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Abstract

We update the recently published paper [A. Ramos, Empir. Econ. (2017)

53:1109-1123] on the basis of another important paper [H. S. Kwong and S. Nadara-

jah, Physica A (2019) 513:55-62]. Specifically, we introduce the 3-normal (3N)

and 3-logistic (3L) distributions and compare them with the best of our distribu-

tions in the firstly mentioned paper, namely the “double mixture exponential Gen-

eralized Beta of the second kind (dmeGB2)”. The main result is that the dmeGB2

remains to be the best model when studying log-growth rates of USA city popu-

lations to date. However, if one does not want to achieve such a high precision

when describing the data, the 3L emerges to be a very good model for the same

purposes.
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1 Introduction

The paper Ramos (2017), published in the journal Empirical Economics, deals with the

question of whether the log-growth rates of USA city sizes follow a normal distribution

or not; if in the negative, we tried to provide a better alternative to which such quantities

could adhere. We were successful in that task, showing that the normal distribution is

strongly rejected always when considering several different types of USA log-growth

of population data, and for the same samples a new distribution emerged as the selected

one. This is the so called “double mixture exponential Generalized Beta 2 (dmeGB2)”.

After that, a very recently published paper (Kwong and Nadarajah, 2019) appeared

in relation with the fit of the Pareto Tails and Lognormal Body (PTLN) distribution

(Luckstead and Devadoss, 2017; Luckstead et al., 2017) to the samples of USA and

Indian cities. The former paper proposed as alternatives the convex linear combination

of three and five lognormal distributions and showed a better fit than the one in the

latter papers.

The paper Kwong and Nadarajah (2019) is important and relevant for the contents

of Ramos (2017) for mainly two reasons. The first is the question about whether taking

a convex linear combination of three normal distributions provides a real improvement

with respect to a single normal distribution, that is strongly rejected as we have men-

tioned already. The second is about the idea already present in Ramos (2017) regarding

that the distribution of city sizes (polulations) and of log-growth rates (difference of the

natural logarithms of populations) can be taken to be of the same family, the second

of them being the exponentiated version of the first one. Since for the USA the paper

of Kwong and Nadarajah (2019) shows a better fit of the convex linear combination

of three or five lognormals, it is natural to consider the convex linear combination of

three1 normal distributions (3N) for our samples of USA population log-growth rates.

1It is enough to consider three, five offers a very limited improvement of the fit and the computational

burden increases greatly.
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We advance that taking this convex linear combination of three normals is not sat-

isfactory enough with respect to the results already obtained in Ramos (2017) so we

propose to take convex linear combinations of three instances of a similar distribution

to the normal one, namely the logistic distribution (3L). This allows to obtain better

results. When comparing everything with the previous dmeGB2, the last one is still

generally the preferred model by statistical criteria, although the 3L emerges as a very

manageable and appropriate model for the considered types of data. In this way we

update the information presented in Ramos (2017) in a timely and relevant manner.

The paper is organized as follows. In Section 2 we describe the distributions to be

added to the study of Ramos (2017). In Section 3 we recall the empirical datasets and

the methodology employed in the current study, which is essentially the same as in the

mentioned previous paper. In Section 4 we describe the new results obtained. Finally,

Section 5 concludes.

2 The newly considered distributions

For a start, the best model of Ramos (2017) when studying log-growth rates of USA

city populations happened to be the “double mixture exponential Generalized Beta 2

(dmeGB2)”, see the Section 3.4 therein. We will use it in this Addenda in exactly the

same way, so we will not reproduce here the material and make reference to the original

source.

For the new distributions to be taken into account, let us consider first the proba-

bility density function of the normal distribution of parameters µ ∈ R, σ > 0 for the

variable g ∈ R that stands for log-growth rates

fN(g, µ, σ) =
1

σ
√
2π

exp

(

−
(g − µ)2

2σ2

)

and similarly, the probability density function of the logistic distribution of parameters
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µ ∈ R, σ > 0

fL(g, µ, σ) =
exp

(

− g−µ

σ

)

σ
(

1 + exp
(

− g−µ

σ

))2

Then, the first added distribution that we will include is inspired by Kwong and Nadara-

jah (2019), and is the convex linear combination of three normal distributions (3N),

with probability density function as follows

f3N(g, µ1, σ1, µ2, σ2, µ3, σ3, p1, p2)

= p1fN(g, µ1, σ1) + p2fN(g, µ2, σ2) + (1− p1 − p2)fN(g, µ3, σ3)

where p1, p2, 1− p1 − p2 ∈ [0, 1] are the weights of the different normal distributions

in the convex linear combination.

