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Abstract 
Nearshore wind development has been seen as the cost reducing option that could shrink the cost gap 
between onshore and offshore development. The cost advantage is linked to more shallow water and 
shorter connection to shore even avoiding an offshore substation. Public tendering for offshore wind in 
Denmark has opened up for near-shore wind turbine farms as an alternative for lowering the cost of new 
offshore wind development.  Whether these proposed near-shore locations will manage to significantly 
lower costs is not clear. The tenders have resulted in bids that are at comparable levels for the nearshore 
and the further offshore wind farms. We compare the cost drivers and possible cost differentials with 
preferences for locating wind farms further away from the coast. The main cost driver is water depth and 
in the Danish case water depth is increasing slowly or is not even correlated with the distance from shore. 
Therefore the willingness to pay for moving turbines away from the coast may be sufficiently high to 
balance the increased cost. The actual comparison of costs and willingness to pay must be carried out for 
the specific case with cost characteristics and willingness to pay by the affected population.   

Keywords: offshore wind; cost curve; cost drivers; preferences; nearshore   

1 Introduction 
Wind energy is one of the most cost-efficient renewable technologies when ambitious targets for renewable 

energy have to be met. In many countries, the cheapest wind resources on-shore are now competitive with 

conventional generation. Currently there exist high expectations for the development of wind energy, 

particularly in Europe, out of which offshore wind turbine developments will be central as tools to achieve 

current energy targets. Offshore wind development is still more costly but because land for onshore 

development is scarce in many countries, offshore wind sites have also been developed especially in Europe. In 

2017 Denmark had 4228 MW onshore and 1292 MW offshore capacity of wind (Danish Energy Agency, 2017). 

Costs for offshore wind varies a lot depending on specific location, water depth and distance as well as actual 

technology applied. Even though recent years have shown a significant decrease in costs for offshore wind, and 

as a consequence a narrower differential between onshore and offshore wind costs, offshore wind remains more 

expensive than onshore wind.  As a consequence of the shift from onshore to offshore projects and the higher 

costs associated to these, the expansion of wind contribution to electricity generation has become more 

expensive resulting in slower growth. Financing of the necessary support has become more of a public issue 

with electricity consumers, especially industry, increasingly pressuring to be exempted from contributing to 

financing via public service obligations. However, further cost reductions are expected (Wiser et al., 2016a), 

(Wiser et al., 2016b)  and especially the option of using more shallow waters closer to shore is considered as a 

way to reduce costs of offshore wind. The choice between nearshore and (far)-offshore is particularly relevant, 

both because of increased public resistance due to visual disamenities produced by nearshore projects, and 

because of the potential cost reduction benefits attained by building wind farms closer to the shore. 

In Denmark this option has also been considered and some nearshore sites were already included in tenders in 

2017. This paper investigates the cost characteristics of nearshore wind and the specific cost drivers that are 
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expected to make it cheaper than further offshore wind. We define nearshore wind as turbines that are up to 15 

km off the coast. Based on this need, an analysis of the differences between costs and cost drivers for both 

offshore and nearshore is needed, as well as an exploration towards other possible factors that might affect the 

relative advantage of nearshore compared to offshore projects. We compare Danish nearshore sites with further 

ashore wind potentials in Denmark and elsewhere. Costs for nearshore are expected to be lower due to lower 

connection costs, foundation, and to some extent, operation and maintenance. These lower costs must be 

balanced by the less favourable wind conditions and the costs associated with public resistance. Carefully 

selecting the nearshore sites with low resistance and low cost characteristics can hopefully reduce the cost of 

expanding the offshore wind capacity in Denmark where there is a considerable amount of coast line compared 

to the area of the country. Here, the focus is on trying to determine the cost differential for wind farms located at 

different distance from the coast in comparison to the typical cost curve for further off wind farms in DK. The 

most important cost driver is probably water depth and in this respect Denmark is probably not representative of 

offshore conditions in other regions. There may still be available shallow sites in Denmark that are further from 

the coast, and these may be substantially preferred to the nearshore sites.  

The paper is organised with a first section describing the cost characteristics of offshore wind and the main 

variables and assumptions included in the calculation of Levelised Cost of Energy (LCOE). The next section 

examines the offshore potentials in Denmark and associate potentials with cost drivers. Following section 

evaluate the cost advantage of nearshore wind with Danish characteristics. The last section discusses and 

compares the cost advantage with public preferences for shifting wind development further offshore. A final 

section concludes on the findings and implications for Danish wind expansion. 

