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Abstract

We revisit cooperative games with externalities, i.e. cooperative games where the
payoff of a coalition depends on the partition of the entire set of players. We define
the worth of a coalition assuming that its members have probabilistic beliefs over the
coalitional behavior of the outsiders, i.e., they assign various probability distributions
on the set of partitions that the outsiders can form. We apply this framework to sym-
metric aggregative games and derive conditions on coalitional beliefs that guarantee
the non-emptiness of the core of the induced cooperative games.
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1 Introduction

Cooperative game theory studies situations where groups or coalitions of players act col-
lectively by signing binding agreements. One of the starting points of the theory is to
determine the worth a coalition can achieve. In games with orthogonal coalitions, i.e.,
coalitions that do not affect one another, this task is quite straightforward, as it suffices to
study the actions of the members of that coalition only. However, when orthogonality is
absent, or in other words, when there are inter-coalitional externalities, the specification of
the worth of a coalition requires the studying of the actions of the players in all coalitions.

Therefore, when a number of players contemplate to form a coalition in an environ-
ment with externalities they need to have a theory, or a conjecture, about the actions of
the players outside the proposed coalition. Clearly, different conjectures lead to different
specifications of the worth of the coalition, which in turn affects the outcome of the game.
In particular, these conjectures determine the core of the cooperative game. The core is
the set of all allocations of the value that the entire society of players generates that are
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immune to coalitional rejections. Non-emptiness of the core means that cooperation among
all players in the game is a priori feasible.

The literature on cooperative games with externalities has proposed a number of such
coalitional conjectures, each giving rise to a specific core notion. According to α and β-
conjectures (Aumann 1959), the members of a coalition compute their worth assuming that
the outside players select their strategies so as to minimize the payoff of the coalition; the
concepts of α and β-core are then defined with respect to the resulting coalitional payoffs.
According to γ-conjectures (Hart & Kurz 1983; Chander & Tulkens 1997), it is assumed
that the outsiders select individual best strategies, i.e., they form only singleton coalitions;
the notion of γ-core is then accordingly defined. The same approach can be followed under
the additional assumption that each coalition assumes for itself the role of Stackelberg
leader (Currarini & Marini 2003). The so called δ-conjectures presume that once one or
more players depart from a coalition, the remaining ones stay put (Hart & Kurz 1983); this
gives rise to δ-core.

The r-approach (Huang & Sjostrom 2003; Koczy 2007) proposes that the members of
a coalition compute their worth by looking recursively on the sub-games played among
the outsiders; the r -core arises when the solution concept employed in these sub-games is
the core itself. On another approach, Nax (2014) focuses on the core of cooperative games
with multiple sources of externalities, i.e, games where cooperation takes place in more than
one spheres or layers. Externalities in a certain sphere are borne out of inter-coalitional
interactions within that sphere (intra-sphere externalities) or from interactions in other
spheres (inter-sphere externalities). Finally, Bloch & Nouweland (2014) assume that the
expectations of a coalition on the reaction of the outsiders are guided by a set of axioms.
The core notions that the axioms pick depend on whether expectations depend or not on
the initial partition of the players.

Economists often restore to cooperative games with externalities to model various eco-
nomic environments. Applications include the use of α and β-core concepts in oligopolistic
markets (Zhao 1999; Norde et al. 2002; Lardon 2010); the use of γ-core in economies
with production externalities (Chander & Tulkens 1997; Chander 2007; Helm 2012), in
oligopolies (Rajan 1989; Lardon 2010; Lardon 2012) or in extensive-form games (Chander
& Wooders 2012); of sequential γ-core for cooperative games with strategic complements
(Currarini & Marini 2003) or for economies with environmental externalities (Marini 2013);
of δ-core for oligopolistic markets with vertical differentiation (Gabszewicz et al 2016), etc.
The main focus of these papers is to find conditions under which the corresponding core is
non-empty.

