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Abstract 

This paper reveals the underlying dynamics between the capital buffer and bank 

performance in EU-27 countries. A dynamic panel analysis shows that capital buffer is 

significantly affected by bank performance and risk exposure. Remarkably, a threshold 

analysis identifies regime changes for the underlying relationships during the financial 

crisis of 2008. We find a positive relationship between the capital buffer and 

performance for banks that fall in the low performance regime, while a negative 

relationship is reported for the banks that belong to the high regime. Threshold results 

also show that buffer exerts a positive impact on bank performance. Although regulation 

reforms that aim to raise the capital requirements could improve bank performance and 

stability, these improvements are not homogeneous across banks. 
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1. Introduction 

The financial crisis of 2008 shows that sudden changes in asset quality and value can 

quickly diminish bank capital, leaving banks with inadequate capital to deal with 

unexpected losses. As a result, capital buffer requirements have become an instrument 

of providing a cushion during adverse economic conditions. In some respect, capital 

buffer is a macro-prudential tool that could prevent bank excessive risk-taking (Ayuso 

et al. 2004; Jokipii and Milne 2008, Mamatzakis and Koutsomanoli-Filippaki 2009; 

Mamatzakis and Psillaki, 2017). Under Basel III, banks need to maintain a mandatory 

capital buffer of 2.5 percent of common equity. In the case of violation of this minimum 

requirement, the Basel Committee would assert restrictions on dividends and 

remunerations. Furthermore, Basel Committee may also require a discretionary counter-

cyclical buffer up to another 2.5 percent of capital during periods when funds are easy 

to borrow. The main aim of counter-cyclical buffer is to prevent market instability 

during periods of excessive credit growth by providing banks with extra capital (Krug 

et al. 2015). Banks also have an incentive to hold capital buffer in order to signal 

soundness and thereby, receive higher credit rating scores. In addition, banks may hold 

a capital buffer to avoid costs related to penalties and restrictions imposed by the 

regulators when the former violate minimum capital requirements (Buser et al. 1981; 

Jokipii and Milne 2011; Mamatzakis and Bermpei, 2016).  

Finally, there is an extensive literature on examining the association between capital 

requirements and bank’s asset structure (Alali and Jaggi 2011; Chu et al. 2007; Furfine 

2001; Pasiouras et al. 2006; Repullo and Suarez 2012; Rime 2001; Shrieves and Dahl 

1992; Mamatzakis and Koutsomanoli-Filippaki 2009; Mamatzakis and Psillaki, 2017). 

Since regulators imply restrictions on banks to limit their risk exposure, it could be the 
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case that banks with a higher risk exposure might maintain a higher capital buffer (Baule 

2014; Calomiris and Wilson 2004; Flannery and Rangan 2008; Jokipii and Milne 2008, 

2011; Mamatzakis and Koutsomanoli-Filippaki 2009). 

Despite the benefits of financial stability due to the adequate capital buffer, some 

literature argues that raising capital through capital markets is costly especially during 

economic downturns (Alfon et al. 2004; Ayuso et al. 2004; Berger and Bonaccorsi di 

Patti 2006). Banks might rely on their own profitability to build up a capital buffer 

(Shim 2013). To this day, there is not a clear consensus in the literature on the 

relationship between the capital buffer and bank performance. There are studies that 

provide evidence for a negative association between bank performance and capital 

buffer (Alfon et al. 2004; Ayuso et al. 2004; Berger and Bonaccorsi di Patti 2006; Jokipii 

and Milne 2008; Mamatzakis and Tsionas, 2019; Mamatzakis and Vu 2018; 

Mamatzakis and Tsionas, 2017) suggesting that strong bank performance substitutes for 

capital as a cushion against unexpected losses. Another strand of literature (Berger 1995, 

Flannery and Rangan, 2008; Nier and Bauman 2006; Shim 2013; Mamatzakis and Vu 

2018; Mamatzakis and Tsionas, 2017) finds a positive relationship between 

performance and buffer indicating that an improvement in bank performance increases 

buffer.  

Concerning the capital buffer and risk nexus, there are several empirical studies (Baule 

2014; Calomiris and Wilson 2004; Flannery and Rangan 2008; Francis and Osborne 

2012; Jokipii and Milne 2008; Shim 2013; Mamatzakis and Tsionas, 2019; Mamatzakis 

and Vu 2018; Mamatzakis and Tsionas, 2017) testing whether increasing the risk taken 

by banks force them to maintain a higher capital buffer. The results show that there is a 
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positive relationship between bank risk-taking and capital buffer, indicating that banks 

with a greater risk exposure choose to hold a higher capital buffer. Following previous 

literature (Ayuso et al. 2004; Jokipii and Milne 2008), we employ non-performing loans, 

off-balance-sheet items and risk-weighted assets to account for bank risk exposure, 

while as a measure of bank default risk we include Altman’s Z-Score (Altman 1968). 

This paper contributes to the literature of the relationship between capital buffer, bank 

performance and risk in several ways. First of all, unlike previous studies, this paper 

employs a dynamic panel threshold analysis. Similarly, to the conventional dynamic 

panel analysis, threshold methodology accounts for the dynamic nature of capital buffer 

and for the potential endogeneity of the explanatory variables. The main advantage of 

the threshold analysis over dynamic panel regressions is that it allows data itself to 

define the crisis years. Thus, threshold analysis identifies the presence of regime 

switches in the relationship between the capital buffer and other bank-specific variables. 

Specifically, we investigate the presence of regime switches for the relationship 

between a) capital buffer and performance as measured by bank efficiency and b) capital 

buffer and risk of default as measured by Altman’s Z-Score. Furthermore, we account 

for the inverse relationship between these variables. For this reason, we examine the 

impact of capital buffer on bank performance and Altman’s Z-Score using buffer as a 

threshold variable.  Additionally, we opt for different measures of performance and risk 

to reveal all potential determinants of bank capital buffer. Finally, this study covers a 

period (2004 – 2013) that includes the crisis years and therefore, we take into account 

any differences due to the financial meltdown in 2007 – 2008 and the recovery thereafter.   
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This study confirms prior research, suggesting that bank performance and risk have a 

strong impact on the capital buffer. However, this analysis shows that the impact of 

efficiency on buffer varies across banks.  Estimated results demonstrate a strong 

positive impact of performance on the buffer for banks in the low performance regime, 

while for the relatively better performing banks a further improvement in performance 

would reduce capital buffer. Furthermore, we show that capital buffer would reduce 

bank risk of default. We also perform a sensitivity analysis to account for any potential 

endogeneity and therefore, underlying causality, opting for a flexible panel VAR model. 

This model provides the response of bank capital buffer to shocks in efficiency and risk 

of default in the VAR. 

The paper is organised as follows. Section 2 sets the hypotheses to be tested in the 

empirical section. Section 3 presents our data, whilst section 4 discusses the 

methodology. Next, section 5 reports regression results and the subsequent threshold 

analysis. Section 6 develops our sensitivity analysis employing Panel-VAR 

methodology and finally, section 7 concludes. 

2. Hypotheses development 

2.1.The dynamic adjustment hypothesis 

Following previous literature (Ayuso et al. 2004; Guidara et al. 2013; Jokipii and Milne 

2008, 2011; Stolz and Wedow 2011), we hypothesise that banks might need time to 

adjust their capital buffer. In the absence of adjustment costs in capital ratio, banks 

would not hold capital in excess of the minimum regulatory requirement (Stolz and 

Wedow 2011). As banks would adjust the capital buffer with some time lags, the capital 
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buffer of the previous period should have a positive and statistically significant impact 

on the current capital buffer. 

H1. Adjustment in bank capital would affect positively the capital buffer.  

2.2. Bank performance hypothesis. 

Past research (Alfon 2004; Ayuso et al. 2004; Guidara et al. 2013; Jokipii and Milne 

2008; Nier and Baumann 2006; Rime 2001; Shim 2013) provides mixed results 

regarding the relationship between bank capital buffer and performance. Alfon (2004), 

Ayuso et al. (2004), Guidara et al. (2013) and  Jokipii and Milne (2008) find a negative 

relationship between capital and ROE. Berger (1995), Flannery and Rangan (2008), 

Nier and Baumann (2006), Rime (2001) and Shim (2013) provide evidence of a positive 

relationship between bank profitability and capital buffer, indicating that more 

profitable banks hold a higher capital buffer. This strand of literature is in line with the 

pecking order theory, according to which banks prefer retained earnings as their main 

source of financing since external sources can be costly (Myers and Majluf 1984).  

In this study, beyond the accounting measures of bank performance such as return on 

equity (ROE), return on assets (ROA) and net interest margin (NIM), we also employ 

bank’s cost efficiency derived from the Stochastic Frontier Analysis (SFA). Although, 

there have been several studies about the link between total regulatory capital and 

efficiency, up till now the literature on the relationship between the capital buffer and 

efficiency has been rather inconclusive. In an early study, Kwan and Eisenbeis (1997) 

using quarterly data over the period 1986 – 1995 for 352 U.S. bank holding companies, 

examine the relationships among bank risk-taking, capital and efficiency. The authors 

document a positive relationship between inefficiency and capital providing evidence 
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of regulatory pressure over underperforming banks to maintain more capital. Moreover, 

the authors show that better capitalized banks exhibit a higher level of efficiency than 

less capitalized banks. 

Berger and Bonaccorsi di Patti (2006) find a negative relationship between regulatory 

capital and efficiency for U.S. banks over the period 1990 – 1995. Their results support 

the “efficient-risk hypothesis” which suggests that more efficient institutions would 

hold relatively low capital, since higher expected returns from the greater efficiency 

may substitute capital. 

In line with these results, Altunbas et al. (2007) using a sample of European banks for 

the period 1992 – 2000, show that inefficient European banks tend to hold more capital 

and evolve in less risky activities. 1  These results provide further support for the 

regulatory pressure over underperforming banks to maintain more capital. However, 

Altunbas et al. (2007) argue that this relationship varies with the level of bank efficiency 

and across ownership types.  

Arguably, the opposite relationship might also exist supporting the “franchise-value 

hypothesis” (Berger and Bonaccorsi di Patti 2006). According to the “franchise-value 

hypothesis”, more efficient institutions tend to maintain a relatively high capital to 

protect their franchise value and future income derived from high efficiency (Berger 

and Bonaccorsi di Patti 2006; Kwan and Eisenbeis 1997). This hypothesis could also be 

reinforced by the pecking order theory according to which banks will prefer to finance 

their capital needs internally, especially when the access to capital markets is difficult. 

Therefore, more efficient banks that are expected to be more profitable (Althanasoglou 

                                                           
1 Altunbas et al. (2007) measure bank capital as the ratio of equity over total assets. 
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et al. 2008; Berger et al. 1997; Goddard et al. 2009; Oral and Yolalan 1990), may hold 

greater capital buffer. 

Thus, since a further analysis is warranted to determine the relationship between capital 

buffer and bank performance, our second hypothesis is developed as follows: 

H2. Bank performance enhances bank capital buffer. 

2.3.Bank risk exposure hypothesis 

During the last decade, regulators have emphasized the importance of capital 

requirements in order to mitigate risk-taking and enhance the financial stability of the 

banking industry. The implementation of higher capital requirements aims to create a 

direct link between banks’ capital and risk. It could be the case that banks with a greater 

risk exposure may have to maintain a higher level of capital (Nier and Baumann 2006). 