2 Levelised Cost of Energy 
When comparing costs of energy, the levelised cost of energy (LCOE) is a commonly used measure, which 
focuses on the cost of supplying energy (electricity) and do not include properties as the varying quality 
of supply and the fluctuating value of supply at different hours of the day and year. We are focusing on 
comparing nearshore and offshore wind development in Denmark including different sites that may 
imply some variation in wind conditions and specific short term generation profile, but the difference in 
profile and thereby value per generated unit is not expected to be significant, such as can be the case 
when comparing across more fundamentally different technologies and power markets/countries. 

There may be minor differences in the lifetime of turbines and the variability of the generation, but they 
are generally small within the wind technology, and therefore the LCOE is a reasonable measure for the 
comparison here.  

2.1 LCOE assessment for power generators 
Calculating the LCOE is a tool not only used for assessing the economic performance of offshore wind 
energy but is utilised throughout the industry to evaluate the cost-effectiveness of different forms of 
power generation technologies and to compare them with each other. In that way, a comparison also 
between conventional and renewable power generators can be made even though these technologies can 
differ significantly in their cost structure. While conventional generators usually face a high share of their 
total lifetime costs with variable costs such as expenses for fuel, for most renewable energy sources a 
significant part constitute the investment costs occurring at the beginning of the investment projects, 
particularly for those technologies where no cost for fuel accrues. The LCOE thus is, on the surface, a 
straightforward measure for the investigation scope of an energy market as a whole to examine the 
competitiveness of different energy technologies. The LCOE expresses the cost over the lifetime of an 
asset related to the expected energy production, which is usually based on average annual production, 
and it furthermore accounts for the time value of money by discounting the cost and energy over the 
lifetime. While it can be challenging to identify the correct discount factor to be used for calculating LCOE 
when comparing different technologies, in the case of comparing offshore with nearshore wind, this is not 
a difficulty, and therefore LCOE is an excellent tool to use. 

While comparing the LCOE for different power generation systems within a specific market is a simple 
indicator to identify which technology produces electricity at the lowest cost, it is not so simple to 
compare LCOE analyses across studies for different markets or countries even for the same power 
generation technology without considering cost allocation principles and regulation. Countries use 
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various regulations and guidelines of how to assign cost elements to generation or grid and sometimes 
costs are indirectly affected by national support variations. A Danish partnership of different commercial 
and state entities has tried to propagate a standard approach to calculate the LCOE specifically for 
offshore wind energy (Forcherio, 2014) in order to facilitate a cost comparison of electricity production 
in a growing joined European energy system, but national regulations still suggest various methods for 
the LCOE assessment. 

2.2 LCOE comparison of wind using national characteristics/differences 
Great care has to be taken when utilising LCOE measures for comparing different projects, mainly when 
the projects compared are sited in different countries. While the units for LCOE are the same, there is no 
standard definition regarding which costs are included in the calculation of this measure. 

(Visser & Held, 2014) studies different assessments of LCOE in the Netherlands, United Kingdom, 
Germany and Spain and finds out that besides from CAPEX and OPEX, which are considered in every 
analysis, residual costs such as decommissioning, grid balancing, and cost of market integration are not 
integrated into the LCOE analyses of every country. Furthermore, grid connection costs are frequently 
ignored, since very few countries (such as the UK) include these costs in the scope of the project and the 
LCOE assessment. These kinds of differences will, therefore, affect the LCOE estimates for different 
projects, and make comparison difficult.  

In order to illustrate the difference in approach of the United Kingdom and Denmark, the standard 
guideline for LCOE calculations in Denmark, a report of the Danish Energy Agency is used, which 
describes the financial and technical assumptions behind LCOE analyses in this country (Danish Energy 
Agency, 2015b). The comparison of the United Kingdom and Denmark regarding the relevant factors as 
presented by (Visser & Held, 2014) is shown in Table 2.1. The factors are indicated with yes or no 
depending on their inclusion in the respective LCOE analysis method. 

Country United Kingdom Denmark 

Equipment cost1 Yes Yes 

Other investment2 & fixed planning cost Yes Yes 

Capital cost (debt, equity) No No 

O&M cost Yes Yes 

Decommissioning cost Yes No 

Cost assessment for grid connection Yes No 

Network related cost/Balancing cost Yes Yes 

Cost of market integration/Grid expansion cost No Yes 

Table 2.1: Comparison of LCOE evaluation methods in the UK and Denmark 

As seen in Table 2.1, whereas the general CAPEX and OPEX are included in the LCOE calculation in both 
countries, the inclusion of grid connection cost into the capital cost, in fact, differs due to different 
regulations in both countries. Also, the decommissioning costs are included in the British method and are 
taken into account as a “provisioning fund” as part of the total operational cost. By accumulating these 
payments over the lifetime, a fund is created that serves to pay the decommissioning expenditures at the 
end of the lifetime. The Danish approach, however, assumes that the decommissioning costs are offset by 
the residual asset value and thus are excluded from the assessment (Danish Energy Agency & 
Energinet.dk, 2014). The difference in both approaches may impact differently onshore and offshore 
projects, depending on the need to decommission foundations. The electrical balancing costs are included 
in both regimes, but a broader impact on investments concerning the electricity system is not considered 
in the British methodology. In Denmark, on the other hand, the costs for adjusting or expanding the 
electrical infrastructure, which is of particular importance for renewable energy sources, is included in 
the calculation.  