The current paper focuses too on cooperative games with externalities but takes a
different route. It assumes that when a group of players, S, contemplate to break off from
the rest of the society, they are uncertain about the partition that the players outside
S will form. As a result, they assign various probability distributions on the set of all
possible partitions. These probabilistic beliefs do not necessarily reflect the behavior of
the outsiders, i.e., beliefs need not be consistent with actual choices. Given the beliefs,
no matter how they form, one can compute the expected worth of S and define the core
of the resulting cooperative game. The task that arises then is to find conditions on the
data of the game, i.e., on payoff functions and probability distributions, that guarantee the

2



non-emptiness of the core.1

The motivation of our paper is twofold. First, we are interested in generalizing some
of the existing approaches on the definition of core. For example, the notion of γ-core
is a special case of our approach that arises when each coalition assigns probability one
to the event that the outsiders form only singleton coalitions; likewise, the notion of δ-
core corresponds to the case where the probability that the outsiders form one coalition
is one. Secondly, our paper could be read as a work on bounded rationality in relation
to cooperative games. The assignment of an ad hoc probability distribution on the set of
partitions of the outsiders may reflect the cognitive inability of the members of a coalition
to accurately deduce the outsiders’ equilibrium partition. In this sense, probabilistic beliefs
act as a rule of thumb. This approach is particularly relevant for games with a large number
of players, where the number of different partitions is very large.

We apply our framework to cooperative games generated by symmetric aggregative
normal form games. Imposing certain restrictions on how the beliefs of coalitions evolve
when the number of players in the game changes, we first derive a result for the case of
three-player games and then, using the above said restrictions and an induction argument,
we generalize to the case of any number of players.

The paper is organized as follows. Section 2 introduces the basic framework. Section 3
presents the results and the last section offers brief concluding remarks.

2 Preliminaries

The primitive data in our paper is given by a collection {N, (Xi, ui)i∈N}, where N =
{1, 2, . . . , n} is a set of players, Xi is the strategy set of player i ∈ N and ui is i’s payoff
function. We assume that the payoff of i is of the form ui(xi, x), where x =

∑
k∈N

xk; i.e.,

it depends only on his strategy and on the sum of all players’ strategies. So, we focus on
aggregative games.

Before selecting their strategies, the players organize themselves into coalitions by sign-
ing binding contracts. The objective of each coalition is to maximize the sum of its mem-
bers’ payoffs (we assume that utility is transferable). The current paper focuses on the
formation of the grand coalition, N . This event might be blocked by the formation of
smaller coalitions. We denote by S such a candidate deviant coalition. As our analysis will
often focus on such an S, let us denote by π−S a partition of the players outside S; and by
Π−S the set of all partitions that the players outside S can form.

Our main premise is that the members of S assign a probability distribution hn,S over
Π−S. So, for π−S ∈ Π−S, the value hn,S(π−S) is the probability assigned to partition π−S.
Given π−S, denote by x

π−S

j a strategy of player2 j /∈ S and by xi a strategy of player i ∈ S;
finally denote xπ−S =

∑
j /∈S

x
π−S

j +
∑
i∈S

xi. Then, to find the worth of S we need to solve the

problems

1We note that Lekeas & Stamatopoulos (2014) analyzes a specific application of the current framework.
In particular, it examines the cooperative game generated in a linear Cournot market where the belief of
a coalition is represented by a specific probability distribution, the logit distribution.

2For the time being, we define strategies with respect to players only and not with respect to coalitions
to economize on notation.
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max
(xi)i∈S

∑

π−S∈Π−S

hn,S(π−S)
∑

i∈S

ui(xi, x
π−S), (1)

and also for each outside coalition T ∈ π−S,

max
(xj)j∈T

∑

j∈T

uj(x
π−S

j , xπ−S) (2)

Finally, the problem facing the grand coalition is the standard one, namely it maximizes
the sum of the payoff functions of all players.