In line with this view, prior literature (Calomiris and Wilson 2004; Flannery and Rangan 

2008; Jokipii and Milne 2008, 2011; Rime 2001; Shrieves and Dahl 1992) find a 

positive relationship between bank capital buffer and risk, indicating that banks with 

risky positions hold higher buffers. This strand of literature provides evidence 

supporting the “regulatory hypothesis” according to which regulators encourage banks 

with a higher risk exposure to hold a higher capital buffer. The reason is that banks that 

hold risky portfolios but do not maintain a higher buffer are more likely to end up with 

capital below the minimum requirement.  

On the other hand, the “moral hazard hypothesis” proposes a negative relationship 

between capital and risk. According to this hypothesis, banks might exploit flat-rate 
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deposit insurance schemes (Demirgüç-Kunt and Kane 2002).2 It could be the case that 

banks with greater risk exposure may hold lower capital buffer if all depositors are 

insured.3  

As the literature it is not conclusive, we test the following hypothesis: 

H3. Risk exerts a positive impact on bank capital buffer. 

3. Data and variables 

We use an unbalanced bank-level panel data that includes saving and commercial banks 

from EU-27 countries over the period 2004 – 2013 on annual basis.4 Our analysis uses 

1,017 banks and a total of 3,788 observations. The primary source of our data is the 

Bankscope database by Bureau van Dijk, while we obtain macroeconomic data from 

the World Bank.  

3.1.Measuring bank capital buffer 

We define the capital buffer as the amount of capital banks hold in excess of the 

minimum requirement (Ayuso et al. 2004; Guidara et al. 2013; Jokipii and Milne 2008, 

2011). Table 1 and Figure 1 present the variability of total regulatory capital (Tier 1 

                                                           
2 Consistent with this theory, Jacques and Nigro (1997) document a negative association between changes 
in capital and risk during the first year of the risk-based standards. The authors note that such a result 

might be due to the methodological issues in the risk-based guidelines where the weights assigned to 

assets classes might not reflect the true risk. 
3 In line with this theory, Baumann and Nier (2003) employing a sample of listed banks across 32 

countries for the period between 1993 and 2000, find that banks located in countries with greater 

government support and deposit insurance hold lower capital buffer. 
4 In our sample, we include both saving and commercial banks following the study of Casu and Girardone 

(2010). The authors suggest that mainly commercial and saving banks in European Union form depositary 

institutions and they have a sufficient degree of cross-country homogeneity and comparability. Previous 

studies that include both saving and commercial banks in their analysis are  Gropp et al. (2010) and 

Kalyvas and Mamatzakis (2014). In order to account for any differences in the business model between 

saving and commercial banks, most of these studies employ a dummy variable. In line with these studies, 

we also include a dummy variable for commercial banks (COM).    
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plus Tier 2 over Risk Weighted Assets) across country and over time respectively. 

Following Jokipii and Milne (2008), the calculation of minimum capital requirement 

for each country is based on Table 2 that presents the national total regulatory capital 

requirements. 

[Insert Table 1, Figure 1 and Table 2] 

Table 3 and Figure 2 report descriptive statistics for capital buffer across countries and 

over time respectively. Data for the years 2004 – 2013 shows that banks hold far more 

capital than required by the regulators. Banks with the highest mean capital buffer are 

located in north Europe such as Belgium and Austria (15.35 and 14.59 respectively), 

while banks with the lowest capital buffer are in Germany (10.89), Croatia (10.92) and 

Sweden (10.98). The average capital buffer across EU-27 is 11.75. As regards the 

evolution of buffer over time, we should note that for the period between 2004 and 2006 

there is a negative trend (see Figure 2). However, buffer shows a positive development 

during the period between 2006 and 2010. For the years 2010-2012, the decreasing 

buffer suggests that European banks had difficulties in maintaining a high capital due 

to the financial crisis (Avramidis and Pasiouras 2015).  

[Insert Table 3 and Figure 2] 

3.2.  Measuring bank cost efficiency. 

Previous research has often examined the impact of managerial structure, such as 

ownership and compensation, on efficiency (Dong et al. 2016; Tzeremes 2015) and to 

investigate the effects of regulation on bank efficiency (Kalyvas and Mamatzakis 2014; 

Liu et al. 2012; Pasiouras 2008; Mamatzakis et al. 2015; Mamatzakis and Tsionas, 
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2015). Another strand of literature has examined the impact of systematic differences 

across banks, such as size and risk, on efficiency (Berger and Humphrey 1997; 

Mamatzakis 2015; Sharma et al 2015), while the association between bank efficiency 

and market performance has also been investigated (Beccalli et al. 2006; Hadad et al. 

2011). In this paper, we derive cost efficiency from a stochastic frontier analysis (SFA). 

This methodology combines the random error and efficiency in one composite error 

term (Berger and Humphrey 1997). The cost efficiency model for SFA is the following: 

𝑇𝐶𝑖,𝑡 = 𝑓(𝑃𝑖,𝑡 , 𝑌𝑖,𝑡 , 𝑁𝑖,𝑡 , 𝑍𝑘,𝑡) + 𝑣𝑖,𝑡 +  𝑢𝑖,𝑡  (1a) 

where 𝑇𝐶𝑖,𝑡 stands for the total cost of bank i at year t, 𝑃𝑖,𝑡 is a vector of inputsand 𝑌𝑖,𝑡 

is a vector of outputs. 𝑁𝑖,𝑡  is a vector of quasi-fixed netputs while the vector  𝑍𝑘,𝑡 

represents country-specific variables. As regards 𝑣𝑖,𝑡, this term represents factors that 

affect the total cost function but are beyond the control of the managers. Finally, 𝑢𝑖,𝑡 

stands for the bank inefficiency that is controlled by the managers and follows a half-

normal distribution. The cost efficiency scores lie between 0 and 1 and are calculated 

according to the below formula: 

 𝐸𝐹𝐹𝑖,𝑡 = [exp(−𝑢𝑖,𝑡)] − 1  (1b) 

To enhance flexibility, we resort to the translog cost specification: 

𝑙𝑛𝑇𝐶𝑖,𝑡 =  𝑎0 + ∑ 𝑎𝑖𝑙𝑛𝑃𝑖,𝑡 + ∑ 𝛽𝑖𝑙𝑛𝑌𝑖,𝑡 + 𝑖  12 ∑ ∑ 𝑎𝑖𝑙𝑛𝑃𝑖,𝑡𝑙𝑛𝑃𝑗,𝑡𝑗 +𝑖𝑖 12 ∑ ∑ 𝛽𝑖𝑙𝑛𝑌𝑖,𝑡𝑙𝑛𝑌𝑗,𝑡𝑗 + ∑ ∑ 𝛿𝑖,𝑗𝑙𝑛𝑃𝑖,𝑡𝑙𝑛𝑌𝑗,𝑡𝑗 + 𝑖  ∑ 𝜁𝑙𝑛𝑁𝑖,𝑡 +𝑖𝑖  12 ∑ ∑ 𝜁𝑖𝑙𝑛𝑁𝑖,𝑡𝑙𝑛𝑁𝑗,𝑡𝑗 + 𝑖   12 ∑ ∑ 𝜃𝑖,𝑗𝑙𝑛𝑃𝑖,𝑡𝑙𝑛𝑁𝑗,𝑡𝑗 + ∑ ∑ 𝜅𝑖,𝑗𝑙𝑛𝑌𝑖,𝑡𝑙𝑛𝑁𝑗,𝑡𝑗 +𝑖𝑖
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 𝜇1𝑇2 + ∑ 𝜈𝑖𝑇𝑙𝑛𝑃𝑖,𝑡 + 𝑖 ∑ 𝜁𝑖𝑇𝑙𝑛𝑌𝑖,𝑡 + 𝑖 ∑ 𝜌𝑖𝑇𝑙𝑛𝑁𝑖,𝑡 + 𝑖   ∑ 𝜑𝑖𝛧𝑘,𝑡 +  𝑣𝑖,𝑡 +𝑖𝑢𝑖,𝑡  (2) 

Bank inputs and outputs are defined based on the intermediation methodology (Sealey 

and Lindley 1977). According to this methodology, the main purpose of banks is to use 

their labour and capital to accumulate funds and to transform them into loans and other 

income generating assets. We specify two inputs and two outputs. Inputs consist of 

labour as measured by the ratio of personnel expenses over total assets (P1) and 

financial capital measured as the ratio of total interest expenses over deposits and short-

term funding (P2). In terms of output prices, we include gross loans (Y1) and other 

earning assets (Y2) such as T-bills, bonds, government securities and equity investments. 

Total cost (TC) is defined as the sum of total interest and non-interest expenses. 

We include as quasi-fixed netput the fixed assets of each bank (N1) which stands for a 

proxy of physical capital. Furthermore, we include equity (N2) as a second qausi-fixed 

netput. Equity represents an alternative source of funding for banks and therefore, it 

might affect their cost structure (Fiordelisi et al. 2011; Mamatzakis and Tsionas, 2019; 

Mamatzakis and Vu 2018; Mamatzakis and Tsionas, 2017).  

Furthermore, the translog function includes the time trend (T) to account for 

technological progress and any potential time effects. Finally, we include country-

specific dummy variables (𝑍𝑘,𝑡), to capture country characteristics and cross-country 

differences. 

The variability in bank cost efficiency across country and over time is reported in Table 

4 and Figure 3 respectively. Table 4 shows that the average cost efficiency for the 

sample is around 78%. This indicates that banks need to improve their efficiency by 22% 



12 

  

 

 

in order to converge to the cost efficiency frontier. At a country level, Hungary, 

Romania and Bulgaria have the lowest cost efficiency scores with scores of 0.63, 0.63 

and 0.64 respectively. Conversely, banks in Malta, Spain and Sweden are the best 

performers with efficiency scores around 0.85, 0.84 and 0.83 respectively. These scores 

could be compared to the efficiency scores reported in the previous literature (Casu and 

Girardone 2010; Kalyvas and Mamatzakis 2014; Mamatzakis and Tsionas, 2019; 

Mamatzakis and Vu 2018; Mamatzakis and Tsionas, 2017). 

Concerning the evolution of bank efficiency over time, Figure 3 indicates an apparent 

reduction in cost efficiency during the years 2005 – 2008 with the lowest score in 2008 

(0.73). The next two years are characterized by a positive trend (0.79 in 2009 to 0.81 in 

2010). After the year 2010, bank cost efficiency decreases possibly because most of the 

European banks are exposed to the sovereign debt crisis.  

[Insert Table 4 and Figure 3] 

Regarding the accounting performance measures, we include ROE that is the return to 

shareholders on their equity. Our next measure of bank performance is the ROA that 

reflects the ability of managers to generate profits using banks assets indicating how 

efficient bank assets are managed. Finally, we employ NIM, which focuses on the 

profits earned from interest activities.  

3.3. Measuring bank risk exposure 

In this study, we employ various proxies of bank risk exposure. First, we employ the 

Altman’s Z-Score (Altman 1968) as a measure of bankruptcy risk. The Altman’s risk 

measure is derived from balance sheet values and is calculated as follows: 
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𝐴𝐿𝑇𝑀𝐴𝑁𝑍 = 1.2𝑋1 + 1.4𝑋2 + 3.3𝑋3 + 0.64𝑋5 + 0.999𝑋5 (3) 

where   𝑋1is the ratio of working capital over total assets. Working capital is calculated 

as the difference between current assets and current liabilities. Positive values of 

working capital indicated that the institution can cover its financial obligations. 𝑋2 is 

the ratio of retained earnings over total assets and presents a measure of true profitability. 𝑋3  is the ratio of earnings before interest and taxes over total assets. This measure 

reflects the cash available for allocation to shareholders, creditors and government. 𝑋4 

is the ratio of market value of equity to book value of liabilities while 𝑋5 stands for the 

ratio of sales to total assets and presents the sales generating ability of the bank. 

