next theorem gives a parallel axiomatic
characterization of M, H, and R without additivity. In order to axiomatize S and PS, we
must strengthen CDD to MD additionally. The various monotonicity axioms just discussed
are decisive.

Theorem 3.7. A TU-value ¢ satisfies E,
(a) NG, CDD, and M if and only if p € M.
b) NG, CDD, and WSM if and only if ¢ € H.

(b)
(¢) NG, CDD, and SM if and only if ¢ € R.
d) MD, and SM if and only if ¢ € S.

)

(
(d) MD, and SSM if and only if ¢ € PS.

Certainly, the axiomatizations (d) and (e) in Theorem 3.10 are closely connected with the
corresponding ones in Nowak and Radzik (1995). However, it seems that in the literature
so far it has not been recognized that SM can replace M and Mo in this axiomatization.
Mo is not implied by SM. On the contrary, SM can be considered weaker than M and Mo
together as our next result shows: if a TU-value ¢ meets E;, M, Mo, and CDD, ¢ is a
random order value while a TU-value that meets E, SM, and CDD does not have to be (see
Remark 5.5). The following corollary is related to Theorem 3.2. M and CDD (and NG in
case (a)) replace N and A.

Corollary 3.8. A TU-value ¢ satisfies E, M, CDD, and



(a) NG if and only if ¢ € M.
(b) Po if and only if p € H.
(¢) Mo if and only if p € R.
d) SSS if and only if p € S.
) WSS if and only if ¢ € PS.

e

(
(
4. Conclusion

Additivity does not really have great economic significance. Casajus and Huettner (2014) are
of the opinion that additivity "is a rather technical condition with little economic content.”
In contrast, monotonicity properties appear to be more practical and the payoffs achieved
more comprehensible. Of course, coalitional differential dependence has a small aftertaste
of weightedness. While the payoff ratios of dependent players by mutual dependence are
directly fixed by the payoff ratios in unanimity games, this is not the case by coalitional
differential dependence. Parallel axiomatization has many advantages, in particular when
the different TU-value classes are in a proper subset interrelationship. E. g., the proofing can
be much shorter by using a complete proof only for the largest superclass. For the subclasses,
we may only need proofs for the change steps or we may refer to known older results. If the
TU-value classes are in a proper subset interrelationship, we can also derive new results that
are not explicitly specified in the parallel axiomatization. For example, we can directly see
in our results that a multiweighted Shapley value that satisfies weakly strong monotonicity
is a Harsanyi payoff or a weighted Shapley value that satisfies strictly strong monotonicity is
a positively weighted Shapley value.

5. Appendix
5.1. A remark and basic lemmas, used in the proofs

Remark 5.1. It is well-known that (4) and (5) can be replaced equivalently by

Ay(T if S=1T
a(s) = e B8 T

A, (S), otherwise.
Lemma 5.2. (Casajus and Huettner, 2008). If i € N and v,w € V, then MC?(S) =
MC¥(S) for all S C N\{i} if and only if A,(SU{i}) = A, (S U{i}) for all S C N\{i}.
Lemma 5.3. Ifi € N andv,w € V, then MCY(T) > MC*(T), T C N\{i}, and MC?(S) =
MCP(S) for all S € N\{i}, S # T, if and only if A,(SU{i}) = A, (SU{i}) and A,(T U
{1}) > Au(T'U{3}).
Proof. =: Let MCY(T) > MC¥(T), T C N\{i}, and MC?(S) = MC(S) for all S C
N\{i}, S # T. We have

MCT) = A(SU{i}) > > AL(SU{i}) = MCP(T)

scT scT



and it follows, by Lemma 5.2, A,(T'U {i}) > A, (T U {i}).
<: Let A, (SU{i}) = Ay (SU{i}) for all S € N\{i}, S # T, and A,(T U {i}) > A,(T'U
{i}), T € N\{i}. We have, by Lemma 5.2,

MCH(T) =Y A(SU{i}) > > AL (SU{i}) = MCP(T).

SCT SCT

Lemma 5.4. If a TU-value ¢ satisfies E and MD), then ¢ also satisfies NG.