Likewise, the probability density function of the convex linear combination of three

logistic distributions (3L) is given by

f3L(g, µ1, σ1, µ2, σ2, µ3, σ3, p1, p2)

= p1fL(g, µ1, σ1) + p2fL(g, µ2, σ2) + (1− p1 − p2)fL(g, µ3, σ3)

with similar meanings for the weights p1, p2, 1− p1 − p2 ∈ [0, 1].

Thus, these distributions 3N and 3L depend on eight parameters to be estimated by

Maximum Likelihood (ML) by numerical means, in a similar way as we did for the

dmeGB2 in Ramos (2017) (with the command mle of MATLABr).

3 Review of the datasets and the methodology

The data sets employed in this Addenda are exactly the same as in the original paper

Ramos (2017). They comprise the log-growth rates of populations of the USA Incorpo-

rated Places in the period 1990-2000, an analogous thing for the set of USA All Places
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(Incorporated and Unincorporated) in the period 2000-2010, the log-growth rates of

the set of USA CCA clusters of Rozenfeld et al. (2011) in the period 1991-2000 for

a radius definition of the clusters of 2km., and some three extra data sets taken from

Sánchez-Vidal et al. (2014), namely, the log-growth rates of the USA places that are

one decade old in 1910 (d1 1910), five decades old in 1950 (d5 1950) and nine decades

old in 1990 (d9 1990). The descriptive statistics of all these data sets can be seen on

Table 1 of Ramos (2017).

The methodology followed is described shortly in the following and adheres closely

to that used in Ramos (2017) with an adding and a replacement. Firstly, we have

obtained the ML estimators of the parameters of the added distributions with the com-

mandmle of MATLABr and computed the Standard Errors (SE) by the indications of

Efron and Hinkley (1978) and McCullough and Vinod (2003). Next, we have computed

the means and the Standard Deviations (SD) of the variable g according to the empirical

samples and those provided by the different distributions in each case. Also, in order to

provide some measure of goodness-of-fit we have computed the Kolmogorov-Smirnov

(KS), Cramér-von Mises (CM) and Anderson-Darling (AD) tests for each sample and

distribution. Additionally, in order to reinforce the statistics, we have computed also the

msd and pseudo-R2 metrics inspired by Duranton (2007) in the corresponding cases,

like in Ramos (2017). As a measure of the information provided by the different mod-

els, we have computed the Maximum Log-likelihoods, the Akaike Information Crite-

rion (AIC) and Bayesian or Schwarz Information Criterion (BIC) (Burnham and An-

derson, 2002, 2004), very well adapted to the ML estimation that we have performed

before. Nextly, and this has not been included in Ramos (2017), we have computed the

Vuong’s tests (Vuong, 1989) since the considered models are non-nested, in order to

assess whether they are statistically equivalent or one is significantly preferred out of

the pair confronted in the test. If the statistic, that is distributed as a N(0, 1) random

variable, is positive, then the first distribution in the test is favoured; if the statistic is
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negative, the second model in the pair is favoured instead. Finally, we have offered as

well a graphical approximation of the fit in the different cases by means of standard

qq-plots (in Ramos (2017) we have offered a different kind of graphical approach),

since they may show deviations of the empirical samples from the estimated models in

a very reliable way.

4 Results

We describe briefly the new results next. In Table 1 and 2 we show the ML estimators

of the 3N and 3L distributions, respectively, and jointly with the Standard Errors (SE).

We observe that the estimations are rather precise, and the process of the numerical

estimations have been relatively fast with few iterations. Had we used (in an obvious

notation) the 5N or 5L (or higher), the process of estimating would have been much

longer and the convergence much slower.

In Table 3 we show in turn the empirical means and Standard Deviations and those

obtained via the different distributions. We can observe that the second ones are in

general close to the first ones, specially the means.

In Table 4 we show the computed msd and pseudo-R2 quantities inspired by Du-

ranton (2007) for the considered models. In it we can see that the preferred model by

these means is that with lowest msd and highest R2, and in this case the dmeGB2 turns

out to be the selected model almost always, with the sole exception of the sample of

Incorporated Places 1990-2000, for which is selected the 3L.

On its turn, Table 5 shows the results (p value, (statistics)) of the KS, CM, AD

tests. The dmeGB2 is never rejected by these tests and the used samples. The 3N is

rejected by the KS for the sample of All Places 2000-2010 and by the three tests for the

sample of CCA 1991-2000 (2km), and the 3L is rejected only by the AD test for the

lastly mentioned sample (the KS and CM tests do not reject the 3L for such a sample
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by a very small margin). This criterion shows a slight superiority of the dmeGB2 in the

variety of samples, but the 3L goes very close to it.