Therefore, a greater value of Altman’s Z-Score indicate a lower probability of 

bankruptcy. As an additional measure of bank risk, we also consider an alternative of 

Altman’s Z-Score. We employ ZSCORE as proposed by Boyd and Graham (1986) 

according to the following formula: ZSCORE = (1 + ROE)/Standard Deviation of ROE. 

The ZSCORE can be interpreted as an accounting based measure of the distance to 

default and implies that banks with a lower Z-Score have a higher risk of default. 

Despite some criticism regarding the Z-Score (Chiaramonte et al. 2016), it is simple to 

compute using accounting information and data are available to employ it.5 In addition, 

we follow recent literature (see Barry et al. 2011; Bouvatier et al. 2014; Brou and 

Krueger 2016; Chiaramonte et al. 2016;  Guo et al. 2015; Jan and Marimuthu 2015; 

Lepetit and Strobel 2015; Mamatzakis and Bermpei 2014; Mare et al. 2016; Radic et al. 

                                                           
5 There are some concerns regarding the Z-Score. First it depends on the quality of accounting framework 

and second, firms may smooth their accounting data and this, in turn, could lead to overassessment of the 

bank stability. Future research shall opt additional data sets such as…  to estimate alternatives to Z-score. 
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2012; Sharma 2013; Soedarmono et al. 2013) which opts for Z-Score for comparison 

with the present results .6 

Furthermore, we include the ratio of non-performing loans over total loans (NPL). We 

expect NPL to have a positive impact on bank capital buffer. Banks with increasing 

NPL will increase their capital buffer, as they are obligated to hold higher levels of loan 

loss provisions (Jokipii and Milne 2008). We also include the ratio of Off-Balance-

Sheet items over total liabilities (OBS) as another measure for bank risk. OBS items are 

measured as the non-interest income and fee-generating from various contingent 

liabilities such as derivatives, letters of credit, insurance and other types of non-

traditional banking activities and securities underwriting. OBS items increase the risk 

exposure for a bank and therefore, we expect that banks with a greater amount of OBS 

items will hold higher a capital buffer.  Finally, we include the ratio of risk-weighted 

assets over total assets (RWA), defined as the total amount of bank’s assets weighted 

for the credit risk according to Basel rules. We consider RWA as a proxy of bank risk 

as the allocation of bank assets among risk categories would define the quality of bank 

portfolio risk. (Berger 1995; Jacques and Nigro 1997; Jokipii and Milne 2011).  Note 

that this measure of risk captures mainly bank’s exposure to the credit risk (Jokipii and 

Milne 2011).  

3.4. Other control variables 

                                                           

6  Data availability issues dictate the choice of our proxies of bank risk exposure. Given the data 

availability, future research could expand and explore other measures of risk such as bank credit rankings 

or asset portfolio risk. 
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As a measure of market discipline, we include a dummy variable DISCLSR that takes 

the value 1 for listed banks and 0 for unlisted. We expect that the observability of bank’s 

risk choices, as captured by this dummy variable, will increase the incentives for banks 

to hold regulatory capital above the minimum requirement. The main reasons are first, 

to reduce the risk of default and second to avoid being penalised by investors for 

choosing higher risk (Boot and Schmeits 2000; Nier and Baumann 2006). 

We also include the explanatory variable SIZE, measured as the natural log of total 

assets, to detect differences in the level of the capital buffer because of the bank size. 

Size may have an impact on capital buffer due to the extent of bank diversification, cost 

of funding and investment opportunities. This relationship could be either positive or 

negative depending on how small and large banks adjust their capital buffer during the 

period under study. Size may have a negative impact on capital buffer, as large and 

well-diversified banks have a smaller probability of a sharp decline in their capital ratios. 

Moreover, smaller banks may increase their capital buffer in order to accommodate 

difficulties to access capital markets in case of emergency (Ayuso et al. 2004; Francis 

and Osborne 2012; Jokipii and Milne 2008). A positive relationship might also exist, in 

particular, due to the financial crisis of 2008. This positive relationship between bank 

size and buffer is in line with the “franchise-value hypothesis” according to which 

bigger banks may reinforce their charter value during difficult times by enhancing their 

capital. Thus, it could be the case that during the period under study, larger banks, 

compared to small banks, will take advantage of economies of scale, diversification 

effects and easier access to capital markets to increase their capital and comply with the 

minimum requirements.  
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We also account for the concentration ratio (C5) in the banking industry by including 

the sum of the assets of the five largest banks as a share of all banks in each country and 

for each year. The impact of the concentration ratio on capital buffer could be either 

positive or negative. The sign depends on whether a low competition will increase or 

decrease the incentives for a higher capital (Nicoló et al. 2004).   

Furthermore, in order to eliminate the potential biases associated with having omitted 

variables, we employ a dummy variable that takes the value 1 for European Monetary 

Union countries and 0 otherwise (EMU). In addition, we include time dummies to 

capture any potential time effects and a dummy variable for commercial banks (COM) 

to account for any differences between commercial and saving banks (Casu and 

Girardone 2010). Table I in Appendix provides a brief description of the variables and 

the data sources, while Table 6 reports summary statistics for the key variables.  

[Insert Table I and Table 6] 

4. Methodology 

4.1. Dynamic Panel Model 

Following previous studies (Ayuso et al. 2004; Jokipii and Milne 2008), we employ 

partial adjustment process in order to account for costs of adjustments in the capital 

buffer. We consider bank-specific variables and country-specific variables as 

determinants of the capital buffer as analysed in the data section. We apply the two-step 

system generalized method of moments (GMM) estimator as developed by Arellano 

and Bover (1995) for a dynamic model of panel data.7 This methodology is preferred 

                                                           
7 In this paper with use the xtbond2 stata command that implements the two-step system GMM estimator 

with the Windmeijer (2005) correction to the reported standard errors. In the one-step system GMM 
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for three main reasons. First, by taking the first differences for all variables, we 

eliminate the presence of any unobserved bank-specific effects. Second, we use the 

lagged dependent variable to capture the dynamic nature of capital buffer and third, by 

using GMM methodology, we account for the potential endogeneity of the explanatory 

variables. We consider as exogenous the country-specific variables and time dummies 

and as endogenous the bank-specific variables (Ayuso et al. 2004). The instruments 

chosen for the lagged endogenous variables are two-to-six period lags of the same 

variables. Furthermore, the results of the two-step system GMM estimator are tested by 

Hansen’s J diagnostic test for instrument validity and the test for the second-order 

autocorrelation of the error terms as suggested by Arellano and Bond (1991). Finally, 

we account for Windmeijer (2005) biased-corrected robust standard errors.  

The model that we examine is the following: 

𝐵𝑈𝐹𝐹𝑖,𝑡 = 𝛽0 + 𝛽1 𝐵𝑈𝐹𝐹𝑖,𝑡−1 + 𝛽2 𝐸𝐹𝐹𝑖,𝑡 +  𝛽3 𝐴𝐿𝑇𝑀𝐴𝑁𝑍𝑖,𝑡 + 𝛽4 𝑍𝑆𝐶𝑂𝑅𝐸𝑖,𝑡 + 𝛽5𝑁𝑃𝐿𝑖,𝑡 + 𝛽6 𝑂𝐵𝑆𝑖,𝑡 + 𝛽7𝑅𝑊𝐴𝑖,𝑡 + 𝛽8 𝐷𝐼𝑆𝐶𝑂𝑆𝑈𝑅𝐸𝑖,𝑡 +  𝛽9𝑆𝐼𝑍𝐸𝑖,𝑡 + 𝛽10𝐶𝑂𝑀𝑖,𝑡 + 𝛽11𝐶5𝑖,𝑡 + 𝛽12𝐺𝐷𝑃𝐺𝑅𝑖,𝑡 + 𝑡𝑖𝑚𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑢𝑖,𝑡    (4) 

where the lagged value of the dependent variable (𝐵𝑈𝐹𝐹𝑖,𝑡−1) captures the importance 

of adjustment costs and we expect a positive and significant coefficient for this variable 

as stated in the hypothesis H1.  𝐸𝐹𝐹𝑖,𝑡  stands for bank efficiency,  𝐴𝐿𝑇𝑀𝐴𝑁𝑍𝑖,𝑡  is 

Altman’s Z-Score calculated according to Altman (1968) and measures the bank’s risk 

for bankruptcy,  𝑍𝑆𝐶𝑂𝑅𝐸𝑖,𝑡 is an additional measure bank risk presenting the distance 

                                                           

robust standard errors are reported which are robust to heteroscedasticity. In two-step GMM error terms 

are already robust and Windmeijer (2005) correction is implemented to standard errors. Two-step uses 

the consistent variance co-variance matrix from first step GMM to reconstruct the weight matrix. Without 

this correction, the standard errors tend to be downward biased. 
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from default. Other risk determinants that can affect bank capital buffer and we account 

for are 𝑁𝑃𝐿𝑖,𝑡  measured as the ratio of non-performing loans to total assets,  𝑂𝐵𝑆𝑖,𝑡 

which is the ratio of off-balance-sheet items to total liabilities and 𝑅𝑊𝐴𝑖,𝑡  which stands 

for the ratio of risk-weighted assets to total assets.   

We also consider the impact of market discipline employing the variable  𝐷𝐼𝑆𝐶𝑂𝑆𝑈𝑅𝐸𝑖,𝑡 that takes the value one for listed banks and 0 for unlisted.  𝑆𝐼𝑍𝐸𝑖,𝑡   

stands for bank size measured as the natural log of total assets. 𝐶𝑂𝑀𝑖,𝑡 is an indicator 

variable that takes the value 1 for commercial banks and 0 otherwise, 𝐶5𝑖,𝑡  is the 

concentration ratio for the banking industry calculated as the sum of the assets of the 

five largest banks as a share of all banks in each country, 𝐺𝐷𝑃𝐺𝑅𝑖,𝑡  us the GDP growth 

in each country and 𝐸𝑀𝑈𝑖,𝑡 is an indicator variable that takes the value 1 for European 

Monetary Union country and 0 otherwise. We also consider for time effects including a 

set of time dummies to capture the unobserved time effects. The error term 𝑢𝑖,𝑡 consists 

of a bank-specific component 𝜇𝑖, which is assumed to be constant over time and a white 

noise 𝜀𝑖,𝑡. Hence, 𝑢𝑖,𝑡 =  𝜇𝑖 +  𝜀𝑖,𝑡 where 𝜇𝑖 ~ iid (o,σμ2) and 𝜀𝑖,𝑡 ~ iid (o,σε2).  

4.2.  Dynamic panel threshold model  

Given the financial crisis of 2007 - 2008, we opt for a novel methodology that enables 

us to identify any potential regime changes in the relationship between capital buffer, 

bank performance and risk-taking. We employ the threshold methodology proposed by 

Hansen (1999) and developed by Kremer et al. (2013). This methodology uses the cross-

sectional model employed by Caner and Hansen (2004), where the authors allow for 

endogeneity by using GMM estimators. Kremer et al. (2013) extended threshold 
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analysis to a dynamic unbalanced methodology that identifies possible changes in the 

coefficient of the independent variables. 