Proof. Let ¢ satisfy E and MD. We show, by contradiction, that ¢ meets NG: If ¢ does
not satisfy NG, we have in a null game at least one i € N such that ¢;(0) # 0. If N = {i}
we immediately have a contradiction due to E, if |[N| > 2, the contradiction follows due to
MD and E, because we have

ZjeN %’(O) B
jze;vgpj(UN) = W@i(UN) < 1=0. é

5.2. Proofs

5.2.1. Proof of Proposition 3.5

= Let ¢ be a TU-value that satisfies WSM and let the preconditions be as in CSM. Note
that ¢ satisfies also M and thus, by Proposition 3.4, CSE. Therefore, we only have to show
that ¢;(v) > ¢;(w) for all j € T.

By (5) and Remark 5.1, we have A,(S) = A,(S) for all S # T and A(T) > A,(T).
By Lemma 5.3, we have, MC}(T\{j}) > MCY(T\{j}), T > j, and MC}(S\{j}) =
MCY(S\{j}) for all S > j, S # T, and the claim follows by WSM.
<: Let ¢ be a TU-value that satisfies CSM and let the preconditions be as in WSM. Note
that ¢ satisfies also CSE and thus, by Proposition 3.4, M. Therefore, we only have to show
that ¢;(v) > @;(w) for all i € N such that MCY(T) > MC¥(T) for a T C N\{i} and
MCY(S) = MCP(S) for all S € N\{i}, S#T.

By Lemma 5.3, we have A, (SU{i}) = A, (SU{i}) and A, (T'U{i}) > A, (T'U{i}). Thus,
by Remark 5.1, the preconditions in CSM are satisfied and the claim follows by CSM.

[

5.2.2. Proof of Theorem 3.5

=: It is well-known that all TU-values ¢ € M satisfiy E and, by (3), it is obvious that
NG is satisfied too. By Lemma 5.2, Remark 5.1, and (3), CSE is satisfied and therefore, by
Proposition 3.4, M too.

We show CDD. Let o, € R, v,w € V, A€ AtN, S C N, and 7,5 € S be dependent in
v and w. By (1) and (3), we have for k € {3, j}

+ )\-‘r

A + )\-‘r >\+ +
M, (v+a-us)— M, ~(v)= Mgy, - @ and M, (w+B-us)— M, (w) = Asp B
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and CDD is satisfied. Thus, existence is shown for the (a) part. By Remark 3.1, H and R
are subsets of M, by Dragan (1992, Theorem 4.8), the TU-values from R satisfy SM, and,
by Nowak and Radzik (1995, Theorem 2.4 and Remark 2.3) the TU-values from § and PS
satisfy MD. The only thing that remains to be shown in the existence part is that in the cases
(b), (d), and (e) the TU values of the corresponding classes meet the related monotonicity
properties:

(b) By Lemma 5.3, Remark 5.1, and (2), CSM is satisfied and therefore, by Proposition
3.5, WSM too.

(d)/(e) By Nowak and Radzik (1995, Equation (2.2) in Theorem 2.1 where in (e) o := {N}),
it is immediate that all ¢ € § satisfy SM and all ¢ € PS satisfty SSM.
«: (a)! Let v € V and ¢ be a TU-value that satisfies E, NG, CDD, and M and therefore,
by Lemma 5.2, CSE. We show, by induction on the size r := [{R C N : R is essential in v},
that ¢ € M.

Initialization: Let r = 0. By NG, we have ¢ € M.

Induction step: Assume that ¢ € M holds to ¢ if r > 0, r arbitrary (/H). Now let
precisely r + 1 coalitions K, C N, 1 < ¢ < r + 1, be essential in v. We define K as the
intersection of all K, C N, 1 </ <r+1:

K = ﬂ K,.

1<e<r+1

We are dealing with two different cases: (i) i € N\K and (ii) i € K.