We restrict attention to a specific class of aggregative games, the symmetric linear
aggregative games. A linear aggregative game is an aggregative game in which the payoff
of i has a bilinear form. To elaborate, we follow Martimort & Stole (2010) and we consider
two linear spaces, V and W . A bilinear form is a mapping 〈·, ·〉 : V ×W → R, where for
every ψ, ψ̃ ∈ V and z, z̃ ∈ W , and scalar λ,

〈ψ + ψ̃, ·〉 = 〈ψ, ·〉+ 〈ψ̃, ·〉, 〈·, z + z̃〉 = 〈·, z〉+ 〈·, z̃〉

〈λψ, z〉 = 〈ψ, λz〉 = λ〈ψ, z〉

A linear aggregative normal form game arises when there exists a function ũi such that the
payoff of player i has the form

ui(xi, x) = 〈xi, ũi(x)〉, i = 1, 2, . . . , n

Further we impose symmetry among the players. In our framework, this requires to set
ũi(·) ≡ u(·), all i ∈ N . Hence,

ui(xi, x) = 〈xi, u(x)〉, i = 1, 2, . . . , n (3)

Many economic models can be represented within the framework dictated by (3), for exam-
ple, symmetric oligopoly models with linear cost functions, cost and surplus sharing games,
contest games with linear costs, etc.

Given (3) we can write the objective function of deviant coalition S in the following
form

∑

π−S

hn,S(π−S)
∑

i∈S

〈xi, u(x
π−S)〉 =

∑

π−S

hn,S(π−S)〈
∑

i∈S

xi, u(
∑

i∈S

xi +
∑

j /∈S

x
π−S

j )〉 (4)

I.e., S selects simply the sum
∑
i∈S

xi ≡ xS. A similar observation holds for any outside

coalition. Picking some T ∈ π−S, we have the following objective function for T ,

∑

j∈T

〈x
π−S

j , u(xπ−S)〉 = 〈
∑

j∈T

x
π−S

j , u(
∑

j∈T

x
π−S

j + x
π−S

−T )〉, (5)

where x
π−S

−T is the sum of the strategies of all players outside T . Hence T selects the sum∑
j∈T

x
π−S

j ≡ x
π−S

T .

4



Finally, we can write the objective function of the grand coalition as
∑
i∈N

〈xi, u(x)〉 =

〈
∑
i∈N

xi, u(x)〉. I.e., the grand coalition simply selects the sum
∑
i∈N

xi ≡ x. Among other

things, this implies that N ’s worth does not depend on the number of players in the game.
The above allow us to conclude that for any π−S, the worth of S depends only on

the number of the coalitions in π−S (and not on, say, how many players each coalition
has). This fact will be used to simplify the exposition as follows. Assume S has |S| = s
members. Since what matters for S is only the number of coalitions of the outsiders, we
define a probability distribution fn,S as follows

fn,S(l) =
∑

π−S : |π−s|=l

hn,S(π−S), l = 1, 2, ..., n− s (6)

The value fn,S(l) is the total probability of the event that the players outside S form l
coalitions. Denote by πl

−S a generic partition of the outsiders with l coalitions. Let

∑

T∈πl
−S

x
πl
−S

T ≡ xl−S, xl = xS + xl−S,

Then to find the worth of S we need to solve the problems

max
xS

n−k∑

l=1

fn,S(l)〈xS, u(x
l)〉, (7)

and for each T ∈ πl
−S,

max
xT

〈xT , u(x
l)〉 (8)

We denote the above collection of problems by Γfn
S . We will need the following two condi-

tions.

A1 X is a compact, convex interval of R; and 〈xi, u(x)〉 is continuously differentiable.

To state the second condition, denote by D〈xi, u(x)) the marginal payoff function of player
i.

A2 D〈xi, u(x)〉 is decreasing in xi and in x.

A2 is the strong concavity assumption of Corchón (1994). A1-A2 guarantee that the op-
timization problems described by Γfn

S have a solution; moreover A2 implies that coalition
formation creates positive externalities3 (see Lemma A1 in the Appendix).