We employ the following threshold model: 

𝐵𝑈𝐹𝐹𝑖,𝑡 =  𝜇𝑖 + 𝜆1𝑚𝑖,𝑡 𝐼(𝑋𝑖,𝑡 ≤ 𝛾) + 𝛿1𝐼(𝑋𝑖,𝑡 ≤ 𝛾) + 𝜆2𝑚𝑖,𝑡𝐼 (𝑋𝑖,𝑡 > 𝛾) +  𝜀𝑖,𝑡  (5) 

The subscript i refers to the individual banks and the subscript t indexes the time. 𝐵𝑈𝐹𝐹𝑖,𝑡 is the dependent variable, 𝜇𝑖 is the bank-specific fixed effect and 𝜆1 and 𝜆2 the 

reverse regression slopes and based on these slopes we assume two regimes. 𝑋𝑖,𝑡 is the 

threshold variable and  𝛾 is the threshold value, which distribute the observations above 

and below the threshold value composing the high and low regimes respectively. 𝐼 is 

the indicator function that specifies the two regimes as defined by the threshold variable. 

Finally, 𝜀𝑖,𝑡  is the error term, which is assumed to be independent and identically 

distributed (iid) with mean zero and finite variance σ2. The model employed by Kremer 

et al. (2013) treats 𝑚𝑖,𝑡 as a vector of explanatory variables that includes a subset 𝑚1𝑖,𝑡 

of exogenous variables uncorrelated with 𝜀𝑖,𝑡  and a subset 𝑚2𝑖,𝑡  of endogenous 

variables correlated with 𝜀𝑖,𝑡. Furthermore, Kremer et al. (2013) extend Hansen’s (1999) 

work by accounting for the regime dependent variable 𝛿1 which represents the 

differences in the regime intercepts. According to Bick (2010), we include 𝛿1 as 

disregarding the regime intercepts would lead to biased estimates for both the regime 

coefficients and the threshold value.  

In the first step, in order to estimate the predicted values, Kremer et al. (2013) following 

Caner and Hansen (2004) uses the reduced form of regressions for the endogenous 

variable as a function of instruments. In step two, the threshold value γ is estimated by 
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using the predicted values of the endogenous variables in Eq. (5). In the third step, to 

obtain the slope parameters 𝜆1 and 𝜆2, Eq. (5) is estimated via GMM for the threshold 

value γ, where the threshold variable is replaced by its predicted values calculated in the 

second step.  According to Caner and Hansen (2004), the optimal threshold is estimated 

via a minimizer of the sum of squared errors by using 2SLS estimator.  Following Caner 

and Hansen  (2004) and Hansen (1999), the 95% confidence interval of the threshold 

value is given by the Γ = [γ: LR(γ) ≤ C(α)]. Here, C(α) indicates the asymptotic 

distribution of the likelihood ratio (LR) statistic at 95% significance level.  

5. Empirical Results 

5.1. Panel regression  results 

We first propose to examine the association between capital buffer, performance and 

risk employing dynamic panel regressions for the model specified in equation (4). We 

start our analysis with this methodology to capture the dynamic nature of capital buffer 

and to account for the potential endogeneity of the explanatory variables. Besides the 

dynamic panel analysis, we propose a threshold methodology that identifies potential 

regime switches in the underlying relationships, while at the same time it maintains all 

the advantages of the dynamic panel analysis as discussed previously.  Therefore, our 

main motivation for the use of the threshold analysis is to identify any changes in the 

relationships between the variables because of the financial crisis of 2008.  

Dynamic panel results are presented in Table 6 and 7. In Table 6, we use the cost 

efficiency as a performance measure. We add the control variables gradually to see the 

individual impact of the main variables. Model (3) includes ALTMANZ as the main 

measure of bank risk, while in Model (4) we use ZSCORE as part of sensitivity analysis 
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of an alternative bank risk measure. Next, in Models (5) - (7) we employ NPL, OBS 

and RWA variables respectively. Finally, Model (8) accounts for all bank and country-

specific variables simultaneously. The cost of adjustment as captured by the coefficient 

of the lagged dependent variable 𝐵𝑈𝐹𝐹𝑖,𝑡−1  is positive and highly significant in all 

specifications. These results confirm hypothesis H1 suggesting that banks need time to 

adjust their current capital buffer. The coefficient of  𝐵𝑈𝐹𝐹𝑖,𝑡−1 changes across different 

models when we include other control variables. Adding all bank and country-specific 

variables in Model (8), the speed of adjustment increases from 0.188 in Model (1) to 

0.572 in Model (8). The speed of adjustment of 0.572 in Model (8) indicates that when 

we account for other determinants of bank capital buffer, banks converge to the target 

buffer with a rate of 57.2% per annum.  

In terms of regression estimates, the coefficient of cost efficiency (EFF) is positive and 

significant at 1% level (see Models (2) and (7)). In Model (8) which includes all control 

variables, EFF exerts a positive impact on bank capital buffer at 5% level. These results 

are in line with our second hypothesis H2 indicating that higher efficiency leads to a 

greater capital accumulation (Fiordelisi et al. 2011). This finding is in agreement with 

the pecking order theory which argues that institutions prefer to use internal sources of 

funding rather than external sources (Myers and Majluf 1984). Furthermore, this 

positive relationship between bank efficiency and capital buffer could be explained by 

the “franchise-value hypothesis” according to which due to the income effect of high 



22 

  

 

 

cost efficiency, banks will choose to hold a higher capital to protect their reputation and 

charter value (Berger and Bonaccorsi di Patti 2006). 8 

As regards the impact of bank risk measures on capital buffer, ALTMANZ carries a 

positive and highly significant coefficient in Model (3) and Model (8). This positive 

relation between ALTMANZ and BUFF suggests that banks that are less likely to 

default (lower risk) hold a greater capital buffer. Note that this relationship is significant 

at 1% in Model (8). These findings reinforce the “franchise-value hypothesis”. Stable 

banks with a lower risk of default have higher charter value (Jokipii and Milne 2011) 

and therefore, banks with high Z-Score will sustain their value by maintaining a higher 

capital buffer. 

The OBS variable exerts a positive impact on bank capital buffer at 10% level in Models 

(6) and (8) providing evidence for hypothesis H3 and supports the “regulatory 

hypothesis” according to which banks with greater off-balance sheet activities prefer to 

hold higher capital buffer as a cushion against unexpected losses. We also report a 

positive and at 1% level significant coefficient for the bank size. Existing literature 

(Ayso et al. 2004; Guidara et al. 2013; Jokipii and Milne 2008; Stolz and Wedow 2011) 

provide evidence for the too-big-to-fail phenomenon according to which larger banks 

expect government support in an event of distress and thereby might keep lower capital 

buffer. Furthermore, according to this strand of literature, larger banks benefit from 

economies of scale and diversification effects. Therefore, larger banks have easier 

access to capital markets and a lower probability of a sharp drop in their capital ratios. 

                                                           
8 Franchise or charter value of a bank is defined as the value that would be foregone due to a bankruptcy. According 

to this theory there is ambiguous relationship between bank capital and risk taking. The higher risk can increase the 

probability of default and therefore encourage banks to raise their capital. This has been broadly discussed by Boot 

and Schmeits (2000). 
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In contrast, small banks might need to maintain a greater capital buffer to deal with 

difficulties to draw on capital markets. In this study, which covers the years of the 

financial meltdown of 2007 – 2008, we report results that are in line with the “franchise-

value hypothesis”. Thus, larger institutions would protect their sustainability during 

difficult periods by ensuring their capital adequacy.9 

All models pass the Hansen standard validity tests of the instruments used in the 

regressions. Moreover, AR(2) p-values reject the presence of second-order correlation 

in the error terms, as should be if the residuals in levels are white noise. 

[Insert Table 6] 

In a further analysis, we use dynamic panel regressions to examine the relationship 

between capital buffer and performance. Model (1) in Table 7 employs bank efficiency, 

Model (2) uses the ROE as an indicator of bank profitability, Model (3) examines the 

relationship between the capital buffer and ROA while Model (4) includes NIM.  

Models (5) - (7) report the simultaneous impact of the efficiency and one of the other 

performance measures on buffer.  

Model (2) documents a positive relationship between ROE and capital buffer at 1% 

level. Consistent with the impact of EFF on buffer in Table (6), this result provides 

further evidence for both the “franchise-value hypothesis” and the pecking order theory. 

Therefore, more profitable banks that accumulate equity through retained earnings, may 

hold greater capital buffer, especially when raising capital is difficult. Arguably, less 

                                                           
9 Banks that violate the minimum capital requirements lose part of their charter value (Flannery and 

Rangan 2004; Stolz and Wedow 2011). Thus, larger banks will take advantage of the economies of scale, 

diversification effects and the easier access to capital markets to maintain a higher capital buffer. 
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profitable banks suffering from a greater cost of issuing equity might maintain a lower 

capital buffer. These results could be compared with those obtained from Nier and 

Baumann (2006) who suggest that ROE can enhance capital buffer. Similar results 

documenting a positive relationship between profitability and capital have been found 

in Berger (1995) and Flannery and Rangan (2008) for the 1980s and 1090s 

respectively.10 

As regards the impact of the other control variables on buffer, after employing ROE as 

a performance measure, ALTMANZ and SIZE maintain their positive and highly 

significant impact on buffer. The significant coefficient of ALTMANZ indicates that 

even when we account for bank performance with ROE, lower likelihood of bankruptcy 

leads to higher capital buffer. The positive coefficients of NPL and OBS in Models (4) 

– (7) provide evidence in favour our hypothesis H3 for a positive relationship between 

risk and capital buffer supporting the “regulatory hypothesis”. 

Next, Models (5) – (6) report the impact of bank efficiency on buffer when we include 

additional measures of performance. Models (5) – (7) employ both EFF and one of the 

other accounting performance measures (ROE, ROA and NIM) in the regressions. 

Estimated results suggest that even when we account for other accounting performance 

measures, bank efficiency exerts a positive and at least at 5% level significant impact 

on the capital buffer. These findings imply that the inclusion of other performance 

measure does not affect our regression results. 

                                                           
10 Alfon et al. (2004), Ayuso et al. (2004) and Jokipii and Milne (2008) document a negative association 

between capital and past values of the return on equity. In this strand of literature the return on equity is 

used as an indicator of bank’s cost of raising equity capital. However, in this study and consistent with 

Berger (1995), Nier and Baumann (2006) and Flannery and Rangan (2008) the return on equity is used 

as an indicator of firm profitability. 
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[Insert Table 7] 

5.2. Threshold estimations  

5.2.1. The capital buffer and  efficiency nexus  

Our sample for threshold estimation consists of 1,735 observations for 314 banks over 

the period 2005-2013. The results for the empirical relationship between buffer and 

efficiency are presented in Table 8. We find a threshold variable of 0.729 for bank 

efficiency. This threshold value splits our sample into two regimes. The low regime 

includes 468 banks with efficiency scores less than 0.729. The estimated coefficient 𝜆1 

indicates that for banks that fall in the low efficiency regime, efficiency exerts a positive 

impact on buffer at 1% level. This result suggests that for the relatively less efficient 

banks, an increase in efficiency enhances bank capital buffer. The high regime consists 

from 1267 banks with efficiency scores greater than the threshold value. The negative 

sign of the estimated coefficient 𝜆2 implies that for banks in the high regime, efficiency 

has a negative impact on buffer at 5% level. 

A striking result of this analysis is that the relationship between buffer and efficiency is 

characterized by a structural breakpoint, indicating that the impact of efficiency on 

capital buffer depends on the level of bank’s efficiency. The positive coefficient for 

banks falling in the low regime suggests that the relatively less efficient banks use their 

increased efficiency to accumulate higher capital buffer. This finding confirms 

hypothesis H2 and is in line with the “franchise-value hypothesis”. According to this 

theory, banks that are more efficient tend to hold a higher capital to protect their future 

income derived from high efficiency (Berger and Bonaccorsi di Patti 2006). Conversely, 

the negative coefficient for the relatively more efficient banks provides evidence in 
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favour of the “efficiency-risk hypothesis” suggesting that a higher level of efficiency 

might substitute to capital against unexpected losses (Berger and Bonaccorsi di Patti 

2006).  These findings are in agreement with Altunbas et al. (2007), Berger and 

Bonaccorsi di Patti (2006) and Kwan and Eisenbeis (1997) who document a negative 

relationship between capital and efficiency. Furthermore, our results are similar to 

Ayuso et al. (2004) and Jokipii and Milne (2008) who find an inverse relationship 

between bank performance and capital buffer.  