(i) Each ¢ € N\K is contained in at most r essential coalitions K, in v and we have at
least one essential coalition R; in v such that ¢ ¢ R;. Therefore, a v; € V exists for all
i € N\K such that A, (R;) = 0, A,,(S) = A,(S) for all S C N, S # R;, and A,(R;) =
Ay, (R;) 4+ ¢iy ¢; € R, ¢; # 0. Tt follows, by Remark 5.1 and CSE, ¢;(v) = ¢;(v;) for all
i € N\K and thus, by (IH),

N
i(v) = M-/\’(v) for some A~ € A~N and all i € N\K. (8)

(i) If K = {i}, we have, by E and (i), ¢i(v) = M (v) for some A" € AN, It | K| > 2, by
(1), all j € K are dependent in v, in ug, and in 0. We have, by NG, ¢;(0 + ug) — ¢;(0) =
pi(ug) for all i € K and, by E, ., pi(ux) = 1. Thus, at least one j € N exists such that
@;(ug) # 0. Let v € V such that A, (K) =0, A, (S) = Ay(S) for all S C N, S # K, and
therefore, by (IH), ¢;(v') = ng (V') for some A~ € A"N and all i € K. It follows for all
J € K with ¢;(ug) # 0:

> [eiw) —a(@)] = Z [%(uK) [pj(v) — %'(U/)]}

€K

—o(N) = o/(N) = S0 [M () = M ()] = Au(E)

1EN\K

= i) =9 (ur) A (K) + 5 (0) = M () + ¢, ().

N

Additionally, by CDD, we have ¢;(v) = ¢;(v') = M;\’ (v") for all i € K with @;(ux) =0. In
1+

total, we get ¢;(v) = M “(v) forall i € K and a NT e ATV,

7

4The proof follows in some parts the uniqueness part of the proof of Theorem 2 in Besner (2019).
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(b) The proof is completely analogues to the proof of case (a).

(c) ¢ satisties SM and therefore M. Thus, ¢ is a multiweighted Shapley value and the
claim follows by Dragan (1992, Theorem 4.8).

(d) MD implies CDD. Thus ¢ satisfies E, CDD, M, and, by Lemma 5.4, NG. Therefore
we have ¢ € M. By Dragan (1992, Proposition 4.7), ¢ satisfies Mo and hence, by Nowak
and Radzik (1995, Theorem 2.4), we obtain ¢ € S.

(e) By Lemma 5.4, ¢ satisfies NG. Therefore, by E, NG, and SSM, we have ¢;(uy) > 0
foralli € N. Let v € V and 7,5 € N be dependent in v. By MD, we have

pi(v) _ p(v)
wi(un)  pi(un)

and axiom A4 (w-Mutual Dependence) in Nowak and Radzik (1995) is satisfied for the special
case 0 = {N}. By Remark 3.3 and case (a), we have ¢ € M. Therefore, ¢ satisfies also
linearity and the null player property and, by Nowak and Radzik (1995, Theorem 2.1 with
o={N}), we get p € PS.

OJ

5.2.3. Proof of Corollary 3.8

According to the Theorems 3.2 and 3.7, and due to the property that H, R, S, and PS are
all subsets of M, we only have to show uniqueness.

(a) The result is already shown in Theorem 3.7 case (a).

(b)/(c)/(d)/(e) Let now ™, o® 5 and ©”° be TU-values that satisfy all mentioned
properties in the related cases. If [N| = 1, NG is implied by E. Let now |N| > 2. Obviously,
Po, Mo, and WSS each imply, together with E, NG. Also SSS together with E imply NG,
which we will show by contradiction. Assume ¢ does not meet NG. By E, we have at least
one ¢ € N with ¢;(0) > 0. It follows, by SSS, that we have ¢; > 0 for all j € N\{i} which
contradicts E. Therefore, all TU-values of all classes must be multiweighted Shapley values
and the claim follows by Theorem 3.2.

L]

5.3. Logical independence

Remark 5.5. Let v € V. The axioms in Theorem 3.7 are logically independent:
e E: The TU-value ¢ := 2Sh satisfies all axioms but E.

e NG: Let N = {i,j}. The TU-value p, defined by ¢;(v) := Sh;(v)+1, ¢;(v) :== Sh;(v)—1,
satisfies E, M, WSM, SM, and CDD, but not NG.

e CDD/MD: Let N = {i,j}. The TU-value ¢, defined by (6)/(7), satisfies all axioms but
CDD and MD.

N
\N\) satisfies E, NG, CDD, and MD, but

o M/WSM/SM/SSM: The TU-value ¢ := -
not M, WSM, SM, and SSM.