1 Technology cost, e.g. turbines, control systems 

2 Construction/installation cost, foundation cost 
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The height of balancing costs differs in the countries due to the respective production portfolio and the 
flexibility of and the transmission with the surrounding electricity system. Despite a high share of energy 
production stemming from wind power, the average balancing costs for wind power producers in 
Denmark is estimated at 2 EUR/MWh, which is in the lower range of the wind energy balancing costs in 
Europe, due to the interconnection with other electricity markets and most notably the flexible 
hydropower plants in the Norwegian power system (Danish Energy Agency, 2015b). The balancing costs 
for wind power producers in the United Kingdom in contrast are estimated at 3 EUR/MWh at the upper 
range of average wind energy balancing costs in Europe, likely due to the poorer interconnection to the 
electricity grid of continental Europe (EWEA, 2015), or differences in the design of the balancing market, 
in regard to regulating power and frequency restoration reserves. 

As a consequence of the different approaches and values regarding the above-mentioned factors included 
in the LCOE analyses, a comparison of the LCOE of specific technologies assessments between different 
countries can be somewhat biased. A general trend of cost development of specific technologies over 
different countries can therefore preferably be evaluated by relative cost reduction projections over time 
than by absolute values of specific years.  

Another highly sensitive parameter for the LCOE calculation is the choice of the discount rate as stated in 
(Visser & Held, 2014), which usually varies throughout different countries. This procedure is due to a 
different perception of risk and various estimations of alternatives for public investments in specific 
national markets. If the risk for an investment is assumed to be high, an increased discount rate will 
reflect a higher needed return on the investment in order for the project to be regarded as profitable. The 
risk depends on the general market conditions such as the supply chain market or the dependency of 
imports and is estimated differently in different countries. Having many alternatives to the investment in 
a particular market furthermore generates opportunity costs for an investor that could be spent on other 
projects. The volume of alternative investment opportunities obviously also varies from country to 
country, thus also being reflected in different discount rates. The more alternative project possibilities 
there are investable, the more expected return is needed for the specific investment to be attractive 
enough. 

The characteristic values of discount rates that are suggested by governmental bodies can differ 
significantly between countries and in particular between the United Kingdom and Denmark. While the 
British government suggests a discount rate of 10% (nominal) for all projects to be able to have a neutral 
national comparison of projects in terms of financing and risk assessment(DECC (Department of Energy 
& Climate Change), 2013), the Danish regulation suggests a discount rate of 4% (real)(Danish Energy 
Agency, 2013). Even though differing in nominal and real terms, inflation is not likely to compensate this 
gap if other factors such as market risks are not assessed in the difference between real and nominal 
discount rate. As a consequence, Danish LCOE assessments of offshore wind energy usually are 
characterised by a tendency of having lower levelised costs than British evaluations, due to the lower 
financing costs in Denmark. Therefore, the limited comparability between the absolute values of LCOE 
has to be kept in mind when comparing the economic performance of offshore wind energy between 
different countries. For the investment calculation and decision the NPV is the usual measure to compare 
and LCOE is related but less important (González et al., 2011). 

From an investor’s point of view, the LCOE assessment within a national market is also subject to other 
limitations. Since the projection of energy generation, especially for fluctuating renewable energy 
sources, is prone to uncertainty, an LCOE analysis does not always express the full profitability of a 
project for the investor, or it contrarily underestimates the LCOE by overestimating energy production. 
Moreover, monetary profits over the lifetime of the asset are not considered when looking exclusively at 
the LCOE, so that support schemes and electricity market prices are not integrated into the analysis. An 
attractive support scheme policy can, for instance, outweigh the accruing cost so as to promote a specific 
technology. Similarly, a particular market price structure can compensate for the occurring costs with the 
result that particular technologies can be more profitable although they are constituted by a higher LCOE. 
As (Joskow, 2011) argues, a comparison of LCOE for different technologies implies to treat the produced 
electricity as a uniform product which is always or in average priced equally. Yet due to market price 
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fluctuations or different capacity factors and thus operating times the revenue stream can affect the 
actual profitability of the asset considerably. 