Overall, this study complements prior literature on the association between bank capital 

buffer and efficiency documenting a breakpoint in the underlying relationship. We show 

that for the relatively less efficient banks (low regime) the capital buffer choice 

dominates over the substitution effect, suggesting that relatively less efficient banks 

choose to maintain more capital buffer to protect their franchise value. In contrast, for 

the relatively more efficient banks (high regime), the substitution effect dominates over 

the capital buffer choice as an increasing efficiency may substitute for capital in 

protecting the firm from financial distress. 

In line with the results obtained from the dynamic panel regressions in Table 7, the 

coefficient of the lagged value of capital buffer (Lag Buffer) is positive at 1% level, 

confirming hypothesis H1. Furthermore, Altman’s Z-Score carries a positive and at 1% 

significant level coefficient suggesting that banks with a lower risk of default 

accumulate greater capital buffer. RWA exerts a negative impact on buffer at 1% level 

indicating that banks with a greater portfolio of risk-weighted assets face difficulty in 

increasing their capital above the minimum requirements. The negative relationship 

between buffer and RWA also suggests that banks are forced to increase their capital 
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buffer by reducing their risk-weighted assets (Shim 2013). Finally, the positive impact 

of bank size on capital buffer suggests that larger banks might hold higher buffer as a 

sign of solvency due to their easier access to capital markets.  

[Insert Table 8] 

Table 9 presents the evolution of banks in low and high regimes for the period 2005 –

2013. One can notice a negative trend in the percentage of banks with relatively higher 

efficiency scores for the years 2006 - 2008 (90% in 2005 decreases to 88% in 2006 to 

82% in 2007 and 65% in 2008). Although, for the years 2009 – 2010 there is a 

significant recovery in the number of banks that fall in the high efficiency regime (from 

65% in 2008 to 75% in 2009 and 80% in 2010), the trend in the following years is 

negative. These results are supported by the impact of the financial crisis of 2007 – 2008 

on the banking sector. The reduction in the number of banks with efficiency above the 

threshold value mirrors the deteriorating performance of banks during the crisis. 

[Insert Table 9] 

In a further analysis, we account for the impact of the capital buffer on bank efficiency. 

Therefore, we employ the threshold methodology using the buffer as a threshold 

variable and the efficiency as a dependent variable. The impact of the buffer on 

efficiency is presented in Table 10. The estimated buffer threshold is 13.594. The low 

regime consists of 1,273 banks with relatively low capital buffer while the high regime 

consists of 462 banks. The coefficient 𝜆2 for banks in the high regime is significant at 

5% level. Our findings could be compared with those of Fiordelisi et al. (2011) who 

find that an increase in bank capital leads to an efficiency improvement and with and 
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Kwan and Eisenbeis (1997) who show that better capitalized banks exhibit higher level 

of efficiency than less-capitalized banks. 

Furthermore, the negative and significant at 1% level coefficient of Altman’s Z-Score 

may suggest that banks with a lower risk of default do not consider that much cost 

efficiency leading to lower efficiency scores. RWA exerts a negative impact on 

efficiency at 1% level. The impact of bank size on efficiency is negative implying that 

bank efficiency decreases as bank size increases.11 

[Insert Table 10] 

The evolution of banks in the low and high regimes over the sample period is presented 

in Table 11. It is obvious that the percentage of banks classified in low regime is 

consistently above the percentage of banks in the high regime. Table 11 shows a 

negative trend in the percentage of banks with high capital buffer for the years between 

2006 and 2008 (27% in 2006 to 21% in 2007 and 23% in 2008). These results could be 

explained by the high cost of raising capital during distress (Campbell 1979). Our 

findings suggest that the ability of banks to accumulate regulatory capital over the 

minimum requirement has deteriorated due to the financial crisis of 2007 – 2008.  

[Insert Table 11] 

5.2.2. The capital buffer and Altman’s Z-Score nexus 

We further examine the relationship between bank capital buffer and risk of default as 

measured by the Altman’s Z-Score. High values of Altman’s Z-Score indicate more 

                                                           
11 This finding is supported by Stiroh and Rumble (2006) who show that size is negatively correlated with 

efficiency for both domestic and foreign banks. The authors explain this relation through the agency costs, 

bureaucratic processes and other costs of managing extremely large institutions. 
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stable banks and thus, lower risk of default. Table 12 presents threshold estimation 

results using the buffer as the dependent variable and Altman’s Z-Score as the threshold 

regime variable. The threshold value for the Altman’s Z-Score is 7.382. This value splits 

our sample into the low regime, which consists of banks with relatively greater risk of 

default, and the high regime consisting of more stable banks. The coefficient 𝜆1  is 

positive and significant at 1% level while the impact of Altman’s Z-Score on capital 

buffer is insignificant for banks in the high regime. These results are in line with those 

obtained by the dynamic panel regressions in Table 7, indicating that banks with 

relatively lower Altman’s Z-Score and therefore, a higher risk of default, will choose to 

hold a higher capital buffer. Our findings provide evidence for the “regulatory 

hypothesis” according to which regulators encourage banks with a higher risk exposure 

to hold a higher capital buffer.  

Concerning the impact of the other bank-specific variables on buffer, the estimated 

results in Table 12 are in line with those of Table 8 where the threshold variable was 

the efficiency. The lagged value of buffer, efficiency, non-performing loans and bank 

size exert a positive impact on capital buffer. Finally, RWA carries a negative and 1% 

significant sign, suggesting that a greater portfolio of risky assets curbs bank’s ability 

to accumulate capital above the minimum requirements.  

[Insert Table 12] 

The evolution of banks in low and high regimes over time is presented in Table 13. The 

percentage of banks in the low regime is above the percentage of banks in the high 

regime. These results could mirror the negative impact of the financial crisis of 2007 – 
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2008 showing that over this period at least the 70% of the banks in our sample are 

characterized with relatively greater likelihood of default. 

[Insert Table 13] 

To examine the impact of capital buffer on bank default risk, we employ the threshold 

methodology using Altman’s Z-Score as the dependent variable and buffer as the 

threshold regime variable. Table 14 presents the estimated results. The threshold value 

of capital buffer is 9.244 and splits our sample in the low regime that consists of banks 

with relatively low buffer and the high regime with the relatively well-capitalised banks. 

Both regime-dependent coefficients ( 𝜆1 and  𝜆2) of buffer are positive and significant 

at 10% and 1% level respectively.  

These findings show that an increase in buffer increases Altman’s Z-Score and therefore, 

decreases the risk of default. Our results are in line with Kwan and Eisenbeis (1997) 

and Guidara et al. (2013) who find that better-capitalized banks tend to have lower risk 

exposure. More importantly, these results suggest that the greater the minimum capital 

requirement, the weaker the incentives for banks to engage in risky activities leading to 

a lower risk of default. Therefore, these results support that the implementation of 

minimum capital requirements by Basel Committee, has succeeded in its main aim of 

enhancing bank stability. 

[Insert Table 14] 

Finally, Table 15 shows that the percentage of the relatively well-capitalised banks is 

above that of the relatively low capitalized. After the year 2007, there is a negative trend 
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(90% in 2005 to 85% in 2007). This might be due to the costly capital during the crisis 

of 2007 – 2008 that renders difficult for banks to increase their regulatory capital.  

[Insert Table 15] 

6. Sensitivity analysis: A panel-VAR model 

As part of sensitivity analysis that takes into account possible endogeneity among the 

main variables of our modelling, we employ a panel-VAR model where all main 

variables (i.e. except control variables) enter a system of equations as endogenous. Such 

model would facilitate the identification of causality directions between the main 

variables in a dynamic way. As a first step, we need to decide the optimal lag order j of 

the variables. We seek for the optimal lag order following Lutkepohl (2006). We also 

apply the Akaike Information Criterion (AIC) and the Arellano-Bond AR tests. The 

optimal lag identified is equal to one. Sargan test reports for lag equals to one the null 

hypothesis is not rejected. 12  Therefore, we employ a panel-data autoregression 

methodology by using a first order 3x3 panel-VAR model following Love and Zicchino 

(2006) 13: 

tiitiit e ,1 ++= −XX  ,  i =1,…, N, t=1,…,T (8) 

Where Xit is a vector of three main variables of this analysis that is the bank capital 

buffer, bank efficiency and Altman’s Z-Score. Thus, Φ indicates a matrix of coefficients 

(3x3), whilst μi a vector of bank-specific effects and ei,t iid residuals. For estimation 

purposes, to account for endogeneity we follow Love and Zicchino (2006) employing 

                                                           
12 Results are available upon request. Note that the ordering of variables could also be of importance. We 

test for the reverse ordering and results remain similar. Results are available under request. 
13 Note that without loss of generality we could estimate a panel VAR 4x4, and so on. 
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the Arellano-Bond system-based GMM estimator. Essentially, the panel-VAR is a 

system of the following equations: 

 𝐵𝑈𝐹𝐹𝑖𝑡 =  𝛽10 + ∑ 𝛽11𝐵𝑈𝐹𝐹𝑖𝑡−𝑗 +𝐽𝑗=1  ∑ 𝛽12𝐸𝐹𝐹𝑖𝑡−𝑗 +𝐽𝑗=1  ∑ 𝛽13𝐴𝐿𝑇𝑀𝐴𝑁𝑍𝑖𝑡−𝑗 +𝐽𝑗=1  𝑒1𝑖,𝑡                                         𝐸𝐹𝐹𝑖𝑡 =  𝛽20 +  ∑ 𝛽21𝐵𝑈𝐹𝐹𝑖𝑡−𝑗 +𝐽𝑗=1  ∑ 𝛽22𝐸𝐹𝐹𝑖𝑡−𝑗 +𝐽𝑗=1  ∑ 𝛽23𝐴𝐿𝑇𝑀𝐴𝑁𝑍𝑖𝑡−𝑗 +𝐽𝑗=1  𝑒2𝑖,𝑡                                         𝐴𝐿𝑇𝑀𝐴𝑁𝑍𝑖𝑡 =  𝛽30 +  ∑ 𝛽31𝐵𝑈𝐹𝐹𝑖𝑡−𝑗 +𝐽𝑗=1  ∑ 𝛽32𝐸𝐹𝐹𝑖𝑡−𝑗 +𝐽𝑗=1  ∑ 𝛽33𝐴𝐿𝑇𝑀𝐴𝑁𝑍𝑖𝑡−𝑗 +𝐽𝑗=1  𝑒3𝑖,𝑡 

(9) 

The above system of equations has a moving average (MA) representation as a function 

of a set of present and past residuals e1, e2, and e3. Given possible endogeneity, these 

equations could be correlated and thereby the coefficients of the MA representation are 

not meaningful. A way to have meaningful estimations is to orthogonalise the residuals 

opting for the Cholesky decomposition of the covariance matrix. In addition, we 

introduce fixed effects to ensure heterogeneity in the levels.14  

6.1.1.  Panel Impulse response functions (IRFs) 

Figure 4 presents impulse-response functions (IRFs) and the 5% error banks generated 

by Monte Carlo simulation for a panel VAR of the following ordering of variables 

Altman’s Z-Score (ALTMANZ), bank efficiency (EFF) and capital buffer (BFF).15 

[Insert Figure 4] 

                                                           

14 Following Love and Zicchino (2006) we apply the Helmert procedure in the data set. That is the data 

we are forward mean differenced.  
15 As the ordering of variables in the panel VAR is not without significance we also estimate the system 

of equations, opting for the reverse ordering of variables. Results remain are available under request and 

confirm the present findings.  
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From the first row of Figure 4, the last plot shows that the effect of one standard 

deviation shock of Altman’s Z-Score on the buffer is positive, while this effect becomes 

less pronounced after the fourth year. This result is in line with the main results in Tables 

6 and 7 providing further support for the “franchise-value hypothesis”. According to 

this hypothesis, banks with a lower risk of default have higher charter value (Jokipii and 

Milne 2011) and will sustain their value by holding a higher capital buffer.  