Remark 5.6. Let v € V. The axioms in Corollary 3.8 are logically independent:
e E: The TU-value ¢ := 2Sh satisfies all axioms but E.
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N
M: The TU-value ¢ := U|N|
e CDD: Let N = {i,j}. The TU-value ¢, defined by (6)/(7), satisfies all axioms but
CDD.

e NG: Let N = {7, j}. The TU-value ¢, defined by ¢;(v) := Sh;(v)+1, ¢;(v) := Sh;(v)—1,
satisfies E, M, and CDD, but not NG.

e Po/Mo/SSS/WSS: Let N = {i,j}. The multiweighted Shapley value ¢, defined by
oi(0) = v({i}) +25,({i. j}) and o,(0) := v({j}) — A, ({i,}) satisfies E, M, and CDD,
but not Po, Mo, SSS, and WSS.

satisfies all axioms but M.

References

Besner, M. (2019). Axiomatizations of the proportional Shapley value. Theory and Decision
https://doi.org/10.1007/s11238-019-09687-7

van den Brink, R., Funaki, Y., & Ju, Y. (2013). Reconciling marginalism with egalitarianism: consistency,
monotonicity, and implementation of egalitarian Shapley values. Social Choice and Welfare, 40(3), 693—
714.

Casajus, A., & Huettner, F. (2008) Marginality is equivalent to coalitional strategic equivalence. Working
paper.

Casajus, A., & Huettner, F. (2014) Weakly monotonic solutions for cooperative games. Journal of Economic
Theory, 154, 162-172.

Casajus, A. (2019). Relaxations of symmetry and the weighted Shapley values. Economics Letters, 176, 75—
78.

Derks, J., Haller, H., & Peters, H. (2000). The selectope for cooperative games. International Journal of
Game Theory, 29(1), 23-38.

Dragan, I. C. (1992) Multiweighted Shapley values and random order values. University of Texas at Arling-
ton.

Hammer, P. L., Peled, U. N.; & Sorensen, S. (1977). Pseudo-boolean functions and game theory. I. Core el-
ements and Shapley value. Cahiers du CERO, 19, 159-176.

Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In: A. W. Tucker & R. D. Luce
(Eds.), Contributions to the theory of games IV (325-355). Princeton NJ: Princeton University Press.

Kalai, E., & Samet, D. (1987) On weighted Shapley values. International Journal of Game Theory 16(3),
205—222.

Nowak, A. S., & Radzik, T. (1995). On axiomatizations of the weighted Shapley values. Games and Eco-
nomic Behavior, 8(2), 389-405.

Shapley, L. S. (1953a). Additive and non-additive set functions. Princeton University.

Shapley, L. S. (1953b). A value for n-person games. H. W. Kuhn/A. W. Tucker (eds.), Contributions to the
Theory of Games, Vol. 2, Princeton University Press, Princeton, 307-317.

Vasil’ev, V. A. (1975). The Shapley value for cooperative games of bounded polynomial variation. Opti-
mizacija Vyp, 17, 5-27.

Vasil’ev, V. A. (1978). Support function of the core of a convex game. Optimizacija Vyp, 21, 30-35.

Vasil’ev, V. A. (1981). On a class of imputations in cooperative games, Soviet Mathematics Dokladi 23 53—
57.

Weber, R. J. (1988). Probabilistic values for games. In A.E. Roth (Ed.), The Shapley value, essays in honor
of L.S. Shapley (pp. 101-119). Cambridge: Cambridge University Press.

Young, H. P. (1985). Monotonic solutions of Cooperative Games. International Journal of Game Theory,
14(2), 65-72.



	Parallel axiomatizations of weighted and multiweighted Shapley values, random order values, and the Harsanyi set
	Abstract
	1 Introduction
	2 Preliminaries
	3 Parallel axiomatizations
	4 Conclusion
	5 Appendix
	5.1 A remark and basic lemmas, used in the proofs
	5.2 Proofs
	5.2.1 Proof of Proposition 3.5
	5.2.2 Proof of Theorem 3.5
	5.2.3 Proof of Corollary 3.8

	5.3 Logical independence

	References