Looking at some of the factors driving differences in LCOE for wind energy (Millborrow, 2016) illustrates 
the effect of wind condition combined with different investment costs. Figure 1 reproduce this 
comparison that illustrates higher cost level for offshore and also larger variation in costs depending on 
actual wind speed compared to onshore. This may suggest that nearshore should have a relatively large 
cost advantage to outweigh the likely less favourable wind conditions. 

 

Figure 1: International comparison of LCOE for onshore and offshore wind depending on capacity factor 
and investment costs. Source: (Millborrow, 2016) 

In Figure 1 the sensitivity of LCOE to investment cost and wind speed is given for both onshore and 
offshore wind. 

Looking at estimates provided by (Wiser et al., 2011, fig. 7.23)) a LCOE of 5 USD cents/kWh with low 
investment cost at a 35% capacity factor is given . The right panel in their figure indicates a reduction of 
LCOE by 1.5-2 USD cents/kWh by reducing the discount rate from 7% to 3%.  

2.2.1 Investment costs for offshore 
Commonly the total investment costs are broken down into various cost components. By presenting 
different shares for the cost components, different projects can be compared with each other in more 
detail, since for instance the effects of the geographical characteristics of the offshore wind farms on the 
investment can be revealed. The comparison of different wind farms, however, in general, is more 
accurate for projects with similar commissioning time, similar geographical characteristics or comparable 
technical characteristics as for instance the type of turbines or the installed capacity. 

Table 2.2 presents estimates of cost shares for onshore and offshore wind farms found in the literature 
for different publication years. The inclusion of components differs when looking at the different cost 
breakdowns, making it challenging to allocate different costs where they actually arise. Mainly, the 
installation cost is sometimes not reflected independently in presented cost breakdowns, leading to a 
distortion of the remaining cost component shares. Also, the cost for electrical components is sometimes 
not addressed in cost breakdowns, due to the fact that these components are not always included in the 
project scope of the wind farm investor, but are constructed and invested by other entities. The problem 
of different investment cost splits throughout the literature has been mentioned by (Voormolen et al., 
2015). The cost shares for nearshore wind farms will probably be most similar to the offshore wind 
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farms, with a marginally higher turbine share and slightly lower shares for electrical/connection costs 
and foundation.    

 IRENA (2012) 
Onshore 

IRENA (2012) 
Offshore 

EWEA (2009)  
Offshore 

Kitzing & Morthorst 
(2015) Offshore 

Turbine 65-84% 44% 49% 40%–60% 
Foundation  16% 21% 20% 

Electrical/connection 9-14% 17% 21%  

Installation/ 
Construction 

4-16% 13%  25% 

Other 4-10% 10% 9%  

Table 2.2: Onshore and offshore wind farm cost shares from the literature 

2.2.2 Operation and maintenance costs for offshore  
Operation and Maintenance costs (O&M) or OPEX are expressed within the annual costs after 
commissioning of the farm and tend to increase over the farm’s lifetime. The O&M costs are either 
expressed as variable cost per MWh generated or as a fixed cost per MW installed capacity, also lacking a 
standard approach for their definition. This is due to the fact that different parts of OPEX are variable 
cost, such as repair costs and to a certain extent spare parts and maintenance (which are likely to be 
related to the production level) and other parts are fixed costs, such as insurance costs, administration 
and regular maintenance (which are likely to be related to the fixed installed capacity. According to 
(Energinet.dk & Danish Energy Agency, 2017), for 2015 fixed O&M costs are 57,300 EUR/MW/year, while 
the variable costs are 4.3 EUR/MWh. 

One can combine the variable cost depending on the energy produced and the residual fixed cost to 
obtain the total OPEX cost. For offshore wind, the variable part of the OPEX is estimated to be half of the 
total OPEX (Voormolen et al., 2015). In general, information regarding OPEX is hard to obtain. In the 
literature it is estimated to be in a range of 15–49 EUR/MWh (Kitzing & Morthorst, 2015),(Morthorst & 
Kitzing, 2016) in variable terms and 2.2%–4% in fixed terms as share of CAPEX (DECC (Department of 
Energy & Climate Change), 2013; Heptonstall et al., 2012; Prässler & Schaechtele, 2012). Over the total 
lifetime of the farm, the OPEX can encompass 25–30% of the total project cost (Kitzing & Morthorst, 
2015). 

Considering the aforementioned geographical cost drivers, mostly the distance to the nearest 
maintenance port directly affects the OPEX, due to the cost connected to the travel time of the 
maintenance vessel and potentially rougher weather conditions at sites further offshore, which constrain 
the operation time on site. After assessing the total cost of a wind farm project, the LCOE can be estimated 
when predicting the energy generation of the farm over the total lifetime. 