Next, one can notice from the second row, last plot that the response of the capital buffer 

to one standard deviation shock of efficiency is positive as well. It picks after the first 

two periods and converges to the equilibrium thereafter. These results are in line with 

our main results obtained in Tables 6 and 7. Thus, the “franchise-value hypothesis” 

dominates over the “efficiency-risk hypothesis” indicating that banks with higher 

efficiency choose to hold a higher buffer to protect their charter value and future 

earnings. 

In the case of Altman’s Z-score, the panel-VAR methodology appears to confirm the 

findings of Table 14 (see Figure 4, the first plot in the last row that reports the response 

of Altman’s Z-Score to one standard deviation shock of buffer). The response is positive 

across the whole period and in agreement with the positive coefficients λ1 and λ2 of both 

regimes in Table 14. Thus, the panel-VAR results show that a higher capital buffer 

enhances bank stability by reducing the risk of default (increasing Altman’s Z-Score).  

Finally, the second plot in the third row of Figure 4 shows that the effect of one standard 

deviation shock of buffer on efficiency is negative and it converges towards the 

equilibrium after the first period. This finding comes in contrast with our previous 
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results in Table 10. However, this result needs to be interpreted with some caution as 

the response crosses the zero line and might imply a loss of significance.  

Next, we present VDCs, which show the percent of the variation in one variable that is 

explained by the shock to another variable, accumulated over time. The variance 

decompositions show the magnitude of the total effect. We report the total effect 

accumulated over 10 years. Longer time horizons produced equivalent results. Table 16 

presents the VDCs estimations. These results come in agreement with those reported by 

the IRFs, and provide further evidence that the level of efficiency explains the variation 

of buffer, though mostly it is buffer itself that explains its variation. Particularly, 3.43% 

of the forecast error of capital buffer after ten years is explained by shocks in the EFF 

variable. Furthermore, the VDCs results show that the level of buffer explains almost 

the half (50.8%) of the variation of efficiency. Finally, both capital buffer and efficiency 

are significant determinants of bank’s risk of default. Around 17.75% of the forecast 

error variance of ALTMANZ after 10 years is captured by BFF disturbances and about 

26.33% by EFF disturbances.  

[Insert Table 16] 

7. Conclusion  

This study empirically addresses the association between bank capital buffer, 

performance and risk. Using a sample of EU-27 banks over the period between 2004 

and 2013, the findings of this study could be of interest to both supervisory authorities 

and bank managers. Given that our sample covers the financial crisis of 2007 – 2008, 

we employ the dynamic panel threshold methodology as developed by Kremer et al. 

(2013). Results show different regimes over the sample period. A strong positive impact 
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of bank performance on the capital buffer is reported for banks in the low performance 

regime, while for the relatively better performing banks an improvement in the 

performance decreases the capital buffer. Moreover, threshold results indicate a positive 

impact of buffer on bank performance. These findings provide evidence that the 

regulatory framework as regards the capital adequacy requirements can enhance bank 

performance. Furthermore, threshold analysis shows that capital buffer exerts a strong 

positive impact on bank stability. The positive relationship between buffer and Altman’s 

Z-Score suggests that the implementation of minimum capital requirements might have 

succeeded in its main aim of creating a more stable banking system and reducing banks’ 

default risk.  

Notably, we find changes in the percentage of banks in each threshold regime during 

and after the financial crisis of 2007 – 2008. There is an increasing trend in the 

percentage of banks in the low performance regime over time, especially after the years 

2007 – 2008. This finding indicates that banks in the EU-27 region experienced a period 

of substantial performance deterioration. Moreover, the number of banks in the low 

capital buffer regime is consistently above the number of banks in the high regime 

during the financial crisis. Given the high cost of raising capital during the economic 

downturn, EU-27 banks accumulate lower capital during the recession period. These 

results are of some value for managers and policy makers in particular. Our findings 

clearly indicate that the impact of capital requirements is different for banks with 

different performance and risk characteristics.   
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Appendix 

Table I: Variable definitions and data sources. 

Variables Definition Source 

Bank-specific 

variables 

    

Buffer (BUFF) The amount of capital banks hold in excess of the 

minimum requirement and iscalculated as 

regulatory capital (Tier 1 plus Tier 2 over Risk 

Weighted Assets) minus minimum capital 

requirement. 

BankScope 

Cost Efficiency 

(EFF) 

A measure of bank performance. This variable 

indicates how close a firm’s profits are to the 
benchmark of the best practice firm. The measure 

of EFF is given by the ratio of minimum cost to 

actual cost and is bounded between zero and 

unity. We employ Stochastic Frontier Analysis in 

order to estimate cost efficiency for each bank. 

SFA  

ROE Return on equity. This variable is defined as the 

ratio of net profits over equity (%). 

BankScope 

ROA Return on assets. This variable is defined as the 

ratio of net profits over total assets (%). 

BankScope 

NIM Net interest margin. This variable is defined as the 

ratio of net interest income over total assets. 

BankScope 

Non-performing 

loans (NPL) 

The ratio of non-performing loans over total 

loans. 

BankScope 

Risk-Weighted 

Assets (RWA) 

The ratio of bank risk-weighted assets over total 

assets.  

BankScope 

Off-Balance-

Sheet items 

(OBS) 

Measured as the non-interest income and fee 

generating services from various contingent 

liabilities such as letters of credit, derivatives, 

securities underwriting, insurance and other types 

of non-traditional banking activities. 

BankScope 

Altman’s Z-Score 

(ALTMANZ) 

Altman’s Z-Score shows bank likelihood of 

bankruptcy and is calculated based on the 

following formula: 𝐴𝐿𝑇𝑀𝐴𝑁𝑍 = 1.2𝑋1 +1.4𝑋2 + 3.3𝑋3 + 0.64𝑋5 + 0.999𝑋5. 

 

Z-Score (Z-

SCORE) 

Z-Score indicates the risk of failure for a bank and 

is measured according to the following formula: 

Z-Score = (1 + ROE) / Standard Deviation of 

ROE and indicates the probability of failure for a 

given bank. 

BankScope 

Bank size (SIZE) The natural log of total assets is used as a measure 

of bank size. 

BankScope 

Disclosure 

(DISCLSR) 

A dummy variable that takes the value 1 for listed 

banks and 0 unlisted indicating information 

disclosure.  

BankScope 

Commercial 

banks (COM) 

A Dummy taking the value 1 for commercial 

banks and 0 for saving banks. 

BankScope 

Country-specific 

variables 
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GDP growth 

(GDPGR) 

GDP growth of each country. World 

Development 

Indicators 

(WDI) 

Concentration 

ratio (C5) 

The concentration ratio (C5) in the banking 

industry measured by the sum of the assets of the 

five largest banks as a share of all banks in each 

country and for each year. 

BankScope 

European 

Monetary Union 

countries (EMU)  

Dummy variable that takes the value 1 for 

European Monetary Union countries and 0 

otherwise. 
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List of tables 

 

Table 1: Total regulatory capital across country for EU-27 (2004 - 2013) 

Total regulatory capital across country for EU-27, (2004 - 2013).     

Country Mean Max Min Country Mean Max Min 

AUSTRIA 25.97 190 9.19 LATVIA 16.11 80.29 8.02 

BELGIUM 16.5 43.81 8.87 LITHUANIA 14.1 29.6 8.95 

BULGARIA 16.23 40.15 10.2 LUXEMBOURG 21.65 111.7 8.68 

CROATIA 17.59 38.67 9.17 MALTA 16.24 44.86 8.06 

CYPRUS 14.27 47.34 8.2 NETHERLANDS 16.48 45.9 9.3 

CZECH REPUBLIC 18.08 108.15 9.11 POLAND 13.84 33.64 8.63 

DENMARK 17.77 132.3 8.3 PORTUGAL 14.97 79.8 8.4 

ESTONIA 19.58 32.5 10.54 ROMANIA 18.41 122.63 9.77 

FINLAND 16.79 26.75 10.6 SLOVAKIA 15.31 30.38 9.05 

FRANCE 12.79 57 8.87 SLOVENIA 13.49 51.3 8.06 

GERMANY 18 95.7 8.1 SPAIN 15.88 71.9 8.17 

GREECE 13.74 36.6 8.51 SWEDEN 18.16 44.96 1.04 

HUNGARY 13.05 22.13 8.89 UNITED KINGDOM 18.07 102.9 9.7 

IRELAND 12.83 25 8.3 Mean 17.17 190 1.04 

ITALY 15.95 187 7.8     
Note: The table reports the mean total regulatory capital for EU-27 countries. The total regulatory capital 

is calculated as the sum of Tier 1 and Tier 2 capital over Risk Weighted Assets. 

 

 

Figure 1: Mean total regulatory capital for EU-27 countries over the years 2004-2013. The 

total regulatory capital is calculated as the sum of Tier 1 and Tier 2 capital over Risk Weighted 

Assets. 
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Table 2:  National total regulatory capital requirements 
 Minimum capital 

requirement 

Year of 

Implementation 

UK 9% 1979 

Cyprus 8% 1997 

 10% 2001 

Estonia 10% 1997 

Latvia 10% 1997 

 8% 2004 

Lithuania 10% 1997 

 8% 2005 

Note: The table shows the minimum capital requirements for countries 

that had set different minimum ratio over time. The minimum capital 

requirements for all other EU-27 countries is calculated with 8% of 

Risk Weighted Assets according to Jokipii and Milne (2008). 

 

Table 3: Bank capital buffer across country for EU-27 (2004 - 2013) 

Bank capital buffer across country for EU-27, (2004 - 2013).     

Country Mean Max Min Country Mean Max Min 

AUSTRIA 14.59 15.7 13.12 LATVIA 11.53 16.54 4.79 

BELGIUM 15.35 17.25 13.01 LITHUANIA 11.91 16.54 7.35 

BULGARIA 11.28 17.02 8.44 LUXEMBOURG 13.82 15.22 11.5 

CROATIA 10.92 14.11 6.09 MALTA 11.3 12.91 10.4 

CYPRUS 11.03 14.43 6.23 NETHERLANDS 13.05 17.02 10.9 

CZECH 

REPUBLIC 
12.34 14.94 9.03 POLAND 12.48 15.35 9.66 

DENMARK 11.41 16.54 7.72 PORTUGAL 14.54 17.72 9.22 

ESTONIA 12.28 14.06 8.8 ROMANIA 11.68 13.95 8.73 

FINLAND 13.4 15.88 10.53 SLOVAKIA 11.57 13.62 9.63 

FRANCE 14.45 17.53 11.18 SLOVENIA 11.07 13.24 8.81 

GERMANY 10.89 17.25 6.34 SPAIN 13.67 16.44 9.46 

GREECE 12.42 15.17 9.01 SWEDEN 10.98 15.35 6.29 

HUNGARY 12.56 14.92 8.36 
UNITED 

KINGDOM 
13.92 17.72 9.06 

IRELAND 14.01 17.53 9.82 Mean 11.75 17.72 4.61 

ITALY 11.12 17.13 4.61     
Note: The table reports the mean bank capital buffer for EU-27 countries. The bank capital 

buffer is calculated as the natural logarithm of total regulatory capital minus minimum capital 

requirement, where total regulatory capital is the sum of Tier 1 plus Tier 2 over Risk 

Weighted Assets. 
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Figure 2: Mean capital buffer for EU-27 countries over the years 2004-2013. The bank capital 

buffer is calculated as the natural logarithm of total regulatory capital minus minimum capital 

requirement, where total regulatory capital  is the sum of Tier 1 plus Tier 2 over Risk Weighted 

Assets. 