Given the above, denote the solution of (7)-(8) by xfS and xf,lT respectively, l ∈ {1, 2 . . . , n−
s}. Let

xf,l−S =
∑

T∈πl

xf,lT , xl,f = xfS + xf,l−S (9)

3Positive externalities arise when a coalition benefits from the merging of other coalitions (Hafalir 2007).
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Then the worth of S is

vfn(S) =
n−s∑

l=1

fn,S(l)〈x
f
S, u(x

f,l)〉 (10)

Denote the resulting cooperative game by (N, vfn). The core of this game is the set

Cfn = {(w1, w2, . . . , wn) ∈ R
n :

∑

i∈N

wi = v(N) and
∑

i∈S

wi ≥ vfn(S), for all S}

where v(N) denotes the worth of the grand coalition. The following constitute necessary
and sufficient conditions for non-emptiness of the core of our symmetric cooperative game:

v(N)

n
≥
vfn(S)

s
, for all S (11)

Our approach in this paper will focus on showing the validity of (11).

Remark 1
In what follows we reserve the term vγn(S) to denote the worth of S under the assumption
that it assigns probability one to γ-scenario; likewise, vδn(S) will denote the worth of S
under the assumption that it assigns probability one to δ-scenario.

Remark 2
Positive externalities from coalition formation imply that vfn(S) ∈ [vγn(S), vδn(S)] (see the
discussion after assumption A2 and Lemma A1 in the Appendix).

3 Results

As benchmark we first present the analysis of three player-games. For this case we only
need to specify beliefs for S when |S| = 1.

Proposition 1 Assume that f3,S(1) is sufficiently low, where |S| = 1. Then the core of
(N, vf3) is non-empty.

Proof We will show the validity of (11) for |S| ∈ {1, 2}. Consider first the case |S| = 1.
As said before, the worth of S satisfies the condition4 vf3(S) ∈ [vγ3(S), vδ3(S)]. Notice that
vγ3(S), which corresponds to S’s belief that the two outsiders stay separate with probability
one, is simply the Nash payoff of the symmetric game where all players stand alone. This
payoff clearly cannot exceed v(N)

3
, i.e., the per capita efficient payoff. Hence under this

belief, (11) is satisfied.
As the probability of γ-scenario decreases, or as the probability of the outsiders forming

one coalition increases, the payoff of S increases monotonically towards vδ3(S). There are
two possible cases:

(i) vδ3(S) ≤ v(N)
3

: then S does not deviate irrespective of its beliefs.

4See Remark 2.
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(ii) vδ3(S) > v(N)
3

: then S does not deviate if the probability attached to the scenario
where the outsiders form one coalition, i.e., f3,S(1), does not exceed a critical value.

The current model cannot tell us whether (i) or (ii) holds. So, we can only deduce that S
does not deviate if the probability that it assigns to the scenario of a sole outside coalition
is low enough.

Consider next a coalition with two players, |S| = 2. Given our linear aggregative
formulation, the payoff of such a coalition is equal to the payoff of a singleton coalition
under the γ-scenario. Since the latter payoff cannot exceed, as we said already, v(N)

3
, so the

more is true for half of this payoff. But this means that (11) holds for |S| = 2.

We now move to games with arbitrary number of players. We will use an induction ar-
gument. To this end, we will establish a certain pattern on the (probabilistic) beliefs of
S across games with different number of players. Namely, we will ”tie” the beliefs of S
in a game with n players with its beliefs in a game with n + 1 players. This connection
will help us in our induction argument: given the pattern, if S does not deviate in a game
with a certain number of players, it will not also deviate in a game with a larger number
of players.