 

3 Offshore and nearshore cost curve for Denmark  
3.1 Current status of offshore wind energy in Denmark.  
Offshore wind energy has been growing in Denmark in a sustained manner, since the first offshore wind 
turbine park, Vindeby, was erected in 1991. As of 2017, there are 12 offshore wind turbine farms in 
Denmark, since the decommissioning of the Vindeby park, with a total installed capacity of 1271 MW 
(Danish Energy Agency, 2015a). A list of existing offshore wind energy farms and some necessary 
information is found in Table 3.1. 

Wind Farm 
Lifetime Capacity Factor 

Age 
[Years] 

Installed Capacity 
[MW] 

Anholt 1 48.6% 4 399.6 

Avedøre Holme 38.0% 7 10.8 

Frederikshavn 30.5% 14 7.6 

Horns Rev I 41.8% 15 160 
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Horns Rev II 47.7% 8 209.3 

Middelgrunden 25.4% 17 40 

Nysted (Rødsand) I 37.0% 14 165.6 

Nysted (Rødsand) II 43.4% 7 207 

Rønland I 44.5% 15 17.2 

Samsø 39.1% 15 23 

Sprogø 34.2% 8 21 

Tunø Knob 30.2% 22 5 

Vindeby (closed) 21.6% 26 4.95 

Total 41.4% (avg.) 13.2 (avg.) 1271 
Table 3.1: Existing offshore wind farms in Denmark 

It is expected for offshore wind to keep expanding in future years, as part of the strategy regarding 
renewable energy goals. Currently, there are eight projects under development or assigned for 
environmental impact assessment with a total nameplate capacity of up to 2.2 GW:  Horns Rev 3, Kriegers 
Flak, Vesterhav Nord og Syd, Nissum Bredning, Omø Syd, Jammerland Bugt, Mejl Flak, and Lillebælt Syd. 
Horn Rev3 will be completed in 2019, the next two after 2020. Only Vesterhav Nord and Syd are 
nearshore wind farms at a total capacity of 350MW. Furthermore, a number of areas for future tenders 
are being considered for the development of new offshore wind energy farms. Some of the areas are 
offshore locations close to the shore, which aim to lower the costs for installing and operating the wind 
turbines, as for example Sejerøbugten, Smålandsfarvandet and Sæby (Danish Energy Agency & 
Energinet.dk, 2013). 

3.2 Costs for Offshore wind in Denmark 
The major factor resulting in higher offshore cost in Denmark in comparison with onshore wind is the 
significantly higher capital cost. Costs will vary depending on the location, due to water depth, distance to 
coast, sea conditions, and more (Kitzing & Morthorst, 2015). However, the variation in Denmark is 
expected to be lees due to less variation in water depth, distance to shore and less variation in offshore 
wind conditions. 

Denmark is probably positioned in the low end of the international average cost for off-shore wind development. 

This is evident from a comparison of levelised cost of offshore wind energy (LCOE) including projections from 

major agencies and associations in the wind sector. In Figure 2 we compare cost levels across the projections of 

several reports. The wideness of the cost range for each source reflects both the uncertainty in technology 

development and the underlying difference in cost driving characteristics within the area examined 

(country/region). The Danish Energy Agency numbers and forecasts are at the lowest level compared to the 

levels provided by other sources. Therefore, we must expect that the cost benefits from moving wind farms from 

average off-shore to nearshore locations in Denmark is less than for most other countries (in line with the 

generally shallow seabed conditions in Denmark).  
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Figure 2 Comparison of levelised cost estimates and ranges for offshore wind in the literature    

The estimates in Figure 2 are based on the following sources: (Fichtner/prognos, 2013; Fraunhofer ISE, 
2013; International Renewable Energy Agency, 2012; The Crown Estate, 2012; TKI Wind op Zee, 2015). 

The cost projections in Figure 2 assume a considerable cost reduction over time, but it is not clear whether this is 

expected to cover mainly the far off-shore projects in deeper waters. The cost reductions in offshore have been 

studied internationally examining learning, time and scaling effects as in (Van der Zwaan et al., 2012). If cost 

decreases are expected to be dominated by foundation technology improvement and installation cost reductions, 

then the nearshore projects may benefit less and thus the relative cost advantage of nearshore wind will decline 

over time. 