 

Table 4: Bank cost efficiency estimates across country for EU-27 (2004 - 2013) 

Bank cost efficiency estimates across country for EU-27, (2004 - 2013).   

Country Mean Max Min Country Mean Max Min 

AUSTRIA 0.78 0.88 0.7 LATVIA 0.77 0.94 0.59 

BELGIUM 0.7 0.86 0.4 LITHUANIA 0.76 0.87 0.55 

BULGARIA 0.64 0.82 0.42 LUXEMBOURG 0.72 0.84 0.52 

CROATIA 0.66 0.79 0.48 MALTA 0.85 0.92 0.78 

CYPRUS 0.76 0.93 0.44 NETHERLANDS 0.73 0.86 0.5 

CZECH 

REPUBLIC 
0.8 0.95 0.57 POLAND 0.73 0.9 0.52 

DENMARK 0.8 0.9 0.61 PORTUGAL 0.72 0.89 0.43 

ESTONIA 0.78 0.94 0.55 ROMANIA 0.63 0.78 0.46 

FINLAND 0.79 0.95 0.48 SLOVAKIA 0.78 0.86 0.57 

FRANCE 0.76 0.92 0.42 SLOVENIA 0.78 0.88 0.57 

GERMANY 0.8 0.89 0.29 SPAIN 0.84 0.97 0.43 

GREECE 0.75 0.91 0.52 SWEDEN 0.83 0.98 0.46 

HUNGARY 0.63 0.75 0.45 
UNITED 

KINGDOM 
0.79 0.96 0.47 

IRELAND 0.79 0.91 0.62 Mean 0.78 0.98 0.29 

ITALY 0.82 0.95 0.48     
Note: The table reports the mean cost efficiency for EU-27 countries. The bank cost 

efficiency scores are estimated employing Stochastic Frontier Analysis (SFA).  
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Figure 3: Bank cost efficiency estimates over the years 2004-2013. The bank cost efficiency 

scores are estimated employing Stochastic Frontier Analysis (SFA). 

 

Table 5: Descriptive statistics for variables  

Variable Mean Std. Dev. Min Max 

BUFF 11.75 2.14 4.61 17.72 

EFF 0.78 0.09 0.29 0.98 

ROE 4.27 21.36 -135 146 

ROA 0.39 1.70 -29.86 77.81 

NIM 2.57 1.79 -36.27 34.689 

NPL 0.06 0.8 -0.04 0.92 

RWA 5.46 0.87 0.002 40 

OBS 0.15 0.49 -0.04 19.72 

ALTMANZ 7.16 16.86 -1.25 50 

ZSCORE 2.49 4.44 -4.56 55.07 

SIZE 15.13 2.36 9.40 21.51 

GDPGR 0.65 3.21 -17.95 12.23 

C5 0.82 0.10 0.49 1 

Note: BUFF is the capital buffer calculated as the regulatory capital (Tier 1 plus 

Tier 2 over Risk Weighted Assets) minus minimum capital requirement. EFF 

stands for performance measure and is derived from SFA. ROE, ROA and NIM 

stand for additional bank performance measures and are the ratios of return on 

equity, return on assets and net interest margin respectively. NPL stands for the 

ratio of non-performing loans over total loans, RWA is calculated as the ratio 

of risk-weighted assets over total assets, OBS stands for the Off-Balance-Sheet 

items measured as the ratio of Off-Balance-Sheet items over total liabilities, 

ALTMANZ stands for Altman’s Z-Score: 𝐴𝑍𝑆𝐶𝑂𝑅𝐸 = 1.2𝑋1 + 1.4𝑋2 +3.3𝑋3 + 0.64𝑋5 + 0.999𝑋5and ZSCORE presents bank’s distance from default 

calculated from the formula: ZSCORE = (1 + ROE) / Standard Deviation of 

ROE. SIZE is the log of total assets and measures the bank size. GDPGR stands 

for the GDP growth, while C5 stands for the five-firm concentration ratio of 

each country’s banking industry. 
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Table 6: Dynamic Panel results for bank capital buffer using efficiency as performance measure (2004 – 2013) 

VARIABLES Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) Model (7) Model (8) 

         

L.BFF 0.812*** 0.756*** 0.440*** 0.561*** 0.410*** 0.580*** 0.518*** 0.428*** 

 (0.048) (0.066) (0.078) (0.058) (0.066) (0.054) (0.060) (0.060) 

EFF  4.105*** 1.967** 1.425** 1.778** 0.896 1.641*** 0.530** 

  (1.491) (0.951) (0.573) (0.879) (0.743) (0.602) (0.298) 

ALTMANZ   0.057**     0. 045*** 

   (0.026)     (0.015) 

ZSCORE    0.005     

    (0.019)     

NPL     0.003   0.003 

     (0.004)   (0.003) 

OBS      0.063*  0.031* 

      (0.035)  (0.017) 

RWA       0.331 0.094 

       (0.221) (0.112) 

DISCLOSURE   0.146 -0.044 0.246 0.221 -0.542 0.196 

   (0.509) (0.293) (0.336) (0.262) (0.397) (0.149) 

SIZE   0.507*** 0.401*** 0.562*** 0.343*** 0.442*** 0.562*** 

   (0.105) (0.066) (0.077) (0.063) (0.075) (0.061) 

COM   0.042 0.062 -0.082 0.038 0.246** 0.248** 

   (0.141) (0.063) (0.122) (0.099) (0.101) (0.111) 

C5   -0.210 0.135 0.007 0.085 0.149 -0.076 

   (0.279) (0.194) (0.242) (0.171) (0.232) (0.211) 

GDPGR   0.002 0.002 -0.001 0.010 0.003 0.011 

   (0.007) (0.008) (0.007) (0.006) (0.007) (0.005) 

EMU   -0.129 -0.217*** -0.249*** -0.120** -0.274*** -0.145** 

   (0.114) (0.076) (0.079) (0.048) (0.094) (0.042) 

Constant 2.112*** -0.132 -2.631*** -1.842*** -2.693*** -1.111* -1.529*** -2.395*** 



48 

  

 

 

VARIABLES Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) Model (7) Model (8) 

         

 (0.510) (1.016) (1.019) (0.697) (0.909) (0.649) (0.452) (0.514) 

         

Time Dummies YES YES YES YES YES YES YES YES 

Hansen test 0.0107 0.0812 0.411 0.0701 0.384 0.270 0.380 0.072 

AR(2) 1.836 1.551 1.774 1.717 1.365 1.402 1.671 1.187 
Note: The table reports the dynamic panel regression results. The two-step GMM (Arellano and Bover, 1995) is used with Windmeijer corrected (robust) 

errors. We consider as exogenous the country-specific and time dummy variables and as endogenous the bank-specific variables. The instruments chosen 

for the lagged endogenous variables are two-to-six period lags. AR (2) stands for the p-value of the second order residual autocorrelation tests. Hansen 

test stands for the p-value of Hansen’s J diagnostic test for instrument validity. The dependent variable is the capital buffer (BUFF) calculated as the 

regulatory capital (Tier 1 plus Tier 2 over Risk Weighted Assets) minus minimum capital requirement. L.BUFF is the lagged value of the dependent 

variable BUFF representing the dynamic nature of the model.  EFF stands or the cost efficiency scores calculated using SFA methodology. ALTMANZ 

presents Altman’s Z-Score and is a measure of bank likelihood for default. ZSCORE presents bank’s distance from default calculated from the formula: 

ZSCORE = (1 + ROE) / Standard Deviation of ROE. NPL stands for the ratio of  non-performing loan over total loans,  OBS stands for the Off-Balance-

Sheet items measured as the ratio of Off-Balance-Sheet items over total liabilities. RWA stands for the bank risk exposure and is calculated as the ratio 

of risk-weighted assets over total assets, DISCLSR is a dummy taking the value 1 for listed banks and 0 unlisted and stands as a second measure of 

market discipline indicating information disclosure. SIZE is the log of total assets and measures the bank size while C5 stands for the five-firm 

concentration ratio of each country’s banking industry. GDPGR stands for the GDP growth, EMU is a dummy taking the value 1 for banks in Eurozone 

and 0 otherwise and COM is a dummy taking the value 1 for commercial banks and 0 for saving banks. 

***, ** and * indicate 1%, 5% and 10% significance levels respectively.
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Table 7: Dynamic Panel results for bank capital buffer using different performance measures (2004 – 2013) 

VARIABLES Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) Model (7) 

        

L.BFF 0.404*** 0.428*** 0.422*** 0.406*** 0.420*** 0.422*** 0.394*** 

 (0.054) (0.059) (0.060) (0.059) (0.055) (0.055) (0.055) 

EFF 0.699**    0.598** 0.751*** 0.901*** 

 (0.277)    (0.287) (0.285) (0.322) 

ROE  0.003***   0.003***   

  (0.001)   (0.001)   

ROA   0.050   0.060**  

   (0.031)   (0.027)  

NIM    0.050*   0.090*** 

    (0.028)   (0.029) 

ALTMANZ 0.051*** 0.050*** 0.052*** 0.055*** 0.048*** 0.046*** 0.051*** 

 (0.014) (0.015) (0.018) (0.017) (0.013) (0.015) (0.014) 

NPL 0.006 0.004 0.004 -0.001 0.008* 0.009* 0.001 

 (0.005) (0.005) (0.005) (0.004) (0.005) (0.005) (0.004) 

OBS 0.047** 0.024 0.022 0.034** 0.038* 0.037* 0.051** 

 (0.019) (0.017) (0.017) (0.017) (0.020) (0.020) (0.020) 

RWA 0.065 0.115 0.059 0.020 0.077 0.077 -0.005 

 (0.121) (0.150) (0.176) (0.078) (0.122) (0.164) (0.068) 

DISCLOSURE 0.210 0.008 0.057 0.054 0.161 0.199 0.168 

 (0.154) (0.164) (0.164) (0.156) (0.148) (0.159) (0.146) 

SIZE 0.583*** 0.586*** 0.580*** 0.606*** 0.580*** 0.572*** 0.620*** 

 (0.058) (0.067) (0.069) (0.064) (0.059) (0.060) (0.059) 

COM -0.289** -0.329** -0.252* -0.282* -0.374*** -0.340*** -0.344*** 

 (0.115) (0.137) (0.132) (0.145) (0.122) (0.128) (0.125) 

C5 -0.068 -0.033 -0.103 -0.041 -0.028 -0.080 -0.007 

 (0.163) (0.147) (0.153) (0.148) (0.162) (0.170) (0.172) 

GDPGR 0.010* 0.010* 0.011* 0.011** 0.007 0.006 0.006 
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VARIABLES Model (1) Model (2) Model (3) Model (4) Model (5) Model (6) Model (7) 

        

 (0.005) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) 

EMU -0.174*** -0.149*** -0.111* -0.104* -0.188*** -0.166*** -0.142*** 

 (0.053) (0.057) (0.061) (0.056) (0.059) (0.059) (0.051) 

Constant -2.275*** -2.080*** -1.942*** -2.278*** -2.330*** -2.371*** -3.127*** 

 (0.469) (0.488) (0.498) (0.461) (0.469) (0.502) (0.573) 

        

Time Dummies YES YES YES YES YES YES YES 

Hansen test 0.188 0.340 0.238 0.523 0.143 0.144 0.383 

AR(2) 1.291 1.365 1.378 1.355 1.334 1.363 1.290 
 Note: The table reports the dynamic panel regression results. The two-step GMM (Arellano and Bover, 1995) is used with Windmeijer 

corrected (robust) errors. We consider as exogenous the country-specific and time dummy variables and as endogenous the bank-specific 

variables. The instruments chosen for the lagged endogenous variables are two-to-six period lags. AR (2) stands for the p-value of the 

second order residual autocorrelation tests. Hansen test stands for the p-value of Hansen’s J diagnostic test for instrument validity. The 

dependent variable is the capital buffer (BUFF) calculated as the regulatory capital (Tier 1 plus Tier 2 over Risk Weighted Assets) minus 

minimum capital requirement. L.BUFF is the lagged value of the dependent variable BUFF representing the dynamic nature of the model.  