The information criteria run as follows. In Table 6 we show the Maximum Log-

likelihoods and the corresponding AIC and BIC. We see that the selected model for

the CCA 1991-2000 (2km) sample is clearly the dmeGB2 both by AIC and BIC, and

for the Incorporated Places 1990-2000 sample the AIC selects the same model, but the

BIC selects the 3L. For the samples of places one, five and nine decades old in 1910,

1950 and 1990, respectively, the selected model is always the 3L by both AIC and BIC

but with a very small margin.

In order to discriminate between the three models by a hypothesis test that allows

for non-nested models as those used in this Addenda, we compute the corresponding

Vuong’s tests, and we show the results in Table 7. From it, we can see that the dmeGB2

is always preferred to the 3N (and statistically equivalent at the 5% significance level

for the samples of places one, five and nine decades old in 1910, 1950, 1990, respec-

tively). The 3L and dmeGB2 are almost always statistically equivalent except for the

sample of CCA 1991-2000 (2km), where the dmeGB2 is strongly selected. Moreover,

the dmeGB2 is preferred always to the 3L except for the sample of All Places 2000-

2010, where the 3L is slightly preferred. Finally, the 3L is preferred to the 3N always,

although the former is strongly not statistically equivalent to the latter for the samples

of Incorporated Places 1990-2000 and All Places 2000-2010.

Finally in the graphs of the qq-plots we see deviations, if any, that are consistent

with the previous results, specially to the KS, CM and AD tests and the preference of

the models as explained before.
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5 Conclusions

We have added two more distributions to the study performed in Ramos (2017), in-

spired by the very recent work of Kwong and Nadarajah (2019), namely, the 3N and

3L defined in Section 2. We have compared the new results with the performance of

the best distribution in Ramos (2017) in order to see whether the 3N improves upon

the bad performance of a single normal distribution when studying log-growth rates of

USA city populations. We have introduced for motives of comparison another distribu-

tion, the 3L (logistic instead of a normal). The results are rather clear. By the previous

statistical criteria, the dmeGB2 is almost always the preferred model, showing the su-

periority with regards the 3N and the 3L. In turn, the 3L offers a better performance

than the 3N, which shows that the simple convex linear combinations of normals are

not enough to ensure an excellent fit, although the improvement of the 3N is still re-

markable with respect to a single normal distribution. The 3L reveals itself to be an

excellent alternative to the dmeGB2: it is much more simply coded and estimated, the

formulae are much more simple and even with that it is a model which is almost always

non-rejected. With similar computational prerequisites, it is superior to the 3N so the

3L is clearly preferable to the former. However, if one wants to obtain the most precise

results available today in a variety of instances, one may still use the dmeGB2.

Also, in Kwong and Nadarajah (2019) it is shown that the sample of the USA All

Places in 2010 can be very well described by the 3LN, which is the original result that

has motivated this Addenda. We can show that other USA samples can be very well de-

scribed by the 3LN and also by the 3LL (lognormal replaced by the loglogistic), which

is work in progress. This confirms again the idea that populations and their log-growth

rates can be taken to follow distributions of the same family (exponentiated version for

the log-growth rates), which holds at least for USA data sets of city populations.

It is even possible to define other distributions alternative to those three, for ex-

ample (with an obvious notation) the 3GB2 or 3-versions of special cases of the GB2

7



(McDonald, 1984; McDonald and Xu, 1995) other than the normal and the logistic

distributions. But then the number of parameters may be much higher, the numeri-

cal estimation issues may come into play and the convergence may be much slower,

it could be the case that no real improvement is obtained since we already have three

distributions (dmeGB2, 3N, 3L) that are non-rejected in a number of cases.

Table 1: MLE estimators and standard errors (SE) for the 3N.