 

3.3 The Danish offshore LCOE cost curve 
We are interested in creating a cost curve that combines the potential exploited with the associated cost 
of doing so, for nearshore and far offshore wind energy. Among the factors that affect the costs for 
different potentials, we could consider three general categories: technical costs that will vary with water 
depth and distance to shore, costs associated to availability and profiles of wind in the area, and costs 
associated with the social impact produced by the wind farm. In (Pablo; Hevia-Koch & Klinge Jacobsen, 
2018) onshore basic costs were combined with costs to secure local acceptance for onshore development 
relative to offshore. 

From a technical perspective, as different wind sites are exploited, two main variables will affect these 
previous costs: distance to shore, and water depth. Technical costs will be affected by both variables: as 
water depth increases it becomes more expensive to install the wind turbines, and at specific water 
depths, more expensive foundation technologies have to be used. Similarly, as the distance to shore 
increases, O&M becomes more expensive and the costs for cabling during installation, as well as the costs 
related to port availability and installation time increase as well.   

When looking at the prospect of future offshore wind energy expansion, we must account not only for the 
total existing potential in terms of areas with wind but also for the associated evolution of cost as this 
potential is exploited. As offshore wind energy grows, the first areas to be utilised will be those with 
lower costs, and therefore leaving for later exploitation high-cost areas. Even if we ignored the time 
dimension and associated technological changes, sites that are exploited earlier will still present lower 
costs, either due to being sites with better wind potential conditions, or with conditions that make 
investment costs lower (such as water depth). 

Based on data obtained by the RESOLVE model, and presented in (Beurskens & Hekkenberg, 2011), we 
construct a cost curve for offshore wind potential in Denmark that considers a total offshore wind 
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expansion potential of 10.7 GW. Based on the data and cost levels available at the time the LCOE levels 
range between 9 c€/kWh for small amounts of exploited potential, climbing steadily up to approximately 
17 c€/kWh before spiking up to a final level of 19.9 c€/kWh for the full potential. This upwards sloping 
curve represents the increased costs of further exploiting wind sites, as discussed above. These estimates 
are consistent with several other studies finding prognosis of offshore wind LCOE (Fichtner/prognos, 
2013; Fraunhofer ISE, 2013; IRENA, 2012; Mone et al., 2015; The Crown Estate, 2012; TKI Wind op Zee, 
2015), a selection of which is shown in Figure 2. It is interesting to note the extensive range of uncertainty 
regarding the levels of LCOE prognosticated. 

Recently, offshore cost estimates have dropped significantly for Denmark and neighbouring areas, as 
evidenced by the recent Kriegers Flak project with a winning bid of 4.9 c€/kWh. Interestingly, this 
development presents a level below any of the existing LCOE estimates. For this reason, we adjust the cost 
curve such that the cost level but not the relation with water depth and other drivers remain the same. 
We assume that for example the increased cost of exploiting areas with deeper waters, further from the 
shore, or with lower wind potential still increase costs. The adjusted cost curve potentials following  
(Beurskens & Hekkenberg, 2011) data are presented in Figure 3. 

The adjusted cost curve includes all offshore potentials in Denmark, but only a limited amount of the 
include potential is actually nearshore potentials. We want to compare this mainly further offshore 
potential with cost curves for nearshore. Around 1000 MW of the potential in the figure corresponds to 
nearshore locations and the cost level is close to the just above 6c€/kWh expected for the Vesterhav Syd 
site that will be developed 2019-2021.  

 

Figure 3: Offshore wind cost curve for Denmark adjusted from 2011 figures used in (Beurskens & 
Hekkenberg, 2011) to level of Kriegers Flak (LCOE)  
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4 Results for comparing nearshore and further offshore 
development in Denmark 

 

4.1 Cost differences in Denmark 
We define nearshore wind as turbines that are up to 15 km off the coast, which provide a lot of potential in 

Denmark that have a very long coastline. The distance is not the only important cost driver, but it is this 

parameter that is significant and related to both cost advantages for nearshore development and disadvantages 

arising from public preferences against close to shore wind turbines.   

To quantify the potential cost advantages of nearshore, we use an international source (EEA, 2009) that provides 

scaling factors based on only distance to shore and water depth. We then recalculate and calibrate based on 

investment data from one specific Danish wind farm Rødsand II.   

Table 2 provides scaling factors for investment costs based on only depth and distance from shore. The origin is 

4 km from shore and a water depth of 15m. Nearshore costs are then represented by the first 5 columns up to 15 

km from shore giving also factors for two additional distances in the last two columns. For the water depth the 

table exceeds what is basically realistic for Denmark. If keeping the distance down to max 15 km the depth will 

rarely be more than 25m. That means the least favourable cost characteristics in Denmark will probably be 

characterised by only 9% higher investment cost than in the origin. With max 15 km from shore as the definition 

for nearshore we will not have to consider if an offshore substation will have to be build, which would probably 

be nearly as large a cost difference as the 9% in the table. 