To begin, take a distribution fn,S and denote by f̃n+1,S a distribution that satisfies

vf̃n+1(S) =
n

n+ 1
vfn(S)

Such an f̃n+1,S exists as we elaborate in (the proof of) Proposition 2 below. Define the set
of distributions

Bfn,S
= {fn+1,S : vfn+1(S) ≤ vf̃n+1(S)} (12)

The above set is non-empty. For example, it contains the following non-empty set

B′
fn,S

= {fn+1,S : fn+1,S(l) ≤ f̃n+1,S(l), l = 1, 2, . . . , n− s− 1}

Compared to f̃n+1,S, any fn+1,S ∈ B′
fn,S

assigns uniformly lower probabilities to the most

favorable partitions for S and higher probability to the most unfavorable partition.5 Hence,
for any such fn+1,Sk

the inequality vfn+1(S) ≤ vf̃n+1(S) must hold.
We will focus on the following beliefs of S, for |S| ≤ n−2, which we will define recursively

w.r.t. the number of players in the game.

Definition 1 Consider the following beliefs:

(i) Let n = 3. Then f3,S is as in Proposition 1.

(ii) Let n = 4. Then f4,S is restricted to be an element of Bf3,S .

(iii) Let n > 4 and assume that fm,S has been defined for all m ≤ n − 1. Then, fn,S is
restricted to be an element of Bfn−1,S

.

5See Remark 2.
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The above beliefs will be called admissible.

We are now ready to state and prove the following.

Proposition 2 Assume that each S has admissible beliefs. Then the core of (N, vfn) is
non-empty.

Proof We will show that (11) holds using induction on n ≥ 3.

Base: Consider a game with 3 players. Proposition 1 then guarantees than no S deviates.

Induction hypothesis: Assume that in a game with n players the following hold

v(N)

n
≥
vfn(S)

s
, for all S

Induction step: We will show that in a game with n+ 1 players,

v(N)

n+ 1
≥
vfn+1(S)

s
, for all S (13)

To show (13), it suffices by the induction hypothesis to show

(n+ 1)vfn+1(S) ≤ nvfn(S) (14)

To show the above, we recall first that vfn(S) ∈ [vγn(S), vδn(S)]. So, the range of values of
n

n+1
vfn(S) is given by the interval [ n

n+1
vγn(S), n

n+1
vδn(S)]. Moreover, the range of values of

vfn+1(S) is [vγn+1(S), vδn+1(S)]. In Lemma A2 (in the Appendix) we show that

vγn+1(S) ≤
n

n+ 1
vγn(S) (15)

Moreover, we notice that vδn(S) = vδn+1(S). This is due again to the linear aggregative
structure. Hence we have the following picture:

vγn+1 (S) vδn+1 (S)n
n+1

vγn (S) n
n+1

vδn (S)

n

n+ 1
vfn (S)

︸ ︷︷ ︸

By the above we can conclude the following: For each distribution fn,S different than the
distribution that gives probability one to the event that all outsiders form one coalition there
exists a (non-unique) distribution f̃n+1,S such that vf̃n+1(S) = n

n+1
vfn(S) and vfn+1(S) ≤

vf̃n+1(S), for all fn+1,S ∈ Bfn,S
(see (12)). Hence, under admissible beliefs (14) holds. This

concludes the induction step.
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4 Conclusion

This short paper analyzed the core of cooperative games with externalities under the as-
sumption that coalitions have probabilistic beliefs over the partition of the outsiders. The
results we obtained rest on a number of assumptions that clearly restrict their applicability.
Dropping the bilinear form of payoffs, in particular, or the aggregative structure altogether,
can provide the most immediate direction of future research as this will enhance the appli-
cability of our approach.

Finally, the biggest challenge that lies ahead is the analysis of non-symmetric games.
For this case, showing (11) is not a valid way to proceed, and hence induction is not
also fruitful. The best route of analysis could be to find probabilistic beliefs that lead to
balancedness of the induced cooperative game. This is also left as future research.
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Appendix

Lemma A1 vfn(S) ∈ [vγn(S), vδn(S)].