µ1 (SE) σ1 (SE) µ2 (SE) σ2 (SE)

Ip 1990-2000 0.351 (0.025) 0.750 (0.018) 0.117 (0.004) 0.251 (0.003)

Ap 2000-2010 0.287 (0.035) 1.044 (0.026) 0.081 (0.003) 0.272 (0.003)

CCA 1991-2000 (2km) 0.398 (0.025) 0.581 (0.018) 0.193 (0.002) 0.145 (0.002)

d1 1910 0.371 (0.039) 0.786 (0.027) 0.215 (0.012) 0.334 (0.010)

d5 1950 0.081 (0.012) 0.307 (0.009) 0.363 (0.061) 0.775 (0.042)

d9 1990 0.081 (0.010) 0.265 (0.008) 0.331 (0.069) 0.770 (0.049)

µ3 (SE) σ3 (SE) p1 (SE) p2 (SE)

Ip 1990-2000 0.018 (0.001) 0.095 (0.001) 0.058 (0.003) 0.385 (0.006)

Ap 2000-2010 -0.009 (0.001) 0.089 (0.001) 0.041 (0.002) 0.356 (0.005)

CCA 1991-2000 (2km) 0.051 (0.001) 0.078 (0.001) 0.021 (0.001) 0.323 (0.004)

d1 1910 0.071 (0.008) 0.173 (0.007) 0.158 (0.010) 0.471 (0.021)

d5 1950 -0.013 (0.005) 0.148 (0.004) 0.365 (0.020) 0.069 (0.007)

d9 1990 0.016 (0.004) 0.110 (0.003) 0.369 (0.018) 0.051 (0.006)
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Table 2: MLE estimators and standard errors (SE) for the 3L.

µ1 (SE) σ1 (SE) µ2 (SE) σ2 (SE)

Ip 1990-2000 0.120 (0.004) 0.135 (0.002) 0.357 (0.022) 0.364 (0.010)

Ap 2000-2010 0.088 (0.004) 0.156 (0.002) -0.011 (0.001) 0.055 (0.001)

CCA 1991-2000 (2km) 0.163 (0.001) 0.067 (0.001) 0.360 (0.011) 0.196 (0.005)

d1 1910 0.176 (0.009) 0.161 (0.005) 0.010 (0.012) 0.087 (0.007)

d5 1950 0.347 (0.056) 0.394 (0.024) 0.232 (0.030) 0.172 (0.016)

d9 1990 0.306 (0.053) 0.359 (0.024) 0.074 (0.009) 0.129 (0.004)

µ3 (SE) σ3 (SE) p1 (SE) p2 (SE)

Ip 1990-2000 0.011 (0.001) 0.059 (0.001) 0.371 (0.007) 0.069 (0.003)

Ap 2000-2010 0.325 (0.035) 0.535 (0.017) 0.339 (0.002) 0.621 (0.002)

CCA 1991-2000 (2km) 0.033 (0.001) 0.040 (0.001) 0.417 (0.005) 0.048 (0.002)

d1 1910 0.363 (0.030) 0.374 (0.013) 0.569 (0.015) 0.203 (0.011)

d5 1950 -0.014 (0.004) 0.105 (0.002) 0.082 (0.009) 0.129 (0.015)

d9 1990 0.005 (0.004) 0.066 (0.002) 0.073 (0.008) 0.411 (0.024)

Table 3: Comparison of the empirical means and standard deviations with those pro-

vided by the estimated distributions.

Empirical dmeGB2 3N 3L

Mean SD Mean SD Mean SD Mean SD

Ip 1990-2000 0.075 0.262 0.075 0.260 0.075 0.242 0.076 0.259

Ap 2000-2010 0.035 0.282 0.035 0.273 0.035 0.282 0.036 0.277

CCA 1991-2000 (2km) 0.105 0.156 0.105 0.155 0.105 0.142 0.103 0.149

d1 1910 0.186 0.415 0.186 0.415 0.186 0.395 0.185 0.415

d5 1950 0.047 0.312 0.047 0.312 0.047 0.312 0.047 0.313

d9 1990 0.056 0.261 0.056 0.261 0.056 0.244 0.056 0.259

Table 4: Computation of the msd (in units of 10−3) and the pseudo-R2 inspired by

Duranton (2007) for the considered distributions. The most favoured values are marked

in bold.

dmeGB2 3N 3L

msd R2 msd R2 msd R2

Ip 1990-2000 0.64 0.9907 0.70 0.9899 0.39 0.9943
Ap 2000-2010 1.00 0.9874 1.72 0.9785 1.03 0.9870

CCA 1991-2000 (2km) 0.09 0.9963 0.44 0.9817 0.68 0.9721

d1 1910 0.18 0.9990 0.37 0.9979 0.30 0.9983

d5 1950 0.16 0.9984 0.44 0.9954 0.27 0.9972

d9 1990 0.52 0.9924 0.68 0.9900 0.57 0.9917
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Table 5: Kolmogorov–Smirnov (KS), Cramér–von Mises (CM) and Anderson–Darling

(AD) tests for the considered distributions. p values (statistics) in all cases. Non-

rejections at the 5% level are marked in bold.