Water depth\ 

Distance from shore 4 km 8 km 10 km 12 km 15 km 20 km 25 km 

5m        

10m 0.967 0.974 0.978 0.982 0.988 0.998 1.008 

15m 1.000 1.008 1.012 1.016 1.022 1.033 1.043 

20m 1.034 1.042 1.046 1.050 1.056 1.067 1.078 

25m 1.067 1.075 1.080 1.084 1.090 1.102 1.113 

30m 1.124 1.133 1.137 1.141 1.148 1.160 1.172 

35m 1.237 1.247 1.252 1.257 1.264 1.277 1.290 

Source: Calculated based on EEA, 2009 (Table 6.4) 
Table 2 Investment cost scaling factors used for DK comparison 

To compare the (EEA, 2009) scaling factors with data for Denmark a simple regression for total levelised costs 

of 14 offshore wind farms based on depth and distance from shore is reported. We utilise information for 

distance to shore, water depth, and LCOE for Danish offshore wind farms from 1991 up to 2018, which is a 

long period of time considering the tremendous technology development. We don’t account for that, but 
acknowledge that these factors may be just as important for explaining different cost levels. The water 

depth here ranges from a few m up to around 25 m. To see the influence of distance to shore and water depth, 

we create three linear regression models that express LCOE as a function of distance to shore, water depth, and 

both. The results of two of the models are presented in Table 3. As we can see, the models indicate that the 

LCOE is not explained by the distance to shore, which has a very non-significant coefficient, but by the depth of 

the water. We can see that distance to shore fails to be significant even at the 10% level. While there is 

definitively correlation between the two variables in general this effect seems less critical in the Danish data. 

This result might be explained by the particularities of the Danish continental shelf, where it extends for a 

significant distance after the shoreline with a very limited slope, and the inner Danish waters also includes a lot 

of shallow waters grounds and flaks. Compared to other countries in the EU, such as The Netherlands, Belgium, 

or Germany, there are numerous locations in Denmark where the water depth is limited, despite increased 

distances to the shore. This means that a reduction in distance to shore does not necessarily imply a reduction in 

water depth; and therefore the impact on LCOE will be less.  
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The regression results must be used carefully and we just see it as an indication of an upper limit for the 
cost effect of water depth. Simply using the depth parameter estimate would increase costs with around 
33% from 15m to 25m depth compared to the maximum 9% with scaling factors. Clearly this illustrates 
that the Danish story of offshore wind is very much influenced by other factors than the “pure” cost 
drivers represented by depth and distance. We go forward using the EEA very low values for investment 
cost dependence on water depth that will be more favourable to locating wind further away from the cost 
if there is any substantial preference for pushing wind further away. 

 
Regression on  LCOE 
with depth and distance 

Estimate Std. Error t value Pr(>|t|) 

Intercept 46.5945 9.8109 4.749 0.0008 
Depth 2.9624 0.7152 4.142 0.0020 
Distance 0.0766 0.4617 0.166 0.8715 
Regression on  LCOE 
with depth only 

Estimate Std. Error t value Pr(>|t|) 

Intercept 47.1235 8.8592 5.319 0.0002 
Depth 2.9889 0.6656 4.491 0.0009 

Table 3 Results for regression with depth and distance from shore for Danish offshore wind farms 

The ability to generalise the cost curves from a Danish sample of nearshore wind farm sites, was investigated 

but it is very difficult to characterise other potential sites in DK depending on the few cost drivers that can be 

extracted from existing developments/projects. The historical data are covering many years and a tremendous 

development in turbine size and technology. The amount of local conditions affecting the optimal farm layout, 

seabed characteristic differences and connection costs seems to dominate the generalizable cost drivers. The 

connection costs for example vary more among nearshore Danish sites than between average nearshore and 

average offshore DK sites.  

The shares of cost components are different for near-shore and far offshore wind farms, but the cost drivers are 

basically the same. Connection cabling, as well as installation (and mostly foundations) represent a smaller cost 

share for nearshore wind, but due to the more varying local conditions for connection, the distance from shore is 

less important as cost driver compared to the depth. The sea depth and wind conditions are the main drivers, 

similar to far offshore, and the turbines/steel costs are providing similar cost impacts for the two categories. We 

therefore chose to illustrate a potential cost advantage based on the two cost drivers only as given in the scaling 

factors from Table 2.  