Proof We will define two auxiliary normal form games which we will denote Γl
S and Γl+1

S :
In the first game, S faces a partition of the outsiders in l coalitions; in the latter it faces a
partition of the outsiders in l + 1 coalitions. Given our linear aggregative structure, each
coalition in Γl

S and in Γl+1
S identical to a player. So the former game has l + 1 symmetric

players and the latter has l+2 symmetric players. With a slight abuse of notation, denote
by xli the equilibrium strategy of each coalition in Γl

S and by xl+1
i the equilibrium strategy
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of each coalition in Γl+1
S . Let also xl = (l+1)xli and x

l+1 = (l+2)xl+1
i . Assumptions A1-A2

imply that we can use the results of Corchón (1994, Proposition 1) or Acemoglu & Jensen
(2013, Theorem 7), which show that the entry of a player in an aggregative game increases
the sum of the equilibrium strategies of all players. The translation of this result in our
context means that xl+1 ≥ xl.

Observe next that total equilibrium payoffs in either Γl
S or Γl+1

S are of the form

U(m) ≡ (m+ 1)〈xmi , u(x
m)〉 = 〈xm, u(xm)〉, m = 0, 1, 2, . . . , n− s

Indeed, for Γl
S we have

U(l) = (l + 1)〈xli, u(x
l)〉 = 〈xl, u(xl)〉

whereas for Γl+1
S ,

U(l + 1) = (l + 2)〈xl+1
i , u(xl+1)〉 = 〈xl+1, u(xl+1)〉

Notice that U(m) is maximized for m = 0. In other words, U(m) is increasing for x < x0

and decreasing for x > x0. Since xl+1 ≥ xl ≥ x0 (see first paragraph of the proof), we must
have U(l) ≥ U(l + 1) or (l + 1)〈xli, u(x

l)〉 ≥ (l + 2)〈xl+1
i , u(xl+1)〉. But the last inequality

implies that 〈xli, u(x
l)〉 ≥ 〈xl+1

i , u(xl+1)〉, which means that S prefers facing l coalitions over
facing l + 1 coalitions. Introducing now probabilistic beliefs, we have that the worth of S
is: (i) maximum when it assigns probability one to δ scenario; (ii) it is minimum when it
assigns probability one to γ scenario; (iii) it decreases (increases) the more (less) weight it
assigns to partitions with many coalitions. In other words, vfn(S) ∈ [vγn(S), vδn(S)].

Lemma A2 Inequality (15) holds.

Proof Consider the symmetric normal form games Γγn
S and Γ

γn+1

S : the former arises when
coalition S assigns probability one to the event that all n − s outsiders form singleton
coalitions; the latter arises when coalition S assigns probability one to the event that all
n + 1 − s outsiders form singleton coalitions. Denote by xγni the equilibrium strategy of
each player in Γγn

S , and by x
γn+1

i the equilibrium strategy of each player in Γ
γn+1

S . Then we
can use again Corchón (1994, Proposition 1) or Acemoglu & Jensen (2013, Theorem 7) and
derive the inequality (n− s+ 1)xγni ≤ (n− s+ 2)x

γn+1

i .
We next observe that total equilibrium payoffs in either Γγn

S or Γ
γn+1

S are of the form

V (m) ≡ m〈xγmi , u(mxγmi )〉 = 〈mxγmi , u(mxγmi )〉

Notice that V (m) is maximized when m = 1. Hence V (m) is monotonically increasing for
x < xγ1 and monotonically decreasing for x > xγ1i . Since (n − s + 2)x

γn+1

i ≥ (n − s +
1)xγni ≥ xγ1i , we must have that V (n) ≥ V (n+ 1). But this is tantamount to writing that6

(n− s+1)vγn(S) ≥ (n− s+2)vγn+1(S) or vγn(S) ≥ n−s+2
n−s+1

vγn+1(S). The proof is completed

by noticing that n−s+2
n−s+1

≥ n+1
n
.

6Symmetry and the linear aggregative structure imply that all players in Γγn

S have the same equilibrium
payoff and the same holds for Γ

γn+1

S .
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