dmeGB2

KS CM AD

Ip 1990-2000 0.770 (0.005) 0.588 (0.099) 0.248 (1.253)
Ap 2000-2010 0.689 (0.005) 0.734 (0.073) 0.678 (0.569)

CCA 1991-2000 (2km) 0.798 (0.004) 0.886 (0.048) 0.927 (0.314)
d1 1910 0.9979 (0.007) 0.9997 (0.015) 0.9999 (0.103)
d5 1950 0.9307 ( 0.010) 0.9523 (0.036) 0.9906 (0.199)
d9 1990 0.9737 (0.009) 0.9883 (0.026) 0.9933 (0.188)

3N

KS CM AD

Ip 1990-2000 0.146 (0.009) 0.217 (0.229) 0.156 (1.592)
Ap 2000-2010 0.011 (0.011) 0.071 (0.403) 0.062 (2.314)

CCA 1991-2000 (2km) 0.002 (0.012) 0.005 (0.857) 0.001 (6.291)

d1 1910 0.9272 (0.010) 0.9341 (0.040) 0.9790 (0.232)
d5 1950 0.9808 (0.009) 0.9662 (0.033) 0.9857 (0.215)
d9 1990 0.7765 (0.012) 0.7839 (0.0648) 0.8764 (0.372)

3L

KS CM AD

Ip 1990-2000 0.152 (0.009) 0.620 (0.093) 0.664 (0.584)
Ap 2000-2010 0.778 (0.005) 0.654 (0.087) 0.720 (0.526)

CCA 1991-2000 (2km) 0.055 (0.009) 0.053 (0.450) 0.006 (4.371)

d1 1910 0.9940 (0.007) 0.9955 (0.021) 0.9996 (0.130)
d5 1950 0.8645 (0.011) 0.9573 (0.035) 0.9877 (0.2093)
d9 1990 0.4570 (0.016) 0.6671 (0.084) 0.7459 (0.501)
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Table 6: Maximum log-likelihoods, Akaike Information Criteria (AIC) and Bayesian

or Schwartz Information Criteria (BIC) for the considered distributions. The most

favoured values of AIC and BIC in each case are marked in bold.

dmeGB2 3N

Log-likelihood AIC BIC Log-likelihood AIC BIC

Ip 1990-2000 3509 -6998 -6920 3458 -6901 -6838

Ap 2000-2010 5625 -11,231 -11,150 5532 -11,048 -10,983

CCA 1991-2000 (2km) 19,771 -39,521 -39,438 19,586 -39,156 -39,090

d1 1910 -1388 2795 2856 -1391 2799 2848

d5 1950 -254 529 589 -256 528 576

d9 1990 446 -873 -813 440 -865 -817

3L

Log-likelihood AIC BIC

Ip 1990-2000 3507 -6997 -6934
Ap 2000-2010 5636 -11,256 -11,191

CCA 1991-2000 (2km) 19,615 -39,214 -39,147

d1 1910 -1389 2793 2842
d5 1950 -255 526 574
d9 1990 442 -868 -820

Table 7: p values (statistics) of Vuong’s tests for the considered distributions. Non-

rejections at the 5% level are marked in bold.

3N vs dmeGB2 3L vs dmeGB2 3N vs 3L

Ip 1990-2000 0.001 (-3.360) 0.586 (-0.544) 0.000 (-3.753)

Ap 2000-2010 0 (-4.506) 0.376 (0.886) 0 (-7.402)

CCA 1991-2000 (2km) 0 (-8.760) 0 (-6.920) 0.250 (-1.150)
d1 1910 0.330 (-0.975) 0.548 (-0.600) 0.408 (-0.828)
d5 1950 0.642 (-0.465) 0.831 (-0.213) 0.622 (-0.492)
d9 1990 0.149 (-1.442) 0.066 (-1.842) 0.568 (-0.572)
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Figure 1: Qq-plots for the estimated dmeGB2, 3N and 3L distributions versus the

empirical USA Ip (1990-2000) sample.
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Figure 2: Qq-plots for the estimated dmeGB2, 3N and 3L distributions versus the

empirical USA Ap (2000-2010) sample.
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Figure 4: Qq-plots for the estimated dmeGB2, 3N and 3L distributions versus the

empirical USA d1 1910 sample.
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Figure 5: Qq-plots for the estimated dmeGB2, 3N and 3L distributions versus the

empirical USA d5 1950 sample.
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Figure 6: Qq-plots for the estimated dmeGB2, 3N and 3L distributions versus the

empirical USA d9 1990 sample.
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