In Figure 4 the investment cost curves for different distances and depth are illustrated with the Rødsand II wind 

farm as the reference sited at an approximate 10km distance from shore and an average depth of 10m. Two other 

recent investment cost figures are also provided in the graph as points.   
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Figure 4 Investment cost illustration for DK in 2010 with indicative benefit (Based on investment cost for Rødsand II 

and EEA scaling factors in Table 2)    

The illustration for potential benefits in DK clearly shows that the main cost benefit will be achieved if it is 

possible to reduce the water depth by locating the wind farms closer to shore  (moving left and down in the 

figure). If water depth is not reduced, then the cost reduction of moving from a location similar to Horns Rev III 

to a location just 4-5km from shore will be only 4% (just moving left). If conditions regarding water depth like 

Horns Rev III (approx. 17m) are very scarce, the relevant comparison might be between average water depths of 

25m versus water depths similar to some DK nearshore sites, of around 15m. The benefit in this case will be 

around 10% reduction of CAPEX. The nearshore tender in Denmark resulted in quite low bids for nearshore at 

Vesterhav Syd and Nord that are equivalent to cost reductions of around 20% in a time span of about 10 years 

from Rødsand to Vesterhav development.   

 

4.2 Perspectives on willingness to pay for moving turbines further offshore  
 

To compare the cost advantage of locating wind farms closer to shore in Denmark a hypothetical 
willingness to pay is combined with the cost advantage of moving turbines further offshore. The marginal 
costs of only increasing the distance is the lower limit of costs and the case where increasing distance 
from one level to the next (for example 4 km to 8 km) leads to increasing depth also from 10 to 25m 
represent the upper limit on marginal costs. Any marginal cost level within the top curve and the bottom 
one (increasing distance with 10m depth constant) is possible, but the lower part of the range is most 
likely in Denmark where increasing distance by eg. 4 km increase depth with 5-10m.  
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Figure 5 Examples of nearshore marginal costs and willingness to pay for moving turbines further off shore 

The range of marginal cost for increasing distance and depth at the same time most representative for 
Danish conditions is probably 50-100 €/kW for 4 km distance and 5m depth addition. With the 
diminishing marginal willingness to pay for distance example assumed there would be a benefit of 
moving turbines to somewhere between 15 and 20 km from shore. This exemplifies that the marginal 
willingness to pay for distance is relevant to consider for the specific sites in consideration for 
development, but that the actual cost additions (especially depth) implications should be balanced with 
that. As the marginal willingness to pay for wind is probably extremely site and context specific (Pablo 
Hevia-Koch & Ladenburg, 2016), (Pablo Hevia-Koch et al., 2018) this is just an illustrative example, but 
others have examined the willingness to pay for the distance and (Krueger et al., 2011) find that there is 
willingness to pay for moving turbines 20 km off the cost corresponding with the additional costs of doing 
so.  

5 Conclusion and policy implications 
The main conclusion is that nearshore potentials in Denmark may not be sufficiently cost attractive to 
balance the willingness to pay to locate wind farms slightly further away from the coast. This is due to the 
relatively shallow waters in Denmark allowing wind farms to be developed a bit further from shore 
without considerably increasing the water depth. 

 Nearshore wind potentials exist in Denmark, and they have potentially lower costs than further offshore, but the 

cost advantage is probably lower than in other countries, because offshore costs are comparatively lower in 

Denmark. The nearshore potentials are smaller, and possible wind farm sizing is also limited for some sites in 

Denmark. However, there are still potentials with lower costs than further ashore sites. It is difficult to identify 

one main contribution as e.g. more shallow water as the source of expected lower costs based on a small sample 

of data examined for Denmark. Significant cost advantages are however only expected if water depth is 

considerably lower than at more offshore sites. 
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An illustrative calculation of benefits indicates that cost could be only 4% lower nearshore if no reduction in 

water depth is achieved. Compared to this, moving from 25 km distance at the same time as reducing water 

depth from 25m to 15m may provide cost reductions of around 10%. 

The smaller possible size of the nearshore projects may facilitate more competition, especially from domestic 

developers as has been an argument in Denmark, but it may also lead to less participation from the global 

offshore developers that exploit economies of scale in wind farms. If dominated by the first, this produces a 

more competitive environment for the bidding process of the smaller nearshore projects that may allow new 

entrants into the offshore development and eventually pushes for lower prices. 

Finally we illustrate that there is a possible trade-off between the additional cost of moving turbines 
further offshore and the willingness of people to pay for that. As long as further offshore do not imply 
increased depth the additional cost may be smaller than the willingness to pay, but for other cases 
increased depth will mean higher costs that can only be matched by willingness to pay for moving from 
extreme nearshore sites to 8-15 km off the coast. The local site specific cost characteristics and local 
willingness to pay must be considered in any case and no generalisation can be made even for the 
relatively small Danish case. 
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