EFF stands or the cost efficiency scores calculated using SFA methodology. ROE is the return on equity ratio, ROA the return on assets 

while NIM is the net interest margin. ALTMANZ presents Altman’s Z-Score and is a measure of bank likelihood for default. NPL stands 

for the ratio of  non-performing loan over total loans,  OBS stands for the Off-Balance-Sheet items measured as the ratio of Off-Balance-

Sheet items over total liabilities. RWA stands for the bank risk exposure and is calculated as the ratio of risk-weighted assets over total 

assets, DISCLSR is a dummy taking the value 1 for listed banks and 0 unlisted and stands as a second measure of market discipline 

indicating information disclosure. SIZE is the log of total assets and measures the bank size while C5 stands for the five-firm 

concentration ratio of each country’s banking industry. GDPGR stands for the GDP growth, EMU is a dummy taking the value 1 for 

banks in Eurozone and 0 otherwise and COM is a dummy taking the value 1 for commercial banks and 0 for saving banks. 

***, ** and * indicate 1%, 5% and 10% significance levels respectively.
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Table 8: Results for dynamic panel threshold estimation with efficiency 

as threshold variable and buffer as dependent variable 

EFF 0.729     

95% confidence interval          (0.569 - 0.848) 

  Coefficient  S.E. 

Impact of Eff on Buffer       

λ1 1.652 *** 0.55 

λ2 -1.20 ** 0.462 

Impact of covariates       

Lag Buffer 0.222 *** 0.035 

Altman’s z-score 0.098 *** 0.018 

Non-performing loans 0.005  0.004 

Off-Balance-Sheet items 0.034 * 0.019 

RWA -0.619 *** 0.254 

Size 1.584 *** 0.308 

C5 -0.029  0.230 

GDP growth -0.012 *** 0.004 

Time Dummies Yes   

δ  -0.222   0.513 

Observations 1735  

 

Low Regime 468  

 

High Regime 1267     

Note:  The table reports the estimation for dynamic panel threshold model. The 

threshold value of efficiency variable for banks ranges between 0.569 and 0.848. 

We denote bank capital buffer (BUFF) as the dependent variable while as the 

threshold variable we impose bank cost efficiency (EFF) and as the regime 

dependent variable bank size. The model accounts for regime dependent 

intercepts (δ). In this model, mit, includes bank-specific and country explanatory 

variables. As regards the bank-specific variables, we use: lagged capital buffer 

(Lag Buffer), Altman’s Z-Score, non-performing loans, off-balance-items, RWA 

and size. As country variables, we employ: GDP growth rate and concentration 

ratio (C5).  Finally, we include time dummies. ***, ** and * indicate 1%, 5% and 

10% significance levels respectively.   

  

Table 9: Dynamic Threshold Analysis: classification of banks into low and high regimes based on 

threshold value of cost efficiency 

Threshold: Efficiency                 

  2005 2006 2007 2008 2009 2010 2011 2012 2013 

Low Regime 10% 12% 18% 35% 25% 20% 24% 34% 34% 

High Regime 90% 88% 82% 65% 75% 80% 76% 66% 66% 

Note: The table shows the classification of banks based on the efficiency threshold value that we obtained 

following Kremer, Bick and Nautz (2013).  
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Table 10: Results for dynamic panel threshold estimation with buffer as 

threshold variable and efficiency as dependent variable 

BUFF 13.594     

95% confidence interval         (9.458 - 13.855) 

  Coefficient  S.E. 

Impact of Buffer on Eff       

λ1 0.008  0.005 

λ2 0.018 ** 0.008 

Impact of covariates       

Lag Efficiency 0.004  0.003 

Altman’s Z-Score -0.006 *** 0.002 

Non-performing loans -0.0006  0.0004 

Off-Balance-Sheet items -0.004  0.004 

RWA -0.090 *** 0.029 

Size -0.196 *** 0.037 

C5 0.120 * 0.071 

GDP growth 0.001 *** 0.0005 

Time Dummies Yes   

Δ 0.122   0.104  

Observations 1735  

 

Low Regime 1273  

 

High Regime 462     

Note:  The table reports the estimation for dynamic panel threshold model. The 

threshold value of buffer variable for banks ranges between 9.822 and 13.754. 

We denote bank efficiency (EFF) as the dependent variable while as the threshold 

variable we impose the bank capital buffer (BUFF) and as the regime dependent 

variable bank size. The model accounts for regime dependent intercepts (δ). In 

this model, mit, includes bank-specific and country explanatory variables. As 

regards the bank-specific variables, we use: Lagged efficiency (Lag Efficiency), 

Altman’s Z-Score, non-performing loans, off-balance-items, RWA and size.  As 

country variables, we employ: GDP growth rate and concentration ratio (C5).  

Finally, we include time dummies.  ***, ** and * indicate 1%, 5% and 10% 

significance levels respectively.   

 

Table 11: Dynamic Threshold Analysis: classification of banks into low and high regimes based on 

threshold value of buffer 

Threshold: Buffer                 

  2005 2006 2007 2008 2009 2010 2011 2012 2013 

Low Regime 69% 73% 79% 77% 72% 71% 74% 72% 72% 

High Regime 31% 27% 21% 23% 28% 29% 26% 28% 28% 

Note: The table shows the classification of banks based on the buffer threshold value that we obtained following 

Kremer, Bick and Nautz (2013).  
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Table 12: Results for dynamic panel threshold estimation with Z-Score 

as threshold variable and Buffer as dependent variable 

Altman’s Z-Score 7.382     

95% confidence interval (6.038  -  7.633) 

  Coefficient  S.E. 

Impact of Z-Score on Buffer       

λ1 0.228 *** 0.023 

λ2 0.011  0.008 

Impact of covariates       

Lag Buffer 0.197 *** 0.029 

Efficiency 1.009 *** 0.233 

Non-performing loans 0.004 ** 0.002 

Off-Balance-Sheet items 0.016  0.020 

RWA -0.823 *** 0.193 

Size 1.543 *** 0.219 

C5 -0.320  0.842 

GDP growth -0.013 *** 0.003 

Time Dummies YES   

Δ -1.584 *** 0.156 

Observations 1735  

 

Low Regime 1300  

 

High Regime 435     

Note:  The table reports the estimation for dynamic panel threshold model. The 

threshold value of Altman’s Z-Score variable for banks ranges between 6.038 and 

7.610. We denote bank capital buffer (BUFF) as the dependent variable while as 

the threshold variable we impose Altman´s Z-Score and as the regime dependent 

variable bank size.  The model accounts for regime dependent intercepts (δ). In 

this model, mit, includes bank-specific and country explanatory variables. As 

regards the bank-specific variables, we use: lagged capital buffer (Lag Buffer), 

Efficiency, non-performing loans, off-balance-items, RWA and size. As country 

variables, we employ: GDP growth rate and concentration ratio (C5). Finally, we 

include time dummies. ***, ** and * indicate 1%, 5% and 10% significance 

levels respectively.   

 

Table 13: Dynamic Threshold Analysis: classification of banks into low and high regimes based on 

threshold value of Z-Score 

Threshold: Altman’s Z-Score            
 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Low Regime 76% 84% 82% 85% 74% 73% 72% 71% 73% 

High Regime 24% 16% 18% 15% 26% 27% 28% 29% 27% 

Note: The table shows the classification of banks based on the Z-Score threshold value that we obtained 

following Kremer, Bick and Nautz (2013).  
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Table 14: Results for dynamic panel threshold estimation with Buffer as 

threshold variable and Altman’s Z-Score as dependent variable 

BUFF 9.244     

95% confidence interval (9.167 - 13.492) 

  Coefficient  S.E. 

Impact of Buffer on  Z-Score        

λ1 0.760 * 0.407 

λ2 1.184 *** 0.269 

Impact of covariates       

Lag Altman’s Z-Score 0.036  0.024 

Efficiency 2.682  2.320 

Non-performing loans 0.020  0.022 

Off-Balance-Sheet items 0.118  0.234 

RWA -8.470 *** 2.50 

Size 4.672  3.643 

C5 0.038  1.154 

GDP growth 0.042  0.027 

Time Dummies Yes  
 

δ  5.023   4.022 

Observations 1735  

 

Low Regime 90  

 

High Regime 1645     

Note:  The table reports the estimation for dynamic panel threshold model. The 

threshold value of BUFF variable for banks ranges between 9.167 and 13.492. 

We denote Altman’s Z-Score as the dependent variable while as the threshold 

variable we impose capital buffer (BUFF) and as the regime dependent variable 

bank size.  The model accounts for regime dependent intercepts (δ). In this model, 

mit, includes bank-specific and country explanatory variables. As regards the 

bank-specific variables, we use: lagged Altman’s Z-Score, Efficiency, non-

performing loans, off-balance-items, RWA and size. As country variables, we 

employ: GDP growth rate and concentration ratio (C5). Finally, we include time 

dummies. ***, ** and * indicate 1%, 5% and 10% significance levels respectively. 

 

Table 15: Dynamic Threshold Analysis: classification of banks into low and high regimes based on 

threshold value of buffer 

Threshold: Buffer                 

 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Low Regime 10% 7% 15% 16% 15% 15% 17% 15% 13% 

High Regime 90% 93% 85% 84% 85% 85% 83% 85% 87% 

Note: The table shows the classification of banks based on the buffer threshold value that we obtained 

following Kremer, Bick and Nautz (2013). 
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Figure 4: Impulse Response Functions for bank capital buffer, Altman's Z-Score and 

efficiency 

 

Note: The figure presents Impulse Response Functions for: BFF which stands for the bank capital 

buffer, EFF which is bank efficiency and ALTMANZ is the Altman's Z-Scores. Finally, s is the 

number of time periods ahead. Dashed lines are 5% S.E. on each side generated by Monte Carlo 

with 500 replications. 

 

Table 16: Variance Decompositions for bank capital buffer, Altman's Z-

Score and efficiency 

Response variable  Impulse variables 

 s BFF EFF ALTMANZ 

BFF 10 0.96561 0.03433 0.0000596 

EFF 10 0.508 0.49163 0.0003685 

ALTMANZ 10 0.17755 0.2633 0.5591566 
Note: The table presents the Variance Decompositions for:  BFF which stands for the bank 

capital buffer, EFF which is bank efficiency and ALTMANZ presents the Altman's Z-

Scores. Finally, s is the number of time periods ahead (years). 
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